TY - JOUR A1 - Tabin, J. A1 - Kawałko, J. A1 - Schob, Daniela A1 - Roszak, R. A1 - Brodecki, A. A1 - Bała, P. A1 - Maasch, philipp A1 - Kowalewski, Z. A1 - Ziegenhorn, M. T1 - Deformation-induced martensitic transformation in fused filament fabrication austenitic stainless steels during tension at wide range of temperatures (77 K, RT) N2 - This study investigates the mechanical behaviour of fused filament fabrication (FFF) of 316L austenitic stainless steel compared to conventional 316L at room temperature and 77 K, focusing on deformation-induced martensitic transformation (DIMT). Results reveal that the Lüders-like effect, present in conventional 316L at 77 K, is absent in FFF 316L due to porosities that hinder martensitic front propagation. At room temperature, uniform strain distribution and DIMT were observed in conventional 316L, whereas in FFF 316L, martensitic nucleation occurred around pores, serving as a localized strengthening mechanism. Microstructural analysis identified Fe-δ islands along grain boundaries in FFF 316L, which contribute to its multiphase nature. Although FFF 316L demonstrates lower yield stress and elongation compared to conventional 316L, this study does not establish design allowables. The present findings are limited to monotonic tensile behaviour, fatigue performance and corrosion resistance under cryogenic conditions were not assessed. Further optimization of fabrication parameters to minimize ferrite content and porosities is suggested to enhance mechanical performance. KW - TRIP effect KW - Fused filament fabrication KW - 316L KW - Cryogenic KW - Cryogenic temperatures KW - Microstructure PY - 2026 DO - https://doi.org/10.1016/j.msea.2025.149552 SN - 0921-5093 VL - 950 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-65141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ferrari, Bruno A1 - Fantin, Andrea A1 - Said, D. A1 - Fitch, A. N. A1 - Suárez Ocano, Patricia A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Kromm, Arne A1 - Darvishi Kamachali, Reza A1 - Bruno, Giovanni A1 - Evans, Alexander A1 - Requena, G. A1 - Agudo Jácome, Leonardo A1 - Serrano Munoz, Itziar T1 - The impact of scanning strategy on cell structures in PBF-LB/M/IN718: an in situ synchrotron x-ray diffraction study N2 - In additive manufacturing, any change of the process parameters, such as scanning strategy, directly affects the cooling rates, heat accumulation, and overall thermal history of the build. Consequently, parts built with different process parameters tend to have different levels of crystallographic texture, residual stress, and dislocation density. These features can influence the properties of the material and their development during post-processing operations. In this study, IN718 prisms were built by laser powder bed fusion (PBF-LB/M) using two different scanning strategies (continuous 67° rotations around the build direction, ROT, and alternating 0°/67° scans, ALT) to provide two different as-built conditions. In situ time-resolved synchrotron diffraction was performed during a solution heat treatment at 1027 °C for 1 h. Ex situ scanning electron microscopy was used to support and complement the in situ observations. An approach to quantify the effect of elemental microsegregation at the cell walls is developed based on the deconvolution of asymmetric γ-nickel matrix peaks. Following this approach, the scanning strategies are shown to affect the as-built fraction of cell walls in the material, resulting in a difference of approximately 5 %, in weight fraction, between ROT and ALT (19 % vs. 24 %, respectively). This microsegregation was observed to be rapidly homogenized during the heating ramp, and no significant changes to the peak shape in the γ peaks occurred during the isothermal part of the heat treatment, regardless of the scanning strategy. KW - Additive manufacturing KW - Inconel 718 KW - Synchrotron x-ray diffraction KW - Heat treatment KW - Laser powder bed fusion KW - Cellular microstructure PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650958 DO - https://doi.org/10.1016/j.jmrt.2025.11.214 SN - 2238-7854 VL - 41 SP - 593 EP - 608 PB - Elsevier B.V. AN - OPUS4-65095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Chaudhuri, Somsubhro A1 - Pittner, Andreas A1 - Winterkorn, Rene A1 - de Finis, Rosa A1 - Palumbo, Davide A1 - Galietti, Umberto T1 - Thermographic investigation of the anisotropic behaviour of additively manufactured AISI316 steel using DED-Arc N2 - Additive manufacturing is one of the most promising techniques for industrial production and maintenance, but the specifics of the layered structure must be considered. The Direct Energy Deposition-Arc process enables relatively high deposition rates, which is favourable for larger components. For this study, specimens with different orientations were prepared from one AISI316 steel block – parallel and orthogonal to the deposition plane. Quasistatic tensile loading tests were carried out, monitored by an infrared camera. The obtained surface temperature maps revealed structural differences between both orientations. The consideration of surface temperature transients yields more details about the behaviour of the material under tensile loading than the conventional stress-strain-curve. These preliminary investigations were supplemented by thermographic fatigue trials. Although the anisotropy was also observed during fatigue loading the fatigue behaviour in general was the same, at least for both inspected specimens. The presented results demonstrate the abilities and the potential of thermographic techniques for tensile tests. T2 - 17th Quantitative Infrared Thermography Conference CY - Bologna, Italy DA - 07.07.2025 KW - Thermoelastic effect KW - Wire-arc-additive manufacturing KW - thermal stress analysis KW - fatigue testing PY - 2026 DO - https://doi.org/10.21611/qirt-2024-029 SP - 1 EP - 8 AN - OPUS4-65372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kleba-Ehrhardt, Rafael A1 - Dávila, Josué A1 - Geissler, Johann A1 - Mohr, Gunther A1 - Schmidt, Johannes A1 - Heinze, Christoph A1 - Hilgenberg, Kai A1 - Gurlo, Aleksander A1 - Karl, David T1 - Influence of Haynes 282 powder oxidation on powder properties and component quality in laser powder bed fusion N2 - Reuse of powder in powder bed additive manufacturing is a common practice to enhance sustainability and reduce costs. However, the reusability of metal powder is limited by the oxidation of the powders. Even in a protective atmosphere, each build job leads to gradual oxidation of the powder, which has led to concerns about its impact on powder and part properties. Consequently, strict confidence intervals for oxygen content in nickel-based alloy feedstocks are enforced in the industry. Despite this, there is currently a lack of in-depth studies investigating the specific influence of oxygen on Haynes 282, a widely used nickel-based alloy. This study examines artificially aged Haynes 282 powder batches with oxygen content of 160 ppm, 330 ppm, 1050 ppm, and 1420 ppm. Detailed powder characterization was performed, including morphology, chemical composition, particle size, flowability, and packing behavior. Components were fabricated via PBF-LB/M to evaluate density and mechanical properties. The results showed that higher oxidation levels improved powder flowability and packing density. However, in manufactured parts, irregular melt tracks and increased surface roughness were observed, which could easily be removed by post-processing. No significant differences in density or mechanical properties at room temperature, such as tensile strength and elongation, were found. These findings indicate that H282 powder potentially remains suitable for reuse, even when the batches exhibit increased oxygen content, supporting discussions on revising the existing oxygen content confidence intervals for nickel-based alloys. The results highlight the potential for optimizing recycling strategies and reducing material waste in additive manufacturing processes. KW - Additive manufacturing KW - Powder bed fusion KW - Powder characterization KW - Powder oxidation KW - Powder recycling PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654545 DO - https://doi.org/10.1016/j.addma.2025.105050 SN - 2214-8604 VL - 116 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-65454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas T1 - Adaptive manufacturing strategies for DED-Arc: Case studies on high-strength aluminium alloys and gas-turbine blade repair N2 - In this presentation, we showcase BAM’s current research activities on DED-Arc/M processes, covering both the manufacture of novel high-strength aluminium alloys and the development of automated repair strategies for gas turbine blades, with a focus on robust process control and repeatable component quality. T2 - 12. Wissenschaftliches Kolloquium im Rahmen des SFB/TRR 375 "Multifunktionale Hochleistungskomponenten aus hybriden porösen Materialien" CY - Online meeting DA - 05.02.2026 KW - DED-Arc KW - Automation KW - Quality assessment PY - 2026 AN - OPUS4-65472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dixneit, J. A1 - Gibmeier, J. A1 - Kromm, Arne A1 - Schubnell, J. A1 - Lang, F. A1 - Loebich, F. A1 - Carl, E.-R. A1 - Ya, W. T1 - Residual stress distribution of a large component manufactured by AM-DED-Arc from high-strength weld filler material X90 N2 - Currently, DED-Arc manufactured components are not covered by design guidelines, and design factors such as residual stress factors are not defined for such components. This hinders industrial use, especially for components with a remaining surface waviness required by industry. For the first time the stress state of a high-strength, low-alloy, large-scale DED-Arc component was characterised in the as-built state and after cutting off the component from the substrate plate. Complementary methods of residual stress analyses were applied to gain a holistic insight into the residual stress distributions of a thick-walled part. In the as-built state, direction-dependent and position-dependent tensile residual stresses were found for the component at the level of the yield strength of the part. The additive manufacturing strategy continuous spiral deposition has no significant influence on the residual stresses in bead threshold area compared to the residual stresses of the remaining component. For this case, bead threshold is no structural imperfection. By removing the part from the substrate plate, the residual stresses are significantly redistributed. Tensile residual stresses are then present at a moderate level. Compressive residual stresses were determined in the volume of the deposited material. The general consideration of ‘‘high’’ tensile residual stresses in such thick-walled components is rather conservative. Therefore, design guidelines should take the manufacturing condition into account. KW - AM-DED-Arc KW - Residual stress KW - High strength steel PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655239 DO - https://doi.org/10.1177/03093247251406876 SP - 1 EP - 18 PB - SAGE AN - OPUS4-65523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Julien A1 - Treutler, Kai A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Influence of Microstructure on the Machinability and Surface Integrity of Additively Manufactured Iron Aluminides N2 - The increasing global focus on energy and resource efficiency has stimulated a growing interest in additive manufacturing. AM offers economic advantages and enables an efficient use of materials. However, AM components often require subsequent mechanical post-processing, such as machining (e.g. milling), to achieve the final contours or surfaces. This is a particular challenge due to the heterogeneous and anisotropic nature of AM structures, which affect machining and the resulting component properties. High-performance materials such as iron aluminide represent a promising alternative to conventional high-temperature materials with a significant economic advantage. However, the strength and hardness properties, which are advantageous for applications in highly stressed lightweight components, pose a challenge for economical machining in addition to the AM microstructure properties. The difficult-to-cut material causes accelerated tool wear and insufficient surface quality. This study shows that crack-free additive manufacturing of the three-component system of iron-nickel-aluminum is possible, and advantages in terms of machinability compared to FeAl-AM components are achieved. The more homogeneous microstructure leads to a reduction in cutting forces, with positive effects on the machinability and optimized surface integrity. Ultrasonic assisted milling (USAM) offers great potential to address the major challenges posed by difficult-to-cut materials and additively manufactured weld structures. Therefore, this study focuses on assessing the transferability of previous positive results by USAM to the selected iron aluminide alloys. The machinability of the aluminides is analyzed by varying significant influencing variables in finish milling experiments and evaluated in terms of the loads on the tool and the resulting surface integrity. T2 - AA Meeting of Commission IX ‘Behavior of Metals subject to Welding’ CY - Rhodes, Greece DA - 08.07.2024 KW - Iron aluminide KW - Additive manufacturing KW - Machinability KW - Surface integrity KW - Ultrasonic-assisted milling PY - 2026 SP - 1 EP - 16 AN - OPUS4-65530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai T1 - EOS M300 as the heart of the QI living lab: Advancing with digital process chains N2 - This presentation shows how the connectivity of the EOS-M300/4 laser powder bed system is used to capture machine and process data as part of the living lab in QI Digital and how this can enable future digital quality assurance in additive manufacturing. T2 - AM Forum 2025 CY - Berlin, Germany DA - 17.03.2025 KW - Additive manufacturing KW - Quality assurance KW - QI Digital KW - Living lab PY - 2025 AN - OPUS4-62740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saber, Yassin A1 - Clague, Leighton T1 - Automated Fused Filament Fabrication of Ceramics and Metals - Remote and in Space N2 - Component manufacturing in remote (i.e., geographically isolated) settings poses significant challenges where access to conventional manufacturing facilities is limited or non-existent. Fused Filament Fabrication (FFF) enables the rapid manufacturing of plastic, metallic and ceramic components with complex geometries. Ceramic and metallic parts formed by FFF require subsequent debinding and sintering to reach full density. Debinding and sintering are typically executed in separate steps with different equipment, necessitating extensive human handling which hinders process automation and may be challenging for the operator in isolated environments. Here an innovative approach is presented: the integration of all process steps into a single, fully automated system, streamlining the process and minimizing human involvement. Our system combines a dual extrusion filament printer with a porous and heat-resistant ceramic print bed. The porous print bed enables mechanical interlocking of the first printed layers, ensuring adhesion and structural integrity during FFF. Ceramic and metallic parts are printed onto thin sacrificial rafts, which are built using an interface material with the same binder as the loaded filament. After the print is completed, the heat-resistant print bed with all parts is transferred seamlessly with a carrier system into a high-temperature furnace for debinding and sintering. During sintering the sacrificial raft is disintegrated, allowing for unconstrained sintering and easy removal of the finished parts. In conclusion, our integrated approach enables significant advancements in the fabrication of complex ceramic or metallic components in remote environments with increased efficiency and minimal human handling. T2 - AM Forum 2025 CY - Berlin, Germany DA - 17.03.2025 KW - Fused Filament Fabrication KW - Ceramics KW - Metalls KW - Process automation PY - 2025 AN - OPUS4-62745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Nathalie A1 - Kister, Alexander A1 - Schnellhardt, Thorben A1 - Fetz, Maximilian A1 - Hecker, Dirk A1 - Wirtz, Tim ED - Meo, Rosa ED - Silvestri, Fabrizio T1 - Reinforcement Learning for Segmented Manufacturing N2 - The manufacturing of large components is, in comparison to small components, cost intensive. This is due to the sheer size of the components and the limited scalability in number of produced items. To take advantage of the effects of small component production we segment the large components into smaller parts and schedule the production of these parts on regular-sized machine tools. We propose to apply and adapt recent developments in reinforcement learning in combination with heuristics to efficiently solve the resulting segmentation and assignment problem. In particular, we solve the assignment problem up to a factor of 8 faster and only a few percentages less accurate than a classic solver from operations research. T2 - European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2023 CY - Turin, Italy DA - 18.09.2023 KW - Reinforcement Learning KW - Assignment Problem KW - Large component manufacturing PY - 2025 DO - https://doi.org/10.1007/978-3-031-74640-6_38 VL - 1 IS - 1 SP - 470 EP - 485 PB - Springer Cham AN - OPUS4-63031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Siefke, Lennart A1 - Linden, Anna T1 - Towards a robust automated surface inspection method for CT-scanned cannulas N2 - For certain cardiovascular diseases, cannulas are implanted into the blood circuit. To match the patients individual anatomy of the heart, there is research for cannulas to be custom-designed and manufactured aided by 3D printing. However, cannulas have to hold very high standards with regard to the smoothness of their surfaces, as rough patches can lead to formation of blood clots. Therefore, this work uses computer vision to detect such patches as part of quality assurance. First, the produced cannula is scanned using a precise CT scanner and transformed into a 3D mesh object. Rough patches in an otherwise smooth but curved surface are detected by using cosine similarity between neighboring faces and a statistical evaluation. In the end, this method is able to raise a warning when curved surfaces are not smooth enough and visualizes the problematic patches. However, there is just limited access to test data currently and the scanner used needs to be upgraded. T2 - 3D in Science & Applications (3D-iSA) 2024 CY - Berlin, Germany DA - 26.11.2024 KW - Algorithm KW - Additive manufacturing KW - Surface evaluation PY - 2025 UR - https://www.gfai.de SN - 978-3-942709-34-7 SP - 66 EP - 70 AN - OPUS4-63057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strauß, Lea A1 - Duarte, Larissa A1 - Kruse, Julius A1 - Madia, Mauro A1 - Löwisch, Günther T1 - An equivalent stress approach for predicting fatigue behavior of additively manufactured AlSi10Mg N2 - Laser-based powder bed fusion (PBF-LB) is an advanced additive manufacturing technique renowned for its precision and capability to fabricate complex metal components. However, the high thermal gradients and rapid cooling rates intrinsic to this process introduce significant process-induced effects, such as inhomogeneities, surface roughness, anisotropy, and residual stress, all of which critically influence the fatigue behavior of the produced parts. This study investigates the fatigue performance of AlSi10Mg samples produced by PBF-LB, examining the impact of varying surface conditions, geometries, and residual stress levels. Fatigue-life prediction models are formulated based on nominal stress amplitude, residual stress, form factor, crack-initiating inhomogeneity, and surface roughness, with smooth samples serving as a baseline reference. The study presents two empirical models for predicting fatigue life and fatigue strength using S–N curves and the Kitagawa–Takahashi diagram with the El Haddad approach, derived from comprehensive experimental data, including finite element modeling, fatigue-life measurements, surface roughness evaluations, and residual stress analysis. KW - AlSi10Mg KW - Kitagawa–Takahashi diagram KW - El Haddad KW - Equivalent stress KW - Fatigue-life prediction KW - PBF-LB/M PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625176 DO - https://doi.org/10.1007/s40964-025-00974-0 SP - 1 EP - 16 PB - Springer Science and Business Media LLC AN - OPUS4-62517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poka, Konstantin A1 - Ali, Sozol A1 - Saeed, Waleed A1 - Merz, Benjamin A1 - Epperlein, Martin A1 - Hilgenberg, Kai T1 - Quality assurance via a cyber physical system of a PBF-LB/M machine N2 - Powder Bed Fusion with Laser Beam of Metals (PBF-LB/M) faces challenges in reproducibility and quality assurance, even for widely applied alloys like AlSi10Mg. This work introduces a digital provenance framework for PBF-LB/M, showcased through the EOS M 300–4 multi-laser machine. An Extract, Transform, Load (ETL) pipeline autonomously captures machine data, including scan vectors as well as process signals, and organizes them into a Digital Shadow (DS). The DS is further extended by external data sources, such as Melt Pool Monitoring (MPM), to enable comprehensive analysis and root cause identification. This approach ensures continuous data representation and facilitates the development of new quality metrics. Moreover, the framework enhances quality assurance and traceability, supports compliance with industry standards, and improves productivity. It also enables more precise cost calculations and predictive maintenance. By addressing these challenges, the framework is essential for advancing PBF-LB/M in industrial applications, achieving greater consistency and scalability in production. KW - PBF-LB/M KW - Data driven quality assurance KW - Data engineering KW - Digital shadow PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625187 DO - https://doi.org/10.1007/s40964-025-00978-w SN - 2363-9520 VL - 10 IS - 3 SP - 1771 EP - 1783 PB - Springer Science and Business Media LLC AN - OPUS4-62518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maasch, Philipp T1 - Numerical Modelling of Deformation-Induced Martensitic Transformation in Additively Manufactured 316L Stainless Steel under Cryogenic Conditions N2 - Cryogenic structural components, including collars, bladders, and keys for superconducting magnets, as well as elements for liquid hydrogen storage systems, are often fabricated from austenitic stainless steel (e.g., 316L) due to favorable mechanical properties and corrosion resistance. However, producing these complex geometries through traditional methods is challenging. Additive manufacturing presents a promising alternative, though the numerical understanding of material behavior under extreme cryogenic conditions remains limited. This study advances the numerical simulation of deformation-induced martensitic transformation (DIMT) in additively manufactured fused filament fabricated (FFF) 316L stainless steel. Central to this effort is the prediction of tensile behavior at temperatures ranging from ambient down to 4K. Supporting experiments—including tensile tests and microstructural characterization via scanning electron microscopy (SEM) and computed tomography (CT)—provide essential input parameters and validation data for the numerical framework. The numerical modelling in this study is based on a nonlinear, temperature-dependent finite element approach incorporating a newly developed constitutive material law. This law couples a phase-kinetic description of the martensitic transformation with a mixed kinematic/isotropic plastic hardening formulation. By solving the underlying conservation laws and boundary conditions while considering temperature-dependent material parameters, the model provides a realistic representation of stress-strain states and evolving martensitic phase fractions across a wide range of thermal conditions. The implementation within a commercial finite element software relies on user-defined subroutines that integrate the constitutive relations and transformation kinetics. The simulations use adaptive time-stepping and iterative strategies to handle highly nonlinear, cryogenic loading scenarios efficiently. After parameter identification through experimental data, the numerical results are systematically compared with measured values from tensile tests and microstructural analyses. This iterative validation process continuously enhances the predictive capability of the model. By merging advanced material-theoretical concepts with robust numerical methods, the presented framework offers deeper insight into the mechanical behavior of additively manufactured austenitic steels under extreme thermal conditions. Ultimately, it supports the targeted design and optimization of cryogenic lightweight components and contributes to the fundamental understanding of material modeling challenges in applied mechanics. T2 - 95th GAMM 2025 Poznan CY - Poznan, Poland DA - 07.04.2025 KW - Constitutive Modelling KW - Deformation-induced martensitic transformation KW - Cryogenic Conditions KW - Fused Filament Fabrication KW - Austenitic stainless steel 316L PY - 2025 AN - OPUS4-63198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro T1 - Influence of defects on the fatigue strength of parts repaired by cold spray N2 - Cold spray repair is a promising and cost-saving alternative to replacing worn parts. Depositing of materials into machined damage volumes in decent quality can restore the performance of refurbished parts and extend their working life. Furthermore, repair counts as resource-efficient and green process in a world targeting at decarbonization of many industrial sectors. Despite the advantages, cold spray repair still suffers from major limitations which prevent its application in safety relevant parts. The main factors influencing the structural integrity concern the adhesion strength, inherent non-bonded internal interfaces, the reduced ductility by work hardening during the manufacturing process, and the presence of residual stresses. This work presents the results of the collaborative project CORE devoted to the development of automatized repair of aerospace parts by cold spray. The investigations considered the aluminum alloy Al6061-T6 which combines medium-high strength, good workability, and high corrosion resistance. Quasi-static tensile tests, high cycle fatigue and fatigue crack propagation tests were performed to compare the performance of base and repaired materials. These were complemented by fractographic and microstructural investigations. T2 - 5th International Symposium on Fatigue Design and Material Defects CY - Trento, Italy DA - 14.05.2025 KW - Cold Spray KW - Component Repair KW - Fatigue Strength KW - Defects KW - Surface Treatment PY - 2025 AN - OPUS4-63146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quosdorf, Heike T1 - A Digital Object Identifier for Additively Manufactured Parts as Open Source Software Package N2 - A method to uniquely identify samples without printed or handwritten labels is an advantage not just for additively manufactured parts. To kickstart industry use cases it is important to provide a ready made implementation kit. Following an open science and open source software approach Germanys Federal Institute for Materials Research and Testing BAM seeks to promote digital solutions of ongoing Research projects. With this software package a novel method based on microstructural features as identifiers DOI4AM (digital object identifier for additively manufactured parts will be explained alongside its implementation as open source Python software package. The digital object identifier (DOI) links product data clearly and forgery proof with real components. Its implementation helps to identify and securely authenticate additively manufactured components during its product life cycle by using characteristic microstructure features just like a fingerprint. To calculate the DOI fingerprint, a few preprocessing steps need to be performed to detect the uniquely distributed microstructure features that occur during the 3D printing process. A go through guide show s the preprocessing steps that include computer tomography (CT) image capturing, feature segmentation and data distribution via CSV files. While all steps can be followed along in a Jupyter notebook with sample data, the software package includes functions to create and compare fingerprints, as well, as an application programming interface (API) for integration in existing software platforms. A quick showcase of our industry partners implementation of the algorithm as containerized micro service in their digital product passport (DPP) web solution PASS X proves the first successful technology transfer of this project. T2 - MSE Research Data Forum 2025 CY - Siegburg, Germany DA - 08.07.2025 KW - Open Science KW - Authentication KW - Unique identification KW - Digital fingerprint KW - X-ray Computed Tomography KW - Additive manufacturing KW - Open Source Software PY - 2025 AN - OPUS4-63904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, Keke A1 - Wang, Zhuoqun A1 - Haak, Viktor A1 - Olfert, Viktoria A1 - El-Sari, Bassel A1 - Hein, David A1 - Biegler, Max A1 - Rethmeier, Michael A1 - Meschut, Gerson T1 - A novel welding schedule for expanding the expulsion-free process window in resistance spot welding of dissimilar joints with ultra-high strength steel N2 - This study introduces a novel approach to expanding the maximum expulsion-free process window in resistance spot welding (RSW) of dissimilar joints between ultra-high strength steel (UHSS) and mild steel. Quantitative analysis revealed that expulsion is driven by the interaction between nugget growth rate and plastic shell thickness. Based on this finding, the welding schedule was optimized by applying a preheating current to form an initial plastic shell, followed by a ramp-up current profile during the main welding phase. Welding simulations indicated that the ramp-up current slowed nugget growth, improved plastic shell formation, and prevented nugget breakthrough, thereby reducing the risk of expulsion. Experimental validation showed a 19 % increase in maximum expulsion-free heat input, with the nugget diameter increasing by 7.6 % to 8.94 mm compared to the reference welding schedule. Furthermore, even when expulsion occurred beyond the process window, this optimization delayed its occurrence, minimizing its impact on spot weld quality. Finally, the optimized welding schedule also exhibited significant robustness. Despite a 2 mm initial gap disturbance, the maximum expulsionfree heat input increased by 57 %, while the nugget diameter grew by 30 % to 8.92 mm. These results confirm that the proposed approach effectively extends the process window by preventing expulsion and enhances process stability. KW - Expulsion KW - Resistance spot welding KW - Finite element modelling KW - Preheating KW - Ultra-high-strength steel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626877 DO - https://doi.org/10.1016/j.jmapro.2025.02.009 SN - 2212-4616 VL - 137 SP - 306 EP - 309 PB - Elsevier BV AN - OPUS4-62687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Iskhakov, Tagir T1 - Computational modeling of temperature compensation for eddy current testing during PBF-LB/M N2 - The laser powder bed fusion (PBF-LB/M) process enables the production of highly customized parts with complex geometries. However, the mechanical performance of additively manufactured parts can be compromised by the presence of microstructural inhomogeneities. To address this issue, a reliable process monitoring tool is required to detect these flaws and improve part quality. Eddy current testing presents a promising solution for such monitoring. However, the high temperature gradients within the manufactured specimen affect the electrical conductivity of the material, which, in turn, influences the eddy current testing performance. Therefore, accurately predicting the temperature distribution is essential for reliable flaw detection, which is the focus of this work. In this study, a Finite Element (FE) transient thermal model is developed to predict the temperature field in multipart build jobs. In this model, scan vectors are grouped into clusters based on their timestamps, enabling the homogenization of thermal loads from multiple scan vectors. When a single cluster is used, the thermal load is applied to the entire layer in a single step. Increasing the number of clusters per layer — and thus the number of steps — enhances the accuracy of temperature predictions. This approach allows for optimizing the trade-off between modeling accuracy and computational efficiency. The study evaluates the prediction accuracy required for eddy current testing and investigates the optimal number of clusters (i.e., the adequate level of homogenization) needed to achieve this accuracy. The model predictions are validated through comparison with thermography images and thermocouple measurements. Finally, the concept of eddy current testing with simulation-based temperature compensation is evaluated on specimens with simple geometries. T2 - SIM-AM 2025 CY - Pavia, Italy DA - 09.09.2025 KW - Eddy current testing KW - FEM KW - 316L PY - 2025 AN - OPUS4-64121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geranmayeh, Ali T1 - Laser Metal Deposition of NiTi Shape Memory Alloys: Influence of Process Parameters on Thermal Profiles and Part Properties N2 - Laser Metal Deposition (LMD), a laser powder–directed energy deposition technology (LP-DED), offers unique flexibility for fabricating complex metallic components. Among candidate materials, Nitinol (NiTi) is particularly attractive due to its shape memory and superelastic properties, though its high sensitivity to processing conditions demands precise parameter control. In this work, prealloyed NiTi powder was deposited as single tracks, and process parameters were optimized using a Design of Experiments methodology. A Central Composite Design (CCD) was implemented with laser power, scan speed, and powder feed rate as inputs, while track’s height, width, aspect ratio, and dilution served as optimization responses. To address the strong susceptibility of NiTi to heat accumulation, hatch spacing was further optimized using a geometrically derived formula, enabling the use of maximum spacing while ensuring dense parts with smooth surfaces and minimal waviness. The presented framework establishes a systematic route for parameter optimization in NiTi LMD, offering practical guidelines for balancing densification and surface quality. T2 - WGF Assistant Seminar CY - Rechenberg-Bienenmühle, Germany DA - 10.09.2025 KW - Additive manufacturing KW - Shape memory alloys KW - Nitinol KW - Laser metal deposition KW - Design of experiments PY - 2025 AN - OPUS4-64164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linden, Anna T1 - AMVAD - Additive manufacturing for ventricular assist devices N2 - Some children are born with a univentricular heart, meaning their heart has only one pumping chamber instead of two. To improve circulation, patients often undergo the Fontan procedure, which reroutes blood flow — but this can put stress on other organs. In some cases, ventricular assist devices, or VADs, are used to support the heart’s pumping function. This involves an artificial pump connected directly to the patient's heart via silicone-based cannulas. Unique anatomical conditions introduce special challenges for cannula geometry. Additive manufacturing offers innovative solutions by enabling the production of personalized medical devices. The aim of the project is to develop the manufacturing workflow for the individualized cannula from digital imaging of the patient and customized design to additive manufacturing. Besides technical feasibility, validating the entire process is crucial for regulatory approval. The selection and testing of suitable additive manufacturing processes and biocompatible materials for individualized silicone cannulas, ensuring compliance with quality standards for high-risk medical products, will be presented. T2 - AMBER Spotlight On: 3D Printing meets Health & Biotech CY - Berlin, Germany DA - 16.09.2025 KW - Additive manufacturing KW - Medical device KW - Liquid silicone rubber PY - 2025 AN - OPUS4-64101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -