TY - JOUR A1 - Elsayed, H. A1 - Zocca, Andrea A1 - Schmidt, J. A1 - Günster, Jens A1 - Colombo, P. A1 - Bernardo, E. T1 - Bioactive glass-ceramic scaffolds by additive manufacturing and sinter-crystallization of fi ne glass powders N2 - Wollastonite (CaSiO 3 ) – diopside (CaMgSi 2 O 6 ) glass-ceramic scaffolds have been successfully fabricated using two different additive manufacturing techniques: powder-based 3D printing (3DP) and digital light processing (DLP), coupled with the sinter-crystallization of glass powders with two different compositions. The adopted manufacturing process depended on the balance between viscous flow sintering and crystallization of the glass particles, in turn in fluenced by the powder size and the sensitivity of CaO – MgO – SiO 2 glasses to surface nucleation. 3DP used coarser glass powders and was more appropriate for low temperature firing (800 – 900 °C), leading to samples with limited crystallization. On the contrary, DLP used finer glass powders, leading to highly crystallized glass-ceramic samples. Despite the differences in manufacturing technology and crystallization, all samples featured very good strength-to-density ratios, which bene fit theiruse for bone tissue engineering applications. The bioactivity of 3D-printed glass-ceramics after immersion in simulated body fluid and the similarities, in terms of ionic releases and hydroxyapatite formation with already validated bioactive glass-ceramics, were preliminarily assessed. KW - 3D-Printing KW - Bio Ceramic KW - Additive manufacturing PY - 2018 DO - https://doi.org/10.1557/jmr.2018.120 SN - 2044-5326 SN - 0884-2914 VL - 33 IS - 14 SP - 1960 EP - 1971 PB - Cambridge University Press AN - OPUS4-45718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artzt, K. A1 - Mishurova, Tatiana A1 - Bauer, P.-P. A1 - Gussone, J. A1 - Barriobero-Vila, P. A1 - Evsevleev, Sergei A1 - Bruno, Giovanni A1 - Requena, G. A1 - Haubrich, J. T1 - Pandora’s Box–Influence of Contour Parameters on Roughness and Subsurface Residual Stresses in Laser Powder Bed Fusion of Ti-6Al-4V N2 - The contour scan strategies in laser powder bed fusion (LPBF) of Ti-6Al-4V were studied at the coupon level. These scan strategies determined the surface qualities and subsurface residual stresses. The correlations to these properties were identified for an optimization of the LPBF processing. The surface roughness and the residual stresses in build direction were linked: combining high laser power and high scan velocities with at least two contour lines substantially reduced the surface roughness, expressed by the arithmetic mean height, from values as high as 30 μm to 13 μm, while the residual stresses rose from ~340 to about 800 MPa. At this stress level, manufactured rocket fuel injector components evidenced macroscopic cracking. A scan strategy completing the contour region at 100 W and 1050 mm/s is recommended as a compromise between residual stresses (625 MPa) and surface quality (14.2 μm). The LPBF builds were monitored with an in-line twin-photodiode-based melt pool monitoring (MPM) system, which revealed a correlation between the intensity quotient I2/I1, the surface roughness, and the residual stresses. Thus, this MPM system can provide a predictive estimate of the surface quality of the samples and resulting residual stresses in the material generated during LPBF. KW - Additive manufacturing KW - Ti-6Al-4V KW - Contour scan strategy KW - Surface roughness KW - Melt pool monitoring KW - Residual stress KW - Synchrotron X-ray diffraction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510585 DO - https://doi.org/10.3390/ma13153348 VL - 13 IS - 15 SP - 3348 AN - OPUS4-51058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Wang, J. A1 - Kaiser, L. A1 - Rethmeier, Michael T1 - Automated Tool-Path Generation for Rapid Manufacturing of Additive Manufacturing Directed Energy Deposition Geometries N2 - In additive manufacturing (AM) directed energy deposition (DED), parts are built by welding layers of powder or wire feedstock onto a substrate with applications for steel powders in the fields of forging tools, spare parts, and structural components for various industries. For large and bulky parts, the choice of toolpaths influences the build rate, the mechanical performance, and the distortions in a highly geometry-dependent manner. With weld-path lengths in the range of hundreds of meters, a reliable, automated tool-path generation is essential for the usability of DED processes. This contribution presents automated tool-path generation approaches and discusses the results for arbitrary geometries. Socalled “zig-zag” and “contour-parallel” processing strategies are investigated and the tool-paths are automatically formatted into machine-readable g-code for experimental validation to build sample geometries. The results are discussed in regard to volume-fill, microstructure, and porosity in dependence of the path planning according to photographs and metallographic cross-sections. KW - Porosity KW - Path planning KW - Mechanical properties KW - Laser metal deposition KW - Additive manufacturing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510454 DO - https://doi.org/10.1002/srin.202000017 VL - 91 IS - 11 SP - 2000017 PB - WILEY-VCH Verlag GmbH & co. KGaA CY - Weinheim AN - OPUS4-51045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Sydow, B. A1 - Thiede, Tobias A1 - Sizova, I. A1 - Ulbricht, Alexander A1 - Bambach, M. A1 - Bruno, Giovanni T1 - Residual Stress and Microstructure of a Ti-6Al-4V Wire Arc Additive Manufacturing Hybrid Demonstrator N2 - Wire Arc Additive Manufacturing (WAAM) features high deposition rates and, thus, allows production of large components that are relevant for aerospace applications. However, a lot of aerospace parts are currently produced by forging or machining alone to ensure fast production and to obtain good mechanical properties; the use of these conventional process routes causes high tooling and material costs. A hybrid approach (a combination of forging and WAAM) allows making production more efficient. In this fashion, further structural or functional features can be built in any direction without using additional tools for every part. By using a combination of forging basic geometries with one tool set and adding the functional features by means of WAAM, the tool costs and material waste can be reduced compared to either completely forged or machined parts. One of the factors influencing the structural integrity of additively manufactured parts are (high) residual stresses, generated during the build process. In this study, the triaxial residual stress profiles in a hybrid WAAM part are reported, as determined by neutron diffraction. The analysis is complemented by microstructural investigations, showing a gradient of microstructure (shape and size of grains) along the part height. The highest residual stresses were found in the transition Zone (between WAAM and forged part). The total stress range showed to be lower than expected for WAAM components. This could be explained by the thermal history of the component. KW - Additive manufacturing KW - Neutron diffraction KW - Residual stress KW - Hybrid manufacturing KW - WAAM KW - Ti-6Al-4V PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508245 DO - https://doi.org/10.3390/met10060701 VL - 10 IS - 6 SP - 701 PB - MDPI AN - OPUS4-50824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Müller, Bernd R. A1 - Schneider, J. A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Using SXRR to Probe the Nature of Discontinuities in SLM Additive Manufactured Inconel 718 Specimens N2 - The utilization of additive manufacturing (AM) to fabricate robust structural components relies on understanding the nature of internal anomalies or discontinuities, which can compromise the structural integrity. While some discontinuities in AM microstructures stem from similar mechanisms as observed in more traditional processes such as casting, others are unique to the AM process. Discontinuities in AM are challenging to detect, due to their submicron size and orientation dependency. Toward the goal of improving structural integrity, minimizing discontinuities in an AM build requires an understanding of the mechanisms of formation to mitigate their occurrence. This study utilizes various techniques to evaluate the shape, size, nature and distribution of discontinuities in AM Inconel 718, in a non-hot isostatic pressed (HIPed) as-built, non-HIPed and direct age, and HIPed with two step age samples. Non-destructive synchrotron radiation refraction and transmission radiography (SXRR) provides additional information beyond that obtained with destructive optical microscopy. SXRR was able to distinguish between voids, cracks and lack of melt in, due to its sensitivity to the orientation of the discontinuity. KW - Additive manufacturing KW - X-ray refraction radiography KW - INCONEL 718 KW - Selective laser melting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509836 DO - https://doi.org/10.1007/s11661-020-05847-5 SN - 1543-1940 VL - 51 IS - 8 SP - 4146 EP - 4157 PB - Springer AN - OPUS4-50983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Sevostianov, I. T1 - Determination of macroscopic stress from diffraction experiments: A critical discussion N2 - The paper is motivated by some inconsistencies and contradictions present in the literature on the calculation of the so-called diffraction elastic constants. In an attempt at unifying the views that the two communities of Materials Science and Mechanics of Materials have on the subject, we revisit and define the terminology used in the field. We also clarify the limitations of the commonly used approaches and Show that a unified methodology is also applicable to textured materials with a nearly arbitrary grain shape. We finally compare the predictions based on this methodology with experimental data obtained by in situ synchrotron radiation diffraction on additively manufactured Ti-6Al4V alloy. We show that (a) the transverse isotropy of the material yields good agreement between the best-fit isotropy approximation (equivalent to the classic Kröner’s model) and the experimental data and (b) the use of a general framework allows the calculation of all components of the tensor of diffraction elastic constants, which are not easily measurable by diffraction methods. This allows us to extend the current state-of-the-art with a predictive tool. KW - Additive manufacturing KW - X-ray diffraction KW - Elastic constants KW - Stress concentration tensor PY - 2020 DO - https://doi.org/10.1063/5.0009101 VL - 128 IS - 2 SP - 025103 PB - AIP Publishing AN - OPUS4-50993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karl, D. A1 - Duminy, T. A1 - Lima, P. A1 - Kamutzki, F. A1 - Gili, A. A1 - Zocca, Andrea A1 - Günster, Jens A1 - Gurlo, A. T1 - Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies N2 - The wet processing of regolith simulant for clay in situ resource utilization (ISRU) on Mars is presented. The two raw materials from the Mars global simulant family, one without clay (MGS-1) and one with clay - sodium montmorillonite smectite - (MGS-1C) were milled and mixed to produce a simulant with small particle size and reduced clay content (MGS-1C/8). All three simulants and the pure clay raw material were extensively characterized using XRF, synchrotron XRD, gas adsorption and gas pycnometry methods. In a straightforward processing approach, MGS-1C/8 was mixed with water and different dispersant approaches were investigated, all of which gave stable slurries. Particle size distribution, rheology, ion concentration, pH and electrical conductivity of these slurries were characterized. The slurry systems can easily be adapted to fit all typical ceramic shaping routes and here parts of varying complexity from slip casting, throwing on a potter's wheel and additive manufacturing, including material extrusion (robocasting) and binder jetting (powder bed 3D printing) were produced. The unique properties of the sodium montmorillonite clay, which is readily accessible in conjunction with magnesium sulfate on the Martian surface, acted as a natural nanosized binder and produced high strength green bodies (unfired ceramic body) with compressive strength from 3.3 to 7.5 MPa. The most elaborate additive manufacturing technique layerwise slurry deposition (LSD) produced water-resistant green bodies with a compressive strength of 30.8 ± 2.5 MPa by employing a polymeric binder, which is similar or higher than the strength of standard concrete. The unfired green bodies show sufficient strength to be used for remote Habitat building on Mars using additive manufacturing without humans being present. KW - Mars KW - Smectite KW - Clay ISRU KW - MGS-1 regolith simulant KW - 3D printing KW - Additive manufacturing PY - 2020 DO - https://doi.org/10.1016/j.actaastro.2020.04.064 VL - 174 SP - 241 EP - 253 PB - Elsevier Ltd. AN - OPUS4-50870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Elsner, B. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Geometric distortion-compensation via transient numerical simulation for directed energy deposition additive manufacturing N2 - Components distort during directed energy deposition (DED) additive manufacturing (AM) due to the repeated localised heating. Changing the geometry in such a way that distortion causes it to assume the desired shape – a technique called distortion-compensation – is a promising method to reach geometrically accurate parts. Transient numerical simulation can be used to generate the compensated geometries and severely reduce the amount of necessary experimental trials. This publication demonstrates the simulation-based generation of a distortioncompensated DED build for an industrial-scale component. A transient thermo-mechanical approach is extended for large parts and the accuracy is demonstrated against 3d-scans. The calculated distortions are inverted to derive the compensated geometry and the distortions after a single compensation iteration are reduced by over 65%. KW - DED KW - Welding simulation KW - Dimensional accuracy KW - Additive manufacturing KW - Laser metal deposition KW - LMD PY - 2020 DO - https://doi.org/10.1080/13621718.2020.1743927 SP - 1 EP - 8 PB - Taylor & Francis AN - OPUS4-50877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander T1 - Mechanical behaviour of AM metals: Creep of LPBF 316L and low-cycle-fatigue of LMD Ti-6Al-4V N2 - Additively manufactured metallic materials have already started to find application in safety-relevant components. However, this has only happened for certain materials and specific applications and loading conditions, since there is still an extensive lack of knowledge as well as of historical data regarding their mechanical behaviour. This contribution aims to address this lack of understanding and historical data concerning the creep behaviour of the austenitic stainless steel 316L manufactured by Laser-Powder-Bed-Fusion (L-PBF) and the low-cycle-fatigue behaviour of the titanium alloy Ti-6Al-4V manufactured by Laser-Metal-Deposition (LMD). Furthermore, it aims to assess their mechanical behaviour against their conventional counterparts. With that in mind, specimens from conventional and additive materials are tested and their mechanical behaviour analysed based on characteristic curves. To understand the damage behaviours the materials are characterized by destructive and non-destructive techniques before and after failure. T2 - 1st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online Meeting DA - 10.12.2020 KW - Ti-6Al-4V KW - 316L KW - Additive manufacturing KW - Creep behaviour KW - Low-cycle-fatigue behaviour PY - 2020 AN - OPUS4-51879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Kromm, Arne A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - ECNDT 2018 CY - Götheburg, Sweden DA - 11.06.2018 KW - Additive manufacturing KW - Ressidual stress KW - Neutron diffraction PY - 2018 AN - OPUS4-45761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - VAMAS - Workshop CY - BAM, Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Neutron diffraction KW - Ressidual stress PY - 2018 AN - OPUS4-45762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Tiede, Tobias A1 - Mishurova, Tatiana A1 - Laquai, René A1 - Bruno, Giovanni T1 - Selective laser melting process optimisation: X-ray and neutron sources for information from powder grains to printed structures N2 - Selective laser melting process optimisation: X-ray and neutron sources for information from powder grains to printed structures T2 - BPWT/BAM Workshop " Innovative Materialien und Qualitätskontrolle für additive Fertigung" CY - Berlin, Germany DA - 12.09.2018 KW - SLS KW - X-ray computed tomography KW - Refraction KW - Neutron diffraction KW - Additive manufacturing KW - Industry 4.0 PY - 2018 AN - OPUS4-45924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - Metrology for Additively Manufactured Medical Implants: The MetAMMI project N2 - Additive manufacturing (AM) offers an effective solution to the medical sector. It enables the production, on demand, of customised implants which match the patient’s anatomy, with grafts that promote bone growth, as well as surgical guides that help the surgeons. The objective of this project is to provide a comprehensive basis to enable the safe use of medical AM products with traceable and reliable dimensionalmeasurements. This will guarantee the reliability of medical AM products to notified bodies and facilitate acceptance of AM in the medical sector for a better quality of life. T2 - BPWT/BAM Workshop " Innovative Materialien und Qualitätskontrolle für additive Fertigung" CY - Berlin, Germany DA - 12.09.2018 KW - Additive manufacturing KW - X-ray computed tomography PY - 2018 AN - OPUS4-45926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Serrano Munoz, Itziar A1 - Léonard, Fabien A1 - Farahbod, L. T1 - Computed tomography of LBM produced In625 lattices: Integrity analysis from powder particles to structures N2 - We investigated lattice structure manufactured by laser beam melting with computed tomography on difference scales, such as powder scale, strut scale and lattice scale. The raw powder has been evaluated by means of synchrotron computed tomography (CT) at the BAM-Line (HZB Bessy II, Berlin). Therefore, the particle size distribution and even the pore size distribution was investigated and compared with results received by the producer by means of sieving. Studies with laboratory X-ray CT of porosity and roughness of manufactured struts in dependence of the build angle exhibited the tendency that elongated pores appear solely in a certain range near the edge. The integrity and load-bearing capacity of a lattice structure was investigated by means of in-situ CT during compression. The lattice structure was compressed by 10 % in height with an applied maximum force of 5 kN. We applied digital volume correlation algorithm on volumes of different load steps to quantifies the displacement within the structure. T2 - Metallographie-Tagung 2018 CY - Leoben, Austria DA - 19.09.2018 KW - Additive manufacturing KW - Laser beam melting KW - Computed tomography KW - Lattice structures KW - In-situ CT KW - Porosity KW - Roughness PY - 2018 AN - OPUS4-45998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Farahbod, L. A1 - Léonard, Fabien A1 - Serrano Munoz, Itziar A1 - Bruno, Giovanni T1 - Computed tomography of SLM produced IN625 parts: From powder grains to lattice structures N2 - Im Fokus dieser Arbeit steht die computertomographische (CT) Untersuchung (Synchrotron- und Labor-CT) von IN625-Pulver und den daraus gefertigten Streben, welche wiederum zu Gitterstrukturen zusammengesetzt werden. Aufgrund der Filigranität wurde zur Fertigung dieser Proben das pulverbettbasierte selektive Laserschmelzen verwendet. Porositätsanalysen und Größenverteilungen wurden für das Pulver bei einer rekonstruierten Voxelgröße von 0,5µm ermittelt. 6,0mm lange Streben variierten im Aufbauwinkel von 30° bis 90° zur Bauplattform und zeigten so den Unterschied zwischen Up- und Down-Skin hinsichtlich der Rauigkeit und Porenverteilung. Die Gitterstrukturen konnten in-situ mit bis zu 5,0kN belastet werden, um deren Verformung computertomographisch zu erfassen. T2 - 7. VDI-TUM Expertenforum CY - Garching b. München, Germany DA - 13.09.2018 KW - Additive manufacturing KW - Laser beam melting KW - Computed tomography KW - Lattice structures PY - 2018 AN - OPUS4-46069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - AGIL Project - Microstructure development in additively manufactured metallic components: from powder to mechanical failure N2 - Overview of the concept of the AGIL Project, work packages and Prior published work from BAM on the subject T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control CY - BAM, Berlin-Adlershof, Germany DA - 12.09.2018 KW - AGIL KW - Additive manufacturing PY - 2018 AN - OPUS4-46100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive manufacturing of dense ceramics with laser induced slip casting (LIS) N2 - Most additive manufacturing processes which produce dense ceramics are nowadays limited in size because of inevitable post-processing steps like for example binder removal in stereolithography. The additive manufacturing of voluminous ceramic parts is realized by powder bed based processes which, however, generate parts with residual porosity. Via infiltration these parts can be processed to dense parts like for example SiC but this is not possible for all ceramics like for example Si3N4. There is a lack of methods for the additive manufacturing of dense voluminous parts for most ceramics. We have developed a new additive manufacturing technology, the Laser Induced Slip casting (LIS), based on the layerwise deposition of slurries and their local drying by laser radiation. Laser Induced Slip casting generates ceramic green bodies which can be sintered to dense ceramic components like traditional formed ceramic powder compacts. We will introduce the LIS technology, green bodies and sintered parts will be shown and their microstructure and mechanical properties will be discussed. T2 - yCAM (Young Ceramists Additive Manufacturing Forum) CY - Padua, Italy DA - 03.05.2018 KW - Additive manufacturing PY - 2018 AN - OPUS4-45782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Çağtay A1 - Rethmeier, Michael T1 - Life cycle assessment of fusion welding processes strategies and implementation N2 - In manufacturing, fusion welding processes use a lot of resources, which presents an opportunity to reduce environmental impact. While there is a general understanding of the environmental impact of these processes, it is difficult to quantitatively assess key parameters. This study introduces a welding-specific methodology that uses life cycle assessment (LCA) to evaluate the environmental impact of fusion welding technologies. Our approach analyses the main parameters that affect the environmental performance of different welding techniques, including traditional methods and additive manufacturing through the Direct Energy Deposition-Arc (DED-Arc) process. We integrate real-time resource usage data to offer an innovative framework for directly deriving environmental impacts. This research contributes to optimising welding processes by providing a precise and quantifiable measure of their ecological impact, facilitating the advancement of sustainable manufacturing practices. T2 - CEMIVET - Circular Economy in Metal Industries CY - Berlin, Germany DA - 06.06.2023 KW - Life Cycle Assessment KW - Fusion welding KW - Additive manufacturing KW - DED-Arc PY - 2023 AN - OPUS4-59499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Çağtay A1 - Rethmeier, Michael T1 - Life cycle assessment of fusion welding processes considering upstream and downstream process steps N2 - In manufacturing, fusion welding processes consume significant resources, presenting a significant opportunity for reducing environmental impact. Although there is a qualitative understanding of the environmental implications of these processes, a quantitative assessment of key parameters remains complex. This study introduces a welding-specific methodology that employs life cycle assessment (LCA) to quantitatively evaluate the environmental footprint of fusion welding technologies. Our approach identifies and analyses the principal parameters affecting the environmental performance of various welding techniques, including traditional joint welding and additive manufacturing via the Direct Energy Deposition-Arc (DED-Arc) process. Real-time resource usage data is integrated to offer an innovative framework for directly deriving environmental impacts. This research contributes to optimising welding processes by providing a precise and quantifiable measure of their ecological impact. This facilitates the advancement of sustainable manufacturing practices. T2 - Joining Smart Technologies - International Automotive Conference CY - Wels, Austria DA - 10.05.2023 KW - Life Cycle Assessment KW - Arc welding KW - Additive manufacturing KW - DED-Arc PY - 2023 AN - OPUS4-59494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz A1 - Günster, Jens T1 - First time additively manufactured advanced ceramics by using two-photon polymerization for powder processing N2 - Methods and materials are presented here, which enable the manufacturing of fine structures using a 3D-printing method known as two-photon polymerization (2PP). As traditional photolithography methods for structuring ceramic slurries do not function with 2PP, due to light scattering on ceramic particles, a novel water-based photoresist with high ceramic loading of extremely well dispersed ceramic nano particles was developed. This photoresist is basically a ceramic slurry containing a photocurable agent and a photoinitiator to be crosslinkable with the 780 nm wavelength femtosecond laser light source of the 2PP machine. It is demonstrated that it is possible to gain a highly transparent and low viscous slurry suitable for 2PP processing. This work shows the development of the slurry, first printing results and the post-printing processes required to form three dimensional ceramic microstructures consisting of alumina toughened zirconia (ATZ). KW - 3D-printing KW - Two-photon polymerization KW - 2PP KW - Ceramic nano particles KW - Slurry KW - Alumina toughened zirconia KW - ATZ KW - Additive manufacturing KW - SchwarzP cells KW - Nano-ceramic-additive-manufacturing photoresin KW - NanoCAM PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517441 DO - https://doi.org/10.1016/j.oceram.2020.100040 VL - 4 SP - 100040 PB - Elsevier Ltd. AN - OPUS4-51744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -