TY - CONF A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Madia, Mauro T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy N2 - Laser Powder Bed Fusion (L-PBF) allow the fabrication of lightweight near net shape AlSi10Mg components attractive to the aerospace, automotive, biomedical and military industries. During the build-up process, high cooling rates occur. Thus, L-PBF AlSi10Mg alloys exhibit a Si-nanostructure in the as-built condition, which leads to superior mechanical properties compared to conventional cast materials. At the same time, such high thermal gradients generally involve a deleterious residual stress (RS) state that needs to be assessed during the design process, before placing a component in service. To this purpose post-process heat treatments are commonly performed to relieve detrimental RS. In this contribution two low-temperature stress-relief heat treatments (SRHT) are studied and compared with the as-built state: a SRHT at 265°C for 1 hour and a SRHT at 300°C for 2 hours. At these temperatures microstructural changes occur. In the as-built state, Si atoms are supersaturated in the α-aluminium matrix, which is enveloped by a eutectic Si-network. At 265°C the Si precipitation from the matrix to the pre-existing network is triggered. Thereafter, above 295°C the fragmentation and spheroidization of the Si branches takes place, presumably by Al–Si interdiffusion. After 2 hours the original eutectic network is completely replaced by uniformly distributed blocky particles. The effect of the heat and the microstructure modification on the RS state and the fatigue properties is investigated. Energy dispersive x-ray and neutron diffraction are combined to investigate the near-surface and bulk RS state of a L-PBF AlSi10Mg material. Differences in the endurance limit are evaluated experimentally by high cycle fatigue (HCF) tests and cyclic R-curve determination. T2 - 43rd Materials Mechanics Seminar CY - Sani, Chalkidiki, Greece DA - 05.06.2022 KW - AlSi10Mg KW - Fatigue KW - Neutron diffraction KW - X-ray diffraction PY - 2022 AN - OPUS4-55090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Chaudry, M. A1 - Elorriaga, A. A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Llavori, I. A1 - Hilgenberg, Kai T1 - Design methodology of vessel produced by L PBF stainless steel using representative specimens N2 - This work presents the preliminary results of an ongoing project with a double objective: on the one hand, the characterisation of the mechanical properties against fatigue damage of an additively manufactured 316 stainless steel produced by laser powder bed-based (L-PBF) technology; on the other hand, the implementation of numerical simulation techniques able to predict the mechanical behaviour of the material in order to optimise and reduce the design costs of vessels used in the chemical sector. The current state of the work developed in this research framework allows showing the first batch of experimental results of crack propagation rate (FCGR) and high cycle fatigue (HCF) tests. The geometry of the vessels studied presents three clearly differentiated regions, either in terms of thickness (11-15 mm) or concerning the inclination of the walls to the direction of manufacturing (0º - 45º). The experimental campaign carried out so far allows identifying the differences in behaviour when comparing different extraction locations around the vessel. This is due to the variations in thermal cycles that the deposited material undergoes during the manufacturing process. Therefore, this causes variations in the microstructure which lead to changes in the response of the material. In this work, these differences are analysed qualitatively and quantitatively from the results of FCGR and HCF, thus allowing to locate the regions with the highest risk in terms of structural integrity against fatigue. This preliminary phase together with the numerical simulation of the additive manufacturing process are key to achieving a reliable description and modelling of the material. The latter will make it possible to address the priority aim of this project, involving the manufacture of independent samples whose properties are representative of the original material extracted from the reference vessels. It is, therefore, a comprehensive methodology for the design of additively manufactured components based on the localised fatigue mechanical properties of representative specimens. T2 - ECF23, European Conference on Fracture 2022 CY - Funchal, Portugal DA - 27.06.2022 KW - Additive manufacturing KW - Steel 316L KW - Fracture Mechanics PY - 2022 AN - OPUS4-55240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Schröder, Jakob T1 - Residual stresses and micromechanical properties of additively manufactured metals: why do we need a paradigm shift? N2 - An overview of the challenges and successes in the methodology to characherise residual stresses and micromechnical properties in additively manufactured metals T2 - CAM2 Annual Seminar 2022 - 5-year journey CY - Gothenburg, Sweden DA - 24.10.2022 KW - Additive Manufacturing KW - Residual stress KW - AGIL KW - MANUFACT KW - Micromechnical properties PY - 2022 AN - OPUS4-56466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Madia, Mauro A1 - Pirling, T. A1 - Evans, Alexander A1 - Klaus, M. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Influence of a 265 °C heat treatment on the residual stress state of a PBF-LB/M AlSi10Mg alloy JF - Journal of materials science N2 - Laser Powder Bed Fusion (PBF-LB/M) additive manufacturing (AM) induces high magnitude residual stress (RS) in structures due to the extremely heterogeneous cooling and heating rates. As the RS can be deleterious to the fatigue resistance of engineering components, great efforts are focused on understanding their generation and evolution after post-process heat treatments. In this study, one of the few of its kind, the RS relaxation induced in an as-built PBF-LB/M AlSi10Mg material by a low-temperature heat treatment (265 °C for 1 h) is studied by means of X-ray and neutron diffraction. Since the specimens are manufactured using a baseplate heated up to 200 °C, low RS are found in the as-built condition. After heat treatment a redistribution of the RS is observed, while their magnitude remains constant. It is proposed that the redistribution is induced by a repartition of stresses between the a-aluminium matrix and the silicon phase, as the morphology of the silicon phase is affected by the heat treatment. A considerable scatter is observed in the neutron diffraction RS profiles, which is principally correlated to the presence (or absence) of pockets of porosity developed at the borders of the chessboard pattern. KW - Neutron diffraction KW - Additive manufacturing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565115 DO - https://doi.org/10.1007/s10853-022-07997-w SN - 1573-4803 VL - 57 SP - 22082 EP - 22098 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-56511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Correlation of process, design and welding residual stresses in WAAM of high-strength steel components N2 - High-strength fine-grained structural steels have great potential for modern weight optimized steel construc-tions. Efficient manufacturing and further weight savings are achievable due to Wire Arc Additive Manu-facturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, the application is still severely limited due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation. Residual stresses may be critical regarding the special microstructure of high-strength steels in context with the risk of cold cracking and component performance in service. Therefore, process- and material-related influences, as well as the design effects on residual stress formation and cold cracking, are being investi-gated in a research project (IGF 21162 BG) focusing a high-strength WAAM welding consumable with yield strength of over 800 MPa. Objectives are the establish-ment of special WAAM cold cracking tests and pro-cessing recommendations allowing economical, suita-ble, and crack-safe WAAM of high-strength steels. First studies on process-related influences showed transfor-mation residual stresses arising during cooling, which significantly influence stress evolution of the compo-nent during layer-wise build-up. This has not yet been investigated for WAAM of high-strength steels. Focus of this study is on the systematic investigation of interactions of the WAAM welding process and design with cooling time, hardness, and residual stresses. Defined open hollow cuboids were welded and investi-gated under systematic variation (design of experi-ments, DoE) of the scale/dimensions (cf. Fig. 1a) and heat control (interlayer temperature Ti: 100–300 °C), heat input E: 200–650 kJ/m. The welding parameters were kept constant as possible to avoid any influence by the arc and the material transfer mode. The heat input adjusted primarily via the welding speed. The resulting different weald bead widths were considered by different build-up strategies (weld beads per layer) to ensure defined wall thicknesses. The hardness was determined on cross-sections taken from the manufac-tured hollow cuboids (Fig. 1c) and the analysis of the residual stress state was carried out by means of X-ray diffraction (XRD) at defined positions on the lateral wall (Fig. 1b). The hardness is higher at the top compared to the lower weld beads, as shown in Fig. 1c exemplarily for central test parameters of the DoE = 425 kJ/mm, Ti = 200 °C). This may be attributed to the specific heat control of the top weld beads, i.e., quenching effects, which are not tempered by weld beads above as is the case for lower weld beads implying a higher hardness. It was observed that the hardness level decreases with increasing energy per unit length, while the in-terpass temperature has a rather low influence on the hardness Residual stress analysis was performed on the lat-eral wall in the welding direction, cf. Fig. 1b, to deter-mine the influence of heat control and design. In the top area of the wall, maximum longitudinal residual stress-es of up to over 500 MPa exhibit, which corresponds to approx. 65% of the nominal yield strength of the mate-rial. The statistic evaluation of stress levels in welding direction of all test specimens show that adaption of heat input may reduce welding stresses up to 50%. In-terpass temperature has less pronounced effect on cool-ing times, microstructure, and on the residual level within parameter matrix. Overall, the results show a significant influence of heat input and component di-mensions on the residual stresses and minor effect of the interpass temperature. Hence, the properties of the specimens may be effectively adjusted via heat input. The working temperatures should be considered for global shrinkage behavior or restraints. Such investiga-tions of residual stress are necessary to further deter-mine local and global welding stresses regarding the consequences on the component safety during manu-facturing and service. T2 - 6th International Symposium on Visualization in Joining & Welding Science through Advanced Measurements and Simulation CY - Osaka, Japan DA - 25.10.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 AN - OPUS4-56725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Becker, Amadeus A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Residual Stress Evolution During Slot Milling for Repair Welding and WAAM of High-Strength Steel Components N2 - High-strength steels have great potential for weight optimization due to reduced wall thicknesses in many modern steel constructions. Further advances in efficiency can be achieved through the application of additive manufacturing processes, such as Wire Arc Additive Manufacturing (WAAM). These technologies enable the sustainable and resource-efficient manufacturing of high-strength steels into near-net-shape, efficient structures. During the production of steel structures, unacceptable defects may occur in the weld area or in the WAAM component, e.g., due to unstable process conditions. The economical solution for most of the cases is local gouging or machining of the affected areas and repair welding. With respect to the limited ductility of high-strength steels, it is necessary to clarify the effects of machining steps on the multiaxial stress state and the high design-induced shrinkage restraint. In this context, the component-related investigations in two research projects are concerned with the residual stress evolution during welding and slot milling of welds and WAAM structures made of high-strength steels with yield strengths ≥790 MPa. In-situ digital image correlation (DIC) and ex-situ X-ray diffraction (XRD) were used to analyse the stresses and strains induced on specimens during and after milling. The systematic analyses revealed a significant interaction of the stiffness and relaxation of the specimens with the initial residual stresses induced by welding. T2 - ICRS 11 - The 11th International Conference on Residual Stresse CY - Nancy, France DA - 27.03.2022 KW - MAG-Schweißen KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Reparaturschweißen KW - Gefügedegradation KW - Windenergie PY - 2022 AN - OPUS4-56708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Heat control and design-related effects on the properties and welding stresses in WAAM components of high-strength structural steels N2 - Commercial high-strength filler metals for wire arc additive manufacturing (WAAM) are already available. However, widespread industrial use is currently limited due to a lack of quantitative knowledge and guidelines regarding welding stresses and component safety during manufacture and operation for WAAM structures. In a joint research project (FOSTA-P1380/IGF21162BG), the process- and material-related as well as design influences associated with residual stress formation and the risk of cold cracking are being investigated. For this purpose, reference specimens are welded fully automated with defined dimensions and systematic variation of heat control using a special, high-strength WAAM filler metal (yield strength >790 MPa). Heat control is varied by means of heat input (200–650 kJ/m) and interlayer temperature (100–300 °C). The ∆t8/5 cooling times correspond with the recommendations of steel producers (approx. 5–20 s). Welding parameters and AM geometry are correlated with the resulting microstructure, hardness and residual stress state. High heat input leads to a lower tensile stress in the component and may cause unfavorable microstructure and mechanical properties. However, a sufficiently low interlayer temperature is likely to be suitable for obtaining adequate properties at a reduced tensile stress level when welding with high heat input. The component design affects heat dissipation conditions and the intensity of restraint during welding and has a significant influence on the residual stress. These complex interactions are analyzed within this investigation. The aim is to provide easily applicable processing recommendations and standard specifications for an economical, appropriate and crack-safe WAAM of high-strength steels. T2 - Third edition of the International Congress on Welding, Additive Manufacturing and associated non destructive testing CY - Online meeting DA - 08.06.2022 KW - MAG-Schweißen KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Kaltrisssicherheit PY - 2022 AN - OPUS4-56710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Influence of the WAAM process on residual stresses in high-strength steels (IIW-Doc. II-A-408-2022) N2 - High-strength fine-grain structeural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the sensitive microstructure of high-strength steels carries a high risk of cold cracking. For this reason, process- and material-related influences, as well as the design aspects on residual stress formation and the risk of cold cracking, are being investigated in a recent project (FOSTA-P1380/IGF21162BG). This high strength of the WAAM welding consumables is adjusted via a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on residual stress evolution. However, this has not yet been investigated in relation to the processing of high-strength steels by WAAM. The aim of this work is to establish a WAAM cold crack test and easy-to-apply processing recommendations that will allow economical, expedient, and crack-resistant fabrication of high-strength steels, especially for SME. This paper focuses on the analysis of the effects of welding heat control and design of WAAM components on cooling conditions, microstructure, mechanical-technological properties and residual stresses. For this purpose, geometrically defined specimens (hollow cuboids) are welded fully automatically with a special, high-strength WAAM solid wire (yield strength >790 MPa). The heat control and specimen dimensions are varied within a statistical experimental design. The weld heat control is adjusted in such a way that the t8/5 cooling times are ensured within the recommended processing range (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. The WAAM welding of complex geometries with varying welding heat control and geometric factors or wall thicknesses not only has an effect on the cooling conditions, cooling times and microstructure, but also has a significant influence on the structural restraint conditions during welding. Hence, the welding experiments show significant effects of specimen scaling and heat input on the welding residual stresses, which may be detrimental regarding component properties and crack-critical tensile residual stresses. These complex interactions are analyzed within this investigation. T2 - Intermediate Meeting of IIW Comissions II and IX CY - Online meeting DA - 17.03.2022 KW - MAG-Welding KW - Additive Manufacturing KW - Residual stresses KW - high-strength steel KW - cold cracking safety PY - 2022 AN - OPUS4-56712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hensel, J. A1 - Hälsig, A. A1 - Scharf-Wildenhain, R. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Influence of the WAAM process and design aspects on residual stresses in high-strength structural steels N2 - High-strength fine-grain structural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the sensitive microstructure of high-strength steels carries a high risk of cold cracking. For this reason, process- and material-related influences, as well as the design aspects on residual stress formation and the risk of cold cracking, are being investigated in a recent project (FOSTA-P1380/IGF21162BG). This high strength of the WAAM welding consumables is adjusted via a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on residual stress evolution. However, this has not yet been investigated in relation to the processing of high-strength steels by WAAM. The aim of this work is to establish a WAAM cold crack test and easy-to-apply processing recommendations that will allow economical, expedient, and crack-resistant fabrication of high-strength steels, especially for SME. This paper focuses on the analysis of the effects of welding heat control and design of WAAM components on cooling conditions, microstructure, mechanical-technological properties and residual stresses. For this purpose, geometrically defined specimens (hollow cuboids) are welded fully automatically with a special, high-strength WAAM solid wire (yield strength >790 MPa). The heat control and specimen dimensions are varied within a statistical experimental design. The weld heat control is adjusted in such a way that the t8/5 cooling times are ensured within the recommended processing range (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. The WAAM welding of complex geometries with varying welding heat control and geometric factors or wall thicknesses not only has an effect on the cooling conditions, cooling times and microstructure, but also has a significant influence on the structural restraint conditions during welding. Hence, the welding experiments show significant effects of specimen scaling and heat input on the welding residual stresses, which may be detrimental regarding component properties and crack-critical tensile residual stresses. These complex interactions are analyzed within this investigation. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - WAAM KW - Residual Stresses KW - High-strength Steels KW - Cold cracking safety KW - Heat control KW - Wind energy PY - 2022 AN - OPUS4-56713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Influence of the WAAM process and design aspects on residual stresses in high-strength structural steels N2 - High-strength fine-grain structural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the sensitive microstructure of high-strength steels carries a high risk of cold cracking. For this reason, process- and material-related influences, as well as the design aspects on residual stress formation and the risk of cold cracking, are being investigated in a recent project (FOSTA-P1380/IGF21162BG). This high strength of the WAAM welding consumables is adjusted via a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on residual stress evolution. However, this has not yet been investigated in relation to the processing of high-strength steels by WAAM. The aim of this work is to establish a WAAM cold crack test and easy-to-apply processing recommendations that will allow economical, expedient, and crack-resistant fabrication of high-strength steels, especially for SME. This paper focuses on the analysis of the effects of welding heat control and design of WAAM components on cooling conditions, microstructure, mechanical-technological properties and residual stresses. For this purpose, geometrically defined specimens (hollow cuboids) are welded fully automatically with a special, high-strength WAAM solid wire (yield strength >790 MPa). The heat control and specimen dimensions are varied within a statistical experimental design. The weld heat control is adjusted in such a way that the t8/5 cooling times are ensured within the recommended processing range (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. The WAAM welding of complex geometries with varying welding heat control and geometric factors or wall thicknesses not only has an effect on the cooling conditions, cooling times and microstructure, but also has a significant influence on the structural restraint conditions during welding. Hence, the welding experiments show significant effects of specimen scaling and heat input on the welding residual stresses, which may be detrimental regarding component properties and crack-critical tensile residual stresses. These complex interactions are analyzed within this investigation T2 - 75th IIW Annual Assembly (Subcomission IIA) CY - Online meeting DA - 17.07.2022 KW - WAAM KW - Residual Stresses KW - High-strength Steels KW - Cold cracking safety KW - Wind energy KW - Heat control PY - 2022 AN - OPUS4-56715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Joining processes for components in hydrogen technologies: Current need and future importance N2 - This presentation gives an overview on the importance of joining processes for component fabrication in hydrogen technologies. For that reason, the current need and future research and developement activites are highlighted for the three technological fields: hydrogen storage, transport and use (in terms of the emerging field of additive manufacturing). Finally, some remarks are given for necessary changes in the standardization. T2 - IIW Intermediate Meeting, Comm. II-A "Welding Metallurgy" CY - Online meeting DA - 17.03.2022 KW - Hydrogen KW - Welding KW - Research KW - Review KW - Additive manufacturing PY - 2022 AN - OPUS4-54488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kempf, Andreas A1 - Kruse, Julius A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Correlation between quasistatic und fatigue properties of additively manufactured AlSi10Mg using Laser Powder Bed Fusion JF - Procedia Structural Integrity N2 - In order to find a resource efficient approach for the fatigue lifetime prediction of laser powder bed fusion (L-PBF) processed AlSi10Mg material, results of tensile and fatigue tests were compared. The specimens were manufactured with three different L-PBF machines and studied in different heat treatment conditions (as-built, annealed, T6 heat treated). The investigations showed that the high attainable tensile strength properties after the manufacturing process are not beneficial in the high cycle fatigue (HCF) regime. In contrast, the applied heat treatments, which lead typically to a decrease of ultimate tensile strength, improved dramatically the fatigue behavior. Additionally, a clear correlation between the elongation at fracture and HCF resistance has been found for individual heat treatment conditions. This empiric relationship provides an estimation of the fatigue resistance in the presence of material defects and can be implemented in part and process approvals. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - AlSi10Mg KW - Tensile properties KW - Fatigue properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544921 DO - https://doi.org/10.1016/j.prostr.2022.03.009 SN - 2452-3216 VL - 38 SP - 77 EP - 83 PB - Elsevier B.V. AN - OPUS4-54492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Madia, Mauro T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy JF - Procedia Structural Integrity N2 - Al-Si alloys produced by Laser Powder Bed Fusion (L-PBF) techniques allow the fabrication of lightweight free-shape components that find space in aerospace, automotive, biomedical and military applications. Due to the high cooling rates occurring during the building process, L-PBF AlSi10Mg alloys exhibit an ultra-fine microstructure that leads to superior mechanical properties in the as-built condition compared to conventional cast Al-Si materials. Nevertheless, L-PBF processing induces high thermal gradients, leading to deleterious residual stress levels that must be considered to avoid part distortion and unpredicted failures. In order to relax detrimental residual stress and to increase the ductility, post-processing stress relief treatments are generally performed. In as-built condition the hypoeutectic AlSi10Mg microstructure consist of fine α-Al cells containing uniformly dispersed silicon nanoparticles, which are, in addition, surrounded by a eutectic Si network. Above 260°C the silicon interconnectivity starts to breakdown into spheroidized particles and to coarsen. At the same time, the heating residual stresses are relieved. The objective of the contribution is to investigate, under different heat treatment conditions, the evolution of microstructure and residual stresses in view of optimizing the fatigue performance of the alloy. To this purpose various heat treatments in a range of temperatures between 265°C and 300°C for a duration between 15 minutes and 2 hours are performed. The microstructure modifications are analysed using a scanning electron microscope and the residual stress state is measured by laboratory X-ray diffraction. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - AlSi10Mg alloy KW - Additive manufacturing KW - L-PBF KW - Residual stress KW - Heat treatment PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544942 DO - https://doi.org/10.1016/j.prostr.2022.03.057 SN - 2452-3216 VL - 38 SP - 564 EP - 571 PB - Elsevier B.V. AN - OPUS4-54494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L JF - Procedia Structural Integrity N2 - Additive manufacturing (AM) is becoming increasingly important in engineering applications due to the possibility of producing components with a high geometrical complexity allowing for optimized forms with respect to the in-service functionality. Despite the promising potential, AM components are still far from being used in safety-relevant applications, mainly due to a lack of understanding of the feedstock-process-properties-performance relationship. This work aims at providing a full characterization of the fatigue behavior of the additively manufactured AISI 316L austenitic stainless steel and a direct comparison with the fatigue performance of the wrought steel. To this purpose, a set of specimens has been produced by laser powder bed fusion (L-PBF) and subsequently heat treated at 900 °C for 1 hour for complete stress relief, whereas a second set of specimens has been machined out of hot-rolled plates. Low cycle fatigue (LCF) and high cycle fatigue (HCF) tests have been conducted for characterizing the fatigue behavior. The L-PBF material had a higher fatigue limit and better finite life performance compared to wrought material. Both, LCF and HCF-testing revealed an extensive cyclic softening. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - Additive manufacturing KW - L-PBF KW - 316L KW - Fatigue KW - LCF KW - HCF PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544952 DO - https://doi.org/10.1016/j.prostr.2022.03.056 SN - 2452-3216 VL - 38 SP - 554 EP - 563 PB - Elsevier B.V. AN - OPUS4-54495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Diffraction-Based Residual Stress Characterization in Laser Additive Manufacturing of Metals JF - Metals N2 - Laser-based additive manufacturing methods allow the production of complex metal structures within a single manufacturing step. However, the localized heat input and the layer-wise manufacturing manner give rise to large thermal gradients. Therefore, large internal stress (IS) during the process (and consequently residual stress (RS) at the end of production) is generated within the parts. This IS or RS can either lead to distortion or cracking during fabrication or in-service part failure, respectively. With this in view, the knowledge on the magnitude and spatial distribution of RS is important to develop strategies for its mitigation. Specifically, diffraction-based methods allow the spatial resolved determination of RS in a non-destructive fashion. In this review, common diffraction-based methods to determine RS in laser-based additive manufactured parts are presented. In fact, the unique microstructures and textures associated to laser-based additive manufacturing processes pose metrological challenges. Based on the literature review, it is recommended to (a) use mechanically relaxed samples measured in several orientations as appropriate strain-free lattice spacing, instead of powder, (b) consider that an appropriate grain-interaction model to calculate diffraction-elastic constants is both material- and texture-dependent and may differ from the conventionally manufactured variant. Further metrological challenges are critically reviewed and future demands in this research field are discussed. KW - Laser-based additive manufacturing KW - Residual stress analysis KW - X-ray and neutron diffraction KW - Diffraction-elastic constants KW - Strain-free lattice spacing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538054 DO - https://doi.org/10.3390/met11111830 VL - 11 IS - 11 SP - 1830 PB - MPDI CY - Basel AN - OPUS4-53805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Residual Stresses in Additive Manufacturing (L-PBF) N2 - Additive manufacturing (AM) technologies are experiencing an exceedingly rapid growth, driven by their potential through layer wise deposition for transformational improvements of engineering design, leading to efficiency and performance improvements. Laser Powder Bed Fusion (LPBF) is an Additive Manufacturing (AM) method which permits the fabrication of complex structures that cannot otherwise be produced via conventional subtractive manufacturing methods. Nevertheless, the rapid cooling rates associated with this process results in the formation of significant and complex residual stress (RS) fields. A large body of both experimental and simulation research has been dedicated in recent years to the control and mitigation of RS in AM. In order to validate simulations with the end goal of being able to model the residual stress state in AM components and to devise strategies for their reduction during manufacturing, experimental methods need to be able to accurately determine 3D residual stresses fields in complex geometries. Several destructive and non-destructive methods can be used to analyze the RS state, the choice of which depends on the geometry and the information required. Diffraction-based methods using penetrating neutron and synchrotron X-rays at large scale facilities offer the possibility to non-destructively spatially resolve both surface and bulk residual stresses in complex components and track their changes following applied thermal or mechanical loads. This presentation will overview the success stories of using large scale facilities by the BAM for the characterization of residual stresses in additively manufactured metallic alloys. In particular, the study of the influence of process parameters on the residual stress state and the relaxation of these stresses through heat treatment will be presented. However there remains challenges to overcome particularly of the hypotheses underlying the experimental determination of residual stresses, which will be discussed. T2 - 10th International Conference on Mechanical Stress Evaluation by Neutron and Synchrotron Radiation – MECASENS 2021 CY - Prague, Czech Republic DA - 25.11.2021 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - L-PBF KW - AGIL PY - 2021 AN - OPUS4-54105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Residual Stresses in Additive Manufacturing (L-PBF) N2 - Metal Additive manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) enable the fabrication of complex structures, giving rise to potential improvements in component and manufacturing efficiency. However, the processes are typically characterized by the generation of high magnitude residual stress (RS) which can have detrimental consequences for subsequent applications. Therefore, the characterization of these RS fields and the understanding of their formation and mitigation through optimized processing is crucial for the wider uptake of the technology. Due to the potential complex nature and high value of components manufactured by LPBF, it is important to have suitable characterisation methods which can determine the spatial variations of RS in a non-destructive manner. Neutron diffraction is considered to be the best suited for these requirements. However, the microstructures developed in the complex thermal cycles experience in the production can pose challenges to the ND method for RS analysis. The BAM has conducted significant research over the past years to overcome these obstacles, enabling higher confidence in the RS determined in LPBF materials by neutron diffraction. This contribution will overview some of these advancements made recently at European neutron sources including on Stress-Spec at FRM2/MLZ. T2 - MLZ User Meeting 2021 CY - Online meeting DA - 07.12.2021 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - AGIL KW - Manufact PY - 2021 AN - OPUS4-54044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Kruse, Julius A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Correlation between quasistatic und fatigue properties of additively manufactured AlSi10Mg using Laser Powder Bed Fusion N2 - In order to find a resource efficient approach for the fatigue lifetime prediction of laser powder bed fusion (L-PBF) processed AlSi10Mg material, results of tensile and fatigue tests were compared. The specimens were manufactured with three different L-PBF machines and studied in different heat treatment conditions (as-built, annealed, T6 heat treated). The investigations showed that the high attainable tensile strength properties after the manufacturing process are not beneficial in the high cycle fatigue (HCF) regime. In contrast, the applied heat treatments, which lead typically to a decrease of ultimate tensile strength, improved dramatically the fatigue behavior. Additionally, a clear correlation between the elongation at fracture and HCF resistance has been found for individual heat treatment conditions. This empiric relationship provides an estimation of the fatigue resistance in the presence of material defects and can be implemented in part and process approvals. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - AlSi10Mg KW - Tensile properties KW - Fatigue properties PY - 2021 AN - OPUS4-53792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Madia, Mauro T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy N2 - Al-Si alloys produced by Laser Powder Bed Fusion (L-PBF) techniques allow the fabrication of lightweight free-shape components. Due to the high cooling rates occurring during the building process, L-PBF AlSi10Mg alloys exhibit an ultra-fine microstructure that leads to superior mechanical properties in the as-built condition compared to conventional cast Al-Si materials. Nevertheless, L-PBF processing induces high thermal gradients, leading to deleterious residual stress. In order to relax detrimental residual stress and to increase the ductility, post-processing stress relief treatments are performed. The objective of the contribution is to investigate, under different heat treatment condition, the evolution of microstructure and residual stresses in view of optimizing the fatigue performance of the alloy. To this purpose various heat treatments in a range of temperatures between 265°C and 300°C for a duration between 15 minutes and 2 hours are performed. T2 - Fatigue Design 2021 CY - Senlis, France DA - 17.11.2021 KW - AlSi10Mg KW - Additive manufacturing KW - L-PBF KW - Residual stress KW - Heat treatment PY - 2021 AN - OPUS4-53794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - WAAM process influences on local microstructure and residual stresses in high-strength steels T2 - 46th MPA-Seminar Manuscripts N2 - High-strength fine-grain structural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. Due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the special microstructure of high-strength steels is sensitive to cold cracking. For this reason, process- and material-related influences, as well as the design effects on residual stress formation, are being investigated in a project funded by the AiF (FOSTA P1380/IGF 21162 BG). This study focuses on determining the interactions between heat control during WAAM process, resulting hardness, microstructure, and residual stresses, analyzed by X-ray diffraction. Welding experiments using geometrically similar AM specimens show that, with regard to the heat input, the energy per unit length in particular leads to significantly affected cooling times and microstructures and causes pronounced localized effects in terms of residual stresses in the upper weld beads. T2 - 46th MPA-Seminar CY - Stuttgart, Germany DA - 12.10.2021 KW - Wire Arc Additive Manufacturing KW - High-strength structural steels KW - Vickers hardness KW - Residual stresses PY - 2021 VL - 46 SP - 296 EP - 306 PB - MPA-Stuttgart AN - OPUS4-53571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -