TY - CONF A1 - Epperlein, Martin T1 - Normungsaktivitäten in QI-Digital N2 - Der Vortrag thematisiert die Normungsaktivitäten in QI-Digital. Insbesondere die entwickelte Datenstruktur in der ISO/ASTM 52970 und die Anknüpfungspunkte zur Verwaltungsschale. Die ISO TC 261 / JG 85 und ihr entsprechender Scope werden vorgestellt. T2 - Sitzung des DIN NA-145-04-01 AA CY - Darmstadt, Germany DA - 01.04.2025 KW - Additive Fertigung KW - PBF-LB/M KW - Digitalisierung PY - 2025 AN - OPUS4-64403 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Walter, Tina T1 - Multispektrale optische Tomografie (MK-OT) trifft MachineLearning N2 - Das pulverbettbasierte Laserstrahlschmelzen von Metallen (PBF-LB/M) zählt zu den am weitesten verbreiteten additiven Fertigungsverfahren für metallische Bauteile. Trotz zunehmender industrieller Relevanz, etwa in Luft- und Raumfahrt, Medizintechnik und Energieanwendungen, bleibt eine umfassende Prozessüberwachung und Qualitätssicherung eine zentrale Herausforderung. Die hohe Komplexität des Verfahrens, bedingt durch eine Vielzahl interagierender Prozessparameter, sowie die resultierende Datenfülle erschweren die direkte Korrelation zwischen Prozessanomalien und resultierenden Bauteildefekten wie Poren oder Rissen. Zahlreiche Monitoring Ansätze, insbesondere thermografische Verfahren, wurden bereits intensiv untersucht. Dennoch fehlt es bislang an praxistauglichen, wirtschaftlich skalierbaren Lösungen. Insbesondere die Kosten und begrenzte Sichtfelder vieler Systeme hemmen eine breite industrielle Anwendung. Oster et al. [1] konnten zeigen, dass die Analyse kurzwelliger Infrarotstrahlung (SWIR-Thermografie) mittels auf künstlicher Intelligenz (KI) basierender Auswertung zur ortsaufgelösten Detektion von Porosität im PBF-LB/M-Prozess geeignet ist. Ihr Ansatz erlaubt erstmals die Identifikation nicht gezielt induzierter Poren, zeigt jedoch Einschränkungen hinsichtlich des erfassten Sichtfelds (~9 × 10 mm²) und der Systemkosten (~30k€). Eine vielversprechende Alternative stellt die Multikanal Optische Tomografie (MK-OT) dar [2], die auf kostengünstigen visuellen Kameras basiert. Durch gleichzeitige Erfassung mehrerer Spektralbereiche lassen sich Schichtbilder mit hoher räumlicher Auflösung und verbesserter Robustheit, verglichen mit marktüblicher monospektralen OT, gegenüber prozessbedingten Schwankungen erzeugen [2]. Die auch hierbei anfallenden großen Datenmengen erfordern eine automatisierte Auswertung. Bereits Ero et al. [3] und Feng et al. [4] konnten zeigen, dass mittels KI Porositätsvorhersagen aus herkömmlichen monochromatischen OT Daten gewonnen werden können. Ziel dieses Beitrags ist es, das Vorgehen zur Untersuchung der Übertragbarkeit des in [1] vorgestellten KI-basierten Auswerteverfahrens auf das MK-OT-System vorzustellen. Hierdurch könnte eine kosteneffiziente und skalierbare Prozessüberwachung mittels Porositätsbestimmung für den industriellen Einsatz ermöglicht werden. Der aktuelle Stand der Arbeit und das geplante Vorgehen wird dargelegt. T2 - CI-Workshop CY - Berlin, Germany DA - 20.11.2025 KW - AM KW - Additive Fertigung KW - Process Monitoring KW - Optische Tomografie PY - 2025 AN - OPUS4-64987 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro T1 - Thermografie-gestützte Untersuchung des Potentials des Kaltgasspritzens für die Reparatur zyklisch belasteter Bauteile N2 - Die Reparatur mittels Kaltgasspritzen ist eine vielversprechende Alternative zum teuren Austausch fehlerbehafteter Bauteile in der Luft- und Raumfahrt. Durch die Beschleunigung von Metallpartikeln auf Überschallgeschwindigkeiten und die resultierende plastische Verformung der Partikel beim Aufschlag auf das Substrat ohne Aufschmelzen ermöglicht Kaltgasspritzen den schichtweisen Materialauftrag. Die Gewährleistung der Strukturintegrität reparierter Bauteile, insbesondere an der Schnittstelle zwischen dem Substrat und dem aufgetragenen Material, bleibt jedoch eine große Herausforderung. Um dieses Problem zu lösen, wurden verschiedene Prozesse und Behandlungen untersucht, um die Festigkeit und Tragfähigkeit der Reparatur unter zyklischer Belastung zu optimieren. Röntgen-Computertomographie (XCT) ermöglicht die Analyse der Defekte in dem aufgetragenen Material und in der Grenzfläche. Die XCT kann jedoch nur mit hohem Aufwand in-situ während der mechanischen Prüfung eingesetzt werden. Im Gegensatz dazu kann die digitale Bildkorrelation (DIC) in-situ verwendet werden, da es sich um eine berührungslose Vollfeldtechnik handelt, die jedoch in erster Linie die durch das Prüfverfahren bedingten Verschiebungen an der Oberfläche erfasst. Um die Entwicklung der Schädigung an der Grenzfläche zu überwachen, wurde die Infrarot-Thermografie (IRT) parallel zur DIC bei der Zug- und Ermüdungsprüfung von reparierten Al6061 Proben eingesetzt. Es wurde eine gekühlte IRT-Kamera mit hoher Bildrate verwendet, die Nachverarbeitung erfolgte mittels Lock-in IRT. Mit Hilfe von IRT war es möglich, die frühe Schadensentstehung an der Grenzfläche des Substrats zu erkennen und das Risswachstum zu verfolgen. Die Bruchflächen bestätigten, dass die identifizierten Merkmale an der Grenzfläche lagen. Es werden Ergebnisse eines Vergleichs von DIC und IRT aus Ermüdungs- und Zugversuchen vorgestellt. T2 - Werkstoffprüfung 2025 CY - Dresden, Germany DA - 27.11.2025 KW - Additive Fertigung KW - Kaltgasspritzen KW - Thermografie KW - Digitale Bildkorrelation KW - Ermüdungsfestigkeit PY - 2025 AN - OPUS4-64998 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Davila, Josue T1 - Einfluss des initialen Pulveroxidationsgrads auf die prozessinduzierte Materialdegradation beim PBF-LB/M Prozess N2 - Die vorliegende Studie untersucht den Einfluss unterschiedlicher Oxidationsgrade des im PBF-LB/M-Prozess verwendeten Ausgangspulvers auf dessen Degradation am Beispiel der Nickelbasis-Superlegierung Haynes 282. Zu diesem Zweck wurden vier Pulverbatches mit Sauerstoffgehalten zwischen etwa 140 ppm und 1400 ppm mittels PBF-LB/M verarbeitet. Zur gezielten Entnahme aufgeschmolzener Pulverpartikel aus wärmebeeinflussten Bereichen des Pulverbetts wurde ein spezieller Auffangbehälter konstruiert und mitgedruckt. Der Beschichtungs- und Schmelzprozess verlief störungsfrei. Bei höheren Oxidationsgraden wurde jedoch eine verstärkte Rauchentwicklung beobachtet, was erste Hinweise auf eine intensivere Spritzerbildung lieferte. Die Untersuchungen nach dem Bauprozess ergaben, dass insbesondere die feinen Partikelfraktionen infolge ihres hohen Oberflächen-zu-Volumen-Verhältnisses eine verstärkte Oxidation aufwiesen. Neben einer signifikanten Sauerstoffanreicherung konnten keine weiteren signifikanten Veränderungen der Hauptlegierungselemente in unaufgeschmolzenen Pulverpartikeln sowie in Spritzerpartikeln festgestellt werden. Darüber hinaus wurde bei stark oxidierten Pulvern eine signifikante Veränderung der Partikelgrößenverteilung beobachtet. Die gewonnenen Erkenntnisse leisten einen wichtigen Beitrag zum Verständnis oxidationsbedingter Degradationsmechanismen und bilden die Grundlage für die Optimierung von Strategien zur Wiederverwendung von Pulver im PBF-LB/M-Prozess, wodurch die Materialperformance gesichert werden kann. T2 - DVM Tagung 2025 Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 04.11.2025 KW - Additive manufacturing KW - Laser powder bed fusion (PBF-LB/M) KW - Powder reuse KW - Spatter particles KW - Powder quality KW - Particles ejected KW - Recycling KW - Powder degradation KW - Powder oxidation PY - 2025 AN - OPUS4-64953 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk T1 - Ultraschallunterstütztes Fräsen innovativer metallischer Werkstoffe zur Optimierung von Oberflächenintegrität und Werkzeugverschleiß Neueste Erkenntnisse und Perspektiven im Kontext der Komponentensicherheit N2 - Der Vortrag behandelt ultraschallunterstütztes Fräsen als innovative Technologie zur Bearbeitung schwer zerspanbarer metallischer Werkstoffe und deren Einfluss auf Oberflächenintegrität, Werkzeugverschleiß und Komponentensicherheit. Ausgangspunkt ist die Herausforderung durch hohe Festigkeit, heterogene Gefüge und Eigenspannungen bei konventioneller und additiver Fertigung (z. B. Ni-, Co-Legierungen, Eisen-Aluminide). Diese Faktoren führen zu erhöhten Prozesskräften, Werkzeugverschleiß und nachteiligen Oberflächeneigenschaften. Ultraschallunterstützung reduziert Zerspankräfte, stabilisiert Prozesse bei AM-Bauteilen und verbessert die Oberflächengüte durch Einbringung von Druckeigenspannungen. Untersuchungen zeigen: Optimale Amplituden (ca. 4 µm) minimieren Eigenspannungen und Defekte, erhöhen die Ermüdungsfestigkeit und verlängern die Werkzeugstandzeit. Bei Eisen-Aluminiden und DED-Arc-gefertigten Bauteilen konnten deutliche Verbesserungen in Rauheit, Kraftverlauf und Verschleiß erzielt werden. Für Co-/Ni-Legierungen wurde zusätzlich die Wirksamkeit durch Legierungsmodifikation nachgewiesen. Perspektivisch bietet die Technologie Potenzial für Lebensdauersteigerung hochfester Bauteile, Integration von Oberflächenverfestigung in den Fräsprozess und Reduktion von Nachbearbeitungsschritten. Geplante Projekte adressieren Hochentropielegierungen, Mehrkomponentenwerkstoffe und hybride Fertigungsstrategien. Insgesamt zeigt sich, dass US-Fräsen eine Schlüsselrolle für ressourceneffiziente, sichere und leistungsfähige Komponenten in Leichtbau und Hochtemperaturanwendungen einnehmen kann. T2 - 4. Wissenschaftliches Forum zur ULTRASONIC-Bearbeitung CY - Jena, Germany DA - 12.11.2025 KW - Ultraschallunterstütztes Fräsen KW - Oberflächenintegrität KW - Werkzeugverschleiß KW - Zerspankräfte KW - Additive Fertigung (DED-Arc, AM) KW - Eisen-Aluminid KW - Co-/Ni-Legierungen KW - Ermüdungsfestigkeit KW - Eigenspannungen KW - Lebensdauersteigerung KW - Hybridfertigung KW - Hochentropielegierungen (MPEA) PY - 2025 AN - OPUS4-65240 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk T1 - Begrüßung und Vorstellung der BAMund des Fachbereichs 9.2 - Zentrale Forschungswerkstatt N2 - Die Zentralwerkstatt der BAM übernimmt die Fertigung und Konstruktion komplexer Prüf- und Versuchseinrichtungen und adressiert zugleich zentrale Forschungsthemen zur Werkstoff- und Komponentensicherheit. Dazu gehören die Entwicklung innovativer Fertigungstechnologien, ressourceneffiziente Verarbeitungskonzepte für hochfeste und additive Komponenten sowie die Untersuchung von Fertigungseinflüssen auf Oberflächenintegrität und Werkstoffdegradation. Ein besonderer Fokus liegt auf der H₂-Sicherheit, insbesondere der Fertigung und Prüfung von Hohlzugproben für Wasserstoff-Pipelines. Ergänzend werden Automatisierungslösungen, digitale Methoden und moderne Spanntechnik zur Effizienzsteigerung eingesetzt. Die Arbeiten sind eng mit den BAM-Kompetenzzentren AM@BAM, H2Safety@BAM und WIND@BAM verzahnt und leisten einen Beitrag zur Energiewende sowie zur Normung und zum Technologietransfer. T2 - 37. Stammtisch Metall des "Der Mittelstand BVMW e.V. " CY - Berlin, Germany DA - 17.09.2025 KW - Werkstoffsicherheit KW - H₂-Sicherheit KW - Additive Fertigung KW - Ressourceneffizienz KW - Automatisierung in der Fertigung KW - Prüftechnikentwicklung KW - Normung und Technologietransfer KW - Oberflächenintegrität PY - 2025 AN - OPUS4-65245 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk T1 - HGF-AK "Bau wissenschaftlicher Geräte" - Neues aus der BAM / Fachbereich 9.2 N2 - In dieser Präsentation werden die neuesten Herausforderungen und der Stand des Fachbereiches 9.2 für die Mitarbeit im AK des HGF "Bau wissenschaftlicher Geräte" dargestellt. Hierfür werden Neuigkeiten aus dem Bereich Materialprüfung in der BAM präsentiert und mit den Arbeiten der Zentralwerkstatt, die hierfür notwendig sind, in Zusammenhang gebracht. T2 - 20. Jahrestagung des Helmholtz-Arbeitskreis "Bau wissenschaftlicher Geräte" CY - Jülich, Germany DA - 07.05.2025 KW - Fertigungskompetenz KW - Fertigungsverfahren PY - 2025 AN - OPUS4-65243 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Engelking, Loenz A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Eissel, Antonia A1 - Treutler, Kai A1 - Wesling, Volker T1 - Herstellung beanspruchungsgerechter Oberflächen durch Kombination innovativer additiver und abtragender Fertigungsschritte an hochbelasteten Komponenten N2 - Die additive Fertigung mittels Schweißverfahren bietet große ökonomische Vorteile für eine ressourceneffiziente Bauteilherstellung. Offene Fragen bezüglich Homogenität, Anisotropie der Schweißgefüge und den damit verbundenen Bauteileigenschaften stehen einer wirtschaftlichen Verarbeitung oftmals im Wege. Finale Bauteilgeometrie und Oberflächengüte erfordern meist komplementäre subtraktive Fertigungsschritte. Werkstoffe für hochbelastbare Komponenten sind oftmals schwer span bar. In einem Vorhaben der BAM und des ISAF wurde untersucht, wie die Modifikation der AM-Schweißzusätze und das ultraschallunterstützte Fräsen (US) die Zerspanungssituation verbessern. Der vorliegende Artikel stellt wesentliche Zusammenhänge zwischen Legierung, Gefüge und Zerspanung zweier schwer spanbarer Hochleistungslegierungen (FeNi und CoCr) dar. Großes Potenzial zeigte neben dem US die Modifikation mit Zr und Hf bei Zulegierung in das Schweißgut mittels Beschichtung von Massivdrähten bzw. Herstellung von Fülldrähten. KW - Additive Fertigung (AM) KW - Ultraschallunterstütztes Fräsen (US) KW - Werkstoffmodifikation KW - Oberflächenintegrität KW - Zerspanbarkeit schwer spanbarer Legierungen KW - Ressourceneffizienz in Prozessketten KW - Hochleistungslegierungen KW - Technologietransfer für KMU PY - 2025 SN - 978-3-96144-304-8 VL - 2026 SP - 290 EP - 298 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-65246 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago T1 - Ermüdung von additiv gefertigtem Stahl AISI 316L: Zyklische plastische Verformung N2 - Das zyklische plastische Verformungsverhalten von additiv gefertigtem Edelstahl AISI 316L wurde in dehnungsgeregelten Kurzzeitfestigkeitsversuchen (LCF-Versuchen) untersucht. Dabei wurden zwei Wärmebehandlungszustände betrachtet: Beim ersten Zustand war die fertigungsbedingte zelluläre Struktur vorhanden, während sie durch die zweite Wärmebehandlung aufgelöst wurde. Untersuchungen im Transmissions-Elektronen-Mikroskop (TEM) zeigten, dass die zyklische Verformung die Zellstruktur lokal zerstörte und Gleitbänder entstanden, was die Entfestigung in diesem Fall erklärt. Für Material ohne Zellstrukturen resultierten nach zyklischer Verformung ähnliche Versetzungsstrukturen wie in konventionell gefertigtem (warmgewalzten) Material. T2 - OVGU-Kolloquium (BMDK des IWF) CY - Magdeburg, Germany DA - 23.06.2022 KW - Additive Fertigung KW - Kurzzeitfestigkeit KW - Mikrostrukturentwicklung KW - Versetzungsstrukturen KW - TEM PY - 2022 AN - OPUS4-56789 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marquardt, R. A1 - Gook, S. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Handgeführtes Laserstrahlschweissen am T-Stoss eines niedrig legierten Stahls N2 - Das handgeführte Laserstrahlschweißen gewinnt in der Industrie zunehmend an Bedeutung, da die hohe Produktivität und die einfache Handhabung Unternehmen wirtschaftliche Vorteile bieten. Derzeit ist der Einsatz in der Industrie jedoch auf Teile mit ästhetischen Anforderungen beschränkt, die häufig aus hochlegiertem Stahl bestehen. Um das Handschweißen mit Laserstrahl auch für Bauteile aus kostengünstigen Stähle mit guten mechanischen Eigenschaften einsetzen zu können, untersucht diese Studie den Einfluss des Schutzgases auf die Porosität am mikrolegierten Stahl HX340LAD mit einer Dicke von 1,5 mm. Getestet wurden die Gase Argon, Stickstoff, CO2 sowie Mischungen aus Argon und CO2 an T-Stöße mit Zusatzdraht. Die Qualifizierung der Porosität erfolgte gemäß DIN EN ISO 13919-1 an Querschliffen als auch mittels Röntgenuntersuchung. Die Ergebnisse zeigen, dass für diesen Stahl die Bewertungsgruppe B mittels CO2 als Schutzgas erreicht werden kann. Stickstoff führt zu Gruppe C, Argon zu D. KW - Handgeführtes Laserstrahlschweißen, HHLW, Stahl, Laser KW - HHLW KW - Stahl KW - Laser PY - 2025 SP - 22 EP - 25 PB - Schweizerischer Verein für Schweisstechnik SVS AN - OPUS4-65041 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Ávila Calderón, Luis T1 - Mechanisches Verhalten von additiv gefertigtem nichtrostendem Stahl X2CrNiMo17-12-2 (AISI 316L) und Vergleich zur konventionell gefertigten Variante T1 - Mechanical behavior of additively manufactured stainless steel X2CrNiMo17-12-2 (AISI 316L) and comparison with a conventionally manufactured variant N2 - Die additive Fertigung (AM) metallischer Werkstoffe ist eine Technologie, die zunehmend Gegenstand von Forschungsaktivitäten und industrieller Anwendung ist. Dennoch steht sie noch vor Herausforderungen, um eine breite Nutzung in sicherheitsrelevanten Anwendungen zu erreichen. Die Hauptgründe für die Verzögerung des technologischen Durchbruchs zugunsten von AM-Metallen gegenüber konventionell hergestellten Varianten sind das Fehlen eines tieferen Verständnisses der Prozess-Struktur-Eigenschafts-Beziehungen und die begrenzte Verfügbarkeit von Daten zu den Materialeigenschaften. In diesem Kontext stellt diese Arbeit einen Beitrag sowohl zum Verständnis der Prozess-Struktur-Eigenschafts-Beziehungen als auch zur Verbesserung der Datenlage von 316L dar, einem häufig als Konstruktionswerkstoff in verschiedenen Hochtemperaturbauteilen verwendeten Werkstoff. Die Arbeit legt den Fokus auf die mittels Laser-Pulverbettschmelzen hergestellte Werkstoffvariante, PBF-LB/M/316L. Eine konventionell hergestellte Variante, HR/316L, wurde auch untersucht. Bei PBF-LB/M/316L wurde zusätzlich der Effekt ausgewählter Wärmebehandlungen ausgewertet. Die Untersuchung umfasste die Charakterisierung der mechanischen Eigenschaften und der Verformungs- und Schädigungsmechanismen bei erhöhten Prüftemperaturen bei LCF und Kriechen, wo die Daten und Wissenslage am spärlichsten ist. Außerdem hat die untersuchte PBF-LB/M/316L-Wersktoffvariante einen geringen Porositätsgrad. Somit hat diese Arbeit die Mikrostruktur stärker in den Fokus genommen als die meisten bisher in der Literatur verfügbaren Studien. Die mechanische Prüfkampagne umfasste Zugversuche zwischen Raumtemperatur und 650 °C, LCF-Versuche zwischen Raumtemperatur und 600 °C sowie Kriechversuche bei 600 °C und 650 °C. In Ermangelung konkreter Richtlinien und Normen wurde die Charakterisierung zumeist anhand der bestehenden internationalen Prüfnormen und Probengeometrien durchgeführt. Aus jedem dieser Prüfverfahren wurden die entsprechenden Festigkeits- und Verformungskennwerte ermittelt. Darüber hinaus wurde mit Hilfe gezielter mikrostruktureller Untersuchungen ein Beitrag zum Verständnis des Zusammenhangs zwischen der Mikrostruktur und den mechanischen Eigenschaften in Bezug auf die Verformungs- und Schädigungsmechanismen geleistet. Die Dehngrenze von PBF-LB/M/316L ist etwa doppelt so hoch wie die von HR/316L und dieser Trend setzt sich mit ansteigender Prüftemperatur fort. Die Bruchdehnung ist bei allen Prüftemperaturen geringer. PBF-LB/M/316L weist über den größten Teil der Ermüdungslebensdauer vor allem bei Raumtemperatur höhere zyklische Spannungen als HR/316L auf. Ausschließlich bei den kleinsten Dehnungs-schwingbreiten sind die Ermüdungslebensdauer ausgeprägt kürzer. Das Wechselverformungsverhalten von PBF-LB/M/316L ist durch eine Anfangsverfestigung gefolgt von einer kontinuierlichen Entfestigung charakterisiert, welche bis zum Auftreten der zum Versagen führenden Entfestigung stattfindet. Die Kriechbruchzeiten und die Dauer jeder Kriechphase sind bei allen Kombinationen von Prüfparametern bei PBF-LB/M/316 kürzer als bei HR/316L. Die Spannungsabhängigkeit von PBF-LB/M/316L ist im Vergleich zu HR/316L geringer und die Duktilität beim Kriechen kleiner. Die minimale Kriechrate wird bei allen geprüften Parameterkombinationen bei deutlich geringeren Kriechdehnungen erreicht. Eine Wärmebehandlung bei 450 °C / 4 h bewirkt keine wesentliche Änderungen der Mikrostruktur und Zugversuchseigenschaften. Eine zusätzliche Wärmebehandlung bei 900 °C / 1 h verursacht eine Abnahme der Dehngrenze des PBF-LB/M/316L. Diese blieb aber immer noch um den Faktor 1,5x höher als bei HR/316L. Die Verformungsmerkmale wurden kaum davon beeinflusst. Bezüglich des Kriechverhaltens hat die Wärmebehandlung bei 900 °C / 1 h längere sekundäre und tertiäre Kriechstadien bewirkt und die Kriechdehnung hat sich signifikant erhöht. Die Bruchbilder unterscheiden sich generell nicht nur aber vor allem mit ansteigender Prüftemperatur, bei der bei PBF-LB/M/316L oft interkristalline Rissbildung beobachtet wurde. Die Zellstruktur trägt als der Hauptfaktor zu den unterschiedlichen mechanischen Eigenschaften im Vergleich zur HR/316L-Variante bei. Darüber hinaus spielen mutmaßlich die Kornmorphologie, die Stapelfehlerenergie und der Stickstoffgehalt eine Rolle. N2 - Metal additive manufacturing (AM) is a technology that is increasingly the subject of research activities and industrial applications. However, it still faces challenges to achieve widespread use in safety-relevant applications. The main reasons for the delay of this technological breakthrough in favor of AM metals over conventionally manufactured variants are the lack of a deeper understanding of process-structure-property relationships and the limited availability of data on material properties. In this context, this work contributes to both achieving a better understanding of process-structure-property relationships and the improvement of data for 316L, an alloy frequently used as a structural material in various high-temperature components. The work focuses on a material variant produced by laser pow-der bed fusion, PBF-LB/M/316L. A conventionally produced variant, HR/316L, was also investigated. For PBF-LB/M/316L, the effect of selected heat treatments was also evaluated. The investigation included the characterization of the mechanical properties and the related deformation and damage mechanisms at elevated test temperatures in LCF and creep, where data and knowledge are scarce. The PBF-LB/M/316L variant studied has a low degree of porosity. Thus, this work is more focused on the microstructure than most studies available in the literature. The mechanical test campaign included tensile tests between room temperature and 650 °C, LCF tests between room temperature and 600 °C, and creep tests at 600 °C and 650 °C. In the absence of concrete guidelines and standards for testing of AM metals, the characterization mostly took place using existing international test standards and specimen geometries. From each of the test methods, corresponding strength, and deformation characteristic values were determined. In addition, targeted microstructural investigations contributed to understanding the relationship between the microstructure and the mechanical properties in terms of deformation and damage mechanisms. The proof stress of PBF-LB/M/316L is about twice that of HR/316L. This trend remains with increasing test temperature. The elongation after fracture is lower at all test temperatures. Regarding LCF, PBF-LB/M/316L exhibits higher cyclic stresses than HR/316L for most of the fatigue life, especially at room temperature. Exclusively at the smallest strain amplitudes, the fatigue lives of PBF-LB/M/316L are markedly shorter than in HR/316L. The cyclic stress-strain deformation behavior of PBF-LB/M/316L features an initial strain hardening followed by a continuous softening, which occurs until the softening leading to failure takes place. The creep rupture times and the duration of each creep stage are shorter for PBF-LB/M/316 than for HR/316L for all combinations of test parameters. The stress dependence of PBF-LB/M/316L is lower, and the creep ductility is smaller compared to HR/316L. The minimum creep rate is reached at significantly lower creep extensions for all parameter combinations tested. A heat treatment at 450 °C / 4 h did not cause significant changes in the microstructure and tensile behavior. An additional heat treatment at 900 °C / 1 h caused a decrease in the proof stress of PBF-LB/M/316L. However, it still remained higher than the one of HR/316L by a factor of 1.5x. The deformation characteristics were hardly affected. Regarding the creep behavior, this latter heat treatment at 900 °C / 1 h caused longer secondary and tertiary creep stages, and the creep strain increased significantly. The fracture characteristics generally differed, which happened not only but especially with increasing test temperature, where intergranular cracking often took place in PBF-LB/M/316L. The cellular structure is considered the main factor contributing to the different mechanical properties compared to the HR/316L variant. In addition, grain morphology, stacking fault energy, and nitrogen content might play a role. KW - AGIL KW - Additive Fertigung KW - Laser-Pulverbettschmelzen KW - Mikrostrukturentwicklung KW - 316L KW - LCF KW - Kriechen KW - Additive Manufacturing KW - Microstructure KW - Mechanical Properties KW - Mechanische Eigenschaften PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597143 DO - https://doi.org/10.14279/depositonce-19828 SP - 1 EP - 190 CY - Berlin AN - OPUS4-59714 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Entwicklung der Mikrostruktur der mechanischen Eigenschaften und der Eigenspannungen in L-PBF 316L N2 - Die additive Fertigung (AM) metallischer Werkstoffe mittels Laser Powder Bed Fusion (L-PBF) ermöglicht einzigartige hierarchische Mikrostrukturen, die zu Verbesserungen bestimmter mechanischer Eigenschaften gegenüber konventionell hergestellten Varianten derselben Legierung führen können. Allerdings ist das L-PBF-Verfahren häufig durch das Vorhandensein hoher Eigenspannungen gekennzeichnet, die es zu verstehen und zu mindern gilt. Daher ist das Verständnis der Mikrostrukturen, der Eigenspannungen und der daraus resultierenden mechanischen Eigenschaften entscheidend für eine breite Akzeptanz bei sicherheitskritischen Anwendungen. Die BAM hat ein multidisziplinäres Forschungsprogramm gestartet, um diese Aspekte bei LPBF 316L zu untersuchen. Der vorliegende Beitrag stellt einige der wichtigsten Ergebnisse vor: der Einfluss von Prozessparametern auf die Mikrostruktur, der Einfluss von Mikrostruktur und Textur auf die Festigkeit, Kriechverhalten und Schädigung und die Stabilität von Eigenspannungen und Mikrostruktur unter Wärmebehandlungsbedingungen. T2 - DGM 3. Fachtagung Werkstoffe und Additive Fertigung CY - Dresden, Germany DA - 11.05.2022 KW - Mechanische Eigenschaften KW - Additive Fertigung KW - L-PBF 316L KW - Entwicklung KW - Mikrostruktur KW - Eigenspannung PY - 2022 AN - OPUS4-55786 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Kriech- und Bruchverhalten von additiv hergestelltem austenitischem Stahl 316L. Vergleich zum konventionellen Werkstoff. N2 - Eine kritische Aufgabe im Rahmen der Etablierung von Prozess-Struktur-Eigenschafts-Performance-Beziehungen bei der additiven Fertigung (AM) von Metallen ist die Ermittlung von zuverlässigen und gut dokumentierten Kennwerten zum Materialverhalten sowie das Schaffen von Wissen über die Struktur-Eigenschafts-Korrelation. Schließlich ist dies die Grundlage für die Entwicklung gezielterer Prozessoptimierungen und zuverlässigerer Lebensdauer-Vorhersagen. In diesem Zusammenhang zielt dieser Beitrag darauf ab, Daten und Erkenntnisse über das Kriechverhalten des austenitischen Edelstahls 316L zu liefern, der mittels Laser-Powder-Bed-Fusion (L-PBF) hergestellt wird. Um dieses Ziel zu erreichen, wurden Proben aus konventionellem warmgewalztem sowie AM-Material gemäß den bestehenden Normen für konventionelles Material geprüft und vor und nach dem Versagen mikrostrukturell charakterisiert. Die Probekörper wurden aus einzelnen Blöcken des AM-Materials gefertigt. Die Blöcke wurden mit einer Standard-Scan- und Aufbaustrategie hergestellt und anschließend wärmebehandelt. Das Kriechverhalten wird anhand der Kriechlebensdauer und ausgewählter Kriechkurven und Kennwerte beschrieben und vergleichend bewertet. Der Einfluss von Defekten und Mikrostruktur auf das Materialverhalten wird anhand von zerstörenden und zerstörungsfreien Auswertungen an ausgewählten Proben analysiert. Der AM-Werkstoff zeigt kürzere Kriechlebensdauern, erreicht das sekundäre Kriechstadium deutlich schneller und bei geringerer Dehnung und weist eine geringere Kriechduktilität im Vergleich zu seinem konventionellen Gegenstück auf. Das Kriechschädigungsverhalten des AM-Werkstoffs ist eher mikrostruktur- als defektgesteuert und ist durch die Bildung intergranularer Kriechrisse gekennzeichnet. Als kritische Merkmale werden die Versetzungsdichte sowie die Versprödung der Korngrenzen identifiziert. Die Mikro-Computertomographie (µCT) erweist sich als Alternative zur Metallographie, um die Kriechschädigung zu analysieren. T2 - Sitzung des DGM-Arbeitskreises Mechanisches Werkstoffverhalten bei hoher Temperatur CY - Online meeting DA - 07.10.2020 KW - 316L KW - Kriechen KW - Additive Fertigung KW - Mikrostruktur KW - Mikro-Computertomographie PY - 2020 AN - OPUS4-51824 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Schob, D. A1 - Léonard, Fabien A1 - Müller, Bernd R. A1 - Sagradov, I. A1 - Roszak, R. A1 - Sparr, H. A1 - Franke, R. A1 - Ziegenhorn, M. A1 - Bruno, Giovanni T1 - Bestimmung der Mikrostruktur und Simulation des Schädigungsverhaltens von lasergesintertem Polyamid 12 unter quasistatischer Zugbelastung N2 - Um das Material- und Schädigungsverhalten von additiv gefertigtem Polyamid 12 (PA12) unter quasistatischer Belastung zu charakterisieren, wurden mechanische Tests und Röntgenverfahren zur Bestimmung der Mikrostruktur eingesetzt. Die Proben wurden nach dem Prinzip des Selektiven Lasersinterns (SLS) hergestellt. Unter quasistatischer Belastung mit Haltezeiten ergab sich ein viskoplastisches Materialverhalten. Im Zugversuch wurde eine maximale Zugfestigkeit von 40.6 MPa und eine Bruchdehnung von 7.4% beobachtet. Mittels Röntgenrefraktion wurde eine Erhöhung von inneren Oberflächen beobachtet, die senkrecht zur Zugrichtung orientiert sind. Die Analyse der Gesamtporosität aus Computertomographie-Messungen ergab keine Änderung infolge der Zugbelastung. Jedoch wurde eine bimodale Porengrößenverteilung und eine steigende Sphärizität festgestellt. Das Materialverhalten wurde mit dem Chaboche-Modell simuliert und ergab eine sehr gute Übereinstimmung mit den experimentellen Ergebnissen. Allerdings gestattet dieses Modell nicht, das Schädigungsverhalten abzubilden. Daher wurde zur Simulation des Schädigungsverhaltens das Modell gemäß dem Ansatz von Gurson, Tvergaard und Needleman unter Berücksichtigung der mikrostrukturellen Parameter erweitert. Der Schwerpunkt des Beitrags liegt auf den Röntgenverfahren zur experimentellen Bestimmung der Mikrostruktur. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Additive Fertigung (AM) KW - Polyamid 12 KW - Röntgenrefraktion KW - Computertomographie KW - Numerische Simulation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526833 UR - https://jahrestagung.dgzfp.de/Portals/jt2021/bb/P16.pdf SP - 1 EP - 8 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-52683 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Eigenspannungsrelaxation in additiv gefertigem austenitischem Stahl 316L: Einsatz moderner Beugungsmethoden N2 - In Hinblick auf den austenitischen Stahl AISI 316L erzeugt das pulverbettbasierte selektive Laserstrahlschmelzen, als ein additives Fertigungsverfahren, kristallographisch texturierte und Multiskalige Mikrostruktur. Einerseits können diese Mikrostrukturen zu einer Verbesserung der statischen mechanischen Eigenschaften führen (z. B. zu einer höheren Streckgrenze). Andererseits stehen diesen Verbesserungen der mechanischen Eigenschaften hohe Eigenspannungen gegenüber, die sich nachteilig auf das Ermüdungsverhalten auswirken können. Zur Reduzierung der Eigenspannungen und der daraus resultierenden negativen Auswirkungen auf die Ermüdungseigenschaften, werden Bauteile nach der Herstellung typischerweise wärmebehandelt. In dieser Studie wurde eine niedrige Wärmebehandlungstemperatur von 450°C höher temperierten Behandlungen bei 800 °C und 900 °C gegenübergestellt. Diese Wärmebehandlungstemperaturen bilden die oberen und die untere Grenze ein Spannungsarmglühendes Materials, ohne die prozessinduzierte Mikrostruktur signifikant zu verändern. Zusätzlich bieten diese Temperaturen den Vorteil, dass sie eine übermäßige intergranulare Ausscheidung von Karbiden und TCP-Phasen vermeiden, die zu einer Sensibilisierung des Werkstoffes gegen korrosive Umgebungen führen würden. Die Auswirkungen der Wärmebehandlung auf das Gefüge wurden mittels Rasterelektronenmikroskopie (BSE und EBSD) untersucht. Die Relaxation der Eigenspannungen wurde vor und nach den jeweiligen Wärmebehandlungen bei 800°C und 900°C mittels Neutronenbeugung charakterisiert. Die Ergebnisse zeigen, dass die Proben nach der Wärmebehandlung bei 900 °C nahezu spannungsfrei sind, was mit der Auflösung der zellularen Substruktur korreliert. T2 - AWT-Konferenz Additive Fertigung CY - Bremen, Germany DA - 29.06.2022 KW - Neutronbeugungsverfahren KW - Additive Fertigung KW - L-PBF 316L KW - Eigenspannung PY - 2022 AN - OPUS4-55788 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter T1 - Klein, heiß und schnell: Bestimmung von Realtemperaturen in der metallbasierten additiven Fertigung mittels hyperspektraler Thermografie N2 - Die additive Fertigung von Metallen mittels Laser Powder Bed Fusion (PBF LB/M) ermöglicht die Herstellung komplexer Geometrien und die Nutzung neuartiger Legierungen. Die dabei lokal im Prozess auftretenden Temperaturverteilungen beeinflussen maßgeblich die Bauteileigenschaften sowie die Entstehung von Defekten wie bspw. Risse und Poren. Eine quantitative Bestimmung der Realtemperaturen ist daher essenziell für Prozessvalidierung und -vergleich sowie die Qualitätssicherung und das Verständnis der zugrunde liegenden physikalischen Vorgänge. Bisherige thermografische Monitoring-Ansätze liefern jedoch meist nur qualitative Informationen. Hintergrund sind die Herausforderungen gegeben durch den Prozess: kleine Schmelzbäder (< 300 µm), hohe Temperaturen (> 2500 K) und hohe Scangeschwindigkeiten (ca. 1 m/s). Zusammen mit den dynamischen Änderungen des Emissionsgrads u.a. durch Phasenübergänge ergeben sich äußerst schwierige Bedingungen für thermografische Messungen. Um dieser Herausforderung zu begegnen, verfolgen wir einen neuartigen Ansatz zur hyperspektralen Thermografie, der eine simultane Messung der emittierten Strahlung im kurzwelligen Infrarotbereich (1 bis 1,6 µm) entlang einer Linie bei ca. 20 kHz ermöglicht. Durch die Bewegung des Schmelzbades senkrecht durch die Messlinie kann ein typisches Schmelzbad rekonstruiert werden. Die Temperatur-Emissionsgrad-Separation (TES) erlaubt dabei die Bestimmung von Realtemperaturen und Emissionsgraden basierend auf parametrisierten spektralen Emissionsgradfunktionen sowie radiometrischen Kalibrationen. Die Umsetzung erfolgt an der Forschungsmaschine der BAM „SAMMIE“, die speziell für thermografische Messungen am PBF LB/M-Prozess konzipiert wurde. Die Ergebnisse zeigen das Potenzial der hyperspektralen Thermografie zur Erfassung von Realtemperaturen im Prozess. Dies stellt einen wichtigen Schritt zur verbesserten Vergleichbarkeit und Wiederholbarkeit der Fertigung sowie zur Validierung komplexer Simulationen dar. Damit trägt der neuartige Ansatz langfristig zur Erhöhung der Sicherheit und des Verständnisses additiver Fertigungsprozesse bei. T2 - Thermo 25 CY - Garching bei München, Germany DA - 12.11.2025 KW - Laser powder bed fusion KW - Infrarot Thermografie KW - In-situ Monitoring KW - Qualitätssicherung KW - Temperaturmessung PY - 2025 AN - OPUS4-65394 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - BAM Akademie 2023- Modul 2 Computertomographie N2 - Hier werden die Grundprinzipien der Computertomographie dargestellt, die Artefakte, die bei den Messungen auftreten und die Datenanalysemethoden erklärt. T2 - BAM Akademie - Webinar Reihe CY - Berlin, Germany DA - 05.10.2023 KW - Artefakte KW - Auflösung KW - Radon Transformation KW - Rekonstruktion KW - Metrologie PY - 2023 AN - OPUS4-58509 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Pulverbasierte additive Fertigung unter reduzierten Schwerkraftbedingungen N2 - 2014 wurden die ersten additiv gefertigten Bauteile in der Internationalen Raumstation (ISS) hergestellt. Die Ära des 3D Drucks im Weltraum startete bereits 2010 mit einem NASA Projekt. Made in Space Inc. entwickelte im Auftrag der NASA einen 3D Drucker auf Basis der Fused Deposition Modeling (FDM) Technologie. Seit 2016 gibt es in der ISS eine Additive Manufacturing Facility und seitdem wurden mittels FDM mehr als hundert Teile aus Kunststoff 3D gedruckt. Die ESA arbeitet gleichfalls an der Entwicklung eines FDM-3D Druckers für die Schwerelosigkeit, z.B. im ESA Projekt „IMPERIAL“, „MELT 3D printer“. Metallische Bauteile mit guten mechanischen Eigenschaften und guter Genauigkeit können kommerziell mittels des Laserstrahlschmelzens (Laser Powder Bed Fusion LPBF) dargestellt werden. Diese Technologie kann allerdings im Weltraum nur unter der Voraussetzung angewendet werden, dass das Pulvermaterial in der Schwerelosigkeit manipuliert und in Form einer dünnen Schicht stabilisiert werden kann. Standard LBM-Anlagen sind deshalb für einen Betrieb in Schwerelosigkeit nicht geeignet, was z.B. auch von Made in Space Inc. in der Vergangenheit beleuchtet wurde. Die pulverbasierte additive Fertigung unter Schwerelosigkeit erfordert die Entwicklung völlig neuartiger Technologien zum Schichtauftrag. Methoden: Mit Hilfe der „Gasflussunterstützten Pulverdeposition“ wurden im Rahmen des Projekts unter reduzierter Schwerkraft systematische Parameterstudien zum LPBF-Prozess durchgeführt. Das Projekt knüpfte an erfolgreiche Vorarbeiten zur Gasflussunterstützten Pulverdeposition unter µg Bedingungen aus vier DLR Parabelflugkampagnen (30., 31., 33. und 34.) an. Ergebnisse: In den Parabelflugkampagnen 76 der ESA und 38 des DLR wurde eine neue Einheit in Wabenform für den Schichtauftrag von Pulver getestet. Es konnte gezeigt werden, dass diese Einheit, die auch als Pulverreservoir funktionierte und mittels eines Aktuators in Schwingungen versetzt wurde, einen reproduzierbaren Schichtauftrag mit geringem Pulververlust unter Schwerelosigkeit ermöglicht. Um die Qualität der aufgetragenen Schicht überwachen zu können, wurde ein Linienscanner beschafft und in die Anlage integriert. Mit diesem kann ein 3D Profil der Schichten im laufenden Prozess erstellt werden, was eine Qualitätskontrolle jeder einzelnen Schicht im Prozess erlaubt. Neben Edelstahl (316L) wurde das Schmelzverhalten von Regolith direkt im Pulverbett unter Bedingungen reduzierter Schwerkraft ebenfalls untersucht. Ein Modell zum Verständnis der Einflussgrößen Gravitation, Schmelzbadgröße, Partikelgröße und Zusammensetzung des Regolith wurde entwickelt. Schlussfolgerungen: Die Entwicklung einer leistungsfähigen Rakeleinheit für den Schichtauftrag unter Schwerelosigkeit ist Voraussetzung für die Generierung defektfreier Bauteile in der pulverbasierten additiven Fertigung in Schwerelosigkeit. Der Übergang zum Werkstoff Regolith hat die Thematik der Verwendung von lokalen Rohstoffen (ISRU), z.B. Mondstaub auf dem Mond, in Kombination mit dem Ziel einer hohen Produktivität beim Aufbau großer Strukturen hervorgebracht. Hierbei ist das Thema einer handhabbaren Schmelzpoolgröße im Laserschmelzprozess unter variierender Schwerkraft in den Fokus gerückt und wird derzeit noch beforscht. T2 - DLR Statussymposium CY - Bonn, Germany DA - 12.03.2025 KW - Regolith KW - Mond KW - ISRU KW - micro-g PY - 2025 AN - OPUS4-63964 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -