TY - JOUR A1 - Drendel, Jan A1 - Logvinov, Ruslan A1 - Heinrichsdorff, Frank A1 - Hilgenberg, Kai T1 - Simulation-based controlling of local surface temperature in laser powder bed fusion using the process laser N2 - State-of-the-art laser powder bed fusion (PBF-LB/M) machines allow pre-heating of the substrate plate to reduce stress and improve part quality. However, two major issues have been shown in the past: First, with increasing build height the apparent pre-heat temperature at the surface can deviate drastically from the nominal pre-heat temperature in the substrate plate. Second, even within a single layer the local surface pre-heat temperature can show large gradients due to thermal bottlenecks in the part geometry underneath the top surface. Both lead to unwanted changes in microstructure or defects in the final parts. In this study, a first attempt is taken to show the feasibility of pre-heating the top surface with the onboard laser beam to overcome the mentioned issues. A single layer of a group of three parts built from IN718 to a height of 33.5 mm is pre-heated in a commercially available PBF-LB/M machine to an average steady state surface temperature of 200 °C using the onboard laser beam. The parts are continuously heated, omitting powder deposition and melting step. Temperatures are measured by thermocouples underneath the surface. The experiments are supported by a thermal finite element (FE) model that predicts the temperature field in the parts. When heating the parts uniformly with the laser beam, differences in surface temperatures as large as 170 K are observed. To overcome this inhomogeneity, the heat flux supplied by the laser beam is modulated. An optimized, spatial heat flow distribution is provided by the thermal FE model and translated into a scan pattern that reproduces the optimized heat distribution on the PBF-LB/M machine by locally modulating hatch distance and scan velocity. This successfully reduces the differences in surface temperature to 20 K. Thermographic imaging shows that a homogeneous surface temperature can be achieved despite the localized heat input by the beam. The potential for industrial application of the optimized laser-heating technique is discussed. KW - Additive Manufacturing KW - Simulation KW - Surface temperature KW - Laser powder bed fusion PY - 2023 DO - https://doi.org/10.1016/j.addma.2023.103854 SN - 2214-8604 VL - 78 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-58825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin A1 - Hilgenberg, Kai A1 - Hellfritz, Benjamin A1 - Löffler, Frank T1 - Digitisation of the quality infrastructure - using the example of additive manufacturing N2 - Rapidly advancing technologies and progressive digitisation are posing challenges to the established quality infrastructure (QI). In response, the key stakeholders of the German QI established the initiative QI-Digital aimed at developing new solutions for modern quality assurance. One of the central use cases herein is quality assurance for additive manufacturing, in which a fully interlinked additive manufacturing process chain is established. The intention is to collect and process data from each production step, allowing for a comprehensive digital view of the physical material flow. Within this process chain, prototypes of digital QI tools like machine readable standards and digital quality certificates are being demonstrated, tested, and evolved. This is complemented by research on the process level, comprising the evaluation and refinement of methods for in-situ and ex-situ quality assurance, as well as algorithms for registration, reduction, and analysis of process data. This paper presents the status, goals, and vision for the QI-Digital use case additive manufacturing. T2 - Metal Additive Manufacturing Conference 2023 CY - Wien, Austria DA - 17.10.2023 KW - Additive Manufacturing KW - Digitalisation KW - Quality Assurance PY - 2023 SP - 96 EP - 104 CY - Wien AN - OPUS4-58628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin T1 - Digitisation of the quality infrastructure - Using the example of additive manufacturing N2 - Rapidly advancing technologies and progressive digitisation are posing challenges to the established quality infrastructure (QI). In response, the key stakeholders of the German QI established the initiative QI-Digital aimed at developing new solutions for modern quality assurance. One of the central use cases herein is quality assurance for additive manufacturing, in which a fully interlinked additive manufacturing process chain is established. The intention is to collect and process data from each production step, allowing for a comprehensive digital view of the physical material flow. Within this process chain, prototypes of digital QI tools like machine readable standards and digital quality certificates are being demonstrated, tested, and evolved. This is complemented by research on the process level, comprising the evaluation and refinement of methods for in-situ and ex-situ quality assurance, as well as algorithms for registration, reduction, and analysis of process data. This paper presents the status, goals, and vision for the QI-Digital use case additive manufacturing. T2 - Metal Additive Manufacturing Conference 2023 CY - Vienna, Austria DA - 17.10.2023 KW - Additive Manufacturing KW - Digitalisation KW - Quality Assurance PY - 2023 AN - OPUS4-58629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin T1 - Eine digitale QI für die moderne Produktion: Datenbasierte Qualitätssicherung in der Additiven Fertigung N2 - Als Beispiel für moderne Produktion ist die additive Fertigung (ugs. „3D-Druck“) bei der Herstellung von hochkomplexen metallischen Bauteilen, bionisch inspiriertem Leichtbau oder Prototypen nicht mehr wegzudenken. Die Qualitätssicherung (QS) von Bauteilen für sicherheitskritische Anwendungen stellt jedoch noch eine Herausforderung dar. Die Additive Fertigung (AM) ist ein vergleichsweise junges und datenintensives Fertigungsverfahren. Daher ist es ideal geeignet, die neuen Werkzeuge einer digitalen Qualitätsinfrastruktur (QI) für die moderne Produktion zu erproben und weiterzuentwickeln. T2 - 2. QI-Digital Forum CY - Berlin, Germany DA - 10.10.2023 KW - Additive Manufacturing KW - Digitalisation KW - Quality Assurance PY - 2023 AN - OPUS4-58630 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Heinrichsdorff, F. A1 - Oster, Simon A1 - Uhlmann, E. A1 - Polte, J. A1 - Gordei, A. A1 - Hilgenberg, Kai T1 - In-situ monitoring of the laser powder bed fusion process by thermography, optical tomography and melt pool monitoring for defect detection N2 - For the wide acceptance of the use of additive manufacturing (AM), it is required to provide reliable testing methods to ensure the safety of the additively manufactured parts. A possible solution could be the deployment of in-situ monitoring during the build process. However, for laser powder bed fusion using metal powders (PBF-LB/M) only a few in-situ monitoring techniques are commercially available (optical tomography, melt pool monitoring), which have not been researched to an extent that allows to guarantee the adherence to strict quality and safety standards. In this contribution, we present results of a study of PBF-LB/M printed parts made of the nickel-based superalloy Haynes 282. The formation of defects was provoked by local variations of the process parameters and monitored by thermography, optical tomography and melt pool monitoring. Afterwards, the defects were characterized by computed tomography (CT) to identify the detection limits of the used in-situ techniques. T2 - Lasers in Manufacturing Conference 2023 CY - Munich, Germany DA - 26.06.2023 KW - Thermography KW - Optical tomography KW - Melt-pool-monitoring KW - Laser powder bed fusion KW - Haynes 282 KW - Additive Manufacturing PY - 2023 UR - https://www.wlt.de/lim2023-proceedings/system-engineering-and-process-control SP - 1 EP - 10 AN - OPUS4-58466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tabin, Jakub T1 - Deformation-Induced Martensitic Transformation In Fused Filament Fabricated Austenitic Stainless Steels During Tension At Wide Range Of Temperatures. Part 1: Experimental Results N2 - Structural components of superconducting magnets (e.g., collars, bladders, or keys) with complex shapes, operating at cryogenic temperatures (4K, 77K), as well as additional elements of tanks for storing liquid hydrogen (20K), such as hoses and valves, are made of austenitic steel. It is well known that achieving a complex shape for these elements using traditional machining methods is challenging. A viable solution lies in using additive manufacturing methods (AM), notably the cost-effective Fused Filament Fabrication (FFF) method. The scientific objective of the project is the experimental identification and numerical simulation of the evolution of the deformation-induced martensitic transformation in Fused Filament Fabricated Austenitic Stainless Steel (FFF ASS) 316L at a wide range of temperatures. We will investigate how deformation-induced phase transformation develops in printed austenitic steels, how the initial state of the sample (e.g., pore distribution) affects it, and whether deformation-induced martensitic transformation influences the rate of damage development, especially at very low temperatures. Does the manufacturing technology of the sample affect the rate of phase transformation or damage development? Finally, but no less important, is whether, as in the case of traditional austenitic steels, the adverse effect of the microdamage field is inhibited by deformation-induced martensitic transformation. Which of these effects dominates in printed austenitic steels and under what conditions? The experimental setup developed in the Institute of Fundamental Technological Research (IPPT PAN) allows for monitoring the evolution of the 3D strain field during the kinematically-controlled tensile tests of macroscopic specimens at 77K. Moreover, the correlation between plastic strain field evolution, martensitic transformation, thermal distributions and acoustic emission will be defined for FFF 316L at 77K and room temperatures. EBSD and EDS investigation of samples pre-strained in uniaxial tensile tests at a wide range of temperatures are also performed. T2 - 43rd Solid Mechanics Conference CY - Wroclaw, Poland DA - 16.09.2024 KW - Deformation-induced martensitic transformation KW - Austenitic Stainless Steel KW - Additive Manufacturing KW - DIC KW - Cryogenic temperatures PY - 2024 AN - OPUS4-61187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago T1 - Short fatigue crack propagation in L-PBF 316L stainless steel N2 - Fracture mechanics is a key to fatigue assessment in AM metal components. Short fatigue cracks are initiated at defects and pronounced surface roughness intrinsic to AM. The subsequent crack-propagation is strongly influenced by microstructural interactions and the build-up of crack-closure. The aim of the present study is to give an insight into short-crack propagation in AM-metals. Fatigue crack propagation resistance curves were determined experimentally for AISI 316L manufactured by Laser Powder Bed Fusion (L-PBF) which was heat treated at three different temperatures. Differences in the build-up of the fatigue-crack propagation threshold in between the L-PBF specimens and compared to wrought material are due to the residual stress states, a pronounced roughness of the crack-faces in the L-PBF specimens and phase transformation in the vicinity of the crack-tip, resulting in increased crack-closure. This, together with crack-branching found along the crack path, enhances the resistance to the propagation of fatigue cracks. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - Additive Manufacturing KW - Cyclic R-Curve KW - Component assessment KW - L-PBF KW - 316L KW - Residual Stress KW - Fatigue Crack Growth PY - 2020 AN - OPUS4-51585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago T1 - Damage tolerant design of metallic AM parts N2 - Additive Manufacturing (AM) opens new possibilities in the design of metallic components, including very complex geometries (e.g. structures optimized for certain loads), optimization of materials (e.g. gradient materials) and cost-effective manufacturing of spare parts. In the recent years, it has been used for the first safety-relevant parts, but the consideration of cyclic mechanical behavior in AM is still at the very beginning. The reason for this is the complexity of mechanical material properties, i.e. inhomogeneity, anisotropy and a large number of defects frequently textured and characterized by large scattering in size. Additionally, high surface roughness and residual stresses with complex distributions are typical of AM. Due to these reasons, the transferability of experimentally determined properties from specimens to components is a challenge. This presentation provides an overview of the questions concerning the application of AM to safety-relevant components. Possible strategies for the fatigue design of such components are presented. Besides the Kitagawa-Takahashi-diagram method and the cyclic R-curve analysis as approaches for damage-tolerant design, the identification of critical locations, the problem of representative material properties and the handling of residual stresses are addressed. T2 - 4th international symposium on Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - Additive Manufacturing KW - Cyclic R-Curve KW - Component assessment PY - 2020 AN - OPUS4-50938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dávila, Josué A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Parameter development for Laser Powder Bed Fusion of nickel-based Haynes 282 using diverse density determination methods N2 - To manufacture functional components using laser powder bed fusion (PBF-LB/M), the execution of a parameter development with the specific material and machine is an indispensable step. Typically, in the search for the optimal parameter set, the volumetric energy density (VED) used to melt the material serves as an adjustment variable, while the resulting part density as the target parameter. Although this approach effectively reduces the process parameters search-space, additional criteria concerning part quality should be considered in the development. This paper introduces a systematic parameter selection approach, refining the characterization process for processing the nickel-based superalloy Haynes® 282®. The presented strategy not only incorporates the density as target condition but also considers the surface quality and dimensional accuracy of the manufactured samples, crucial for near-net-shape manufacturing. Additionally, three porosity measurement methods (Archimedes method, microscopy, gaspycnometry) for AM metal parts are compared, and their validity for this purpose is discussed. T2 - 13th CIRP Conference on Photonic Technologies [LANE 2024] CY - Fürth, Germany DA - 15.09.2024 KW - Additive Manufacturing KW - Laser powder bed fusion (PBF-LB/M) KW - Archimedes principle KW - Parameter development KW - Gaspycnometry KW - Density determination method KW - Density optimization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-624417 VL - 124 SP - 93 EP - 97 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-62441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René T1 - Wire arc additive manufacturing of high strength al-mg-si alloys N2 - Direct energy deposition additive manufacturing technologies utilizing an electric arc offer a great potential in generating large volume metal components. However, the selection of process parameters that yield the desired near net shape design as well as the requested mechanical component behavior is not a trivial task due to the complex relationship. Exemplarily for additive manufacturing of high-strength precipitation hardening AlMgSi-aluminum alloy this paper shows the application of a newly developed matching solid welding wire doped with TiB as grain refiner. The correlation between process parameters and component quality is examined analyzing the size and distribution of pores as well as the grain morphology. Furthermore, the influences of different post-weld heat treatments are evaluated to meet the reference mechanical properties of the corresponding wrought material. Finally, the digital integration of the entire additive manufacturing chain enables an overall traceability of the relevant process steps which is the basis for a reliable subsequent quality assessment. T2 - THERMEC'2023 International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS: Processing, Fabrication, Properties, Applications CY - Vienna, Austria DA - 02.07.2023 KW - Additive Manufacturing KW - DED-Arc KW - Grain refinement KW - High strength AlMgSi aluminium alloys KW - Mechanical properties PY - 2023 AN - OPUS4-59500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Distortion-based validation of the heat treatment simulation of Directed Energy Deposition additive manufactured parts N2 - Directed energy deposition additive manufactured parts have steep stress gradients and an anisotropic microstructure caused by the rapid thermo-cycles and the layer-upon-layer manufacturing, hence heat treatment can be used to reduce the residual stresses and to restore the microstructure. The numerical simulation is a suitable tool to determine the parameters of the heat treatment process and to reduce the necessary application efforts. The heat treatment simulation calculates the distortion and residual stresses during the process. Validation experiments are necessary to verify the simulation results. This paper presents a 3D coupled thermo-mechanical model of the heat treatment of additive components. A distortion-based validation is conducted to verify the simulation results, using a C-ring shaped specimen geometry. Therefore, the C-ring samples were 3D scanned using a structured light 3D scanner to compare the distortion of the samples with different post-processing histories. KW - Directed Energy Deposition KW - Additive Manufacturing KW - Heat Treatment KW - Numerical Simulation KW - Finite Element Method PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513153 DO - https://doi.org/10.1016/j.procir.2020.09.146 VL - 94 SP - 362 EP - 366 PB - Elsevier B.V. AN - OPUS4-51315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Chaudry, Mohsin Ali A1 - Elorriaga, A. A1 - Madia, Mauro A1 - Llavori, I. A1 - Hilgenberg, Kai T1 - Diseño de componentes fabricados aditivamente basado en propiedades locales del material T1 - Design of additively manufactured components based on locally representative material fatigue properties N2 - La tecnología de fabricación aditiva (AM) continúan progresando y permitiendo alcanzar diseños cada vez más complejos y optimizados. La industria química es uno de los sectores donde componentes AM han adquirido un gran interés. La falta hasta la fecha de una directiva europea que regule la inspección, certificación y aceptación de equipos sometidos a presión hace necesario progresar en esta línea. El objetivo que se persigue en este trabajo es el de desarrollar una metodología de diseño sobre componentes fabricados aditivamente basada en la estimación de vida a fatiga de las zonas más susceptibles de sufrir dicho tipo de fallo. El estudio comprende diversas facetas de análisis, simulaciones numéricas, análisis de la microestructura del material y una extensa campaña experimental. La evaluación de la integridad estructural se realiza aplicando mecánica de fractura. La historia térmica a lo largo del proceso de fabricación determina la microestructura del componente en cada región y, por ende, influye en las propiedades mecánicas en cada una. Se presentan los resultados preliminares de un proyecto de investigación en curso dirigido a la caracterización de propiedades mecánicas en recipientes de presión producidos por fusión láser en lecho de polvo (L-PBF, por sus siglas en inglés) de acero inoxidable 316L. Se detallan los resultados preliminares en términos de velocidad de crecimiento de grietas por fatiga (FCGR), y se comparan los resultados de probetas extraídas de diferentes regiones de los depósitos. N2 - Additive manufacturing (AM) technology continues to make progress and allows for reaching increasingly complex and optimised designs. The chemical industry is one of the sectors where AM components have acquired relevance. There is a lack of any European directive in order to regulate the inspection, certification as well as acceptance of additively manufactured (AM) equipment subjected to pressure loads, so progression in this line becomes necessary. This work aimed to develop a design methodology for AM components based on the estimation of fatigue lifetime on those regions with a higher risk of failure. Diverse facets are involved in this study, including numerical simulations, microstructure analysis and an extensive experimental campaign. The fatigue assessment is performed based on fracture mechanics. The microstructure characteristics are dependent on the thermal history along the manufacturing process for each region and, accordingly, the mechanical properties are likewise influenced. Preliminary results of an ongoing research project for characterizing the mechanical properties in demonstrator pressure vessels produced by laser powder bed fusion (L-PBF) on stainless steel 316L are presented. The preliminary findings obtained in terms of fatigue crack growth rate (FCGR) and are detailed. Results from specimens extracted from different regions of the vessel are compared. T2 - 5th Iberian Conference on Structural Integrity IbCSI 2022 CY - Coimbra, Portugal DA - 30.03.2022 KW - Fabricación Aditiva KW - Additive Manufacturing KW - Acero 316L KW - Mecánica de Fractura KW - Predicción vida a fatiga KW - Fit4AM KW - Steel 316L KW - Fracture Mechanics KW - Fatigue lifetime prediction PY - 2022 AN - OPUS4-55241 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - D'Accardi, E. A1 - Krankenhagen, Rainer A1 - Ulbricht, Alexander A1 - Pelkner, Matthias A1 - Pohl, Rainer A1 - Palumbo, D. A1 - Galietti, U. T1 - Capability to detect and localize typical defects of laser powder bed fusion (L‑PBF) process: an experimental investigation with different non‑destructive techniques N2 - Additive manufacturing (AM) technologies, generally called 3D printing, are widely used because their use provides a high added value in manufacturing complex-shaped components and objects. Defects may occur within the components at different time of manufacturing, and in this regard, non-destructive techniques (NDT) represent a key tool for the quality control of AM components in many industrial fields, such as aerospace, oil and gas, and power industries. In this work, the capability of active thermography and eddy current techniques to detect real imposed defects that are representative of the laser powder bed fusion process has been investigated. A 3D complex shape of defects was revealed by a μCT investigation used as reference results for the other NDT methods. The study was focused on two different types of defects: porosities generated in keyhole mode as well as in lack of fusion mode. Different thermographic and eddy current measurements were carried out on AM samples, providing the capability to detect volumetric irregularly shaped defects using non-destructive methods. KW - Additive Manufacturing KW - Defect detection KW - Thermography KW - Eddy-current testing KW - Micro-computed tomography PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546680 DO - https://doi.org/10.1007/s40964-022-00297-4 SN - 2363-9512 VL - 7 IS - 6 SP - 1239 EP - 1256 PB - Springer AN - OPUS4-54668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander T1 - Do Microbes like Additively Manufactured Aluminium? First Details of a Corrosion Test using Sulphate-Reducing Bacteria N2 - Additively manufactured metals become relevant for industrial application. Although many studies on wet corrosion of these metals have been conducted, to the authors knowledge no study seems to contain microbiological corrosion (MIC). In the presented study an experiment was conducted on PBF-LB/AlSi10Mg to test this material's susceptibility for MIC. The tested specimen were analysed using Computed Tomography before and after the MIC experiment to enable a detailed characterisation the damage on the specimens' global and local level. A global reduction of material was observed. In addition, localised damage along process inherent features of the materials microstructure was observed. T2 - Beiratssitzung TF Umwelt CY - Berlin, Germany DA - 17.03.2025 KW - Computed Tomography KW - Additive Manufacturing KW - Biocorrosion KW - Sulphate-reducing Bacteria KW - Microbially influenced corrosion PY - 2025 AN - OPUS4-62772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oster, Simon A1 - Scheuschner, Nils A1 - Chand, Keerthana A1 - Altenburg, Simon T1 - Local porosity prediction in metal powder bed fusion using in-situ thermography: A comparative study of machine learning techniques N2 - The formation of flaws such as internal porosity in parts produced by Metal-based Powder Bed Fusion with Laser Beam (PBF-LB/M) significantly hinders its broader industrial application, as porosity can potentially lead to part failure. Addressing this issue, this study explores the efficacy of in-situ thermography, particularly short-wave infrared thermography, for detecting and predicting porosity during manufacturing. This technique is capable of monitoring the part’s thermal history which is closely connected to the flaw formation process. Recent advancements in Machine Learning (ML) have been increasingly leveraged for porosity prediction in PBF-LB/M. However, previous research primarily focused on global rather than localized porosity prediction which simplified the complex prediction task. Thereby, the opportunity to correlate the predicted flaw position with expected part strain to judge the severity of the flaw for part performance is neglected. This study aims to bridge this gap by studying the potential of SWIR thermography for predicting local porosity levels using regression models. The models are trained on data from two identical HAYNES®282® specimens. We compare the effectiveness of feature-based and raw data-based models in predicting different porosity types and examine the importance of input data in porosity prediction. We show that models trained on SWIR thermogram data can identify systematic trends in local flaw formation. This is demonstrated for forced flaw formation using process parameter shifts and, moreover, for randomly formed flaws in the specimen bulk. Furthermore, we identify features of high importance for the prediction of lack-of-fusion and keyhole porosity from SWIR monitoring data. KW - PBF-LB/M KW - In situ monitoring KW - Thermography KW - Additive Manufacturing KW - Process monitoring KW - Porosity prediction KW - Machine Learning KW - Feature extraction PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-621798 DO - https://doi.org/10.1016/j.addma.2024.104502 SN - 2214-7810 VL - 95 SP - 1 EP - 17 PB - Elsevier B.V. AN - OPUS4-62179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L-PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in-situ mittels Thermographiekamera überwacht. Auf diese Weise konnten intrinsische Vorerwärmungstemperaturen während der Bauteilfertigung lagenweise extrahiert werden. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - 74th IIW Annual Assembly and International Conference CY - Online meeting DA - 07.07.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring KW - Thermography KW - Preheating temperature KW - Inter layer time PY - 2021 AN - OPUS4-52954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - A unique authenticator for additively manufactured parts derived from 3D microstructural information N2 - Additive manufacturing (AM) is rapidly emerging from rapid prototyping to industrial production [1]. Thus, providing AM parts with a tagging feature that allows identification, like a fingerprint, can be crucial for logistics, certification, and anti-counterfeiting purposes since nearly any geometry can be produced by AM with stolen data or reverse engineering of an original product. However, the mechanical and functional properties of the replicated part may not be identical to the original ones and pose a safety risk [2]. Several methods are already available, which range from encasing a detector to leveraging the stochastic defects of AM parts for the identification, authentication, and traceability of AM components. The most prevailing solution consists of local process manipulation, such as printing a quick response (QR) code [3] or a set of blind holes on the surface of the internal cavity of hollow components. Local manipulation of components may alter the properties. The external tagging features can be altered or even removed by post-processing treatments. Integrating electronic systems [4] in AM parts can be used to identify and authenticate components with complex or customized geometries. However, metal-based AM, especially in powder bed fusion (PBF-LB/M) techniques, has a strong shielding effect that interferes with the communication between the reader and the transponder. Our work suggests a methodology for the identification, authentication, and traceability of AM components using microstructural features in AM components. We will show a workflow that includes analysing 3D micro computed tomography data and selecting a set number of voids that fulfil the identification criteria. We will show the results this workflow produces for a series of 20 Al-based cuboid samples with identical processing parameters and discuss their prospects and limitations. The workflow can help to establish a non-tamperable connection between an additively manufactured part and its digital data and hence link the physical and the digital world. T2 - MSE Konferenz CY - Darmstadt, Germany DA - 24.09.2024 KW - Additive Manufacturing KW - Fingerprint KW - Computed tomography PY - 2024 AN - OPUS4-62288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ monitoring of a laser metal deposition (LMD) process: comparison of MWIR, SWIR and high-speed NIR thermography N2 - Additive manufacturing offers a range of novel applications. However, the manufacturing process is complex and the production of almost defect-free parts with high reliability and durability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal additive manufacturing processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of measurements during the manufacturing process of a commercial laser metal deposition setup using a mid wavelength infrared camera with those from a short wavelength infrared camera and those from a visual spectrum high-speed camera with band pass filter in the near infrared range. KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - LMD KW - Metal KW - MWIR KW - SWIR KW - NIR PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516318 DO - https://doi.org/10.1080/17686733.2020.1829889 VL - 19 IS - 2 SP - 97 EP - 114 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-51631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - Towards the determination of real process temperatures in the LMD process by multispectral thermography N2 - Due to the rapid thermal cycles involved in additive manufacturing of metals, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine their formation, in-process measurements of the temperature are needed. Since the part emissivity is strongly inhomogeneous and rapidly changing in the process, the applicability of thermography for the determination of thermodynamic temperatures is limited. Measuring the thermal radiation in different wavelengths simultaneously, temperature and emissivity can be separated. Here, we present results of a preliminary study using multispectral thermography to obtain real temperatures and emissivities in directed energy deposition (DED) processes. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 DO - https://doi.org/10.1117/12.2587881 VL - 2021 SP - 77 EP - 83 PB - SPIE AN - OPUS4-52516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Introduction to ProMoAM N2 - A brief introduction to the project ProMoAM is given. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - ProMoAM PY - 2021 AN - OPUS4-52513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -