TY - JOUR A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid laser‑arc welding of laser‑ and plasma‑cut 20‑mm‑thick structural steels JF - Welding in the World 2022 N2 - It is already known that the laser beam welding (LBW) or hybrid laser-arc welding (HLAW) processes are sensitive to manufacturing tolerances such as gaps and misalignment of the edges, especially at welding of thick-walled steels due to its narrow beam diameter. Therefore, the joining parts preferably have to be milled. The study deals with the influence of the edge quality, the gap and the misalignment of edges on the weld seam quality of hybrid laser-arc welded 20-mm-thick structural steel plates which were prepared by laser and plasma cutting. Single-pass welds were conducted in butt joint configuration. An AC magnet was used as a contactless backing. It was positioned under the workpiece during the welding process to prevent sagging. The profile of the edges and the gap between the workpieces were measured before welding by a profile scanner or a digital camera, respectively. With a laser beam power of just 13.7 kW, the single-pass welds could be performed. A gap bridgeability up to 1 mm at laser-cut and 2 mm at plasma-cut samples could be reached respectively. Furthermore, a misalignment of the edges up to 2 mm could be welded in a single pass. The new findings may eliminate the need for cost and time-consuming preparation of the edges. KW - Hybrid laser-arc welding KW - Thick-walled steel KW - Edge quality KW - Gap bridgeability KW - Laser cutting KW - Plasma cutting PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552013 DO - https://doi.org/10.1007/s40194-022-01255-y SN - 0043-2288 VL - 66 SP - 507 EP - 514 PB - Springer AN - OPUS4-55201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Low cycle fatigue behavior of DED-L Ti-6AL-4V N2 - Laser powder-based directed energy deposition (DED-L) is a technology that offers the possibility for 3D material deposition over hundreds of layers and has thus the potential for application in additive manufacturing (AM). However, to achieve broad industrial application as AM technology, more data and knowledge about the fabricated materials regarding the achieved properties and their relationship to the manufacturing process and the resulting microstructure is still needed. In this work, we present data regarding the low-cycle fatigue (LCF) behavior of Ti-6Al-4V. The material was fabricated using an optimized DED-L process. It features a low defect population and excellent tensile properties. To assess its LCF behavior two conventionally manufactured variants of the same alloy featuring different microstructures were additionally tested. The strain-controlled LCF tests were carried out in fully reversed mode with 0.3 % to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behavior and failure mechanisms are described. For characterization, optical microscopy (OM), scanning electron microscopy (SEM), and micro-computed tomography (µCT) were used. The low defect population allows for a better understanding of the intrinsic material’s properties and enables a fairer comparison against the conventional variants. The fatigue lifetimes of the DED-L material are nearly independent of the test temperature. At elevated test temperatures, they are similar or higher than the lifetimes of the conventional counterparts. At room temperature, they are only surpassed by the lifetimes of one of them. The principal failure mechanism involves multiple crack initiation sites. T2 - Ninth International Conference on Low Cycle Fatigue (LCF9) CY - Berlin, Germany DA - 21.06.2022 KW - AGIL KW - Additive Manufacturing KW - Ti-6Al-4V KW - Low-Cycle-Fatigue KW - Microstructure PY - 2022 AN - OPUS4-55123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Marquardt, R. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Untersuchung zum Elektronenstrahlschweißen additiv gefertigter Ni-Basis-Bauteile T2 - DVS-Berichte N2 - Die vorliegende Untersuchung befasst sich mit dem Einfluss des Additive Manufacturing auf die Schweißeignung von Bauteilen aus Inconel 718. Hierfür wurden Proben mittels DED und L-PBF hergestellt und ihr Verhalten in Blindschweißversuchen anhand eines Vergleichs mit konventionellen Gussblechen untersucht. Im zweiten Schritt wurden die verschiedenen additiv hergestellten Proben mit dem Gussmaterial im I-Stoß sowie untereinander verschweißt. Als Schweißverfahren wurde für alle Proben das Elektronenstrahlschweißen angewandt. Zur Auswertung wurde anhand von Schliffen das Nahtprofil vermessen und die Proben auf Poren und Risse untersucht. Zusätzlich wurde die Dichte vermessen und eine Prüfung auf Oberflächenrisse durchgeführt. Das AM-Material zeigte dabei Unterschiede in Nahtform und Defektneigung im Vergleich zum Gusswerkstoff. Insbesondere die DED-proben neigten unter bestimmten Parameterkonstellationen verstärkt zu Porenbildung. Risse konnten nicht beobachtet werden. Trotz auftretender Nahtunregelmäßigkeiten wurde in den kombinierten AM-Schweißproben die Bewertungsgruppe C erreicht. Eine Prüfung der bestehenden Regelwerke zur Schweißnahtbewertung anhand der gewonnenen Erkenntnisse zu additiv gefertigten Proben im Elektronenstrahlschweißprozess zeigte keinen Ergänzungsbedarf. T2 - #additivefertigung: Metall in bestForm CY - Essen, Germany DA - 26.10.2022 KW - Elektronenstrahlschweißen KW - Additive Fertigung KW - Schweißnahtbewertung PY - 2022 SN - 978-3-96144-202-7 VL - 383 SP - 81 EP - 92 PB - DVS-Media GmbH AN - OPUS4-56173 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Transferability of ANN-generated parameter sets from welding tracks to 3D-geometries in Directed Energy Deposition JF - Material Testing 2022 N2 - Directed energy deposition (DED) has been in industrial use as a coating process for many years. Modern applications include the repair of existing components and additive manufacturing. The main advantages of DED are high deposition rates and low energy input. However, the process is influenced by a variety of parameters affecting the component quality. Artificial neural networks (ANNs) offer the possibility of mapping complex processes such as DED. They can serve as a tool for predicting optimal process parameters and quality characteristics. Previous research only refers to weld beads: a transferability to additively manufactured three-dimensional components has not been investigated. In the context of this work, an ANN is generated based on 86 weld beads. Quality categories (poor, medium, and good) are chosen as target variables to combine several quality features. The applicability of this categorization compared to conventional characteristics is discussed in detail. The ANN predicts the quality category of weld beads with an average accuracy of 81.5%. Two randomly generated parameter sets predicted as “good” by the network are then used to build tracks, coatings,walls, and cubes. It is shown that ANN trained with weld beads are suitable for complex parameter predictions in a limited way. KW - Welding parameter KW - Quality assurance KW - DED KW - Artificial neural network KW - Additive manufacturing PY - 2022 DO - https://doi.org/10.1515/mt-2022-0054 SN - 0025-5300 VL - 64 IS - 11 SP - 1586 EP - 1596 PB - De Gruyter AN - OPUS4-56278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Untersuchung zur Herstellung von Cu-Strukturen mittels Wire Electron Beam Additive Manufacturing T2 - DVS-Berichte N2 - Das Additive Manufacturing gewinnt zunehmend an Bedeutung für die Fertigung metallischer Bauteile im industriellen Umfeld. Hierbei wird zunehmend auch auf drahtförmige Ausgangswerkstoffe gesetzt, da diese Vorteile im Handling bieten, bereits in der Industrie etabliert sind und sich in der Regel durch geringere Beschaffungskosten auszeichnen. In den letzten Jahren entwickelte sich neben den bereits im großen Umfeld untersuchten Wire-DED-Verfahren auch eine Prozessvariante unter Nutzung des Elektronenstrahls zur industriellen Marktreife. Dabei zeigt die als Wire Electron Beam Additive Manufacturing bezeichnete Technologie besondere Vorteile gegenüber anderen, zumeist Laser- oder Lichtbogen-basierten DED-Prozessen. Das Verfahren bietet vor allem Potenzial für die Verarbeitung von hochleitfähigen, reflektierenden oder oxidationsgefährdeten Werkstoffen. Insbesondere für die Herstellung von Bauteilen aus Kupferlegierungen zeigt sich der Elektronenstrahl als besonders geeignet. Um das Verfahren einem breiten Anwenderkreis in der Industrie zugänglich zu machen, fehlen jedoch übergreifende Daten zu Leistungsfähigkeit, Prozessgrenzen und Anwendungsmöglichkeiten. Die vorliegende Untersuchung beschäftigt sich mit dieser Problemstellung am Beispiel zweier Cu-Werkstoffe. Dabei werden ein korrosionsbeständiger Werkstoff aus dem maritimen Bereich sowie eine Bronze mit guten Verschleißeigenschaften aus dem Anlagenbau getestet. Über mehrstufige Testschweißungen wurden die physikalisch möglichen Prozessgrenzen ermittelt und Rückschlüsse über die Eignung der Parameter zum additiven Aufbau gezogen. Hierfür wurden zunächst optimale Bereiche für den Energieeintrag anhand von Volumenenergie sowie mögliche Schweißgeschwindigkeiten untersucht. Anschließend wurde die Skalierbarkeit des Prozesses anhand von Strahlstrom und Drahtvorschub getestet. Als wesentliche Zielgrößen wurden dabei Spurgeometrie, Aufmischung und Härte herangezogen. Die Eignung der ermittelten Parameter wurde im letzten Schritt exemplarisch anhand einer additiven Testgeometrie in Form eines Zylinders nachgewiesen. T2 - DVS Congress 2022 Große Schweißtechnische Tagung DVS CAMPUS CY - Koblenz, Germany DA - 19.09.2022 KW - WEBAM KW - Electron beam KW - EBAM KW - Wire electron beam additive manufacturing PY - 2022 SN - 978-3-96144-189-1 VL - 382 SP - 446 EP - 454 PB - DVS Media AN - OPUS4-56058 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winterkorn, René T1 - WAAM dickwandiger Bauteile aus höherfesten AL-MG-SI Legierungen N2 - Das Wire and Arc Additive Manufacturing (WAAM) ist dank hoher erreichbarer Aufbauraten prädestiniert für die Fertigung großvolumiger Bauteile. Dabei ist auf die Wirkmechanismen zwischen Prozessparametern und den daraus resultierenden mechanisch-technologischen Eigenschaften zu achten. Dies gilt insbesondere für die Fertigung dickwandiger Bauteile aus Al-Mg-Si-Aluminiumlegierungen, die eine hohe Anfälligkeit gegenüber Erstarrungsrissen und wasserstoffinduzierter Porosität aufweisen. Der Einfluss der Prozessparameter und des resultierenden Temperaturregimes auf die Bauteilqualität wurde durch die Analyse der Größe und Verteilung von Poren sowie der resultierenden Festigkeit untersucht. Darüber hinaus wurde der Einfluss einer Wärmenachbehandlungsstrategien auf das Festigkeitsverhalten analysiert. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - WAAM KW - AlMgSi Legierungen KW - Wärmenachbehandlung KW - Mechanische Eigenschaften PY - 2022 AN - OPUS4-56672 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Lichtbogenbasierte additive Fertigung dickwandiger Strukturen aus einer höherfesten Al-Mg-Si-Aluminiumlegierungen T2 - AWT Fachkonferenz 2022 Additive Fertigung Werkstoffe – Prozesse – Wärmebehandlung N2 - Die lichtbogenbasierte, additive Fertigung ist dank hoher erreichbarer Aufbauraten und nahezu uneingeschränktem Bauraum zur Fertigung großvolumiger Bauteile prädestiniert. Die Kombination etablierter Maschinenkomponenten aus Robotertechnik, Schweißtechnik und Sensorik ermöglicht den präzisen schichtweisen Materialauftrag. Die Wirkmechanismen zwischen Prozessparametern und den daraus resultierenden mechanisch-technologischen Eigenschaften der additiv gefertigten Bauteile stellen eine Herausforderung dar. Dies gilt insbesondere auch für dickwandige Bauteile. Bei der Fertigung von Bauteilen aus höherfesten Al-Mg-Si-Aluminiumlegierungen ist aufgrund der hohen Anfälligkeit für Erstarrungsrisse und der Neigung zu wasserstoffinduzierter Porosität im besonderen Maße auf das Temperaturregime und die gewählte Aufbaustrategie zu achten. Der Einfluss der Prozessparameter auf die Bauteilqualität wurde durch die Analyse der Größe und Verteilung von Poren sowie der resultierenden Festigkeit untersucht. Darüber hinaus wurde der Einfluss einer Wärmenachbehandlungsstrategien auf das Festigkeitsverhalten analysiert. Es konnte gezeigt werden, dass dickwandige Strukturen aus höherfesten Al-Mg-Si-Aluminiumlegierungen mit mechanischen Kennwerten im Bereich des Referenzmaterials mittels MSGLichtbogenverfahren additiv gefertigt werden können. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - WAAM KW - Al-Mg-Si-Legierungen KW - Porosität KW - Wärmenachbehandlung KW - Mechanisch technologische Kennwerte PY - 2022 SP - 169 EP - 181 PB - Arbeitsgemeinschaft Wärmebehandlung und Werkstofftechnik e. V. CY - Bremen AN - OPUS4-56673 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Study on Duplex Stainless Steel Powder Compositions for the Coating of thick Plates of Laser Beam Welding JF - Advanced Engineering Materials N2 - Duplex stainless steels combine the positive properties of its two phases, austenite and ferrite. Due to its good corrosion resistance, high tensile strength, and good ductility, it has multiple applications. But laser beam welding of duplex steels changes the balanced phase distribution in favor of ferrite. This results in a higher vulnerability to corrosion and a lower ductility. Herein, different powder combinations consisting of duplex and nickel for coating layers by laser metal deposition (LMD) are investigated. Afterward, laser tracks are welded, and the temperature cycles are measured. The ferrite content of the tracks is analyzed by feritscope, metallographic analysis, and electron backscatter diffraction. The goal is the development of a powder mixture allowing for a duplex microstructure in a two-step process, where first the edges of the weld partners are coated with the powder mixture by LMD and second those edges are laser beam welded. The powder mixture identified by the pretests is tested in the two-step process and analyzed by metallographic analysis, energy-dispersive X-ray spectroscopy, and Vickers hardness tests. The resulting weld seams show a balanced duplex microstructure with a homogenous nickel distribution and a hardness of the weld seam similar to the base material. KW - Duplex AISI 2205 KW - Laser metal deposition KW - Laser beam welding KW - Nickel KW - Stainless steels PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547024 DO - https://doi.org/10.1002/adem.202101327 SN - 1438-1656 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Quality Prediction in Directed Energy Deposition Using Artificial Neural Networks Based on Process Signals JF - Applied Sciences N2 - The Directed Energy Deposition process is used in a wide range of applications including the repair, coating or modification of existing structures and the additive manufacturing of individual parts. As the process is frequently applied in the aerospace industry, the requirements for quality assurance are extremely high. Therefore, more and more sensor systems are being implemented for process monitoring. To evaluate the generated data, suitable methods must be developed. A solution, in this context, was the application of artificial neural networks (ANNs). This article demonstrates how measurement data can be used as input data for ANNs. The measurement data were generated using a pyrometer, an emission spectrometer, a camera (Charge-Coupled Device) and a laser scanner. First, a concept for the extraction of relevant features from dynamic measurement data series was presented. The developed method was then applied to generate a data set for the quality prediction of various geometries, including weld beads, coatings and cubes. The results were compared to ANNs trained with process parameters such as laser power, scan speed and powder mass flow. It was shown that the use of measurement data provides additional value. Neural networks trained with measurement data achieve significantly higher prediction accuracy, especially for more complex geometries. KW - DED KW - Artificial neural network KW - Process monitoring KW - Quality assurance KW - Data preparation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547039 DO - https://doi.org/10.3390/app12083955 VL - 12 IS - 8 SP - 1 EP - 13 PB - MDPI AN - OPUS4-54703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geisen, O. A1 - Müller, V. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Integrated weld preparation designs for the joining of L‑PBF and conventional components via TIG welding JF - Progress in Additive Manufacturing N2 - size limitations and high production costs of L-PBF make it competitive for smaller, highly complex components, while the less complex elements of an assembly are manufactured conventionally. This leads to scenarios that use L-PBF only where it’s beneficial, and it require an integration and joining to form the final product. For example, L-PBF combustion swirlers are welded onto cast parts to produce combustion systems for stationary gas turbines. Today, the welding process requires complex welding fixtures and tack welds to ensure the correct alignment and positioning of the parts for repeatable weld results. In this paper, L-PBF and milled weld preparations are presented as a way to simplify the Tungsten inert gas (TIG) welding of rotationally symmetrical geometries using integrated features for alignment and fixation. Pipe specimens with the proposed designs are manufactured in Inconel 625 using L-PBF and milling. The pipe assembly is tested and TIG welding is performed for validation. 3D scans of the pipes before and after welding are evaluated, and the weld quality is examined via metallography and computed tomography (CT) scans. All welds produced in this study passed the highest evaluation group B according to DIN 5817. Thanks to good component alignment, safe handling, and a stable welding process, the developed designs eliminate the need for part-specific fixtures, simplify the process chain, and increase the process reliability. The results are applicable to a wide range of components with similar requirements. KW - L-PBF KW - AM feature integration KW - TIG welding KW - Integrated alignment features KW - Pipe weld preparation KW - Dissimilar joints KW - Inconel 625 PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547042 DO - https://doi.org/10.1007/s40964-021-00221-2 SN - 2363-9512 SP - 1 EP - 11 PB - Springer AN - OPUS4-54704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael A1 - Lichtenthäler, F. A1 - Stark, M. T1 - Multiple-wire submerged arc welding of high-strength fine-grained steels JF - The Patron Welding Journal N2 - Ensuring the required mechanical-technological properties of welds is a critical issue in the application of multi-wire submerged arc welding processes for welding high-strength fine-grained steels. Excessive heat input is one of the main causes for microstructural zones with deteriorated mechanical properties of the welded joint, such as a reduced notched impact strength and a lower structural robustness. A process variant is proposed which reduces the weld volume as well as the heat input by adjusting the welding wire configuration as well as the energetic parameters of the arcs, while retaining the advantages of multiwire submerged arc welding such as high process stability and production speed. KW - Submerged arc welding KW - High-strength fine-grained steels KW - Mechanical properties of the joints KW - Energy parameters of the arc PY - 2022 DO - https://doi.org/10.37434/tpwj2022.01.02 SN - 0957-798X IS - 1 SP - 9 EP - 13 PB - Paton Publishing House CY - Kiev AN - OPUS4-54701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Verbesserung der Vorhersagegüte von künstlichen neuronalen Netzen zum Widerstandspunktschweißen durch Auswertung des dynamischen Widerstands JF - Schweißen und Schneiden N2 - Das Widerstandspunktschweißen ist ein etabliertes Fügeverfahren in der Automobilindustrie. Es wird vor allem bei der Herstellung sicherheitsrelevanter Bauteile, zum Beispiel der Karosserie, eingesetzt. Daher ist eine kontinuierliche Prozessüberwachung unerlässlich, um die hohen Qualitätsanforderungen zu erfüllen. Künstliche neuronale Netzalgorithmen können zur Auswertung der Prozessparameter und -signale eingesetzt werden, um die individuelle Schweißpunktqualität zu gewährleisten. Die Vorhersagegenauigkeit solcher Algorithmen hängt von dem zur Verfügung gestellten Trainingsdatensatz ab. In diesem Beitrag wird untersucht, inwieweit die Vorhersagegüte eines künstlichen neuronalen Netzes durch Auswertung einer Prozessgröße, dem dynamischen Widerstand, verbessert werden kann. KW - Künstliche Intelligenz KW - Qualität KW - Neuronales Netz KW - Widerstandspunktschweißen PY - 2021 SP - 785 EP - 789 AN - OPUS4-53976 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation of the Extrapolation Capability of an Artificial Neural Network Algorithm in Combination with Process Signals in Resistance Spot Welding of Advanced High-Strength Steels JF - Metals N2 - Resistance spot welding is an established joining process for the production of safetyrelevant components in the automotive industry. Therefore, consecutive process monitoring is essential to meet the high quality requirements. Artificial neural networks can be used to evaluate the process parameters and signals, to ensure individual spot weld quality. The predictive accuracy of such algorithms depends on the provided training data set, and the prediction of untrained data is challenging. The aim of this paper was to investigate the extrapolation capability of a multi-layer perceptron model. That means, the predictive performance of the model was tested with data that clearly differed from the training data in terms of material and coating composition. Therefore, three multi-layer perceptron regression models were implemented to predict the nugget diameter from process data. The three models were able to predict the training datasets very well. The models, which were provided with features from the dynamic resistance curve predicted the new dataset better than the model with only process parameters. This study shows the beneficial influence of process signals on the predictive accuracy and robustness of artificial neural network algorithms. Especially, when predicting a data set from outside of the training space. KW - Automotive KW - Artificial intelligence KW - Quality monitoring KW - Resistance spot welding KW - Quality assurance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539783 DO - https://doi.org/10.3390/met11111874 VL - 11 IS - 11 SP - 1 EP - 11 PB - MDPI AN - OPUS4-53978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Elektronenstrahl schweißt additiv gefertigte Nickel-Superlegierungen JF - MM Maschinenmarkt N2 - Die Additive Fertigung ist ideal zur Herstellung und Reparatur komplexer Bauteile aus hochfesten Werkstoffen. Doch es fehlen Fügeverfahren, die Heißrisse vermeiden. Die Lösung heißt Elektronenstrahl. KW - Additive Fertigung PY - 2021 SP - 1 EP - 6 AN - OPUS4-53979 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey A1 - Bachmann, Marcel T1 - High-power laser beam welding for thick section steels – new perspectives using electromagnetic systems JF - Science and Technology of Welding and Joining N2 - In recent years, it was shown that the introduction of additional oscillating and permanent magnetic fields to laser beam and laser-arc hybrid welding can bring several beneficial effects. Examples are a contactless weld pool support for metals of high thickness suffering from severe drop-out when being welded conventionally or an enhanced stirring to improve the mixing of added filler material in the depth of the weld pool to guarantee homogeneous resulting mechanical properties of the weld. The latest research results show the applicability to various metal types over a wide range of thicknesses and welding conditions. The observations made were demonstrated in numerous experimental studies and a deep understanding of the interaction of the underlying physical mechanisms was extracted from numerical calculations. KW - Laser beam welding KW - Numerical simulations KW - Electromagnetic support PY - 2021 DO - https://doi.org/10.1080/13621718.2021.1999763 VL - 27 IS - 1 SP - 43 EP - 51 PB - Taylor & Francis Group AN - OPUS4-53970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, Chr. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation on laser cladding of rail steel without preheating N2 - The contact between train wheels and rail tracks is known to induce material degradation in the form of wear, and rolling contact fatigue in the railhead. Rails with a pearlitic microstructure have proven to provide the best wear resistance under severe wheel-rail interaction in heavy haul applications. High speed laser cladding, a state-of-the-art surface engineering technique, is a promising solution to repair damaged railheads. However, without appropriate preheating or processing strategies, the utilized steel grades lead to martensite formation and cracking during deposition welding. In this study, laser cladding of low-alloy steel at very high speeds was investigated, without preheating the railheads. Process speeds of up to 27 m/min and laser power of 2 kW are used. The clad, heat affected zone and base material are examined for cracks and martensite formation by hardness tests and metallographic inspections. A methodology for process optimization is presented and the specimens are characterized for suitability. Within the resulting narrow HAZ, the hardness could be significantly reduced. T2 - Lasers in Manufacturing Conference 2021 CY - Erlangen, Germany DA - 21.06.2021 KW - High speed laser cladding KW - Preheatin KW - Rail tracks KW - Pearlitic microstructure PY - 2021 AN - OPUS4-53974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - El-Sari, B. A1 - Rethmeier, Michael A1 - Finus, F. T1 - Schweißen unter Zug – LME-Eingangsprüfung für die Autoindustrie JF - Blechnet N2 - Der Trend zum Leichtbau und die Transformation zur E-Mobilität in der Automobilindustrie befeuern die Entwicklung neuer hochfester Stähle für den Karosseriebau. Derartige Werkstoffe sind beim Widerstandspunktschweißen besonders rissanfällig (LME). Das Schweißen unter Zug stellt eine effektive Methode um die LME-Anfälligkeit unterschiedlicher Werkstoffe qualitativ zu bestimmen. KW - Automobilindustrie KW - Widerstandspunktschweißen KW - Liquid Metal Embrittlement KW - Zinkbeschichtung KW - Hochfester Stahl PY - 2021 IS - 6 SP - 54 EP - 55 AN - OPUS4-54057 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyerdierks, M. A1 - Schreiber, V. A1 - Böhne, Ch. A1 - Jüttner, S. A1 - Meschut, G. A1 - Rethmeier, Michael T1 - Validierung von Methoden zur Vermeidung von Liquid Metal Embrittlement an realitätsnahen Prinzipbauteilen (IGF 21483 BG / P 1488) N2 - Ziel des Forschungsprojekts ist es, eine Korrelation zwischen Gleeble-Heißzug-Prüfverfahren und Widerstandspunktschweiß-basierten Prüfverfahren herzustellen. Es soll die Effektivität von Methoden zu Vermeidung von Liquid Metal Embrittlement an realitätsnahen Prinzipbauteilen bewertet werden. Weiterhin soll Kenntnis über Auswirkungen von LME Rissen auf das Tragverhalten von realitätsnahen Prinzipbauteilen gewonnen werden. T2 - 30. Schweißtechnische Fachtagung CY - Barleben, Germany DA - 07.10.2021 KW - Liquid Metal Embrittlement KW - Gleeble KW - Heißzug KW - Widerstandpunktschweißen KW - Flüssigmetallversprödung PY - 2021 AN - OPUS4-54061 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, V. A1 - Marko, A. A1 - Kruse, T. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Analysis and recycling of bronze grinding waste to produce maritime components using directed energy deposition N2 - Additive manufacturing promises a high potential for the maritime sector. Directed Energy Deposition (DED) in particular offers the opportunity to produce large-volume maritime components like propeller hubs or blades without the need of a costly casting process. The post processing of such components usually generates a large amount of aluminum bronze grinding waste. The aim of the presented project is to develop a sustainable circular AM process chain for maritime components by recycling aluminum bronze grinding waste to be used as raw material to manufacture ship Propellers with a laser-powder DED process. In the present paper, grinding waste is investigated using a dynamic image Analysis system and compared to commercial DED powder. To be able to compare the material quality and to verify DED process parameters, semi-academic sample geometries are manufactured. T2 - LiM 2021 CY - Munich, Germany DA - 21.06.2021 KW - Additive Manufacturing KW - Maritime Components KW - Powder Analysis KW - Recycling KW - Directed Energy Deposition PY - 2021 SP - 1 EP - 9 AN - OPUS4-54067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Wire arc additive manufacturing with novel Al-Mg-Si filler wire - Assessment of weld quality and mechanical properties JF - Metals N2 - Wire arc additive manufacturing enables the production of near-net shape large-volume metallic components leveraging an established industrial base of welding and cladding technology and adapting it for layer-wise material deposition. However, the complex relationship between the process parameters and resulting mechanical properties of the components still remains challenging. In case of high-strength Al-Mg-Si aluminum alloys, no commercial filler wires are yet available due the high susceptibility of solidification cracking as well as the necessary efforts to obtain acceptable mechanical properties. To address this need, we evaluated a novel filler wire based on AlMg0.7Si doped with a Ti5B1 master alloy to foster fine equiaxed grains within the deposited metal. The correlation between the process parameters and component quality was examined by analyzing the size and distribution of pores as well as the grain morphology. Furthermore, we evaluated the influence of different post-weld heat treatment strategies to achieve mechanical properties corresponding to the reference wrought material. We demonstrated that fine equiaxed grains in the weld metal reduced the susceptibility of solidification cracking significantly. The novel AlMg0.7Si-TiB (S Al 6063-TiB) filler wire facilitated wire arc additive manufacturing of high-strength aluminum components with mechanical properties that were almost as superior as the corresponding wrought base material. KW - Wire arc additive manufacturing KW - Precipitation hardening aluminum alloys KW - AlMg0.7SiTiB filler wire KW - Grain refinement KW - Mechanical properties PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538327 DO - https://doi.org/10.3390/met11081243 SN - 2075-4701 VL - 11 IS - 8 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-53832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -