TY - CONF A1 - Oster, Simon T1 - Multispectral in-situ monitoring of a L-PBF manufacturing process using three thermographic camera systems N2 - The manufacturing of metal parts for the use in safety-relevant applications by Laser Powder Bed Fusion (L-PBF) demands a quality assurance of both part and process. Thermography is a nondestructive testing method that allows the in-situ determination of the thermal history of the produced part which is connected to the mechanical properties and the formation of defects [1]. A wide range of commercial thermographic camera systems working in different spectral ranges is available on the market. The understanding of the applicability of these cameras for qualitative and quantitative in-situ measurements in L-PBF is of vital importance [2]. In this study, the building process of a cylindrical specimen (Inconel 718) is monitored by three camera systems simultaniously. These camera systems are sensitive in various spectral bandwidths providing information in different temperature ranges. The performance of each camera system is explored in the context of the extraction of image features for the detection of defects. It is shown that the high temporal and thermal process dynamics are limiting factors on this matter. The combination of different spectral camera systems promises the potential of an improved defect detection by data fusion. T2 - LASER SYMPOSIUM & ISAM 2021 CY - Online meeting DA - 07.12.2021 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Defect detection PY - 2021 AN - OPUS4-54141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Tina T1 - Multi measurand in-situ monitoring of the laser powder bed fusion process by means of multispectral optical tomography N2 - Laser Powder Bed Fusion (L-PBF), as one of the most promising production process in the field of metal additive manufacturing, enables traditional constructive solutions to be rethought and the manufacturing of optimized components according to the "form follows function" principle. The most significant obstacle for a broad industrial application of the L-PBF process is the inadequate quality assurance during the manufacturing process so far, leading to high production costs. Although several mainly camera based commercial in-process monitoring systems are already available, a deep understanding of the interpretation of the monitored data and correlation with actual defects is still lacking. One reason for this is the reduction of the complex process signature to just one measurement value. The focus of this contribution is the presentation of the multispectral optical tomography as alternative to single measurand in-situ monitoring systems. The potential of this approach is hereby shown on L-PBF printed samples with induced process instabilities. Beyond that, an in-house developed L-PBF printer for further testing of multi-sensor in-situ monitoring systems is presented. T2 - ICAM2021 CY - Online meeting DA - 01.11.2021 KW - In-situ monitoring KW - L-PBF KW - Optical tomography KW - 3d printing KW - Thermography PY - 2021 AN - OPUS4-54388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fabry, Çağtay A1 - Hirthammer, Volker A1 - Scherer, Martin K. T1 - weldx - welding data exchange format N2 - Scientific welding data covers a wide range of physical domains and timescales and are measured using various different sensors. Complex and highly specialized experimental setups at different welding institutes complicate the exchange of welding research data further. The WelDX research project aims to foster the exchange of scientific data inside the welding community by developing and establishing a new open source file format suitable for the documentation of experimental welding data and upholding associated quality standards. In addition to fostering scientific collaboration inside the national and international welding community an associated advisory committee will be established to oversee the future development of the file format. The proposed file format will be developed with regard to current needs of the community regarding interoperability, data quality and performance and will be published under an appropriate open source license. By using the file format objectivity, comparability and reproducibility across different experimental setups can be improved. KW - Welding KW - Research data management KW - Open science KW - Open Data KW - WelDX PY - 2021 DO - https://doi.org/10.5281/zenodo.6563282 PB - Zenodo CY - Geneva AN - OPUS4-55226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roveda, Ilaria T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy N2 - Al-Si alloys produced by Laser Powder Bed Fusion (L-PBF) techniques allow the fabrication of lightweight free-shape components. Due to the high cooling rates occurring during the building process, L-PBF AlSi10Mg alloys exhibit an ultra-fine microstructure that leads to superior mechanical properties in the as-built condition compared to conventional cast Al-Si materials. Nevertheless, L-PBF processing induces high thermal gradients, leading to deleterious residual stress. In order to relax detrimental residual stress and to increase the ductility, post-processing stress relief treatments are performed. The objective of the contribution is to investigate, under different heat treatment condition, the evolution of microstructure and residual stresses in view of optimizing the fatigue performance of the alloy. To this purpose various heat treatments in a range of temperatures between 265°C and 300°C for a duration between 15 minutes and 2 hours are performed. T2 - Fatigue Design 2021 CY - Senlis, France DA - 17.11.2021 KW - AlSi10Mg KW - Additive manufacturing KW - L-PBF KW - Residual stress KW - Heat treatment PY - 2021 AN - OPUS4-53794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro T1 - Damage Tolerant Approach in Additively Manufactured Metallic Materials N2 - Damage tolerance counts as one of the most widespread approach to fatigue assessment and surely as one of the most promising in understanding the process-structure-property-performance relationships in additively manufactured metallic materials. Manufacturing defects, surface roughness, microstructural features, short and long crack fatigue propagation, residual stresses and applied loads can be taken into consideration in a fracture mechanics-based fatigue assessment. Many aspects are crucial to the reliable component life prediction. Among those a prominent role is played by an accurate measurement and modelling of the short crack fatigue behavior, and reliable statistical characterization of defects and residual stresses. This work aims at addressing the issues related to both experimental testing, fatigue and fatigue crack propagation, and fracture mechanics-based modelling of fatigue lives. Examples will be provided on an additively manufactured AISI 316 L. T2 - TMS2021 VIRTUAL CY - Online meeting DA - 15.03.2021 KW - AISI 316L KW - Additive Manufacturing KW - Damage Tolerance KW - Microstructure KW - Defects KW - Residual Stress PY - 2021 AN - OPUS4-52293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Sommer, Konstantin A1 - Knobloch, Tim A1 - Altenburg, Simon A1 - Recknagel, Sebastian A1 - Bettge, Dirk A1 - Hilgenberg, Kai T1 - Process Induced Preheating in Laser Powder Bed Fusion Monitored by Thermography and Its Influence on the Microstructure of 316L Stainless Steel Parts N2 - Undetected and undesired microstructural variations in components produced by laser powder bed fusion are a major challenge, especially for safety-critical components. In this study, an in-depth analysis of the microstructural features of 316L specimens produced by laser powder bed fusion at different levels of volumetric energy density and different levels of inter layer time is reported. The study has been conducted on specimens with an application relevant build height (>100 mm). Furthermore, the evolution of the intrinsic preheating temperature during the build-up of specimens was monitored using a thermographic in-situ monitoring set-up. By applying recently determined emissivity values of 316L powder layers, real temperatures could be quantified. Heat accumulation led to preheating temperatures of up to about 600 °C. Significant differences in the preheating temperatures were discussed with respect to the individual process parameter combinations, including the build height. A strong effect of the inter layer time on the heat accumulation was observed. A shorter inter layer time resulted in an increase of the preheating temperature by more than a factor of 2 in the upper part of the specimens compared to longer inter layer times. This, in turn, resulted in heterogeneity of the microstructure and differences in material properties within individual specimens. The resulting differences in the microstructure were analyzed using electron back scatter diffraction and scanning electron microscopy. Results from chemical analysis as well as electron back scatter diffraction measurements indicated stable conditions in terms of chemical alloy composition and austenite phase content for the used set of parameter combinations. However, an increase of the average grain size by more than a factor of 2.5 could be revealed within individual specimens. Additionally, differences in feature size of the solidification cellular substructure were examined and a trend of increasing cell sizes was observed. This trend was attributed to differences in solidification rate and thermal gradients induced by differences in scanning velocity and preheating temperature. A change of the thermal history due to intrinsic preheating could be identified as the main cause of this heterogeneity. It was induced by critical combinations of the energy input and differences in heat transfer conditions by variations of the inter layer time. The microstructural variations were directly correlated to differences in hardness. KW - Additive manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring KW - Thermography KW - Heat accumulation KW - Inter layer time KW - Cellular substructure PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529240 DO - https://doi.org/10.3390/met11071063 VL - 11 IS - 7 SP - 1063 PB - MDPI CY - Basel, Schweiz AN - OPUS4-52924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey A1 - Bachmann, Marcel T1 - High-power laser beam welding for thick section steels – new perspectives using electromagnetic systems N2 - In recent years, it was shown that the introduction of additional oscillating and permanent magnetic fields to laser beam and laser-arc hybrid welding can bring several beneficial effects. Examples are a contactless weld pool support for metals of high thickness suffering from severe drop-out when being welded conventionally or an enhanced stirring to improve the mixing of added filler material in the depth of the weld pool to guarantee homogeneous resulting mechanical properties of the weld. The latest research results show the applicability to various metal types over a wide range of thicknesses and welding conditions. The observations made were demonstrated in numerous experimental studies and a deep understanding of the interaction of the underlying physical mechanisms was extracted from numerical calculations. KW - Laser beam welding KW - Numerical simulations KW - Electromagnetic support PY - 2021 DO - https://doi.org/10.1080/13621718.2021.1999763 VL - 27 IS - 1 SP - 43 EP - 51 PB - Taylor & Francis Group AN - OPUS4-53970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raute, J. A1 - Jokisch, T. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Effects on crack formation of additive manufactured Inconel 939 sheets during electron beam welding N2 - The potential of additive manufacturing for processing precipitation hardened nickel-base superalloys, such as Inconel 939 is considerable, but in order to fully exploit this potential, fusion welding capabilities for additive parts need to be explored. Currently, it is uncertain how the different properties from the additive manufacturing process will affect the weldability of materials susceptible to hot cracking. Therefore, this work investigates the possibility of joining additively manufactured nickel-based superalloys using electron beam welding. In particular, the influence of process parameters on crack formation is investigated. In addition, hardness measurements are performed on cross-sections of the welds. It is shown that cracks at the seam head are enhanced by Welding speed and energy per unit length and correlate with the hardness of the weld metal. Cracking parallel to the weld area shows no clear dependence on the process variables that have been investigated, but is related to the hardness of the heat-affected zone. KW - Electron beam welding KW - Hot Cracks KW - Superalloy KW - Inconel 939 PY - 2021 DO - https://doi.org/10.1016/j.vacuum.2021.110649 SN - 0042-207X VL - 195 SP - 10649 PB - Elsevier Ltd. AN - OPUS4-53689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, Chr. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation on laser cladding of rail steel without preheating N2 - The contact between train wheels and rail tracks is known to induce material degradation in the form of wear, and rolling contact fatigue in the railhead. Rails with a pearlitic microstructure have proven to provide the best wear resistance under severe wheel-rail interaction in heavy haul applications. High speed laser cladding, a state-of-the-art surface engineering technique, is a promising solution to repair damaged railheads. However, without appropriate preheating or processing strategies, the utilized steel grades lead to martensite formation and cracking during deposition welding. In this study, laser cladding of low-alloy steel at very high speeds was investigated, without preheating the railheads. Process speeds of up to 27 m/min and laser power of 2 kW are used. The clad, heat affected zone and base material are examined for cracks and martensite formation by hardness tests and metallographic inspections. A methodology for process optimization is presented and the specimens are characterized for suitability. Within the resulting narrow HAZ, the hardness could be significantly reduced. T2 - Lasers in Manufacturing Conference 2021 CY - Erlangen, Germany DA - 21.06.2021 KW - High speed laser cladding KW - Preheatin KW - Rail tracks KW - Pearlitic microstructure PY - 2021 AN - OPUS4-53974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, V. A1 - Marko, A. A1 - Kruse, T. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Analysis and recycling of bronze grinding waste to produce maritime components using directed energy deposition N2 - Additive manufacturing promises a high potential for the maritime sector. Directed Energy Deposition (DED) in particular offers the opportunity to produce large-volume maritime components like propeller hubs or blades without the need of a costly casting process. The post processing of such components usually generates a large amount of aluminum bronze grinding waste. The aim of the presented project is to develop a sustainable circular AM process chain for maritime components by recycling aluminum bronze grinding waste to be used as raw material to manufacture ship Propellers with a laser-powder DED process. In the present paper, grinding waste is investigated using a dynamic image Analysis system and compared to commercial DED powder. To be able to compare the material quality and to verify DED process parameters, semi-academic sample geometries are manufactured. T2 - LiM 2021 CY - Munich, Germany DA - 21.06.2021 KW - Additive Manufacturing KW - Maritime Components KW - Powder Analysis KW - Recycling KW - Directed Energy Deposition PY - 2021 SP - 1 EP - 9 AN - OPUS4-54067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Agudo Jácome, Leonardo A1 - Hilgenberg, Kai T1 - Influence of process-relevant parameters and heat treatments on the microstructure and resulting mechanical behavior of additively manufactured AlSi10Mg via Laser Powder Bed Fusion N2 - Within the group of additive manufacturing (AM) technologies for metals, laser powder bed fusion (L-PBF) has a leading position. Nevertheless, reproducibility of part properties has not reached sufficient maturity hindering the use for industrial applications especially for safety-relevant components. This article presents the results of various experimental tests performed with the aluminium alloy AlSi10Mg identifying reasons for the high deviations in mechanical properties. Herein, it is discussed how microstructure is influenced by different process parameters (laser power, scanning speed, energy density, building height) and how it can be adjusted by suitable post process heat treatments. The impact of resulting changes in microstructure is shown by monotonic tensile and cyclic fatigue tests considering specimens manufactured with different L-PBF machines. T2 - LiM 2021 CY - Online meeting DA - 21.06.2021 KW - Additive manufacturing KW - Laser powder bed fusion KW - AlSi10Mg PY - 2021 SP - 1 EP - 9 AN - OPUS4-52991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. T1 - Influence of process-relevant parameters and heat treatments on the microstructure and resulting mechanical behavior of additively manufactured AlSi10Mg via Laser Powder Bed Fusion N2 - Within the group of additive manufacturing (AM) technologies for metals, laser powder bed fusion (L-PBF) has a leading position. Nevertheless, reproducibility of part properties has not reached sufficient maturity hindering the use for industrial applications especially for safety-relevant components. This article presents the results of various experimental tests performed with the aluminium alloy AlSi10Mg identifying reasons for the high deviations in mechanical properties. Herein, it is discussed how microstructure is influenced by different process parameters (laser power, scanning speed, energy density, building height) and how it can be adjusted by suitable post process heat treatments. The impact of resulting changes in microstructure is shown by monotonic tensile and cyclic fatigue tests considering specimens manufactured with different L-PBF machines. T2 - LiM 2021 CY - Online meeting DA - 21.06.2021 KW - Additive manufacturing KW - AlSi10Mg KW - Laser powder bed fusion PY - 2021 AN - OPUS4-53046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Przyklenk, A. A1 - Balsamo, A. A1 - O'Connor, D. A1 - Evans, Alexander A1 - Yandayan, T. A1 - Akgöz, S. A1 - Flys, O. A1 - Zeleny, V. A1 - Czułek, D. A1 - Meli, F. A1 - Ragusa, C. A1 - Bosse, H. T1 - New European Metrology Network for advanced manufacturing N2 - Advanced manufacturing has been identified as one of the key enabling technologies with applications in multiple industries. The growing importance of advanced manufacturing is reflected by an increased number of publications on this topic in recent years. Advanced manufacturing requires new and enhanced metrology methods to assure the quality of manufacturing processes and the resulting products. However, a high-level coordination of the metrology community is currently absent in this field and consequently this limits the impact of metrology developments on advanced manufacturing. In this article we introduce the new European Metrology Network (EMN) for Advanced Manufacturing within EURAMET, the European Association of National Metrology Institutes (NMIs). The EMN is intended to be operated sustainably by NMIs and Designated Institutes in close cooperation with Stakeholders interested in advanced manufacturing. The objectives of the EMN are to set up a permanent stakeholder dialogue, to develop a Strategic Research Agenda for the metrology input required for advanced manufacturing technologies, to create and maintain a knowledge sharing programme and to implement a web-based service desk for stakeholders. The EMN development is supported by a Joint Network Project within the European Metrology Programme for Innovation and Research. KW - Stakeholder KW - Advanced manufacturing KW - Metrology KW - European Metrology Networks (EMNs) KW - Strategic Research Agenda (SRA), PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530618 DO - https://doi.org/10.1088/1361-6501/ac0d25 VL - 32 IS - 11 SP - 111001 PB - IOP Publishing AN - OPUS4-53061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten T1 - WAAM process influences on local microstructure and residual stresses in high-strength steels N2 - High-strength fine-grain structural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. Due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the special microstructure of high-strength steels is sensitive to cold cracking. For this reason, process- and material-related influences, as well as the design effects on residual stress formation, are being investigated in a project funded by the AiF (FOSTA P1380/IGF 21162 BG). This study focuses on determining the interactions between heat control during WAAM process, resulting hardness, microstructure, and residual stresses, analyzed by X-ray diffraction. Welding experiments using geometrically similar AM specimens show that, with regard to the heat input, the energy per unit length in particular leads to significantly affected cooling times and microstructures and causes pronounced localized effects in terms of residual stresses in the upper weld beads. T2 - 46th MPA-Seminar CY - Stuttgart, Germany DA - 12.10.2021 KW - Wire Arc Additive Manufacturing KW - High-strength structural steels KW - Vickers hardness KW - Residual stresses PY - 2021 AN - OPUS4-53567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Börner, Andreas A1 - Gustus, R. A1 - Kannengießer, Thomas A1 - Wesling, V. A1 - Maus-Friedrichs, W. T1 - Surface finishing of hard-to-machine cladding alloys for highly stressed components N2 - The supply and processing of materials for highly stressed components are usually cost-intensive. Efforts to achieve cost and resource efficiency lead to more complex structures and contours. Additive manufacturing steps for component repair and production offer significant economic advantages. Machining needs to be coordinated with additive manufacturing steps in a complementary way to produce functional surfaces suitable for the demands. Regarding inhomogeneity and anisotropy of the microstructure and properties as well as production-related stresses, a great deal of knowledge is still required for efficient use by small- and medium-size enterprises, especially for the interactions of subsequent machining of these difficult-to-machine materials. Therefore, investigations on these influences and interactions were carried out using a highly innovative cost-intensive NiCrMo alloy (IN725). These alloys are applied for claddings as well as for additive component manufacturing and repair welding using gas metal arc welding processes. For the welded specimens, the adequate solidification morphology, microstructure and property profile were investigated. The machinability in terms of finishing milling of the welded surfaces and comparative analyses for ultrasonic-assisted milling processes was examined focussing on surface integrity. It was shown that appropriate cutting parameters and superimposed oscillating of the milling tool in the direction of the tool rotation significantly reduce the mechanical loads for tool and workpiece surface. This contributes to ensure a high surface integrity, especially when cutting has to be carried out without cooling lubricants. KW - WAAM KW - IN725 KW - Machining KW - Ultrasonic-assisted milling KW - Residual stresses KW - Cutting forces KW - Surface integrity KW - Microstructure PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524872 DO - https://doi.org/10.1007/s00170-021-06815-y VL - 114 IS - 5-6 SP - 1427 EP - 1442 PB - Springer AN - OPUS4-52487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Process-related influences and correlations in wire arc additive manufacturing of high-strength steels N2 - High-strength fine-grained structural steels have great potential for weight-optimized, efficient structures in many modern steel applications. Further advances in efficiency can be achieved through additive manufacturing and bionic design. Commercial high-strength filler materials for wire arc additive manufacturing (WAAM) are already provided by the consumable producers. Today, application would be strictly limited due to absence of quantitative findings or any guidelines for the industry regarding welding-related stresses and component safety during manufacturing and service. Hence, process- and material-related influences and design-related restraint conditions associated with formation of residual stresses and cold cracking risk are investigated. The aim is the accessibility of special WAAM self-restraining cold cracking tests and easy applicable processing recommendations, enabling an economical, fit-for-purpose and crack-safe WAAM of high-strength steels. This first study focuses on determination of interactions between WAAM process parameters, resulting layer geometry, microstructure and residual stresses, analyzed via X-ray diffraction. Defined reference specimens are automated welded using a special WAAM solid wire (yield strength >820 MPa). Geometric properties can be specifically adjusted by wire feed and welding speed, but cannot be varied arbitrarily, since a high heat input causes local overheating, inadmissible changes of microstructure and mechanical properties, defects and comparable high tensile residual stresses. T2 - 22. Werkstofftechnischen Kolloquium der TU Chemnitz CY - Online meeting DA - 24.03.2021 KW - Residual stresses KW - Additive Manufacturing KW - High-strength steel PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533300 DO - https://doi.org/10.1088/1757-899X/1147/1/012002 VL - 1147 SP - 012002 PB - IOP Publishing Ltd AN - OPUS4-53330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Ulbricht, Alexander A1 - Altenburg, Simon T1 - Investigation of the thermal history of L-PBF metal parts by feature extraction from in-situ SWIR thermography N2 - Laser powder bed fusion is used to create near net shape metal parts with a high degree of freedom in geometry design. When it comes to the production of safety critical components, a strict quality assurance is mandatory. An alternative to cost-intensive non-destructive testing of the produced parts is the utilization of in-situ process monitoring techniques. The formation of defects is linked to deviations of the local thermal history of the part from standard conditions. Therefore, one of the most promising monitoring techniques in additive manufacturing is thermography. In this study, features extracted from thermographic data are utilized to investigate the thermal history of cylindrical metal parts. The influence of process parameters, part geometry and scan strategy on the local heat distribution and on the resulting part porosity are presented. The suitability of the extracted features for in-situ process monitoring is discussed. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - SWIR camera KW - Additive manufacturing (AM) KW - Selective laser melting (SLM) KW - Laser beam melting (LBM) KW - In-situ monitoring KW - Infrared thermography PY - 2021 SN - 978-1-5106-4324-6 DO - https://doi.org/10.1117/12.2587913 VL - 11743 SP - 1 EP - 11 PB - SPIE - The international society for optics and photonics AN - OPUS4-52535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - Infrared Thermography of the DED-LB/M and PBF LB/M processes N2 - Infrared thermography is a technique that allows to measure the temperatures of objects by analyzing the intensity of the thermal emission without the need of direct contact with very high spatial and temporal resolution. As the temperature is a fundamental factor for the additive manufacturing processes of metals, infrared thermography can provide experimental data that can be used for the validation of simulations and improving the understanding of the processes as well as for in-situ process monitoring for nondestructive evaluation (NDE) for quality control. In this talk we will provide an overview over the possibilities of state of the art thermographic in-situ monitoring systems for the DED-LB/M and PBF-LB/M processes and the challenges such as phase transitions and unknown emissivity values in respect to the determination of real temperatures. We define the requirements for different camera systems in various configurations and give examples on the selection of appropriate measurement parameters and data acquisition techniques as well as on techniques for data analysis and interpretation. Finally, we compare in-situ monitoring methods against post NDE methods by analyzing the advantages and disadvantages of both. This research was funded by BAM within the Focus Area Materials. T2 - Coupled2021 - IX International Conference on Coupled Problems in Science and Engineering CY - Online meeting DA - 13.06.2021 KW - Additive Manufacturing KW - Thermography KW - Direct Energy Deposition PY - 2021 AN - OPUS4-54399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon T1 - Investigation of the thermal history of L-PBF metal parts by feature extraction from in-situ SWIR thermography N2 - Laser powder bed fusion is used to create near net shape metal parts with a high degree of freedom in geometry design. When it comes to the production of safety critical components, a strict quality assurance is mandatory. An alternative to cost-intensive non-destructive testing of the produced parts is the utilization of in-situ process monitoring techniques. The formation of defects is linked to deviations of the local thermal history of the part from standard conditions. Therefore, one of the most promising monitoring techniques in additive manufacturing is thermography. In this study, features extracted from thermographic data are utilized to investigate the thermal history of cylindrical metal parts. The influence of process parameters, part geometry and scan strategy on the local heat distribution and on the resulting part porosity are presented. The suitability of the extracted features for in-situ process monitoring is discussed. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - SWIR camera KW - Additive manufacturing (AM) KW - Selective laser melting (SLM) KW - Laser beam melting (LBM) KW - In-situ monitoring KW - Infrared thermography PY - 2021 UR - https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11743/117430C/Investigation-of-the-thermal-history-of-L-PBF-metal-parts/10.1117/12.2587913.short?SSO=1&tab=ArticleLink AN - OPUS4-52540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - The European Metrology Network (EMN) for Advanced Manufacturing N2 - Advanced Manufacturing and Advanced Materials have been identified by the European Commission as one of six Key Enabling Technologies (KETs), the full exploitation of which will create advanced and sustainable economies. Metrology is a key enabler for progress of these KETs. EURAMET, which is the association of metrology institutes in Europe, has addressed the vital importance of Metrology for these KETs through the support for the creation of a European Metrology Network for Advanced Manufacturing. The EMN for Advanced Manufacturing (AdvanceManu) was approved in June 2021 and held the formal kick-of meeting in October 2022. The EMN comprises both National Metrology Institutes (NMIs) from across Europe and other designated Institutes (Dis). The EMN is organized in three sections; Advanced Materials, Smart Manufacturing Systems and Manufactured components and products. The aim of the EMN is to engage with stakeholders in the field of Advanced Manufacturing and Advanced Materials (Large & SMEs, industry organisations, existing networks and academia) with the aim to prepare a Strategic Research Agenda (SRA) for Metrology for Advanced Manufacturing. In the shorter term, an orientation paper is aimed to be produce to in the context of the European Partnership for Metrology. In addition to the SRA, the EMN will establish knowledge and technology transfer and promotion plan. This includes leveraging the existing research results from the completed and running EMPIR JRP projects funded through EURAMET. This presentation will outline the EMN for Advanced Manufacturing, describing the structures and goals, the route to the production of the SRA and the progress made to date identifying the key metrology challenges across the related Key Industrial Sectors (KICs). In particular, the presentation aims to inform the community on how to be involved in the shaping of the strategic research agenda for the future of Metrology for Advanced Manufacturing and Advanced Materials. T2 - 3D Metrology Conference (3DMC) CY - Online meeting DA - 08.11.2021 KW - Advanced manufacturing KW - Metrology KW - European Metrology Network (EMN) KW - Strategic Research Agenda (SRA) KW - JNP PY - 2021 AN - OPUS4-54099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -