TY - CONF A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kasperovich, G. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Unterscheidung verschiedener charakteristischer Defekte in mittels selektivem Laserschmelzen hergestelltem Ti-6Al-4V durch Röntgen-Refraktionsradiographie N2 - Das selektive Laserschmelzen (SLM) ist eine pulverbasierte, additive Fertigungsmethode, welche die Herstellung von komplex und individuell geformten Bauteilen ermöglicht. Im Laufe der vergangenen Jahre haben verschiedene Branchen, unter anderem die Luft- und Raumfahrt Industrie, begonnen diese Technologie intensiv zu erforschen. Insbesondere die Titanlegierung Ti-6Al-V4, welche aufgrund ihrer Kombination von mechanischen Eigenschaften, geringer Dichte und Korrosionsbeständigkeit häufig in der Luft- und Raumfahrt eingesetzt wird, eignet sich für die Herstellung mittels SLM. Allerdings können durch nicht optimal gewählte Prozessparameter, welche für gewöhnlich in einer Energiedichte zusammengefasst werden, Defekte in den Bauteilen entstehen. In dieser Studie wurde untersucht, in wie weit Röntgen-Refraktionsradiographie geeignet ist diese Defekte zu detektieren und zu charakterisieren. Bei der Röntgen-Refraktionsradiographie wird die Röntgenstrahlung, nachdem sie die Probe transmittiert hat, über einen Analysatorkristall gemäß der Bragg-Bedingung in den 2D-Detektor reflektiert und dabei nach ihrer Ausbreitungsrichtung gefiltert. Dadurch wird neben der Schwächung auch die Ablenkung der Röntgenstrahlung durch Refraktion im inneren der Probe zur Bildgebung ausgenutzt. Aus den aufgenommen Refraktionsradiogrammen kann der Refraktionswert berechnet werden. Dieser ist ein Maß für die Menge an inneren Oberflächen in der Probe. Zum einen konnte gezeigt werden, dass die Röntgen-Refraktionsradiographie Defekte detektieren kann, die kleiner sind als die Ortsauflösung des verwendeten 2D-Detektors. Zum anderen können zwei verschiedene Typen von Defekten unterschieden werden. Bei dem ersten Typ handelt es sich um runde Poren mit geringer innerer Oberfläche. Diese, sogenannten „keyhole pores“ sind charakteristisch für eine zu hohe Energiedichte während des SLM Prozesses. Bei dem zweiten Typ handelt es sich um nicht komplett aufgeschmolzenes Pulver. Diese Defekte zeichnen sich durch eine hohe innere Oberfläche aus und sind charakteristisch für eine zu geringe Energiedichte. Vergleichende Messungen mit hochauflösender Synchrotron CT und optischer Mikroskopie bestätigen die charakteristischen Formen der verschiedenen Defekte. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Röntgen-Refraktion KW - Additive Fertigung KW - Porosität PY - 2018 AN - OPUS4-44953 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - LSD- 3D printing: Powder based Additive Manufacturing, from porcelain to technical ceramics N2 - Powder based Additive Manufacturing (AM) processes are widely used for metallic and polymeric materials, but rarely commercially used for ceramic materials, especially for technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. Technical ceramics powders are in fact typically very fine and poorly flowable, which makes them not suitable for AM. The layerwise slurry deposition (LSD) is an innovative process for the deposition of powder layers with a high packing density for powder based AM. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder This allows the use of fine powders and achieves high packing density (55-60%) in the layers after drying. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to *Denotes Presenter 42nd International Conference & Exposition on Advanced Ceramics & Composites 127 Abstracts the 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. This presentation will give an overview of the milestones in the development of this technology, with focus on the latest results applied both to silicate and to technical ceramics. T2 - 42nd International Conference & Exposition on Advanced Ceramics and Composites CY - Daytona, FL, USA DA - 21.01.2018 KW - Additive Manufacturing KW - 3D printing KW - Ceramic KW - Alumina KW - Porcelain KW - Silicon Carbide PY - 2018 AN - OPUS4-44017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - Metrology for additively manufactured medical implants N2 - Additive manufacturing (AM) offers an effective solution to the medical sector. It enables the production, on demand, of customised implants which match the patient’s anatomy, with grafts that promote bone growth, as well as surgical guides that help the surgeons. The objective of this project is to provide a comprehensive basis to enable the safe use of medical AM products with traceable and reliable dimensionalmeasurements. This will guarantee the reliability of medical AM products to notified bodies and facilitate acceptance of AM in the medical sector for a better quality of life. T2 - 8th iCT 2018 conference CY - Wels, Austria DA - 06.02.2018 KW - Implants KW - Metrology KW - Additive manufacturing PY - 2018 AN - OPUS4-44400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, Katia A1 - Bruno, Giovanni A1 - Requena, Guillermo A1 - Haubrich, Jan T1 - Subsurface residual stress analysis in Ti-6Al-4V additive manufactured parts by synchrotron x-ray diffraction N2 - Synchrotron X-ray diffraction is a powerful non-destructive technique for the analysis of the material stress-state. High cooling rates and heterogeneous temperature distributions during additive manufacturing lead to high residual stresses. These high residual stresses play a crucial role in the ability to achieve complex geometries with accuracy since they can promote distortion of parts during manufacturing. Furthermore, residual stresses are critical for the mechanical performance of parts in terms of durability and safety. In the present study, Ti-6Al-4V bridge-like specimens were manufactured additively by selective laser melting (SLM) under different laser scanning speed conditions in order to compare the effect of process energy density on the residual stress state. Subsurface residual stress analysis was conducted by means of synchrotron X-ray diffraction in energy dispersive mode for three conditions: as-built on base plate, released from base plate, and after heat treatment on the base plate. The quantitative residual stress characterization shows a correlation with the qualitative bridge curvature method. Computed tomography (CT) was carried out to ensure that no stress relief took place owing to the presence of porosity. CT allows obtaining spatial and size pores distribution which helps in optimization of the SLM process. High tensile residual stresses were found at the lateral surface for samples in the as-built conditions. We observed that higher laser energy density during fabrication leads to lower residual stresses. Samples in released condition showed redistribution of the stresses due to distortion. T2 - 12th ECNDT 2018 CY - Göteborg, Sweden DA - 11.06.2018 KW - Additive manufacturing KW - Selective laser melting KW - Residual stress KW - Synchrotron X-ray diffraction KW - Ti-6Al-4V PY - 2018 UR - http://cdn.ecndt2018.com/wp-content/uploads/2018/05/ecndt-0213-2018-File001.pdf SP - 1 EP - 8 AN - OPUS4-45217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Cabeza, Sandra T1 - Influence of deposition hatch length on residual stress in selective laser melted Inconel 718 N2 - The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - WAM2018 CY - Grenoble, France DA - 09.04.2018 KW - Additive manufacturing KW - SLM KW - Residual stress KW - In718 PY - 2018 AN - OPUS4-44694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Petrat, T. A1 - Graf, B. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Build-up Strategies for Laser Metal Deposition in Additive Manufacturing N2 - Laser Metal Deposition (LMD) as a technology for additive manufacturing allows the production of large components outside of closed working chambers. Industrial applications require a stable process as well as a constant deposition of the filler material in order to ensure uniform volume growth and reproducible mechanical properties. This paper deals with the influence of travel path strategies on temperature profile and material deposition. Meandering and spiral hatching strategies are used in the center as well as in the edge of a specimen. The temperature is measured with thermocouples attatched to the backside of the specimen. The tests are carried out on the materials S235JR and 316L. The results show a strong dependence of the maximum temperatures on the travel path strategy and the welding position on the component. T2 - Fraunhofer Direct Digital Manufacturing Conference (DDMC) CY - Berlin, Germany DA - 14.03.2018 KW - Additive Manufacturing KW - Temperature behavior KW - Laser Metal Deposition KW - Stainless Steel KW - 316L KW - Edge effects PY - 2018 SN - 978-3-8396-1320-7 VL - 1 SP - 1 EP - 6 PB - Fraunhofer-Gesellschaft CY - München AN - OPUS4-44719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Feldmann, Ines A1 - Brauer, D.S. T1 - Sintering ability of fluoride-containing bioactive glass powder N2 - Sintered bioactive glass scaffolds of defined shape and porosity, e.g. made via additive manufacturing, must provide sufficient bioactivity and sinterability. As higher bioactivity is often linked to high corrosion and crystallization tendency, a certain compromise between sintering ability and bioactivity is therefore required. Groh et al. developed a fluoride-containing bioactive glass (F3), which allows fiber drawing and shows a bioactivity well comparable to that of Bioglass®45S5. To study whether and to what extent the sinterability of F3 glass powder is controlled by particle size, coarse and fine F3 glass powders (300-310µm and 0-32µm) were prepared by crushing, sieving and milling. Sintering, degassing and phase transformation during heating were studied with heating microscopy, vacuum hot extraction (VHE), DTA, XRD, and SEM. For the coarse glass powder, sintering proceeds slowly and is limited by surface crystallization of primary Na2CaSi2O6 crystals. Although the crystallization onset of Na2CaSi2O6 is shifted to lower temperature, full densification is attained for the fine powder. This finding indicate that certain porosity might be tuned via particle size variation. Above 900°C, intensive foaming is evident for the fine powder. VHE studies revealed that carbon species are the main foaming source. T2 - 92. Glastechnische Tagung CY - Bayreuth, Germany DA - 28.05.2018 KW - Sintering KW - Bioactive glass KW - Crystallization PY - 2018 AN - OPUS4-45568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Laquai, René A1 - Nellesen, J. A1 - Tillmann, W. A1 - Kasperovich, G. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Microstructure characterisation of advanced materials via 2D and 3D X-ray refraction techniques N2 - 3D imaging techniques have an enormous potential to understand the microstructure, its evolution, and its link to mechanical, thermal, and transport properties. In this conference paper we report the use of a powerful, yet not so wide-spread, set of X-ray techniques based on refraction effects. X-ray refraction allows determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with a nanometric detectability. We demonstrate showcases of ceramics and composite materials, where microstructural parameters could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. We present in situ analysis of the damage evolution in an Al/Al2O3 metal matrix composite during tensile load and the identification of void formation (different kinds of defects, particularly unsintered powder hidden in pores, and small inhomogeneity’s like cracks) in Ti64 parts produced by selective laser melting using synchrotron X-ray refraction radiography and tomography. T2 - THERMEC'2018 CY - Paris, France DA - 09.07.2018 KW - X-ray-refraction KW - Damage evolution KW - Additive manufacturing KW - Composites KW - Creep PY - 2018 AN - OPUS4-45572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Graf, B. A1 - Marko, A. A1 - Petrat, T. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - 3D laser metal deposition: process steps for additive manufacturing N2 - Laser metal deposition (LMD) is an established technology for two-dimensional surface coatings. It offers high deposition rates, high material flexibility, and the possibility to deposit material on existing components. Due to these features, LMD has been increasingly applied for additive manufacturing of 3D structures in recent years. Compared to previous coating applications, additive manufacturing of 3D structures leads to new challenges regarding LMD process knowledge. In this paper, the process steps for LMD as additive manufacturing technology are described. The experiments are conducted using titanium alloy Ti-6Al-4Vand Inconel 718. Only the LMD nozzle is used to create a shielding gas atmosphere. This ensures the high geometric flexibility needed for additive manufacturing, although issues with the restricted size and quality of the shielding gas atmosphere arise. In the first step, the influence of process parameters on the geometric dimensions of single weld beads is analyzed based on design of experiments. In the second step, a 3D build-up strategy for cylindrical specimen with high dimensional accuracy is described. Process parameters, travel paths, and cooling periods between layers are adjusted. Tensile tests show that mechanical properties in the as-deposited condition are close to wrought material. As practical example, the fir-tree root profile of a turbine blade is manufactured. The feasibility of LMD as additive technology is evaluated based on this component. KW - Laser metal deposition KW - Build-up strategy KW - Deposition rate KW - Additive manufacturing PY - 2018 DO - https://doi.org/10.1007/s40194-018-0590-x SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 4 SP - 877 EP - 883 PB - Springer Berlin Heidelberg CY - Heidelberg AN - OPUS4-44868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Starting new adventures at BAM. The focus area projects PROMOAM and AGIL N2 - While additive manufacturing (AM) is blossoming in nearly every industrial field, and the most different process are being used to produce components and materials, little attention is paid on the safety concerns around AM materials and processes. Leveraging on our leading expertise in non-destructive testing (NDT) and materials characterization, we approach AM at BAM under two important viewpoints: first the on-line monitoring of the process and of the product, second the evolution of the (unstable) microstructure of AM materials under external loads. These two subjects are the core of the two new-born internal projects ProMoAM and AGIL, respectively. A detailed view of the goals and the organization of these two projects will be given, together with the expected output, and some preliminary results. T2 - Vortragsveranstaltung Bauhaus Universität, im Rahmen der Kolloquien der Fakultät Bauwesen. CY - Weimar, Germany DA - 01.06.2018 KW - Thermography KW - Additive Manufacturing KW - Non-destructive testing KW - On-line monitoring KW - Residual stress PY - 2018 AN - OPUS4-45118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Klaus, Manuela A1 - Genzel, Christoph A1 - Haberland, Christoph A1 - Bruno, Giovanni T1 - The influence of the support structure on residual stress and distortion in SLM Inconel 718 parts N2 - The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed. KW - Additive manufacturing KW - SLM KW - Residual stress KW - Synchrotron X-ray diffraction KW - IN718 PY - 2018 DO - https://doi.org/10.1007/s11661-018-4653-9 SN - 1073-5623 VL - 49A IS - 7 SP - 3038 EP - 3046 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elsayed, H. A1 - Zocca, Andrea A1 - Schmidt, J. A1 - Günster, Jens A1 - Colombo, P. A1 - Bernardo, E. T1 - Bioactive glass-ceramic scaffolds by additive manufacturing and sinter-crystallization of fi ne glass powders N2 - Wollastonite (CaSiO 3 ) – diopside (CaMgSi 2 O 6 ) glass-ceramic scaffolds have been successfully fabricated using two different additive manufacturing techniques: powder-based 3D printing (3DP) and digital light processing (DLP), coupled with the sinter-crystallization of glass powders with two different compositions. The adopted manufacturing process depended on the balance between viscous flow sintering and crystallization of the glass particles, in turn in fluenced by the powder size and the sensitivity of CaO – MgO – SiO 2 glasses to surface nucleation. 3DP used coarser glass powders and was more appropriate for low temperature firing (800 – 900 °C), leading to samples with limited crystallization. On the contrary, DLP used finer glass powders, leading to highly crystallized glass-ceramic samples. Despite the differences in manufacturing technology and crystallization, all samples featured very good strength-to-density ratios, which bene fit theiruse for bone tissue engineering applications. The bioactivity of 3D-printed glass-ceramics after immersion in simulated body fluid and the similarities, in terms of ionic releases and hydroxyapatite formation with already validated bioactive glass-ceramics, were preliminarily assessed. KW - 3D-Printing KW - Bio Ceramic KW - Additive manufacturing PY - 2018 DO - https://doi.org/10.1557/jmr.2018.120 SN - 2044-5326 SN - 0884-2914 VL - 33 IS - 14 SP - 1960 EP - 1971 PB - Cambridge University Press AN - OPUS4-45718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günster, Jens A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Acchar, W. T1 - 3D printing of porcelain by layerwise slurry deposition N2 - The Layerwise Slurry Deposition is a technology for the deposition of highly packed powder layers. A powder bed is achieved by depositing and drying layers of a ceramic suspension by means of a doctor blade. This deposition technique was combined with the binder jetting technology to develop a novel Additive Manufacturing technology, named LSD-print. The LSD-print was applied to a porcelain ceramic. It is shown that it was possible to produce parts with high definition, good surface finish and at the same time having physical and mechanical properties close to those of traditionally processed porcelain, e.g. by slip casting. This technology shows high future potential for being integrated alongside traditional production of porce-lain, as it is easily scalable to large areas while maintaining a good definition. Both the Layerwise Slurry Deposition method and the binder jetting technologies are readily scalable to areas as large as > 1 m2. KW - Binder jetting KW - Additive Manufacturing KW - 3D printing KW - Porcelain PY - 2018 DO - https://doi.org/10.1016/j.jeurceramsoc.2018.03.014 SN - 0955-2219 VL - 38 IS - 9 SP - 3395 EP - 3400 PB - Elsevier Ltd. AN - OPUS4-45713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chi, Jinchun A1 - Zocca, Andrea A1 - Agea Blanco, Boris A1 - Melcher, J. A1 - Sparenberg, M. A1 - Günster, Jens T1 - 3D Printing of Self-Organizing Structural Elements for Advanced Functional Structures N2 - A shape evolution approach based on the thermally activated self-organization of 3D printed parts into minimal surface area structures is presented. With this strategy, the present communication opposes currently established additive manufacturing strategies aiming to stipulate each individual volumetric element (voxel) of a part. Instead, a 3D structure is roughly defined in a 3D printing process, with all its advantages, and an externally triggered self-organization allows the formation of structural elements with a definition greatly exceeding the volumetric resolution of the printing process. For enabling the self-organization of printed objects by viscous flow of material, functionally graded structures are printed as rigid frame and melting filler. This approach uniquely combines the freedom in design, provided by 3D printing, with the mathematical formulation of minimal surface structures and the knowledge of the physical potentials governing self-organization, to overcome the paradigm which strictly orrelates the geometrical definition of 3D printed parts to the volumetric resolution of the printing process. Moreover, a transient liquid phase allows local programming of functionalities, such as the alignment of functional particles, by means of electric or magnetic fields. KW - Additive Manufacturing KW - Self-Assembly KW - 3D-Printing KW - Polymeric Materials PY - 2018 DO - https://doi.org/10.1002/admt.201800003 SN - 2365-709X VL - 3 IS - 5 SP - 1800003-1 EP - 1800003-7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-45714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernardino, R. A1 - Wirth, C. A1 - Stares, S.L. A1 - Salmoria, G.V. A1 - Hotza, D. A1 - Günster, Jens T1 - Manufacturing of SiO2-Coated b-TCP Structures by 3D Printing using a Preceramic Polymer as Printing Binder and Silica Source N2 - Tricalcium phosphate (b-TCP) can be used as bone graft, exhibiting suitable bioabsorption and osteoconduction properties. The presence of silica may induce the formation of a hydroxyapatite layer, enhancing the integration between implant and bone tissue. Preceramic polymers present silicon in their composition, being a source of SiO2 after thermal treatment. Using the versatility of 3D printing, b-TCP and a polysiloxane were combined to manufacture a bulkb-TCP with a silica coating. For the additive manufacturing process, PMMA powder was used as passive binder for the b-TCP particles, and polymethylsilsesquioxane (MK), dissolved in an organic solvent, was used both as a printing binder (ink) and as the source of SiO2 for the coating. Five distinct coating compositions were printed with increasing amounts of MK. The structures were then submitted to heat treatment at 1180 °C for 4 h. XRD and FTIR showed no chemical reaction between the calcium phosphate and silica. SEM allowed observation of a silicon-based ating on the structure surface. Mechanical strength of the sintered porous structures was within the range of that of trabecular bones. KW - Tricalcium Phosphate KW - 3D-Printing KW - Preceramic polymer KW - Bone regeneration PY - 2018 DO - https://doi.org/10.4416/JCST2017-00056 VL - 9 IS - 1 SP - 37 EP - 41 PB - Göller Verlag CY - 76532 Baden-Baden AN - OPUS4-45715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Graf, B. A1 - Rethmeier, Michael T1 - In-situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations N2 - Distortions in Additive Manufacturing (AM) Laser Metal Deposition (LMD) occur in the newly-built component due to rapid heating and solidification and can lead to shape deviations and cracking. This paper presents a novel approach to quantify the distortions experimentally and to use the results in numerical simulation validation. Digital Image Correlation (DIC) is applied together with optical filters to measure in-situ distortions directly on a wall geometry produced with LMD. The wall shows cyclic Expansion and shrinking with the edges bending inward and the top of the sample exhibiting a slight u-shape as residual distortions. Subsequently, a structural Finite Element Analysis (FEA) of the experiment is established, calibrated against experimental temperature profiles and used to predict the in-situ distortions of the sample. A comparison of the experimental and numerical results reveals a good agreement in length direction of the sample and quantitative deviations in height direction, which are attributed to the material model used. The suitability of the novel experimental approach for measurements on an AM sample is shown and the potential for the validated numerical model as a predictive tool to reduce trial-and-error and improve part quality is evaluated. KW - Laser metal deposition KW - DIC KW - Dimensional accuracy KW - AM KW - Welding simulation PY - 2018 DO - https://doi.org/10.1016/j.addma.2017.12.007 SN - 2214-8604 SN - 2214-7810 VL - 20 SP - 101 EP - 110 PB - Elsevier AN - OPUS4-43776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Kromm, Arne A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - ECNDT 2018 CY - Götheburg, Sweden DA - 11.06.2018 KW - Additive manufacturing KW - Ressidual stress KW - Neutron diffraction PY - 2018 AN - OPUS4-45761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - VAMAS - Workshop CY - BAM, Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Neutron diffraction KW - Ressidual stress PY - 2018 AN - OPUS4-45762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrat, T. A1 - Winterkorn, René A1 - Graf, B. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Build-up strategies for temperature control using laser metal deposition for additive manufacturing N2 - The track geometry created with laser metal deposition (LMD) is influenced by various parameters. In this case, the laser power has an influence on the width of the track because of an increasing energy input. A larger melt pool is caused by a rising temperature. In the case of a longer welding process, there is also a rise in temperature, resulting in a change of the track geometry. This paper deals with the temperature profiles of different zigzag strategies and spiral strategies for additive manufacturing. A two-color pyrometer is used for temperature measurement on the component surface near the melt pool. Thermocouples measure the temperatures in deeper regions of a component. The welds are located in the center and in the edge area on a test part to investigate the temperature evolution under different boundary conditions. The experiments are carried out on substrates made from mild steel 1.0038 and with the filler material 316L. The investigations show an influence on the temperature evolution by the travel path strategy as well as the position on the part. This shows the necessity for the development and selection of build-up strategies for different part geometries in additive manufacturing by LMD. KW - Laser welding KW - Clad steels KW - Temperature distribution KW - Heat flow KW - Laser surfacing PY - 2018 DO - https://doi.org/10.1007/s40194-018-0604-8 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 5 SP - 1073 EP - 1081 PB - Springer AN - OPUS4-45773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Nadammal, Naresh A1 - Thiede, Tobias A1 - Bruno, Giovanni T1 - Residual Stresses in Selective Laser Melted Samples of a Nickel Based Superalloy N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-459818 SN - 978-1-94529-189-0 SN - 978-1-94529-188-3 DO - https://doi.org/10.21741/9781945291890-41 SN - 2474-395X SN - 2474-3941 VL - 6 SP - 259 EP - 264 PB - Materials Research Forum LLC CY - Millersville, PA 17551, USA AN - OPUS4-45981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -