TY - JOUR A1 - Uhlmann, Eckart A1 - Polte, Julian A1 - Fasselt, Janek Maria A1 - Müller, Vinzenz A1 - Klötzer-Freese, Christian A1 - Kleba-Ehrhardt, Rafael A1 - Biegler, Max A1 - Rethmeier, Michael T1 - A Comparative Evaluation of Powder Characteristics of Recycled Material from Bronze Grinding Chips for Additive Manufacturing N2 - In the manufacturing process of ship propellers, large quantities of grinding chips are generated. These grinding chips result from the finishing of the blade surfaces after the primary casting process of the propeller. The aim of this study was to investigate and compare different preparation processes used to produce chip powders with sufficient powder quality for the additive manufacturing process of directed energy deposition. The preparation of the samples was performed through different sieving, milling and re-melting processes. For the characterization of the prepared samples, powder analysis according to relevant industry standards was carried out. It was found that the re-melting processes result in superior powder quality for additive manufacturing in terms of particle size, morphology, and flowability. For some characteristics, the powder exhibits even better properties than those of commercial powders. Furthermore, the powder properties of the milled samples demonstrate a promising potential for u KW - Grinding chips KW - Comminution KW - Aluminium bronze KW - Additive manufacturing KW - Recycling KW - Sustainability PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-621696 DO - https://doi.org/10.3390/ma17143396 VL - 17 IS - 14 SP - 1 EP - 15 PB - MDPI AG AN - OPUS4-62169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raute, Julius A1 - Beret, Alexander A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Life cycle assessment in additive manufacturing of copper alloys—comparison between laser and electron beam N2 - Additive manufacturing is becoming increasingly important for industrial production. In this context, directed energy deposition processes are in demand to achieve high deposition rates. In addition to the well-known laser-based processes, the electron beam has also reached industrial market maturity. The wire electron beam additive manufacturing offers advantages in the processing of copper materials, for example. In the literature, the higher energy efficiency and the resulting improvement in the carbon footprint of the electron beam are highlighted. However, there is a lack of practical studies with measurement data to quantify the potential of the technology. In this work, a comparative life cycle assessment between wire electron beam additive manufacturing (DED-EB) and laser powder additive manufacturing (DED-LB) is carried out. This involves determining the resources for manufacturing, producing a test component using both processes, and measuring the entire energy consumption. The environmental impact is then estimated using the factors global warming potential (GWP100), photochemical ozone creation potential (POCP), acidification potential (AP), and eutrophication potential (EP). It can be seen that wire electron beam additive manufacturing is characterized by a significantly lower energy requirement. In addition, the use of wire ensures greater resource efficiency, which leads to overall better life cycle assessment results. KW - Life cycle assessment (LCA) KW - Additive manufacturing KW - Directed energy deposition KW - Wire electron beam additive manufacturing KW - Copper alloys PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-621705 DO - https://doi.org/10.1007/s40194-024-01856-9 SP - 3169 EP - 3176 PB - Springer Science and Business Media LLC AN - OPUS4-62170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marquardt, R. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Functionally graded material for improved wear resistance manufactured by directed energy deposition N2 - Protecting components against wear and corrosion is a common way to improve their lifetime. This can be achieved by coating them with a hardfacing material. Common coatings consist of materials such as tungsten carbide or cobalt-chromium alloys, also known as Stellite. Hardfacing materials can be deposited by welding methods like plasma welding or laser cladding. The discrete change of the base material to the hardfacing layer can lead to cracks and chipping. Studies showed a reduced risk of cracking when a functionally graded material is used to create a smooth transition between the base and the hardfacing. Gradings from austenitic steel to cobalt-chromium alloys are already known in the literature. However, there is no knowledge about austenitic- ferritic duplex steels as base material. Therefore, this study aims to demonstrate the feasibility of a functionally graded material from duplex steel to cobalt-chromium alloy with a new approach. By using powder-based directed energy deposition, a graded material with smooth material transition is manufactured additively. Cracking and porosity are examined through metallography. Microhardness measurements as well as the analysis of the chemical composition by energy dispersive X-ray spectroscopy and X-ray fluorescence are used to validate the build-up strategy. KW - Additive manufacturing KW - Functionally graded material KW - Functionally graded additive manufacturing KW - Directed energy deposition KW - Laser metal deposition PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-621683 DO - https://doi.org/10.1007/s40964-024-00879-4 SP - 1 EP - 6 PB - Springer Science and Business Media LLC AN - OPUS4-62168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seitz, Georg A1 - Bantle, Patrick A1 - Biegler, Max A1 - Elsner, Beatrix A. M. A1 - Rethmeier, Michael T1 - An Inherent Strain Method Using Progressive Element Activation for Fast Distortion Calculation in Directed Energy Deposition N2 - The finite element analysis (FEA) simulation of directed energy deposition (DED) processes offers many potential cost savings during the build job optimization process, through, e.g., distortion predictions. However, the biggest challenge is the long calculation time, frequently exceeding the actual build time. One way of simplifying the simulation with the aim of reducing the calculation times is the inherent strain method. While this method is already used commercially in the simulation of powder bed-based processes and conventional welding technologies, its use in DED is still the subject of research. In this work, an inverse determination of an inherent strain is carried out on a 20-layer-high, single-track-wide wall, common theories are reviewed, and an approach based on thermal strain is introduced. As a result, the calculation time could be reduced by 83% and the accuracy remained at 92%. KW - Inherent strain method KW - Simulation KW - Finite element analysis KW - Directed energy deposition KW - Additive manufacturing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-622595 DO - https://doi.org/10.3390/met14121338 SN - 2075-4701 VL - 14 IS - 12 SP - 1 EP - 12 PB - MDPI AN - OPUS4-62259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Introduction to AGIL N2 - An introduction to the Themenfeld Material project AGIL will be presented. The concept of the project, the work package structure and the material used within the project will be presented. T2 - 2nd Workshop on In situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 19.04.2021 KW - AGIL KW - Ageing KW - Additive manufacturing KW - Laser powder bed fusion PY - 2021 AN - OPUS4-54107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Chaudry, Mohsin Ali A1 - Elorriaga, A. A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Llavori, I. A1 - Hilgenberg, Kai T1 - Design methodology of vessel produced by L PBF stainless steel using representative specimens N2 - This work presents the preliminary results of an ongoing project with a double objective: on the one hand, the characterisation of the mechanical properties against fatigue damage of an additively manufactured 316 stainless steel produced by laser powder bed-based (L-PBF) technology; on the other hand, the implementation of numerical simulation techniques able to predict the mechanical behaviour of the material in order to optimise and reduce the design costs of vessels used in the chemical sector. The current state of the work developed in this research framework allows showing the first batch of experimental results of crack propagation rate (FCGR) and high cycle fatigue (HCF) tests. The geometry of the vessels studied presents three clearly differentiated regions, either in terms of thickness (11-15 mm) or concerning the inclination of the walls to the direction of manufacturing (0º - 45º). The experimental campaign carried out so far allows identifying the differences in behaviour when comparing different extraction locations around the vessel. This is due to the variations in thermal cycles that the deposited material undergoes during the manufacturing process. Therefore, this causes variations in the microstructure which lead to changes in the response of the material. In this work, these differences are analysed qualitatively and quantitatively from the results of FCGR and HCF, thus allowing to locate the regions with the highest risk in terms of structural integrity against fatigue. This preliminary phase together with the numerical simulation of the additive manufacturing process are key to achieving a reliable description and modelling of the material. The latter will make it possible to address the priority aim of this project, involving the manufacture of independent samples whose properties are representative of the original material extracted from the reference vessels. It is, therefore, a comprehensive methodology for the design of additively manufactured components based on the localised fatigue mechanical properties of representative specimens. T2 - ECF23, European Conference on Fracture 2022 CY - Funchal, Portugal DA - 27.06.2022 KW - Additive manufacturing KW - Steel 316L KW - Fracture Mechanics PY - 2022 AN - OPUS4-55240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Jonathan T1 - Near-real-time in-situ powder bed anomaly detection using machine learning algorithms for high-resolution image analysis in PBF-LB/M N2 - In-situ captured visual images of the laser powder bed fusion process (PBF-LB/M) provide valuable insights into process dynamics. Automatic analysis of after-recoating images using machine learning algorithms enables the detection of process deviations to reduce scrap production. However, current industrial monitoring systems for PBF-LB/M are limited by low image resolution. While higher resolutions enable the system’s ability to capture smaller features, they increase storage and computational demand. Edge devices offer a solution by enabling near-real-time, on-premises image analysis within the machine and company network. In this study, high-resolution after-recoating images, captured with a spatial resolution of 17 µm/pixel and an image size of 9344 x 7000 pixels, were processed on an Nvidia Jetson Orin NX16 edge device. The images were downscaled, and anomaly detection algorithms were used to identify regions of interest for segmentation and classification at full resolution. To address computational constraints, state-of-the-art anomaly detection algorithms were evaluated and an appropriate downscaling factor for the on-edge implementation was determined. The EfficientAD algorithm achieved promising results, detecting anomalies within an inference time of less than 10 seconds. The presented framework enables anomaly detection with a maximum delay of one layer. This lays the foundation for the future development of near-real-time intervention in the PBF-LB/M process. T2 - ISAM 2025 – 6th International Symposium on Additive Manufacturing CY - Dresden, Germany DA - 21.05.2025 KW - Additive manufacturing KW - Image processing KW - In-situ monitoring KW - Powder bed fusion PY - 2025 AN - OPUS4-63231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Franchin, G. A1 - Zocca, Andrea A1 - Karl, D. A1 - Yun, H. A1 - Tian, X. T1 - Editorial: Advances in additive manufacturing of ceramics N2 - Recently, additive manufacturing of ceramics has achieved the maturity to be transferred from scientific laboratories to industrial applications. At the same time, research is progressing to expand the boundaries of this field into the territory of novel materials and applications. This feature issue addresses current progress in all aspects of additive manufacturing of ceramics, from parts design to feedstock selection, from technological development to characterization of printed components. KW - Additive manufacturing KW - Ceramic PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549361 DO - https://doi.org/10.1016/j.oceram.2022.100277 SN - 2666-5395 VL - 10 SP - 1 EP - 2 PB - Elsevier CY - Amsterdam AN - OPUS4-54936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - Towards component safety in laser powder bed fusion of metals N2 - The thermal history during additive manufacturing of complex components differs significantly from the thermal history of geometrically primitive test specimens. This can result in differences in properties that can lead to different material behavior. In this talk, the concept of representative test specimens is introduced, which enables the transfer of thermal histories from complex geometries to simple geometries, which can lead to better comparability of material properties. T2 - Additive Alliance CY - Hamburg, Germany DA - 05.03.2024 KW - Additive manufacturing KW - Heat accumulation KW - Laboratory specimens KW - In situ monitoring KW - Representative specimens KW - Thermal history PY - 2024 AN - OPUS4-60263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Jonathan T1 - Visual surface structure analysis of high-resolution images from visual in-situ process monitoring in laser powder bed fusion N2 - Parameter studies are a common step in selecting process parameters for powder bed fusion of metals with laser beam (PBF-LB/M). Density cubes manufactured with varied process parameters exhibit distinguishable surface structures visible to the human eye. Industrial visual in-situ monitoring systems for PBF-LB/M currently have limited resolution and are incapable of reliably capturing differences in the surface structures. For this work, a 65 MPixel high resolution monochrome camera is integrated in an industrial PBF-LB/M machine together with a high intensity led bar. Post-exposure images are taken to analyze differences in light reflection on the specimen’s surface. The grey level co-occurrence matrix is used to quantify the in-situ measured visual surface structure of nickel-based super alloy IN939 density cubes. The properties of the grey level co-occurrence matrix correlate to the energy input and resulting porosity of specimens. Low energy samples with lack of fusion flaws show an increased contrast in the grey level co-occurrence matrix compared to specimens with an optimal energy input. The potential of high-resolution images as reference data in in-situ process monitoring in PBF-LB/M is discussed. T2 - 77th IIW Annual Assembly and International Conference CY - Rhodos, Greece DA - 06.07.2024 KW - Additive manufacturing KW - Powder bed fusion KW - In-situ monitoring KW - Image processing KW - Lack of fusion PY - 2024 AN - OPUS4-60688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Chaudry, Mohsin Ali A1 - Scheuschner, Nils A1 - Blasón Gonzalez, Sergio A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Thermal history transfer from complex components to representative test specimens in laser powder bed fusion N2 - Additively manufactured components are characterized by heterogeneous mechanical properties due to variations of the microstructure, flaws and residual stresses resulting from the inhomogeneous fabrication process. The large number of influencing factors poses a further challenge in understanding the correlation between material properties, process parameters and component geometry. Therefore, the qualification of components based on witness specimens produced within the same job is questionable. This work aims to present a new strategy for the characterization of PBF-LB/M components based on representative specimens. The key assumption is the feasibility of a transfer of the thermal history from a component to a specimen. It is assumed that similar material properties are determined for components and specimens produced adopting a similar thermal history. After the definition of a region of interest in the component, a combination of thermal analyses by means of finite elements and in-situ experimental determination of the thermal history through infrared thermography is used to produce test coupons with a similar thermal history. The effectiveness of the procedure is demonstrated on a pressure vessel for applications in the chemical industry. KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Process simulation KW - Representative specimens PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602651 DO - https://doi.org/10.1007/s40964-024-00689-8 SN - 2363-9512 SN - 2363-9520 SP - 1 EP - 16 PB - Springer CY - Cham, Switzerland AN - OPUS4-60265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - Development of representative test specimens by thermal history transfer in laser powder bed fusion N2 - The use of components manufactured by laser powder bed fusion (PBF LB/M) and subjected to fatigue loading is still hampered by the uncertainty about the homogeneity of the process results. Numerous influencing factors including the component’s geometry contribute to the risk of process instability and resulting inhomogeneity of properties. This drastically limits the comparability of different built parts and requires expensive full component testing. The thermal history as the spatiotemporal temperature distribution has been identified as a major cause for flaw formation. Therefore, it can be hypothesized that a similar thermal history between components and test specimens enhances their comparability. Following this assumption, a strategy is developed to transfer the intrinsic preheating temperature as a measure of comparability of thermal histories from a region of interest of a complex component to a simple test specimen. This transfer concept has been successfully proved by the use of FEM-based macroscale thermal simulations, validated by calibrated infrared thermography. An adoption of the specimen manufacturing process by the adjustment of the inter layer times was established to manufacture specimens which are representatives of a specific region of a large-scale component in terms of the thermal history similarity criterion. The concept is schematically illustrated in Figure 1 and was demonstrated using a pressure vessel geometry from the chemical industry. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Thermal history KW - Laboratory specimens KW - In situ monitoring KW - Representative specimens PY - 2024 AN - OPUS4-60260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Poka, Konstantin A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Polte, Julian T1 - Advanced camera calibration for lens distortion correction in hybrid manufacturing processes: An exemplary application in laser powder bed fusion (PBF-LB/M) N2 - Hybrid additive manufacturing is becoming increasingly important in the field of additive manufacturing. Hybrid approaches combine at least two different manufacturing processes. The focus of this work is the build-up of geometries onto conventionally manufactured parts using Powder Bed Fusion with Laser Beam of Metals (PBF-LB/M). The hybrid build-up requires a precise position detection system inside the PBF-LB/M machines to determine the exact position of the existing component. For this purpose, high-resolution camera systems can be utilized. However, the use of a camera system is associated with several challenges. The captured images are subject to various distortions of the optical path. Due to these distortions, it is not possible to use the images for measurements and, therefore, it is not possible to calculate the positions of objects. In this study a homography matrix is calculated to correct keystone distortion in the images. Different calibration patterns have been tested for the calculation of the homography matrix. The influence of the number of calibration points on the precision of position detection of objects is determined. Furthermore, the influence of an additional camera calibration by using ChArUco boards is evaluated. The result is a camera calibration workflow with associated calibration pattern for a precise position detection of parts inside PBF-LB/M machines allowing a hybrid build-up with minimum physical offset between base component and build-up. T2 - euspen’s 24th International Conference & Exhibition CY - Dublin, Ireland DA - 10.06.2024 KW - Additive manufacturing KW - Hybrid build-up KW - Position detection KW - Camera calibration PY - 2024 SP - 1 EP - 4 AN - OPUS4-60599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - IIW Intermediate Meeting C-II/CIX CY - Munich, Germany DA - 06.03.2023 KW - Additive manufacturing KW - High strength steel KW - Residual stress PY - 2023 AN - OPUS4-59307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Heat control and design‑related effects on the properties and welding stresses in WAAM components of high‑strength structural steels N2 - Commercial high-strength fller metals for wire arc additive manufacturing (WAAM) are already available. However, widespread industrial use is currently limited due to a lack of quantitative knowledge and guidelines regarding welding stresses and component safety during manufacture and operation for WAAM structures. In a joint research project, the process- and material-related as well as design infuences associated with residual stress formation and the risk of cold cracking are being investigated. For this purpose, reference specimens are welded fully automated with defned dimensions and systematic variation of heat control using a special, high-strength WAAM fller metal (yield strength>790 MPa). Heat control is varied by means of heat input (200–650 kJ/m) and interlayer temperature (100–300 °C). The ∆t8/5 cooling times correspond with the recommendations of fller metal producers (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. Welding parameters and AM geometry are correlated with the resulting microstructure, hardness, and residual stress state. High heat input leads to a lower tensile stress in the component and may cause unfavorable microstructure and mechanical properties. However, a sufciently low interlayer temperature is likely to be suitable for obtaining adequate properties at a reduced tensile stress level when welding with high heat input. The component design afects heat dissipation conditions and the intensity of restraint during welding and has a signifcant infuence on the residual stress. These complex interactions are analyzed within this investigation. The aim is to provide easily applicable processing recommendations and standard specifcations for an economical, appropriate, and crack-safe WAAM of high-strength steels. KW - GMA welding KW - Additive manufacturing KW - Residual stresses KW - High-strength steel KW - Cold cracking safety KW - Heat control KW - Wind energy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567397 DO - https://doi.org/10.1007/s40194-022-01450-x SN - 1878-6669 VL - 2022 SP - 1 EP - 11 PB - Springer CY - Berlin AN - OPUS4-56739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Optimisation of surface residual stresses using ultrasonic‑assisted milling for wire‑arc additive manufactured Ni alloy components N2 - Nickel alloys are cost intensive materials and generally classified as difficult-to-cut material. However, machining of these materials is needed especially in case of alloy 36 (1.3912), which is commonly used in mould construction for the production of fibre-reinforced composites. With regard to repair, modification and manufacturing of such components, additive manufacturing offers significant economic advantages. Nevertheless, subsequent machining steps are needed to achieve the final component contour and defined surface conditions. Dependent on the material and machining process conditions, detrimental tensile residual stresses may be the result on the machined surface, having negative impact on the component performance and safety. In this investigation, machining experiments were carried out on wire arc additive manufactured components made of alloy 36, varying the cutting speed and the feed rate. In addition, the conventional milling process (CM) was compared with a modern, hybrid machining process, the ultrasonic-assisted milling (US). The cutting forces and the surface-near residual stresses were analysed using X-ray diffraction. A significant improvement of the machinability as well as the surface integrity by using the ultrasonic assistance was observed, especially at low cutting speeds. The CM induced mainly tensile residual stresses, the US mainly compressive residual stresses. KW - Surface integrity KW - Ultrasonic-assisted milling KW - Additive manufacturing KW - Ni alloy KW - Alloy 36 PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575246 DO - https://doi.org/10.1007/s00170-023-11326-z SN - 1433-3015 VL - 126 IS - 9 SP - 4191 EP - 4198 PB - Springer Nature AN - OPUS4-57524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wandtke, Karsten ED - Becker, Amadeus ED - Schröpfer, Dirk ED - Kromm, Arne ED - Kannengießer, Thomas ED - Scharf-Wildenhain, R. ED - Hälsig, A. ED - Hensel, J. T1 - Residual Stress Evolution during Slot Milling for Repair Welding and Wire Arc Additive Manufacturing of High-Strength Steel Components N2 - High-strength steels offer potential for weight optimization due to reduced wall thicknesses in modern constructions. Additive manufacturing processes such as Wire Arc Additive Manufacturing (WAAM) enable the resource-efficient production of structures. In the case of defects occurring in weld seams orWAAM components due to unstable process conditions, the economical solution is local gouging or machining and repair welding. It is important to understand the effects of machining steps on the multiaxial stress state in conjunction with the design-related shrinkage restraints. Research into how welding and slot milling of welds andWAAM structures affects residual stresses is still lacking. For this reason, component-related investigations with high-strength steels with yield strengths ≥790 MPa are carried out in our research. In-situ digital image correlation (DIC) and ex-situ X-ray diffraction (XRD) were used to analyze the stresses and strains induced on specimens during and after milling. The systematic analyses revealed a significant interaction of the stiffness and microstructure of the specimens with the initial residual stresses induced by welding. Subsequent repair welds can result in significantly higher residual stresses. KW - High strength steels KW - Additive manufacturing KW - Residual stress KW - Repair welding KW - Ditigtal image correlation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593515 DO - https://doi.org/10.3390/met14010082 VL - 14 IS - 1 SP - 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-59351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Julien T1 - Additive Manufacturing of Iron Aluminides: Microstructure, Machinability, and Surface Integrity N2 - The increasing global focus on energy and resource efficiency has stimulated a growing interest in additive manufacturing. AM offers economic advantages and enables an efficient use of materials. However, AM components often require subsequent mechanical post-processing, such as machining (e.g. milling), to achieve the final contours or surfaces. This is a particular challenge due to the heterogeneous and anisotropic nature of AM structures, which affect machining and the resulting component properties. High-performance materials such as iron aluminide represent a promising alternative to conventional high-temperature materials with a significant economic advantage. However, the strength and hardness properties, which are advantageous for applications in highly stressed lightweight components, pose a challenge for economical machining in addition to the AM microstructure properties. The difficult-to-cut material causes accelerated tool wear and insufficient surface quality. This study shows that crack-free additive manufacturing of the three-component system of iron-nickel-aluminum is possible and advantages in terms of machinability compared to FeAl-AM components are achieved. The more homogeneous microstructure leads to a reduction in cutting forces, with positive effects on the machinability and optimized surface integrity. Ultrasonic assisted milling (USAM) offers great potential to address the major challenges posed by difficult-to-cut materials and additively manufactured weld structures. Therefore, this study focuses on assessing the transferability of previous positive results by USAM to the selected iron aluminide alloys. The machinability of the aluminides is analyzed by varying significant influencing variables in finish milling experiments and evaluated in terms of the loads on the tool and the resulting surface integrity. T2 - 77. IIW Annual International Conference CY - Rhodos, Greece DA - 07.07.2024 KW - Additive manufacturing KW - Surface-integrity KW - Iron-aluminide KW - Ultrasonic-assisted milling KW - Difficult-to-cut KW - Tool wear PY - 2024 AN - OPUS4-62027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Julien T1 - Optimizing residual stresses in additively manufactured high-performance materials N2 - The integration of modern high-performance materials in combination with additive manufacturing (AM) has revolutionized the approach to lightweight construction across diverse applications. This study explores the synergy between these materials and additive manufacturing (AM), focusing on their unique properties to engineer resource-efficient structures. Despite these advancements, machining these hard-to-cut materials such as iron-aluminide for safety-critical components remains challenging due to increased tool wear and compromised surface integrity. This research focuses on overcoming these challenges through the application of ultrasonic-assisted milling (USAM), a hybrid machining process exhibiting significant potential. By incorporating ultrasonic oscillations along the milling tool axis, USAM minimizes tool and component surface loads, enhancing tool life and producing defect-free, homogeneous surfaces with reduced roughness parameters. This investigation centers on the influence of ultrasonic-assisted milling on residual material stresses, crucial for component performance under load. In contrast to conventional milling generating tensile stresses, USAM induces advantageous compressive residual stresses, potentially enhancing the component's crack resistance. The study employs experimental variations in ultrasonic amplitude during the machining process to identify optimal parameters for achieving maximum compressive stresses. In addition, the depth profile of these residual stresses on the surface is investigated, which provides more detailed insights into their distribution and possible effects. This research not only contributes to the evolving environment of innovative manufacturing technologies, but also places particular focus on the central role of residual stresses in the performance and reliability of safety-critical AM components. The results not only contribute to a better understanding of ultrasonic-assisted milling, but also provide crucial guidance for the design of components that can withstand the challenges of real-world applications. T2 - BMDK OvGU Magdeburg CY - Magdeburg, Germany DA - 19.06.2024 KW - Ultrasonic-assisted milling KW - Additive manufacturing KW - High-performance materials KW - Surface integrity KW - Residual stresses depth profile PY - 2024 AN - OPUS4-62025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Hensel, J. T1 - Influence of the WAAM process and design aspects on residual stresses in high-strength structural steels N2 - Wire arc additive manufacturing (WAAM) enables the efficient production of weight-optimized modern engineering structures. Further increases in efficiency can be achieved by using high-strength structural steels. Commercial welding consumables for WAAM are already available on the market. Lack of knowledge and guidelines regarding welding residual stress and component safety during production and operation leads to severely limited use for industry applications. The sensitive microstructure of high-strength steels carries a high risk of cold cracking; therefore, residual stresses play a crucial role. For this reason, the influences of the material, the WAAM process, and the design on the formation of residual stresses and the risk of cold cracking are being investigated. The material used has a yield strength of over 800 MPa. This strength is adjusted via solid solution strengthening and a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on the residual stresses. The focus of the present investigation is on the additive welding parameters and component design on their influence on hardness and residual stresses, which are analyzed by means of X-ray diffraction (XRD). Reference specimens (hollow cuboids) are welded fully automated with a systematic variation of heat control and design. Welding parameters and AM geometry are correlated with the resulting microstructure, hardness, and residual stress state. Increased heat input leads to lower tensile residual stresses which causes unfavorable microstructure and mechanical properties. The component design affects heat dissipation conditions and the intensity of restraint during welding and has a significant influence on the residual stress. KW - DED-arc KW - Additive manufacturing KW - High-strength steel filler metal KW - Residual stress PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572698 DO - https://doi.org/10.1007/s40194-023-01503-9 SN - 1878-6669 VL - 67 IS - 4 SP - 987 EP - 996 PB - Springer CY - Berlin AN - OPUS4-57269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Scheuschner, Nils ED - Meyendorf, N. ED - Ida, N. ED - Singh, R. ED - Vrana, J. T1 - In Situ Real-Time Monitoring Versus Post NDE for Quality Assurance of Additively Manufactured Metal Parts N2 - In this chapter, the current state-of-the-art of in situ monitoring and in situ NDE methods in additive manufacturing is summarized. The focus is set on methods, which are suitable for making statements about the quality and usability of a component currently being manufactured. This includes methods which can be used to determine state properties like temperature or density, other physical properties like electrical or thermal conductivity, the microstructure, the chemical composition, the actual geometry, or which enable the direct detection of defects like cracks, voids, delaminations, or inclusions. Thus, optical, thermographic, acoustic, and electromagnetic methods, as well as methods being suitable for investigating particle and fume emission are presented. The requirements of in situ monitoring methods with a focus on thermographic methods are discussed by considering different additive manufacturing processes like laser powder bed fusion (PBF-LB/M) and direct energy deposition (DED-LB/M). Examples of the successful implementation and applications of such monitoring methods at BAM are given. The in situ monitoring and NDE methods are compared against post-process NDE methods. The advantages and challenges of in situ methods concerning real-time data analysis and the application of AI algorithms are addressed and discussed. KW - Additive manufacturing KW - In situ monitoring KW - In situ NDE KW - Post NDE KW - Thermography KW - Laser powder bed fusion KW - Direct energy deposition PY - 2021 SN - 978-3-030-48200-8 DO - https://doi.org/10.1007/978-3-030-48200-8_51-1 SP - 1 EP - 37 PB - Springer Nature Switzerland AG CY - Cham, Switzerland ET - 1 AN - OPUS4-52824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane T1 - Summary of in-situ monitoring in additive manufacturing - ProMoAM N2 - The quality of additively manufactured components is significantly influenced by the process parameters used during production. Thus, sensors and measuring systems are already commercially available for process monitoring, at least in metal-based additive manufacturing. However, it is not yet possible to detect defects and inhomogeneities directly or indirectly during the building process. The aim of the project ProMoAM is to develop spectroscopic and non-destructive testing methods for the in-situ evaluation of the quality of additively manufactured metal components in laser- or arc-based AM processes. In addition to passive and active methods of thermography, this includes optical tomography, optical emission spectroscopy, eddy current testing, laminography (radiography), X-ray backscattering, particle emission spectroscopy and photoacoustic methods. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - In-situ monitoring KW - Additive manufacturing KW - Metals KW - Thermography PY - 2021 AN - OPUS4-52539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Towards hyperspectral in-situ temperature measurement in metal additive manufacturing N2 - The industrial use of additive manufacturing for the production of metallic parts with high geometrical complexity and lot sizes close to one is rapidly increasing as a result of mass individualisation and applied safety relevant constructions. However, due to the high complexity of the production process, it is not yet fully understood and controlled, especially for changing (lot size one) part geometries. Due to the thermal nature of the Laser-powder bed fusion (L-PBF) process – where parts are built up layer-wise by melting metal powder via laser - the properties of the produced part are strongly governed by its thermal history. Thus, a promising route for process monitoring is the use of thermography. However, the reconstruction of temperature information from thermographic data relies on the knowledge of the surface emissivity at each position on the part. Since the emissivity is strongly changing during the process due to phase changes, great temperature gradients, possible oxidation, and other potential influencing factors, the extraction of real temperature data from thermographic images is challenging. While the temperature development in and around the melt pool, where melting and solidification occur is most important for the development of the part properties. Also, the emissivity changes are most severe in this area, rendering the temperature deduction most challenging. A possible route to overcome the entanglement of temperature and emissivity in the thermal radiation is the use of hyperspectral imaging in combination with temperature emissivity separation (TES) algorithms. As a first step towards the combined temperature and emissivity determination in the L-PBF process, here, we use a hyperspectral line camera system operating in the short-wave infrared region (0.9 µm to 1.7 µm) to measure the spectral radiance emitted. In this setup, the melt pool of the L-PBF process migrates through the camera’s 1D field of view, so that the radiation intensities are recorded simultaneously for multiple different wavelength ranges in a spatially resolved manner. At sufficiently high acquisition frame rate, an effective melt pool image can be reconstructed. Using the grey body approximation (emissivity is independent of the wavelength), a first, simple TES is performed, and the resulting emissivity and temperature values are compared to literature values. Subsequent work will include reference measurements of the spectral emissivity in different states allowing its analytical parametrisation as well as the adaption and optimisation of the TES algorithms. An illustration of the proposed method is shown in Fig.1. The investigated method will allow to gain a deeper understanding of the L-PBF process, e.g., by quantitative validation of simulation results. Additionally, the results will provide a data basis for the development of less complex and cheaper sensor technologies for L-PBF in-process monitoring (or for related process), e.g., by using machine learning. T2 - 21st International Conference on Photoacoustic and Photothermal Phenomena CY - Bled, Slovenia DA - 19.06.2022 KW - Thermography KW - Additive manufacturing KW - L-PBF KW - Hyperspectral PY - 2022 AN - OPUS4-55152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Elsner, B. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Geometric distortion-compensation via transient numerical simulation for directed energy deposition additive manufacturing N2 - Components distort during directed energy deposition (DED) additive manufacturing (AM) due to the repeated localised heating. Changing the geometry in such a way that distortion causes it to assume the desired shape – a technique called distortion-compensation – is a promising method to reach geometrically accurate parts. Transient numerical simulation can be used to generate the compensated geometries and severely reduce the amount of necessary experimental trials. This publication demonstrates the simulation-based generation of a distortioncompensated DED build for an industrial-scale component. A transient thermo-mechanical approach is extended for large parts and the accuracy is demonstrated against 3d-scans. The calculated distortions are inverted to derive the compensated geometry and the distortions after a single compensation iteration are reduced by over 65%. KW - DED KW - Welding simulation KW - Dimensional accuracy KW - Additive manufacturing KW - Laser metal deposition KW - LMD PY - 2020 DO - https://doi.org/10.1080/13621718.2020.1743927 SP - 1 EP - 8 PB - Taylor & Francis AN - OPUS4-50877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation of the Application of a C-ring Geometry to validate the Stress Relief Heat Treatment Simulation of Additive Manufactured Austenitic Stainless Steel Parts via Displacement N2 - Directed energy deposition is a metal additive manufacturing process that builds parts by joining material in a layer-by-layer fashion on a substrate. Those parts are exposed to rapid thermo-cycles which cause steep stress gradients and the layer-upon-layer manufacturing fosters an anisotropic microstructure, therefore stress relief heat treatment is necessary. The numerical simulation can be used to find suitable parameters for the heat treatment and to reduce the necessary efforts to perform an effective stress relieving. Suitable validation Experiments are necessary to verify the results of the numerical simulation. In this paper, a 3D coupled thermo-mechanical model is used to simulate the heat treatment of an additive manufactured component to investigate the application of a C-ring geometry for the distortion-based validation of the numerical simulation. Therefore, the C-ring samples were 3D scanned using a structured light 3D scanner to quantify the distortion after each process step. KW - Additive manufacturing KW - Directed energy deposition KW - Laser KW - Heat treatment KW - Numerical simulation PY - 2020 DO - https://doi.org/10.3139/105.110417 VL - 75 IS - 4 SP - 248 EP - 259 PB - Carl Hanser Verlag AN - OPUS4-51318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano-Munoz, Itziar A1 - Kromm, Arne A1 - Madia, Mauro T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy N2 - Al-Si alloys produced by Laser Powder Bed Fusion (L-PBF) techniques allow the fabrication of lightweight free-shape components that find space in aerospace, automotive, biomedical and military applications. Due to the high cooling rates occurring during the building process, L-PBF AlSi10Mg alloys exhibit an ultra-fine microstructure that leads to superior mechanical properties in the as-built condition compared to conventional cast Al-Si materials. Nevertheless, L-PBF processing induces high thermal gradients, leading to deleterious residual stress levels that must be considered to avoid part distortion and unpredicted failures. In order to relax detrimental residual stress and to increase the ductility, post-processing stress relief treatments are generally performed. In as-built condition the hypoeutectic AlSi10Mg microstructure consist of fine α-Al cells containing uniformly dispersed silicon nanoparticles, which are, in addition, surrounded by a eutectic Si network. Above 260°C the silicon interconnectivity starts to breakdown into spheroidized particles and to coarsen. At the same time, the heating residual stresses are relieved. The objective of the contribution is to investigate, under different heat treatment conditions, the evolution of microstructure and residual stresses in view of optimizing the fatigue performance of the alloy. To this purpose various heat treatments in a range of temperatures between 265°C and 300°C for a duration between 15 minutes and 2 hours are performed. The microstructure modifications are analysed using a scanning electron microscope and the residual stress state is measured by laboratory X-ray diffraction. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - AlSi10Mg alloy KW - Additive manufacturing KW - L-PBF KW - Residual stress KW - Heat treatment PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544942 DO - https://doi.org/10.1016/j.prostr.2022.03.057 SN - 2452-3216 VL - 38 SP - 564 EP - 571 PB - Elsevier B.V. AN - OPUS4-54494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Jonathan T1 - High-resolution in-situ image analysis in laser powder bed fusion N2 - Visual images captured - in-situ - in laser powder bed fusion (PBF-LB/M) provide valuable insights into process dynamics. This poster presents methods for analyzing high-resolution images with a spatial resolution of 17 µm/pixel and a size of 9344 × 7000 pixels. In the context of identifying microstructural anomalies, the relationship between the contrast values derived from the grey-level co-occurrence matrix (GLCM) of post-exposure images and ex situ measurements of surface roughness, porosity, and melt pool depth is illustrated. Furthermore, a workflow to detect process anomalies in post recoating images using an edge device is presented. T2 - BAM Advisory Council Meeting CY - Berlin, Germany DA - 25.06.2025 KW - Additive manufacturing KW - High resolution camera KW - Image processing KW - In situ monitoring KW - Powder bed fusion PY - 2025 AN - OPUS4-63990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Robens-Radermacher, Annika T1 - Efficient cooling time optimization in Wire Arc Additive Manufacturing using a multi-layer reduced order model N2 - Additive manufacturing (AM) has transformed the industry by enabling the production of complex geometries and parts with customized properties. Among various AM techniques, wire arc additive manufacturing (WAAM) stands out due to its high deposition rate and low equipment cost. However, WAAM’s complex thermal history poses challenges for real-time simulation, essential for online process control and optimization. Consequently, experimental optimization remains the state-of-the-art approach. A critical parameter to optimize is the cooling phase duration, which prevents structural overheating, controls the molten pool size, and influences the mechanical properties of the final product. For efficient cooling time optimization, a fast-to-evaluate model of the temperature field during multi-layer deposition is necessary. This study proposes a reduced order model (ROM) using the proper generalized decomposition (PGD) method as a powerful tool to minimize computational effort. Given the moving heat source in WAAM processes, a mapping approach is employed to achieve a fully separated representation of the temperature field. Building on the authors’ previous one-layer approach, this contribution extends the model to multiple layers through enhanced mapping and compression techniques. The compression reduces the total number of PGD modes as the number of layers increases. The extended mapping allows computations with a fixed mesh over the simulation time, in contrast to standard methods such as the element birth technique. For cooling time optimization, the cooling duration of each layer is incorporated as PGD variables, enabling time-efficient computation of the temperature field for varying cooling times. The developed ROM is applied to optimize the cooling time of a multiple layer example. Therefore a 5-10 layer wall structure is investigated using the austenitic stainless steel 1.4404 (AISI 316 L). The resulting cooling times and the efficiency of the approach are discussed. T2 - 12th European solid mechanics conference (ESMC) CY - Lyon, France DA - 07.07.2025 KW - Model order reduction KW - Proper generalized decomposition KW - Welding KW - Additive manufacturing KW - Optimzation PY - 2025 UR - https://esmc2025.sciencesconf.org/ AN - OPUS4-63855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano-Munoz, Itziar A1 - Haubrich, J. A1 - Requena, G. A1 - Madia, Mauro T1 - Influence of post-process heat treatments on the fatigue crack propagation behaviour of a PBF-LB/M AlSi10Mg alloy N2 - The microstructure has a great influence on short fatigue crack growth in metallic materials. Laser-based Powder Bed Fusion AlSi10Mg alloys exhibit in the as-built condition a fine fibrous Si structure and a supersaturated solid solution of Si in the α-Al matrix, which is significantly modified by heat treatments starting already at temperatures under 260 °C. This study focuses on the influence of post-process heat treatments on the microstructural evolution and the resulting fatigue crack growth resistance. As compared to the as-built condition, two heat treatments at 265 °C/1 h and at 300 °C/2 h are found to be beneficial to the fatigue crack growth resistance of the investigated material. KW - Additive manufacturing KW - Fatigue crack growth KW - Cyclic R-curve KW - Heat treatment PY - 2023 DO - https://doi.org/10.1016/j.ijfatigue.2023.107808 SN - 0142-1123 VL - 175 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-57822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Serrano-Munoz, Itziar T1 - Multiscale residual stress analysis and synchrotron X-ray refraction of additively manufactured parts N2 - The overview of the activity of group 8.5 Micro-NDT (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The challenges in the residual stress analysis of AM components are discussed on the basis on the show studies performed in BAM. Also, the synchrotron X-ray refraction technique, available in BAM, is presented, showing example of in-situ heating test of Al10SiMg AM material. T2 - Seminar at Grenoble INP, Science et Ingénierie des Matériaux et Procédés (SIMaP) CY - Grenoble, France DA - 01.07.2022 KW - Additive manufacturing KW - Residual stress KW - X-ray refraction KW - Computed tomography PY - 2022 AN - OPUS4-55232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano-Munoz, Itziar T1 - 3D imaging and residual stress analysis for AM Materials N2 - Metal Additive Manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) are characterized by layer wise construction, which enable advancements of component design, leading to potential efficiency and performance improvements. However, the rapid cooling rates associated with the process consequently leads to the generation of high magnitude residual stresses (RS). Therefore, a deep understanding of the formation of RS, the influence of process parameters on their magnitude and the impact on mechanical performance is crucial for widespread application. The experimental characterization of these RS is essential for safety related engineering application and supporting the development of reliable numerical models. Diffraction-based methods for RS analysis using high energy synchrotron X-rays and neutrons enable non-destructive spatially resolved characterization of both surface and bulk residual stresses in complex components. This presentation will provide an overview of recent research conducted by the BAM at large scale facilities for the characterization of residual stresses in LPBF metallic alloys. Special focus will be given to the challenges posed by textured LPBF materials for the reliable choice of the diffraction elastic constants (DECs), which is crucial to the accurate calculation of the level of RS. T2 - Seminar at LTDS, Ecole Centrale de Lyon CY - Lyon, France DA - 15.06.2023 KW - Residual stress KW - Additive manufacturing KW - Diffraction methods PY - 2023 AN - OPUS4-57808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roveda, Ilaria T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy N2 - Al-Si alloys produced by Laser Powder Bed Fusion (L-PBF) techniques allow the fabrication of lightweight free-shape components. Due to the high cooling rates occurring during the building process, L-PBF AlSi10Mg alloys exhibit an ultra-fine microstructure that leads to superior mechanical properties in the as-built condition compared to conventional cast Al-Si materials. Nevertheless, L-PBF processing induces high thermal gradients, leading to deleterious residual stress. In order to relax detrimental residual stress and to increase the ductility, post-processing stress relief treatments are performed. The objective of the contribution is to investigate, under different heat treatment condition, the evolution of microstructure and residual stresses in view of optimizing the fatigue performance of the alloy. To this purpose various heat treatments in a range of temperatures between 265°C and 300°C for a duration between 15 minutes and 2 hours are performed. T2 - Fatigue Design 2021 CY - Senlis, France DA - 17.11.2021 KW - AlSi10Mg KW - Additive manufacturing KW - L-PBF KW - Residual stress KW - Heat treatment PY - 2021 AN - OPUS4-53794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Sommer, Konstantin A1 - Knobloch, Tim A1 - Altenburg, Simon A1 - Recknagel, Sebastian A1 - Bettge, Dirk A1 - Hilgenberg, Kai T1 - Process Induced Preheating in Laser Powder Bed Fusion Monitored by Thermography and Its Influence on the Microstructure of 316L Stainless Steel Parts N2 - Undetected and undesired microstructural variations in components produced by laser powder bed fusion are a major challenge, especially for safety-critical components. In this study, an in-depth analysis of the microstructural features of 316L specimens produced by laser powder bed fusion at different levels of volumetric energy density and different levels of inter layer time is reported. The study has been conducted on specimens with an application relevant build height (>100 mm). Furthermore, the evolution of the intrinsic preheating temperature during the build-up of specimens was monitored using a thermographic in-situ monitoring set-up. By applying recently determined emissivity values of 316L powder layers, real temperatures could be quantified. Heat accumulation led to preheating temperatures of up to about 600 °C. Significant differences in the preheating temperatures were discussed with respect to the individual process parameter combinations, including the build height. A strong effect of the inter layer time on the heat accumulation was observed. A shorter inter layer time resulted in an increase of the preheating temperature by more than a factor of 2 in the upper part of the specimens compared to longer inter layer times. This, in turn, resulted in heterogeneity of the microstructure and differences in material properties within individual specimens. The resulting differences in the microstructure were analyzed using electron back scatter diffraction and scanning electron microscopy. Results from chemical analysis as well as electron back scatter diffraction measurements indicated stable conditions in terms of chemical alloy composition and austenite phase content for the used set of parameter combinations. However, an increase of the average grain size by more than a factor of 2.5 could be revealed within individual specimens. Additionally, differences in feature size of the solidification cellular substructure were examined and a trend of increasing cell sizes was observed. This trend was attributed to differences in solidification rate and thermal gradients induced by differences in scanning velocity and preheating temperature. A change of the thermal history due to intrinsic preheating could be identified as the main cause of this heterogeneity. It was induced by critical combinations of the energy input and differences in heat transfer conditions by variations of the inter layer time. The microstructural variations were directly correlated to differences in hardness. KW - Additive manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring KW - Thermography KW - Heat accumulation KW - Inter layer time KW - Cellular substructure PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529240 DO - https://doi.org/10.3390/met11071063 VL - 11 IS - 7 SP - 1063 PB - MDPI CY - Basel, Schweiz AN - OPUS4-52924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sommer, Konstantin A1 - Agudo Jácome, Leonardo A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the nature of melt pool boundaries in additively manufactured stainless steel by nano-sized modulation N2 - In the current study, the 3D nature of the melt pool boundaries (MPBs) in a 316 L austenitic steel additively manufactured by laser-based powder bed fusion (L-PBF) is investigated. The change of the cell growth direction and its relationship to the MPBs is investigated by transmission electron microscopy. A hitherto unreported modulated substructure with a periodicity of 21 nm is further discovered within the cell cores of the cellular substructure, which results from a partial transformation of the austenite, which is induced by a Ga+ focused ion beam. While the cell cores show the modulated substructure, cell boundaries do not. The diffraction pattern of the modulated substructure is exploited to show a thickness ≥200 nm for the MPB. At MPBs, the cell walls are suppressed, leading to continuously connecting cell cores across the MPB. This continuous MPB is described either as overlapping regions of cells of different growing directions when a new melt pool solidifies or as a narrow planar growth preceding the new melt pool. KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547295 DO - https://doi.org/10.1002/adem.202101699 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Agudo Jácome, Leonardo A1 - Hilgenberg, Kai T1 - Influence of process-relevant parameters and heat treatments on the microstructure and resulting mechanical behavior of additively manufactured AlSi10Mg via Laser Powder Bed Fusion N2 - Within the group of additive manufacturing (AM) technologies for metals, laser powder bed fusion (L-PBF) has a leading position. Nevertheless, reproducibility of part properties has not reached sufficient maturity hindering the use for industrial applications especially for safety-relevant components. This article presents the results of various experimental tests performed with the aluminium alloy AlSi10Mg identifying reasons for the high deviations in mechanical properties. Herein, it is discussed how microstructure is influenced by different process parameters (laser power, scanning speed, energy density, building height) and how it can be adjusted by suitable post process heat treatments. The impact of resulting changes in microstructure is shown by monotonic tensile and cyclic fatigue tests considering specimens manufactured with different L-PBF machines. T2 - LiM 2021 CY - Online meeting DA - 21.06.2021 KW - Additive manufacturing KW - Laser powder bed fusion KW - AlSi10Mg PY - 2021 SP - 1 EP - 9 AN - OPUS4-52991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. T1 - Influence of process-relevant parameters and heat treatments on the microstructure and resulting mechanical behavior of additively manufactured AlSi10Mg via Laser Powder Bed Fusion N2 - Within the group of additive manufacturing (AM) technologies for metals, laser powder bed fusion (L-PBF) has a leading position. Nevertheless, reproducibility of part properties has not reached sufficient maturity hindering the use for industrial applications especially for safety-relevant components. This article presents the results of various experimental tests performed with the aluminium alloy AlSi10Mg identifying reasons for the high deviations in mechanical properties. Herein, it is discussed how microstructure is influenced by different process parameters (laser power, scanning speed, energy density, building height) and how it can be adjusted by suitable post process heat treatments. The impact of resulting changes in microstructure is shown by monotonic tensile and cyclic fatigue tests considering specimens manufactured with different L-PBF machines. T2 - LiM 2021 CY - Online meeting DA - 21.06.2021 KW - Additive manufacturing KW - AlSi10Mg KW - Laser powder bed fusion PY - 2021 AN - OPUS4-53046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Poka, Konstantin A1 - Nilsson, R. A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - On the challenges of hybrid repair of gas turbine blades using laser powder bed fusion N2 - Additive manufacturing (AM) processes such as laser powder bed fusion (PBF-LB/M) are rapidly gaining popularity in repair applications. Gas turbine components benefit from the hybrid repair process as only damaged areas are removed using conventional machining and rebuilt using an AM process. However, hybrid repair is associated with several challenges such as component fixation and precise geometry detection. This article introduces a novel fixturing system, including a sealing concept to prevent powder sag during the repair process. Furthermore, a high-resolution camera within an industrial PBF-LB/M machine is installed and used for object detection and laser recognition. Herein, process related inaccuracies such as PBF-LB/M laser drift is considered by detection of reference objects. This development is demonstrated by the repair of a representative gas turbine blade. The final offset between AM build-up and component is analysed. An approximate accuracy of 160 μm is achieved with the current setup. T2 - LiM 2023 CY - Munich, Germany DA - 26.06.2023 KW - Laser powder bed fusion KW - Additive manufacturing KW - Hybrid repair KW - Position detection KW - High-resolution camera PY - 2023 SP - 1 EP - 9 AN - OPUS4-57836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin T1 - On the challenges of hybrid repair of gas turbine blades using laser powder bed fusion N2 - Additive manufacturing (AM) processes such as laser powder bed fusion (PBF-LB/M) are rapidly gaining popularity in repair applications. Gas turbine components benefit from the hybrid repair process as only damaged areas are removed using conventional machining and rebuilt using an AM process. However, hybrid repair is associated with several challenges such as component fixation and precise geometry detection. This article introduces a novel fixturing system, including a sealing concept to prevent powder sag during the repair process. Furthermore, a high-resolution camera within an industrial PBF-LB/M machine is installed and used for object detection and laser recognition. Herein, process related inaccuracies such as PBF-LB/M laser drift is considered by detection of reference objects. This development is demonstrated by the repair of a representative gas turbine blade. The final offset between AM build-up and component is analysed. An approximate accuracy of 160 μm is achieved with the current setup. T2 - LiM 2023 CY - Munich, Germany DA - 26.06.2023 KW - Laser powder bed fusion KW - Additive manufacturing KW - Hybrid repair KW - Position detection KW - High-resolution camera PY - 2023 AN - OPUS4-57837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheuschner, Nils A1 - Oster, Simon A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Comparison of NIR and SWIR thermography for defect detection in Laser Powder Bed Fusion N2 - Since laser powder bed fusion (PBF-LB/M) is prone to the formation of defects during the building process, a fundamental requirement for widespread application is to find ways to assure safety and reliability of the additively manufactured parts. A possible solution for this problem lies in the usage of in-situ thermographic monitoring for defect detection. In this contribution we investigate possibilities and limitations of the VIS/NIR wavelength range for defect detection. A VIS/NIR camera can be based on conventional silicon-based sensors which typically have much higher spatial and temporal resolution in the same price range but are more limited in the detectable temperature range than infrared sensors designed for longer wavelengths. To investigate the influence, we compared the thermographic signatures during the creation of artificially provoked defects by local parameter variations in test specimens made of a nickel alloy (UNS N07208) for two different wavelength ranges (~980 nm and ~1600 nm). KW - Laser powder bed fusion KW - PBF-LB/M KW - Thermography KW - Additive manufacturing KW - NDT PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-610380 DO - https://doi.org/10.1016/j.procir.2024.08.122 VL - 124 SP - 301 EP - 304 PB - Elsevier B.V. AN - OPUS4-61038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Jonathan A1 - Merz, Benjamin A1 - Poka, Konstantin A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Surface structure analysis using visual high-resolution in situ process monitoring in laser powder bed fusion N2 - Parameter studies are a common step in selecting process parameters for laser powder bed fusion of metals (PBF-LB/M). Density cubes are commonly used for this purpose. Density cubes manufactured with varied process parameters can exhibit distinguishable surface structures visible to the human eye. The layer-wise process enables such surface structures to be detected during manufacturing. However, industrial visual in situ monitoring systems for PBF-LB/M currently have limited resolution and are incapable of reliably capturing small differences in the surface structures. In this work, a 65 MPixel high-resolution monochrome camera was integrated into an industrial PBF-LB/M machine together with a high-intensity LED (light-emitting diode) bar. Post-exposure images were taken to analyse differences in light reflection of fused areas. It is revealed that the grey-level co-occurrence matrix can be used to quantify the visual surface structure of nickel-based superalloy Inconel®939 density cubes per layer. The properties of the grey-level co-occurrence matrix correlate to the energy input and the resulting porosity of density cubes. Low-energy samples containing lack of fusion flaws show an increased contrast in the grey-level co-occurrence matrix compared to specimens with optimal energy input. The potential of high-resolution images for quality assurance via in situ process monitoring in PBF-LB/M is further discussed. KW - Additive manufacturing KW - Powder bed fusion KW - In situ monitoring KW - Image processing KW - High resolution camera PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626685 DO - https://doi.org/10.1007/s40194-025-01955-1 SN - 1878-6669 SP - 1 EP - 15 PB - Springer Science and Business Media LLC AN - OPUS4-62668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Metz, Christian A1 - Altenburg, Simon T1 - In-situ monitoring for PBF-LB/M processes: Does multispectral optical tomography add value in recognizing process deviations? N2 - Laser powder bed fusion of metallic components (PBF-LB/M) is gaining acceptance in industry. However, the high costs and lengthy qualification processes required for printed components create the need for more effective in-situ monitoring and testing methods. This article proposes multispectral Optical Tomography (OT) as a new approach for monitoring the PBF-LB/M process. Compared to other methods, OT is a low-cost process monitoring method that uses long-time exposure imaging to observe the build process. However, it lacks time resolution compared to expensive thermographic sensor systems. Monochromatic OT (1C-OT) is already commercially available and observes the building process layer-wise using a single wavelength window in the NIR range. Multispectral OT (nC-OT) utilizes a similar setup but can measure multiple wavelength ranges per location simultaneously. By comparing the classical 1C-OT and nC-OT approaches, this article examines the advantages of nC-OT (two channel OT and RGB-OT) in reducing the false positive rate for process deviations and approximating maximum temperatures for a better comparison between different build processes and materials. This could ultimately reduce costs and time for part qualification. The main goal of this contribution is to assess the advantages of nC-OT compared to 1C-OT for in-situ process monitoring of PBF-LB/M. T2 - Nolamp 2023 CY - Turku, Finland DA - 22.08.2023 KW - Thermography KW - Process Monitoring KW - Additive manufacturing KW - BPF-LB/M KW - In-situ PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592498 DO - https://doi.org/10.1088/1757-899X/1296/1/012008 VL - 1296 SP - 1 EP - 11 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-59249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Oster, Simon A1 - Metz, C. A1 - Altenburg, Simon T1 - In-situ defect detection via active laser thermographic testing for PBF-LB/M N2 - Great complexity characterizes Additive Manufacturing (AM) of metallic components via laser powder bed fusion (PBF-LB/M). Due to this, defects in the printed components (like cracks and pores) are still common. Monitoring methods are commercially used, but the relationship between process data and defect formation is not well understood yet. Furthermore, defects and deformations might develop with a temporal delay to the laser energy input. The component’s actual quality is consequently only determinable after the finished process. To overcome this drawback, thermographic in-situ testing is introduced. The defocused process laser is utilized for nondestructive testing performed layer by layer throughout the build process. The results of the defect detection via infrared cameras are shown for a research PBF-LB/M machine. This creates the basis for a shift from in-situ monitoring towards in-situ testing during the AM process. Defects are detected immediately inside the process chamber, and the actual component quality is determined. T2 - Lasers in Manufacturing (LiM) CY - Munich, Germany DA - 26.06.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Nondestructive testing KW - Laser thermography KW - Defect detection PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585060 SP - 1 EP - 10 PB - Wissenschaftliche Gesellschaft Lasertechnik und Photonik (WLT) CY - Hannover AN - OPUS4-58506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Tina A1 - Stark, T. A1 - Arduini, M. A1 - Manara, J. A1 - Altenburg, Simon T1 - Knowing the spectral directional emissivity of 316L and AlSi10Mg PBF-LB/M surfaces: Gamechanger for quantitative in situ monitoring N2 - For a deep process understanding of the laser powder bed fusion process (PBF-LB/M), recording of the occurring surface temperatures is of utmost interest and would help to pave the way for reliable process monitoring and quality assurance. A notable number of approaches for in-process monitoring of the PBF-LB/M process focus on the monitoring of thermal process signatures. However, due to the elaborate calibration effort and the lack of knowledge about the occurring spectral directional emissivity, only a few approaches attempt to measure real temperatures. In this study, to gain initial insights into occurring in the PBF-LB/M process, measurements on PBF-LB/M specimens and metal powder specimens were performed for higher temperatures up to T = 1290 °C by means of the emissivity measurement apparatus (EMMA) of the Center for Applied Energy Research (CAE, Wuerzburg, Germany). Also, measurements at ambient temperatures were performed with a suitable measurement setup. Two different materials—stainless steel 316L and aluminum AlSi10Mg—were examined. The investigated wavelength λ ranges from the visible range (λ-VIS= 0.40–0.75 µm) up to the infrared, λ = 20 µm. The influence of the following factors were investigated: azimuth angle φ, specimen temperature TS, surface texture as for PBF-LB/M surfaces with different scan angles α, and powder surfaces with different layer thicknesses t. T2 - Rapid.Tech 3D 2024 CY - Erfurt, Germany DA - 14.05.2024 KW - PBF-LB/M KW - In situ monitoring KW - Emissivity KW - Additive manufacturing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601471 DO - https://doi.org/10.1007/s40964-024-00665-2 SN - 2363-9520 SP - 1 EP - 10 PB - Springer CY - Cham, Switzerland AN - OPUS4-60147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - On the limitations of small cubes as test coupons for process parameter optimization in laser powder bed fusion of metals N2 - The capability to produce complexly and individually shaped metallic parts is one of the main advantages of the laser powder bed fusion (PBF LB/M) process. Development of material and machine specific process parameters is commonly based on results acquired from small cubic test coupons of about 10 mm edge length. Such cubes are usually used to conduct an optimization of process parameters to produce dense material. The parameters are then taken as the basis for the manufacturing of real part geometries. However, complex geometries go along with complex thermal histories during the manufacturing process, which can significantly differ from thermal conditions prevalent during the production of simply shaped test coupons. This may lead to unexpected and unpredicted local inhomogeneities of the microstructure and defect distribution in the final part and it is a root cause of reservations against the use of additive manufacturing for the production of safety relevant parts. In this study, the influence of changing thermal conditions on the resulting melt pool depth of 316L stainless steel specimens is demonstrated. A variation of thermo-graphically measured intrinsic preheating temperatures was triggered by an alteration of inter layer times and a variation of cross section areas of specimens for three distinct sets of process parameters. Correlations between the preheating temperature, the melt pool depth, and occurring defects were analyzed. The limited expressiveness of the results of small density cubes is revealed throughout the systematic investigation. Finally, a clear recommendation to consider thermal conditions in future process parameter optimizations is given. T2 - Icaleo 2023 CY - Chicago, IL, USA DA - 16.10.2023 KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Representative specimens KW - Thermography PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586558 DO - https://doi.org/10.2351/7.0001080 SN - 1042-346X VL - 35 IS - 4 SP - 1 EP - 10 AN - OPUS4-58655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai ED - Wei, Z. ED - Pang, J. T1 - On critical shifts of the process window due to heat accumulation in laser powder bed fusion N2 - Safety-critical applications of products manufactured by laser powder bed fusion (PBF-LB/M) are still limited to date. This is mainly due to a lack of knowledge regarding the complex relationship between process, structure, and resulting properties. The assurance of homogeneity of the microstructure and homogeneity of the occurrence and distribution of defects within complexly shaped geometries is still challenging. Unexpected and unpredicted local inhomogeneities may cause catastrophic failures. The identification of material specific and machine specific process parameter windows for production of fully dense simple laboratory specimens is state of the art. However, the incorporation of changing thermal conditions that a complexly shaped component can be faced with during the manufacturing process is often neglected at the stage of a process window determination. This study demonstrates the tremendous effect of changing part temperatures on the defect occurrence for the broadly used stainless steel alloy AISI 316L. Process intrinsic variations of the surface temperature are caused by heat accumulation which was measured by use of a temperature adjusted mid-wavelength infrared (MWIR) camera. Heat accumulation was triggered by simple yet effective temporal and geometrical restrictions of heat dissipation. This was realized by a variation of inter layer times and reduced cross section areas of the specimens. Differences in surface temperature of up to 800 K were measured. A severe development of keyhole porosity resulted from these distinct intrinsic preheating temperatures, revealing a shift of the process window towards unstable melting conditions. The presented results may serve as a warning to not solely rely on process parameter optimization without considering the actual process conditions a real component is faced with during the manufacturing process. Additionally, it motivates the development of representative test specimens. T2 - The 76th IIW Annual Assembly and International Conference On Welding And Joining (IIW 2023) CY - Singapore, Singapore DA - 16.07.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Laboratory specimens KW - Process parameter optimization KW - Heat accumulation KW - Keyhole porosity KW - Infrared thermography PY - 2023 SP - 1 EP - 8 AN - OPUS4-58024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dal Molin, E. S. A1 - Henning, L. M. A1 - Müller, J. T. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Bekheet, M. F. A1 - Gurlo, A. A1 - Simon, U. T1 - Robocasting of ordered mesoporous silica‐based monoliths: Rheological, textural, and mechanical characterization N2 - Hierarchically porous, high‐surface‐area silica materials are excellent candidates for multiple applications like catalysis and environmental remediation. Shaping these materials with additive manufacturing (AM) techniques, like robocasting, could enable their use with the benefit of on‐demand, customized shaping and maximizing performance. Herein, ordered mesoporous silica COK‐12 slurries were robocasted into monoliths, containing different ratios of uncalcined COK‐12 and sodium bentonite (0–25 wt.%). The rheology of the mixed slurries is characterized by lower flow indexes (0.69 vs. 0.32) and higher yield stresses (96 vs. 259 Pa) compared to pure COK‐12 ones. Monoliths were printed in woodpile structures and calcined at 600°C. Micro‐CT measurements showed a linear shrinkage of 25% after calcination. Mechanical characterization showed increased uniaxial strength (0.20 ± 0.07 to 1.0 ± 0.3 MPa) with increasing binder/solids ratio from 13 to 25%. The amorphous, mesoporous structure of COK‐12 was retained. The structures exhibited open porosities of 52 ± 4% and showed higher specific mesopore volumes, and increased average mesopore size (6 vs. 8 nm) compared to COK‐12. Small‐angle x‐ray scattering analysis revealed an increased lattice parameter (10.3 vs. 11.0 nm) and reduced wall thickness (3.1 nm vs. 4.1 nm) of the COK‐12 in the monoliths. These properties indicate suitability for their application as porous supports and adsorbents. KW - Industrial and Manufacturing Engineering KW - Additive manufacturing KW - OMS KW - Porous materials KW - Robocasting KW - X-ray scattering KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582503 DO - https://doi.org/10.1002/nano.202300109 VL - 4 IS - 11-12 SP - 615 EP - 631 PB - Wiley-VCH GmbH AN - OPUS4-58250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gupta, Kanhaiya A1 - Poka, Konstantin A1 - Ulbricht, Alexander A1 - Waske, Anja T1 - Identification and authentication of additively manufactured components using their microstructural fingerprint N2 - In the field of additive manufacturing, the ability to uniquely identify and authenticate parts is crucial for certification, logistics, and anti-counterfeiting efforts. This study introduces a novel methodology that leverages the intrinsic microstructural features of additively manufactured components for their identification, authentication, and traceability. Unlike traditional tagging methods, such as embedding QR codes on the surface or within the volume of parts, this approach requires no alteration to the printing process, as it utilizes naturally occurring microstructural characteristics. The proposed workflow involves the analysis of 3D micro-computed tomography data to identify specific voids that meet predefined identification criteria. This method is demonstrated on a batch of 24 parts manufactured with identical process parameters, proving capable of achieving unambiguous identification and authentication. By establishing a tamper-proof link between the physical part and its digital counterpart, this methodology effectively bridges the physical and digital realms. This not only enhances the traceability of additively manufactured parts but also provides a robust tool for integrating digital materials, parts databases, and product passports with their physical counterparts. KW - Authentication KW - Additive manufacturing KW - X-ray Computed Tomography KW - Digital fingerprint KW - Unique identification PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630356 DO - https://doi.org/10.1016/j.matdes.2025.113986 SN - 1873-4197 VL - 254 SP - 1 EP - 12 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-63035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Joining processes for components in hydrogen technologies: Current need and future importance N2 - This presentation gives an overview on the importance of joining processes for component fabrication in hydrogen technologies. For that reason, the current need and future research and developement activites are highlighted for the three technological fields: hydrogen storage, transport and use (in terms of the emerging field of additive manufacturing). Finally, some remarks are given for necessary changes in the standardization. T2 - IIW Intermediate Meeting, Comm. II-A "Welding Metallurgy" CY - Online meeting DA - 17.03.2022 KW - Hydrogen KW - Welding KW - Research KW - Review KW - Additive manufacturing PY - 2022 AN - OPUS4-54488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten T1 - Consideration of manufacturing-related stresses and cold crack avoidance in high-strength steels WAAM components N2 - High-strength steels offer great potential in weight-optimised modern steel structures. Additive manufacturing processes, such as Wire Arc Additive Manufacturing (WAAM), enable near-net-shape manufacturing of complex structures and more efficient manufacturing, offering significant savings in costs, time, and resources. Suitable filler materials for WAAM are already commercially available. However, the lack of knowledge or technical guidelines regarding welding residual stresses during manufacturing and operation in connection with cold cracking risk limit their industrial application significantly. In a project of BAM and TU Chemnitz, the influences and complex interactions of material, manufacturing process, design and processing steps on residual stress evolution are investigated. By developing process recommendations and a special cold cracking test, economic manufacturing, and stress-appropriate design of high-strength steel WAAM components are main objectives. The present study focuses on determining the influence of heat control (interpass temperature, heat input, cooling time) and the design aspects of the components on the hardness and residual stresses, which are analysed by X-ray diffraction. Defined reference specimens, i.e., hollow cuboids, are automatically welded with a special WAAM solid wire. The influences of wall length, wall thickness and wall height on the residual stresses are analysed. Geometric properties can be selectively adjusted by wire feed and welding speed but cannot be varied arbitrarily. This was addressed by adapted build-up strategies. The results indicate a significant influence of the heat control and the wall height on the residual stresses. The interpass temperature, wall thickness and wall length are not significant. These analyses allow recommendations for standards and manufacturing guidelines, enabling a safe and economic manufacturing of high-strength steel components. T2 - European Steel Technology and Application Days CY - Düsseldorf, Germany DA - 14.06.2023 KW - DED-arc KW - Additive manufacturing KW - Heat control KW - High-strength filler metals KW - Residual stress PY - 2023 AN - OPUS4-57691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Julien T1 - Optimizing residual stresses in additively manufactured high-performance materials N2 - The integration of modern high-performance materials in combination with additive manufacturing (AM) has revolutionized the approach to lightweight construction across diverse applications. This study explores the synergy between these materials and additive manufacturing (AM), focusing on their unique properties to engineer resource-efficient structures. Despite these advancements, machining these hard-to-cut materials such as iron-aluminide for safety-critical components remains challenging due to increased tool wear and compromised surface integrity. This research focuses on overcoming these challenges through the application of ultrasonic-assisted milling (USAM), a hybrid machining process exhibiting significant potential. By incorporating ultrasonic oscillations along the milling tool axis, USAM minimizes tool and component surface loads, enhancing tool life and producing defect-free, homogeneous surfaces with reduced roughness parameters. This investigation centers on the influence of ultrasonic-assisted milling on residual material stresses, crucial for component performance under load. In contrast to conventional milling generating tensile stresses, USAM induces advantageous compressive residual stresses, potentially enhancing the component's crack resistance. The study employs experimental variations in ultrasonic amplitude during the machining process to identify optimal parameters for achieving maximum compressive stresses. In addition, the depth profile of these residual stresses on the surface is investigated, which provides more detailed insights into their distribution and possible effects. This research not only contributes to the evolving environment of innovative manufacturing technologies, but also places particular focus on the central role of residual stresses in the performance and reliability of safety-critical AM components. The results not only contribute to a better understanding of ultrasonic-assisted milling, but also provide crucial guidance for the design of components that can withstand the challenges of real-world applications. T2 - European Conference on Surface Integrity 11 CY - Prague, Czech Republic DA - 03.06.2024 KW - Ultrasonic-assisted milling KW - Additive manufacturing KW - High-performance materials KW - Surface integrity KW - Residual stresses depth profile PY - 2024 AN - OPUS4-62026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Treutler, Kai T1 - Additive Manufacturing of Iron Aluminides: Microstructure, Machinability, and Surface Integrity N2 - The increasing global focus on energy and resource efficiency has stimulated a growing interest in additive manufacturing. AM offers economic advantages and enables an efficient use of materials. However, AM components often require subsequent mechanical post-processing, such as machining (e.g. milling), to achieve the final contours or surfaces. This is a particular challenge due to the heterogeneous and anisotropic nature of AM structures, which affect machining and the resulting component properties. High-performance materials such as iron aluminide represent a promising alternative to conventional high-temperature materials with a significant economic advantage. However, the strength and hardness properties, which are advantageous for applications in highly stressed lightweight components, pose a challenge for economical machining in addition to the AM microstructure properties. The difficult-to-cut material causes accelerated tool wear and insufficient surface quality. This study shows that crack-free additive manufacturing of the three-component system of iron-nickel-aluminum is possible and advantages in terms of machinability compared to FeAl-AM components are achieved. The more homogeneous microstructure leads to a reduction in cutting forces, with positive effects on the machinability and optimized surface integrity. Ultrasonic assisted milling (USAM) offers great potential to address the major challenges posed by difficult-to-cut materials and additively manufactured weld structures. Therefore, this study focuses on assessing the transferability of previous positive results by USAM to the selected iron aluminide alloys. The machinability of the aluminides is analyzed by varying significant influencing variables in finish milling experiments and evaluated in terms of the loads on the tool and the resulting surface integrity. T2 - Intermediate Meeting of IIW CY - Online meeting DA - 13.03.2024 KW - Additive manufacturing KW - Surface-integrity KW - Iron-aluminide KW - Ultrasonic-assisted milling KW - Difficult-to-cut KW - Tool wear PY - 2024 AN - OPUS4-62294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - On the limitations of small cubes as test coupons for process parameter optimization in laser powder bed fusion of metals N2 - The capability to produce complexly and individually shaped metallic parts is one of the main advantages of the laser powder bed fusion (PBF LB/M) process. Development of material and machine specific process parameters is commonly based on results acquired from small cubic test coupons of about 10 mm edge length. Such cubes are usually used to conduct an optimization of process parameters to produce dense material. The parameters are then taken as the basis for the manufacturing of real part geometries. However, complex geometries go along with complex thermal histories during the manufacturing process, which can significantly differ from thermal conditions prevalent during the production of simply shaped test coupons. This may lead to unexpected and unpredicted local inhomogeneities of the microstructure and defect distribution in the final part and it is a root cause of reservations against the use of additive manufacturing for the production of safety relevant parts. In this study, the influence of changing thermal conditions on the resulting melt pool depth of 316L stainless steel specimens is demonstrated. A variation of thermo-graphically measured intrinsic preheating temperatures was triggered by an alteration of inter layer times and a variation of cross section areas of specimens for three distinct sets of process parameters. Correlations between the preheating temperature, the melt pool depth, and occurring defects were analyzed. The limited expressiveness of the results of small density cubes is revealed throughout the systematic investigation. Finally, a clear recommendation to consider thermal conditions in future process parameter optimizations is given. T2 - Icaleo 2023 CY - Chicago, IL, USA DA - 16.10.2023 KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Representative specimens KW - Thermography PY - 2023 AN - OPUS4-58656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - On critical shifts of the process window due to heat accumulation in laser powder bed fusion N2 - Safety-critical applications of products manufactured by laser powder bed fusion (PBF-LB/M) are still limited to date. This is mainly due to a lack of knowledge regarding the complex relationship between process, structure, and resulting properties. The assurance of homogeneity of the microstructure and homogeneity of the occurrence and distribution of defects within complexly shaped geometries is still challenging. Unexpected and unpredicted local inhomogeneities may cause catastrophic failures. The identification of material specific and machine specific process parameter windows for production of fully dense simple laboratory specimens is state of the art. However, the incorporation of changing thermal conditions that a complexly shaped component can be faced with during the manufacturing process is often neglected at the stage of a process window determination. This study demonstrates the tremendous effect of changing part temperatures on the defect occurrence for the broadly used stainless steel alloy AISI 316L. Process intrinsic variations of the surface temperature are caused by heat accumulation which was measured by use of a temperature adjusted mid-wavelength infrared (MWIR) camera. Heat accumulation was triggered by simple yet effective temporal and geometrical restrictions of heat dissipation. This was realized by a variation of inter layer times and reduced cross section areas of the specimens. Differences in surface temperature of up to 800 K were measured. A severe development of keyhole porosity resulted from these distinct intrinsic preheating temperatures, revealing a shift of the process window towards unstable melting conditions. The presented results may serve as a warning to not solely rely on process parameter optimization without considering the actual process conditions a real component is faced with during the manufacturing process. Additionally, it motivates the development of representative test specimens. T2 - The 76th IIW annual assembly and international conference on welding and joining CY - Singapore DA - 16.07.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Laboratory specimens KW - Process parameter optimization KW - Heat accumulation KW - Keyhole porosity KW - Infrared thermography PY - 2023 AN - OPUS4-58023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René T1 - Life cycle assessment of fusion welding processes considering upstream and downstream process steps N2 - In manufacturing, fusion welding processes consume significant resources, presenting a significant opportunity for reducing environmental impact. Although there is a qualitative understanding of the environmental implications of these processes, a quantitative assessment of key parameters remains complex. This study introduces a welding-specific methodology that employs life cycle assessment (LCA) to quantitatively evaluate the environmental footprint of fusion welding technologies. Our approach identifies and analyses the principal parameters affecting the environmental performance of various welding techniques, including traditional joint welding and additive manufacturing via the Direct Energy Deposition-Arc (DED-Arc) process. Real-time resource usage data is integrated to offer an innovative framework for directly deriving environmental impacts. This research contributes to optimising welding processes by providing a precise and quantifiable measure of their ecological impact. This facilitates the advancement of sustainable manufacturing practices. T2 - Joining Smart Technologies - International Automotive Conference CY - Wels, Austria DA - 10.05.2023 KW - Life Cycle Assessment KW - Arc welding KW - Additive manufacturing KW - DED-Arc PY - 2023 AN - OPUS4-59494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René T1 - Life cycle assessment of fusion welding processes strategies and implementation N2 - In manufacturing, fusion welding processes use a lot of resources, which presents an opportunity to reduce environmental impact. While there is a general understanding of the environmental impact of these processes, it is difficult to quantitatively assess key parameters. This study introduces a welding-specific methodology that uses life cycle assessment (LCA) to evaluate the environmental impact of fusion welding technologies. Our approach analyses the main parameters that affect the environmental performance of different welding techniques, including traditional methods and additive manufacturing through the Direct Energy Deposition-Arc (DED-Arc) process. We integrate real-time resource usage data to offer an innovative framework for directly deriving environmental impacts. This research contributes to optimising welding processes by providing a precise and quantifiable measure of their ecological impact, facilitating the advancement of sustainable manufacturing practices. T2 - CEMIVET - Circular Economy in Metal Industries CY - Berlin, Germany DA - 06.06.2023 KW - Life Cycle Assessment KW - Fusion welding KW - Additive manufacturing KW - DED-Arc PY - 2023 AN - OPUS4-59499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dávila, Josué A1 - Kleba-Ehrhardt, Rafael A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Influence Of Initial Powder Oxidation Level On Process-induced Material Degradation During The Laser Powder Bed Fusion Of Nickel-based Haynes 282 N2 - This study examines the impact of varying oxidation levels in nickel-based Haynes 282 powder on particle degradation during laser powder bed fusion (PBF-LB|M). Four powder batches with oxygen content levels of approximately from 140 ppm to1400 ppm were processed using PBF-LB|M. A powder collection container was fabricated to sample unmelted powder from heat-affected regions of the powder bed. Recoating and melting proceeded without issues; however, increased fume emissions were observed at higher oxidation levels, indicating intensified spatter formation. Post-process analysis revealed that finer particles exhibited greater surface oxidation due to their higher surface-to-volume ratio. Despite significant oxygen uptake, chemical analysis showed no measurable changes in key alloying elements in either the unmelted or spatter particles. Additionally, changes in particle size distribution became more pronounced at high oxidation levels. These findings provide a basis for understanding oxidation-driven degradation and optimizing powder reuse strategies to maintain material performance. T2 - Euro Powder Metallurgy 2025 Congress & Exhibition CY - Glasgow, United Kingdom DA - 14.09.2025 KW - Recycling KW - Additive manufacturing KW - Laser powder bed fusion (PBF-LB/M) KW - Powder quality KW - Powder degradation KW - Powder oxidation KW - Spatter particles KW - Particles ejected KW - Powder reuse PY - 2025 DO - https://doi.org/10.59499/EP256767986 SP - 1 EP - 9 PB - EPMA AN - OPUS4-64369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Revealing the Nature of Melt Pool Boundaries in Additively Manufactured Stainless Steel by Nano-sized Modulation N2 - Additive manufacturing (AM) of metallic alloys has gained momentum in the past decade for industrial applications. The microstructures of AM metallic alloys are complex and hierarchical from the macroscopic to the nanometer scale. When using laser-based powder bed fusion (L-PBF) process, two main microstructural features emerge at the nanoscale: the melt pool boundaries (MPB) and the solidification cellular substructure. Here, details of the MPB are revealed to clearly show the three-dimensional nature of MPBs with changes of cell growth of direction and their relation to their surrounding cellular substructure, as investigated by transmission electron microscopy (TEM) for L-PBF 316L austenitic stainless steel (cf. Figure 1). A hitherto unknown modulated substructure with a period of 21 nm is further discovered within cells as the result of a partial Ga+-focused ion beam-induced ferritic transformation of the austenite. Cell cores and cell boundaries differ notably regarding the modulated substructure. T2 - 3. Fachtagung Werkstoffe und Additive Fertigung 2022 CY - Dresden, Germany DA - 11.05.2022 KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 AN - OPUS4-54836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strobl, Domninic T1 - Reduced order model for temperature field simulation of wire arc additive manufacturing N2 - Additive manufacturing (AM) has revolutionized the manufacturing industry, offering a new paradigm to produce complex geometries and parts with customized properties. Among the different AM techniques, the wire arc additive manufacturing (WAAM) process has gained significant attention due to its high deposition rate and low equipment cost. However, the process is characterized by a complex thermal history making it challenging to simulate it in real-time for online process control and optimization. In this context, a reduced order model (ROM) using the proper generalized decomposition (PGD) method [1] is proposed as a powerful tool to overcome the limitations of conventional numerical methods and enable the real-time simulation of the temperature field of WAAM processes. These simulations use a moving heat source leading to a hardly separable parametric problem, which is handled by applying a novel mapping approach [2]. This procedure makes it possible to create a separated representation of the model, which is required to apply the PGD method, allowing a simulation of multiple layers. In this contribution, a PGD model is derived for the temperature field simulation of the WAAM process. A layer-by-layer simulation in combination with a compression of the PGD modes, without influencing the approximation error, is shown. The compression is an essential step since the modes sum up quickly over the layers and thus a reduction of the number of modes is needed. Furthermore, using an element birth technique leads usually to an update of the mesh or a new mesh in each time step. Though, this is not the case applying the mapping approach, where only a single nonchanging mesh is required to simulate the deposition of a whole layer. T2 - ECCOMAS Congress 2024 CY - Lisbon, Portugal DA - 03.06.2024 KW - Reduced Order Model KW - Proper Generalized Decomposition KW - Thermal transient problem KW - Additive manufacturing PY - 2024 AN - OPUS4-62231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gottschalk, Götz-Friedrich A1 - Chaurasia, Prashant Kumar A1 - Goecke, Sven-Frithjof T1 - Zero-defect Printing with DED-GMA via Adaptive Controls N2 - Gas metal arc assisted directed energy deposition (DED-GMA) is a metal additive manufacturing process for fabricating large-scale parts with a higher printing rate. An accurate monitoring and control of the melt pool geometric features is critical for printing zero-defect parts. In this study, the melt pool thermography is used for the real-time detection of the melt pool boundary, centreline, and transient cooling time using an efficient deep learning technique. The presented real-time process monitoring and control methodology using deep learning allows adaptive control of the DED-GMA process. T2 - Twenty-Second International Conference on Flow Dynamics (ICFD 2025) CY - Sendai, Japan DA - 10.11.2025 KW - Additive manufacturing KW - DED-Arc KW - Monitoring KW - Control PY - 2025 SP - 1332 EP - 1335 AN - OPUS4-64837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Jonathan T1 - High resolution visual in-situ process monitoring in SONRISA N2 - The LuFo Project "SONRISA" presented an update on its objectives for the coming years to Working Group 3 – In-Situ Process Monitoring – during the EASA/FAA Additive Manufacturing Workshop 2025. As part of this update, BAM provided a brief overview of its prior work in high-resolution visual in-situ process monitoring for PBF-LB/M, which will be integrated into the project. The presentation included a comparison between the BAM system and the OEM in-situ monitoring system “EOSTATE PowderBed” and an outline of the correlation between texture contrast and the occurrence of lack-of-fusion anomalies in high resolution after exposure images.g. T2 - EASA–FAA AM Workshop 2025 CY - Cologne, Germany DA - 21.10.2025 KW - Additive manufacturing KW - High resolution camera KW - Lack of fusion PY - 2025 AN - OPUS4-64456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Davila, Josue T1 - Influence Of Initial Powder Oxidation Level On Process-induced Material Degradation During The Laser Powder Bed Fusion Of Nickel-based Haynes 282 N2 - This study examines the impact of varying oxidation levels in nickel-based Haynes 282 powder on particle degradation during laser powder bed fusion (PBF-LB/M). Four powder batches with oxygen content levels of approximately from 140 ppm to1400 ppm were processed using PBF-LB/M. A powder collection container was fabricated to sample unmelted powder from heat-affected regions of the powder bed. Recoating and melting proceeded without issues; however, increased fume emissions were observed at higher oxidation levels, indicating intensified spatter formation. Post-process analysis revealed that finer particles exhibited greater surface oxidation due to their higher surface-to-volume ratio. Despite significant oxygen uptake, chemical analysis showed no measurable changes in key alloying elements in either the unmelted or spatter particles. Additionally, changes in particle size distribution became more pronounced at high oxidation levels. These findings provide a basis for understanding oxidation-driven degradation and optimizing powder reuse strategies to maintain material performance. T2 - Euro Powder Metallurgy 2025 Congress & Exhibition CY - Glasgow, Scotland DA - 15.09.2025 KW - Additive manufacturing KW - Laser powder bed fusion (PBF-LB/M) KW - Powder quality KW - Powder degradation KW - Powder oxidation KW - Spatter particles KW - Particles ejected KW - Powder reuse PY - 2025 AN - OPUS4-64965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk T1 - Influence of Ultrasonic-Assisted Milling on Surface Integrity of Additively Manufactured Components Using DED-Arc/GMAW N2 - Additive manufacturing (AM) is increasingly used for producing complex metallic com-ponents. Subsequent machining is essential to achieve final geometries and surface conditions. The resulting surface integrity, particularly the near-surface residual stress state, plays a crucial role in component performance and fatigue life. This study inves-tigates the potential of ultrasonic-assisted milling (USAM), a hybrid machining process, to improve surface integrity and machinability compared to conventional milling (CM). Three materials were investigated, two difficult-to-cut materials CoCr26Ni9Mo5W and FeNi36 and a low-alloy steel S355J2C. The CoCr26Ni9Mo5W and FeNi36 were addi-tively manufactured via DED-Arc and then machined with varying cutting speeds and feed rates within a Design of Experiments. USAM exhibited enhanced machinability and surface integrity, particularly at low cutting speeds, by reducing cutting forces up to 40% and shifting near-surface residual stresses from tensile to compressive. For S355J2C, USAM reduced cutting forces by approximately 45% and induced surface-near compressive residual stresses up to approximately -700 MPa, leading to a 11% higher fatigue strength compared to CM. These findings highlight the advantages of ultrasonic assistance in post-AM machining, offering enhanced fatigue performance and surface quality for various metallic materials. T2 - 4th International Conference on Advanced Joining Processes 2025 CY - Coimbra, Portugal DA - 16.10.2025 KW - Ultrasonic-assisted milling KW - Additive manufacturing KW - Surface integrity KW - Fatigue strength KW - Residual stress PY - 2025 AN - OPUS4-65051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Mechanical behaviour of AM metals: Creep of LPBF 316L and low-cycle-fatigue of LMD Ti-6Al-4V N2 - Additively manufactured metallic materials have already started to find application in safety-relevant components. However, this has only happened for certain materials and specific applications and loading conditions, since there is still an extensive lack of knowledge as well as of historical data regarding their mechanical behaviour. This contribution aims to address this lack of understanding and historical data concerning the creep behaviour of the austenitic stainless steel 316L manufactured by Laser-Powder-Bed-Fusion (L-PBF) and the low-cycle-fatigue behaviour of the titanium alloy Ti-6Al-4V manufactured by Laser-Metal-Deposition (LMD). Furthermore, it aims to assess their mechanical behaviour against their conventional counterparts. With that in mind, specimens from conventional and additive materials are tested and their mechanical behaviour analysed based on characteristic curves. To understand the damage behaviours the materials are characterized by destructive and non-destructive techniques before and after failure. T2 - 1st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online Meeting DA - 10.12.2020 KW - Ti-6Al-4V KW - 316L KW - Additive manufacturing KW - Creep behaviour KW - Low-cycle-fatigue behaviour PY - 2020 AN - OPUS4-51879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dzugan, J. A1 - Lucon, E. A1 - Koukolikova, M. A1 - Li, Y. A1 - Rzepa, S. A1 - Yasin, M.S. A1 - Shao, S. A1 - Shamsaei, N. A1 - Seifi, M. A1 - Lodeiro, M. A1 - Lefebvre, F. A1 - Mayer, U. A1 - Olbricht, Jürgen A1 - Houska, M. A1 - Mentl, V. A1 - You, Z. T1 - ASTM interlaboratory study on tensile testing of AM deposited and wrought steel using miniature specimens N2 - An interlaboratory study, involving eigth international laboratories and coordinated by COMTES FHT (Czech Republic), was conducted to validate tensile measurements obtained using miniature specimens on additively manufactured (AM) components and artifacts. In addition to AM 316L stainless steel (316L SS), a wrought highstrength steel (34CrNiMo6V, equivalent to AISI 4340) was also used. Based on the results, a precision statement in accordance with ASTM E691 standard practice was developed, intended for inclusion in a proposed annex to the ASTM E8/E8M tension testing method. The primary outcomes of the study highlighted the agreement between yield and tensile strength measured from miniature and standard-sized tensile specimens. Furthermore, most tensile properties exhibited similar standard deviations, offering users insight into the efficacy of miniature specimen applications. KW - 316L stainless steel KW - Additive manufacturing KW - High-strength steel KW - Miniature specimens KW - Tensile tests PY - 2024 DO - https://doi.org/10.1016/j.tafmec.2024.104410 SN - 0167-8442 VL - 131 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-60180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kindrachuk, Vitaliy T1 - Computational investigation of DGG kinetics by phase-field method N2 - Non-equilibrium microstructure evolution in additive manufacturing (AM) is a major barrier for establishing a safe and sustainable application of AM in industrial processes. The constant heat source in the AM continuously affects the just-solidified grains beneath the melting pool, leading to directional grain growth (DGG). While real-time measurements of the non-equilibrium microstructure evolution is challenging, here developing a computational framework to systematically explore DGG becomes imperative. We have advanced a comprehensive approach, integrating mean-field modeling and phase-field simulations, to elucidate the dynamics of DGG under an external driving force. Our simulations unveil a steady-state power-law grain growth kinetics during DGG, characterized by the interplay between curvature-driven dynamics at grain boundary junctions and directional driving forces. T2 - Tagung DGM Additive Fertigung CY - Bremen, Germany DA - 12.06.2024 KW - Directional grain growth KW - Phase-field simulation KW - Additive manufacturing PY - 2024 AN - OPUS4-60750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Additive manufacturing for components in hydrogen technologies N2 - With the introduction of a hydrogen-based energy and national economy, safety-relevant components for hydrogen technologies are becoming increasingly important. Characteristic of hydrogen technologies are, for example, harsh environmental conditions such as cryogenic or high-pressure storage, corrosion issues in fuel cells and electrolyzers, turbines, and many more. Additive manufacturing of components is becoming increasingly important and irreplaceable for the production of complex technical systems. Using the case studies of burners for gas turbines and electrodes and membranes for polymer (PEMFC) and solid oxide (SOFC) fuel cells, this article shows the potential of additive manufacturing of components. At the same time, however, the challenge of considering divergent mechanical properties depending on the direction of assembly in a "hydrogen-compatible" manner is also highlighted. Finally, the challenges posed by additive manufacturing and hydrogen for materials testing are highlighted under scenarios that are as realistic as possible. T2 - MPA-Workshop Hydrogen CY - Online meeting DA - 10.11.2022 KW - Additive manufacturing KW - Hydrogen KW - Technologies KW - Overview KW - Component PY - 2022 AN - OPUS4-56233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - D'Accardi, E. A1 - Ulbricht, Alexander A1 - Krankenhagen, Rainer A1 - Palumbo, D. A1 - Galietti, U. T1 - Capability of active thermography to detect and localize pores in Metal Additive Manufacturing materials N2 - Active thermography is a fast, contactless and non-destructive technique that can be used to detect internal defects in different types of material. Volumetric irregularities such as the presence of pores in materials produced by the Additive Manufacturing processes can strongly affect the thermophysical and the mechanical properties of the final component. In this work, an experimental investigation aimed at detecting different pores in a sample made of stainless AISI 316L produced by Laser Powder Bed Fusion (L-PBF) was carried out using pulsed thermography in reflection mode. The capability of the technique and the adopted setups in terms of geometrical and thermal resolution, acquisition frequency and energy Density of the heating source were assessed to discern two contiguous pores as well as to detect a single pore. Moreover, a quantitative indication about the minimum resolvable pore size among the available and analysed defects was provided. A powerful tool to assess the Limits and the opportunities of the pulsed technique in terms of detectability and localizability was provided by comparing active thermography results to Computed Tomography as well as a related Finite Element Analysis (FEA) to simulate the pulsed heating transfer with Comsol. T2 - 49th Italian Association for Stress Analysis Conferencee (AIAS 2020) CY - Online meeting DA - 02.09.2020 KW - Additive manufacturing KW - Laser powderbed fusion KW - Pores KW - Thermography KW - Micro-CT PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519231 DO - https://doi.org/10.1088/1757-899X/1038/1/012018 VL - 1038 SP - 1 EP - 17 PB - Institute of Physics CY - London AN - OPUS4-51923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. T1 - Influence of build up height on residual stresses in additive repair and modification using DED Arc N2 - Directed Energy Deposition (DED)-Arc is suitable for the hybrid additive manufacturing, modification and repair of large metal components with high deposition rates. Residual stresses and distortion are of central importance when characterizing the manufactured components and the sensitive transition area between AM component and semi-finished product. Residual stresses caused by the thermal cycles during the manufacturing process can impair the mechanical properties of the manufactured parts and can lead component failure. Therefore, understanding and controlling residual stresses, especially when combining different base and filler materials, is critical to improving the quality and efficiency of the hybrid DED-Arc process. This article deals with the influence of the build-up height on the residual stress distribution of additively manufactured components with a selected base and filler material combination. Using a robot-assisted DEDsystem and a controlled short arc, systematic step cancellation tests were carried out at a selected working temperature (200 C°) and heat input (600 kJ/m). In a 5-stage termination experiment, straight walls were produced using a one bead per layer strategy and selected increasing component heights between 15 mm and 300 mm. The influence of the build height on the longitudinal residual stress in the process direction was analyzed and discussed. All experiments showed a comparable stress distribution in the area of the substrate plate up to the heat-affected zone (HAZ) and the transition zone, regardless of the buliding height. However, the height showed a significant influence on the of residual stress distribution of the deposited AM-component. High positive stress gradients with a maximum range between 300 MPa to 400 MPa were always found in the last approx. 18 component layers (upper 40 mm), which can be explained by the shrinkage of the nonheat- treated top layer. Underlying layers, where present, showed a homogeneous residual stress distribution characterized by low compressive stresses. This can be explained by the process related tempering during the deposition of the upper layers. A constant boundary layer number was determined for all specimens. Once this number was exceeded, the distribution of residual stresses no longer changed, but merely shifted with the increasing height of the component in the direction of build-up. These correlations contribute to the understanding of residual stress development with increasing structure height. This study is part of a running research project on the properties of hybrid additive components and processes. It aims the stress optimized hybrid additive manufacturing of high-strength components and the necessary recommendations for application. T2 - 78th IIW Annual Assembly and International Conference on Welding and Joining CY - Genoa, Italy DA - 22.06.2025 KW - DED-Arc KW - Additive manufacturing KW - Residual stress PY - 2025 AN - OPUS4-65192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kindrachuk, Vitaliy A1 - Darvishi Kamachali, Reza T1 - Mean-field modeling and phase-field simulation of grain growth under directional driving forces N2 - Directional grain growth is a common phenomenon in the synthetic and natural evolution of various polycrystals. It occurs in the presence of an external driving force, such as a temperature gradient, along which grains show a preferred, yet competitive, growth. Novel additive manufacturing processes, with intense, localized energy deposition, are prominent examples of when directional grain growth can occur, beneath the melting pool. In this work, we derive a phenomenological mean-field model and perform 3D phase-field simulations to investigate the directional grain growth and its underlying physical mechanisms. The effect of the intensity of driving force is simulated and systematically analyzed at the evolving growth front as well as various cross-sections perpendicular to the direction of the driving force. We found that although the directional growth significantly deviates from normal grain growth, it is still governed by a power law relation α tⁿ with an exponent n ~ 0.6–0.7. The exponent n exhibits a nontrivial dependence on the magnitude of the directional driving force, such that the lowest growth exponent is observed for intermediate driving forces. We elaborate that this can originate from the fact that the forces at grain boundary junctions evolve out of balance under the influence of the directional driving force. With increasing the driving forces, the growth exponent asymptotically approaches a value of n ≈ 0.63, imposed by the largest possible grain aspect ratio for given grain boundary energies. The current combined mean-field and phase-field framework pave the way for future exploration in broader contexts such as the evolution of complex additively manufactured microstructures. KW - Additive manufacturing KW - Phase-field simulation KW - Grain growth KW - Mean-field modelling KW - Directional grain growth PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593210 DO - https://doi.org/10.1016/j.mtla.2023.101989 SN - 2589-1529 VL - 33 SP - 1 EP - 10 PB - Elsevier AN - OPUS4-59321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Sebastian A1 - Gluth, Gregor ED - Rossignol, S. ED - Gluth, Gregor T1 - Unraveling the hardening mechanism during laser-induced slip casting of lithium aluminate-microsilica slurry N2 - Additive manufacturing (AM) of alkali-activated materials is a promising method for producing ceramic precursors, construction elements and other parts. A recently introduced AM process is laser-induced slip casting of lithium aluminate/microsilica slurries, which yields parts with excellent mechanical strengths. To clarify the underlying mechanisms, μ-Raman spectroscopy was applied to parts produced by the process, and the dissolution and hydration of lithium aluminate was studied inter alia using conventional and in-situ X-ray diffraction. The results show that significant dissolution of lithium aluminate occurs, particularly at increased temperatures during laser interaction, which leads to an increase of pH and precipitation of an akopovaite-like Li-Al-CO3 layered double hydroxide. The increase of the pH is likely to induce dissolution of the microsilica and possibly formation of a hydrous lithium aluminosilicate gel. These observations explain the strength evolution of the studied parts and can also aid the development and improvement of related AM methods. KW - Alkali-activated materials KW - Additive manufacturing KW - Laser-induced slip casting KW - Lithium KW - Layered double hydroxide PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520557 DO - https://doi.org/10.1016/j.oceram.2021.100060 SN - 2666-5395 VL - 5 IS - Special issue: Alkali-activated materials and geopolymers in ceramics and beyond SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-52055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderón, Luis A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Elastic modulus data for additively and conventionally manufactured variants of Ti-6Al-4V, IN718 and AISI 316 L N2 - This article reports temperature-dependent elastic properties (Young’s modulus, shear modulus) of three alloys measured by the dynamic resonance method. The alloys Ti-6Al-4V, Inconel IN718, and AISI 316 L were each investigated in a variant produced by an additive manufacturing processing route and by a conventional manufacturing processing route. The datasets include information on processing routes and parameters, heat treatments, grain size, specimen dimensions, and weight, as well as Young’s and shear modulus along with their measurement uncertainty. The process routes and methods are described in detail. The datasets were generated in an accredited testing lab, audited as BAM reference data, and are hosted in the open data repository Zenodo. Possible data usages include the verification of the correctness of the test setup via Young’s modulus comparison in low-cycle fatigue (LCF) or thermo-mechanical fatigue (TMF) testing campaigns, the design auf VHCF specimens and the use as input data for simulation purposes. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - AISI 316L KW - IN 718 KW - Ti-6Al-4V KW - Reference data KW - Temperature dependence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579716 DO - https://doi.org/10.1038/s41597-023-02387-6 VL - 10 IS - 1 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-57971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonrado T1 - Low-Cycle Fatigue Behavior of Laser Powder Bed Fused Inconel 718 at Room and High Temperature N2 - The nickel-base superalloy Inconel 718 (IN718) is one of the most commonly used Ni-based superalloys for high temperature structural applications for its remarkable strength, as well as creep, fatigue, and corrosion resistance up to 650 °C. While IN718 has traditionally been employed as cast or wrought material, it is difficult to machine because of its high strength and toughness. The additive manufacturing of IN718 components made by metal AM has thus gained extensive attention to produce expensive near-net shaped components of high-temperature alloys such as IN718, for it saves material and costs in processing and machining steps. Among all metal additive manufacturing (AM) technologies, laser powder bed fusion (PBF-LB/M) is the most widespread, IN718 being one of the most common alloys produced with it. However, high cooling rates associated to the PBF-LB/M process, hinders the primary strengthening phases γ’’ and γ’ to form, as these cooling rates induce a dislocation cellular substructure, at which walls primary Laves phases bind segregating Nb, Ti and Mo. Many of the therefore needed heat-treatment strategies can then promote Laves-phase transformation into the stable δ phase along the cell and grain boundaries. Laves and δ phases, as well as grain-boundary primary carbides may have adverse effects on mechanical properties. The mostly needle-shaped δ phase was namely found to have a detrimental effect on creep rupture life while no direct effect on LCF fatigue life was evident. In this work room- and high-temperature (650 °C) low-cycle fatigue behavior of PBF-LB/M IN718 is investigated in the four-step heat-treated state and compared to wrought IN718. The microstructure of both materials is characterized across length scales via microscopy methods. The fatigue life at room temperature of the PBF-LB/M IN718 material is slightly lower than that for the wrought material, which is reversed at 650 °C. The cyclic stress response for both materials is marked by cyclic softening that is more pronounced at higher test temperatures. Multiple secondary cracks form at high strain amplitudes, at both room and high temperatures. High testing temperatures enhance specially crack formation at the transitions of regions between elongated grains and columns of stacked grains with ripple patterns in the PBF-LB/M material. Additional to this behavior, pronounced crack branching and deflection indicate that the cracks are controlled by sharp micromechanical gradients. T2 - EUROMAT 2025 CY - Granada, Spain DA - 14.09.2025 KW - Additive manufacturing KW - Low-cycle fatigue KW - Microstructural characterization KW - Ni-base superalloy PY - 2025 AN - OPUS4-64354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suarez Ocano, Patricia T1 - Influence of heat-treatment-induced microstructural evolution on the Low Cycle Fatigue behavior of 316L stainless steel fabricated by Laser Powder Bed Fusion N2 - Additive manufacturing, particularly the laser powder bed fusion (PBF-LB/M) process, has gained significant attention in recent years due to its ability to produce complex geometries with enhanced mechanical properties. Among the various materials used, 316L stainless steel is highly favored for cyclically loaded components due to its exceptional mechanical strength, high-temperature performance, and corrosion resistance, making it widely applicable across various industries. 316L SS fabricated by PBF-LB/M (PBF-LB/M/316L) exhibits a unique hierarchical microstructure, with high density of low-angle grain boundaries (LAGBs), nano-dispersed silicates, chemical micro-segregations, and solidification-induced cellular structures. Particularly, the submicron-sized cellular features enriched with chromium (Cr) and molybdenum (Mo), along with high dislocation densities, contribute to a superior strength-ductility balance compared to conventionally manufactured 316L SS. The dispersed silicate particles act also as a strengthening phase, impeding dislocation movement and enhancing plastic deformation resistance. This study explores the effect of heat treatments on the low-cycle fatigue (LCF) behavior of PBF-LB/M/316L at room temperature (RT) and 600 °C. First, three heat treatment conditions were applied to the as-built material: 450 °C for 4 hours (HT450/4), 800 °C for 3 hours (HT800/3), and 900 °C for 1 hour (HT900/1) to investigate their influence on microstructural evolution. Microstructural analysis revealed that the HT450/4 condition preserved the cellular structure with high dislocation density, while the HT800/3 condition showed partial dissolution of cells together with reduction in segregated elements along the cell walls and a reduced dislocation density. The HT900/1 condition resulted in complete segregation and cellular structure dissolution with comparable dislocation density to HT800/3 while maintaining the crystallographic texture and grain morphology. Intermetallic χ phase was mostly observed at the grain boundaries in HT800/3, but not in HT900/1. Fully reversed LCF tests were conducted under strain-controlled conditions with a strain amplitude of 0.8 %. Tests were interrupted at specific intervals to analyze the interaction between hierarchical microstructural features and deformation mechanisms in the three heat-treated conditions. Due to the pronounced dislocation cell structures and elemental segregation, the microstructure of the HT450/4 condition significantly impact deformation and damage mechanisms during cyclic loading, which in turn, differ from the conventional produced counterparts. The results provide insights into the relationship between microstructural features and fatigue performance, highlighting key deformation and failure mechanisms under cyclic loading. T2 - FEMS 2025 EUROMAT 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 14.09.2025 KW - Additive manufacturing KW - 316L stainless steel KW - Heat treatments KW - Low Cycle Fatigue KW - Microstructure PY - 2025 AN - OPUS4-64238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ferrari, Bruno A1 - Fantin, Andrea A1 - Said, D. A1 - Fitch, A. N. A1 - Suárez Ocano, Patricia A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Kromm, Arne A1 - Darvishi Kamachali, Reza A1 - Bruno, Giovanni A1 - Evans, Alexander A1 - Requena, G. A1 - Agudo Jácome, Leonardo A1 - Serrano Munoz, Itziar T1 - The impact of scanning strategy on cell structures in PBF-LB/M/IN718: an in situ synchrotron x-ray diffraction study N2 - In additive manufacturing, any change of the process parameters, such as scanning strategy, directly affects the cooling rates, heat accumulation, and overall thermal history of the build. Consequently, parts built with different process parameters tend to have different levels of crystallographic texture, residual stress, and dislocation density. These features can influence the properties of the material and their development during post-processing operations. In this study, IN718 prisms were built by laser powder bed fusion (PBF-LB/M) using two different scanning strategies (continuous 67° rotations around the build direction, ROT, and alternating 0°/67° scans, ALT) to provide two different as-built conditions. In situ time-resolved synchrotron diffraction was performed during a solution heat treatment at 1027 °C for 1 h. Ex situ scanning electron microscopy was used to support and complement the in situ observations. An approach to quantify the effect of elemental microsegregation at the cell walls is developed based on the deconvolution of asymmetric γ-nickel matrix peaks. Following this approach, the scanning strategies are shown to affect the as-built fraction of cell walls in the material, resulting in a difference of approximately 5 %, in weight fraction, between ROT and ALT (19 % vs. 24 %, respectively). This microsegregation was observed to be rapidly homogenized during the heating ramp, and no significant changes to the peak shape in the γ peaks occurred during the isothermal part of the heat treatment, regardless of the scanning strategy. KW - Additive manufacturing KW - Inconel 718 KW - Synchrotron x-ray diffraction KW - Heat treatment KW - Laser powder bed fusion KW - Cellular microstructure PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650958 DO - https://doi.org/10.1016/j.jmrt.2025.11.214 SN - 2238-7854 VL - 41 SP - 593 EP - 608 PB - Elsevier B.V. AN - OPUS4-65095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mehta, B. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Markötter, Henning A1 - Bruno, Giovanni A1 - Hryha, E. A1 - Nyborg, L. A1 - Virtanen, E. T1 - Microstructure, mechanical properties and fracture mechanisms in a 7017 aluminium alloy tailored for powder bed fusion – laser beam N2 - This study addressed a 7017 Al-alloy tailored for powder bed fusion – laser beam (PBF-LB) process. The alloy was prepared by mixing 3 wt% Zr and 0.5 wt% TiC powder to standard pre-alloyed 7017 grade aluminium powder. This made printing of the alloys possible avoiding solidification cracking in the bulk and achieving high relative density (99.8 %). Such advanced alloys have significantly higher Young’s modulus (>80 GPa) than conventional Al-alloys (70–75 GPa), thus making them attractive for applications requiring high stiffness. The resulting microstructure in as-printed condition was rich in particles originating from admixed powders and primary precipitates/inclusions originating from the PBF-LB process. After performing a T6-like heat treatment designed for the PBF-LB process, the microstructure changed: Zr-nanoparticles and Fe- or Mg/Zn- containing precipitates formed thus providing 75 % increase in yield strength (from 254 MPa to 444 MPa) at the cost of decreasing ductility (∼20 % to ∼9 %). In-situ tensile testing combined with SXCT, and ex-situ tensile testing combined with fracture analysis confirmed that the fracture initiation in both conditions is highly dependent on defects originated during printing. However, cracks are deflected from decohesion around Zr-containing inclusions/precipitates embedded in the Al-matrix. This deflection is seen to improve the ductility of the material. KW - Additive manufacturing KW - Powder bed fusion Laser beam KW - X-ray computed tomography KW - Strengthening mechanisms KW - Crack propagation KW - Zirconium PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568243 DO - https://doi.org/10.1016/j.matdes.2023.111602 SN - 0264-1275 VL - 226 SP - 1 EP - 14 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-56824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Manufacturing a safer world: Diffraction based residual stress analysis for metal additive manufacturing N2 - Metal Additive Manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) are characterized by layer wise construction, which enable advancements of component design, with associated potential gains in performance and efficiency. However, high magnitude residual stresses (RS) are often a product of the rapid thermal cycles typical of the layerwise process. Therefore, a deep understanding of the formation of RS, the influence of process parameters on their magnitude and the impact on mechanical performance is crucial for widespread application. The experimental characterisation of these RS is essential for safety related engineering application and supports the development of reliable numerical models. Diffraction-based methods for RS analysis using neutrons and high energy X-rays enable non-destructive spatially resolved characterisation of both surface and bulk residual stresses in complex components. This presentation will provide an overview of recent research by the BAM at large scale facilities for the characterization of residual stresses in LPBF metallic alloys as a function of process parameters. In addition, the challenges posed by the textured and hierarchical microstructures of LPBF materials on diffraction-based RS analysis in AM materials will be discussed. This will include the question of the d0 reference lattice spacing and the appropriate choice of the diffraction elastic constants (DECs) to calculate the level of RS in LPBF manufactured alloys. T2 - 11th INternational Conference on Residual Stress (ICRS11) CY - Online meeting DA - 28.03.2021 KW - Residual stress analysis KW - Neutron diffraction KW - X-ray diffraction KW - Additive manufacturing KW - Laser powder bed fusion KW - AGIL PY - 2022 AN - OPUS4-54676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano-Munoz, Itziar T1 - Synchrotron x ray refraction detects microstructure and porosity evolution during in situ heat treatments in an LPBF ALSI10MG alloy N2 - The complexity of any microstructural characterization significantly increases when there is a need to evaluate the icrostructural evolution as a function of temperature. To date, this characterization is primarily performed by undertaking elaborative ex-situ experiments where the material’s heating procedure is interrupted at different temperatures or times. Moreover, these studies are often limited to a region smaller than the representative elementary volume, which can lead to partial or even biased interpretations of the collected data. This limitation can be greatly overcome by using in-situ synchrotron X-ray refraction (SXRR). T2 - ICTMS 2022 CY - Grenoble, France DA - 27.06.2022 KW - Synchrotron refraction KW - In situ heating KW - AlSi10Mg alloy KW - Additive manufacturing KW - Microstructural evolution PY - 2022 AN - OPUS4-55199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Bruno, Giovanni A1 - Buffière, J.-Y. A1 - Wegener, T. A1 - Niendorf, T. A1 - Wu, T. A1 - Zhang, X. A1 - Kashaev, N. A1 - Meneghetti, G. A1 - Hrabe, Nik A1 - Madia, Mauro A1 - Werner, Tiago A1 - Hilgenberg, Kai A1 - Koukolikova, M. A1 - Prochazka, R. A1 - Dzugan, J. A1 - Möller, B. A1 - Beretta, S. A1 - Evans, Alexander A1 - Wagener, R. A1 - Schnabel, K. T1 - Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges N2 - This article is an outcome of a workshop on Fatigue of Additive Manufactured Metallic Components jointly organized by the Federal Institute for Materials Research and Testing (BAM) Berlin, Germany and the National Institute of Standards and Technology (NIST) Boulder, CO, U.S.A. The aim of the workshop was a comprehensive discussion of the specific aspects of additively manufactured (AM) components in regard to failure under cyclic loading. Undoubtedly, a better understanding and the further development of approaches for damage tolerant component design of AM parts are among the most significant challenges currently facing the use of these new technologies. This article presents a thorough overview of the workshop discussions. It aims to provide a review of the parameters affecting the damage tolerance of AM parts with special emphasis on the process parameters intrinsic to the AM technologies, the resulting defects and residual stresses. Based on these aspects, concepts for damage tolerant component design for AM are reviewed and critically discussed. KW - Additive manufacturing KW - Fatigue loading KW - Component assessment KW - Damage tolerance KW - Defects KW - Residual stresses PY - 2021 DO - https://doi.org/10.1016/j.pmatsci.2021.100786 SN - 0079-6425 VL - 121 PB - Elsevier CY - Amsterdam AN - OPUS4-51937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Surmeneva, M. A1 - Koptyug, A. A1 - Khrapov, D. A1 - Ivanov, Yuriy A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Prymak, O. A1 - Loza, K. A1 - Epple, M. A1 - Bruno, Giovanni A1 - Surmenev, R. T1 - In situ synthesis of a binary Ti–10at% Nb alloy by electron beam melting using a mixture of elemental niobium and titanium powders N2 - This study reports the results of the preliminary assessment to fabricate Ti-10at% Nb alloy by electron beam melting (EBM®) from a blend of elemental Nb and Ti powders. The microstructure of the EBM-manufactured Ti-10at% Nb alloys is sensitive to the following factors: different sintering properties of Nb and Ti powders, powder particle properties, material viscosities at varying melt pool temperatures, β-stabilizer element content and the EBM® process parameters. Three phases were observed in as-manufactured Ti-10at% Nb alloy: μm-size Nb phase, a Nb-rich β-solid solution surrounding Nb phase, lamellar structured α-phase and β-solid solution with different distribution and volume fraction. Thus, the combination of powder particle characteristics, very short time material spends in molten condition and sluggish kinetics of mixing and diffusional process in Ti-Nb alloy results in heterogeneous microstructures depending on the local Nb content in the powder blend and the EBM® process conditions. KW - Additive manufacturing KW - Electron beam melting KW - Ti-Nb alloy KW - In situ alloying PY - 2020 DO - https://doi.org/10.1016/j.jmatprotec.2020.116646 VL - 282 SP - 116646 PB - Elsevier B.V. AN - OPUS4-50457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Oster, Simon A1 - Maierhofer, Christiane A1 - Bruno, Giovanni ED - Czujko, T. ED - Benedetti, M. T1 - Can Potential Defects in LPBF Be Healed from the Laser Exposure of Subsequent Layers? A Quantitative Study N2 - Additive manufacturing (AM) of metals and in particular laser powder bed fusion (LPBF) enables a degree of freedom in design unparalleled by conventional subtractive methods. To ensure that the designed precision is matched by the produced LPBF parts, a full understanding of the interaction between the laser and the feedstock powder is needed. It has been shown that the laser also melts subjacent layers of material underneath. This effect plays a key role when designing small cavities or overhanging structures, because, in these cases, the material underneath is feed-stock powder. In this study, we quantify the extension of the melt pool during laser illumination of powder layers and the defect spatial distribution in a cylindrical specimen. During the LPBF process, several layers were intentionally not exposed to the laser beam at various locations, while the build process was monitored by thermography and optical tomography. The cylinder was finally scanned by X-ray computed tomography (XCT). To correlate the positions of the unmolten layers in the part, a staircase was manufactured around the cylinder for easier registration. The results show that healing among layers occurs if a scan strategy is applied, where the orientation of the hatches is changed for each subsequent layer. They also show that small pores and surface roughness of solidified material below a thick layer of unmolten material (>200 µm) serve as seeding points for larger voids. The orientation of the first two layers fully exposed after a thick layer of unmolten powder shapes the orientation of these voids, created by a lack of fusion. KW - Computed tomography KW - Laser Powder Bed Fusion KW - In situ monitoring KW - infrared Thermography KW - Optical Tomography KW - Additive manufacturing KW - AISI 316L PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528778 DO - https://doi.org/10.3390/met11071012 VL - 11 IS - 7 SP - 1012 PB - MDPI CY - Basel AN - OPUS4-52877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kasperovich, G. A1 - Requena, G. A1 - Haubrich, J. A1 - Bruno, Giovanni T1 - Classification of defect types in SLM Ti-6Al-V4 by X-ray refraction topography N2 - Porosity in additively manufactured materials, such as laser powder bed fusion Ti-Al6-V4, can play an important role in their mechanical performance. Not only the total porosity but also the shape/morphology of the individual pores need to be considered. Therefore, it is necessary to determine the distributions of different defect types (especially fusing defects and keyhole pores) and their dependence on process parameters. We show that synchrotron X-ray refraction radiography allows analysis of large samples (up to several millimeters) without compromising the detectability of submicrometer defects. Correspondingly, a classification tool is introduced that is able to quantitatively distinguish defects such as keyhole pores and binding defects with a confidence level of 94 %, even when the shape cannot be discerned because of limited spatial resolution. KW - Additive manufacturing KW - Selective laser melting KW - X-ray refraction KW - Microscopy KW - Porosity KW - X-ray computed tomography KW - BAMline KW - Synchrotron Radiation PY - 2020 DO - https://doi.org/10.1520/MPC20190080 SN - 2379-1365 VL - 9 IS - 1 SP - 82 EP - 93 PB - ASTM International CY - West Conshohocken, PA AN - OPUS4-50470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Ageing behaviour of laser powder bed fused 316L: a powder to failure approach N2 - Laser powder bed fusion (LPBF) is an additive manufacturing process for materials which inherently tends to yield various degrees of metastable hierarchical microstructures, defects and high residual stresses in the as-built condition depending on the process parameters. The understanding of the evolution of these typical features during heat treatment and subsequent thermal and mechanical ageing is crucial for the wider acceptance for safety critical structures. A multi-disciplinary research project at BAM studying the development of the microstructure, defects, residual stresses typical of LPBF 316L and their evolution during thermal and mechanical ageing has led to insights into the stability of these inherent features. This presentation aims to give a broad overview of the project with a few specific cases of investigation. Firstly, the formation of residual stresses, the nature of the initial microstructure, the tensile properties and a modelling approach to understand the anisotropy will be presented. This will be followed by examples of studies of their evolution during heat treatment, long term thermal exposure, and room temperature and high temperature mechanical testing compared to a baseline of conventional wrought variant of the same alloy. T2 - International Conference on Additive Manufacturing 2021 (ICAM 2021) CY - Online meeting DA - 01.11.2021 KW - Ageing KW - Additive manufacturing KW - Laser powder bed fusion KW - AGIL PY - 2021 AN - OPUS4-54106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evans, Alexander A1 - Schröder, Jakob A1 - Pirling, T. A1 - Ulbricht, Alexander A1 - Suárez Ocaño, Patricia A1 - Bruno, Giovanni T1 - Resolving the Subsurface Residual Stress Maximum in Laser Powder Bed-Fused 316L Stainless Steel by Diffraction-Based Analysis N2 - Laser powder bed fusion (PBF-LB/M) is a metal additive manufacturing process. Due to the complex nature of the layer-wise, repeated heating and cooling cycles, it tends to generate high-magnitude residual stresses. If not correctly understood and mitigated through in- or post-process approaches, these residual stresses can be detrimental as they are often tensile at the surface. However, determining the magnitude and location of peak tensile residual stresses is not trivial as they are often located subsurface. This work focuses on determining the magnitude and location of these deleterious tensile residual stresses in a PBF-LB/316L specimen. Two diffraction-based Methods are used to reveal the relationship between the residual stresses and the underlying microstructure. On the one hand, high spatial resolution Neutron diffraction is used to determine triaxial stresses from the bulk to a depth of 0.15 mm. On the other hand, laboratory X-ray diffraction coupled with electrolytical layer removal allows the biaxial residual stress depth profile to be probed from the surface to a depth of about 0.6 mm. The results show a good agreement between the two methods. The peak residual stress is shown to be 500 MPa, which appears as a plateau between 0.08 and 0.35 mm in depth. KW - Residual stress KW - Diffraction KW - Laser Powder Bed Fusion KW - 316L KW - Additive manufacturing KW - Microstructure KW - AGIL PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652138 DO - https://doi.org/10.1007/s11837-025-07719-y SN - 1543-1851 VL - 77 IS - 12 SP - 9726 EP - 9737 PB - Springer Nature AN - OPUS4-65213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Čapek, J. A1 - Mohr, Gunther A1 - Serrano-Munoz, Itziar A1 - Bruno, Giovanni T1 - Understanding the impact of texture on the micromechanical anisotropy of laser powder bed fused Inconel 718 N2 - The manufacturability of metallic alloys using laser-based additive manufacturing methods such as laser powder bed fusion has substantially improved within the last decade. However, local melting and solidification cause hierarchically structured and crystallographically textured microstructures possessing large residual stress. Such microstructures are not only the origin of mechanical anisotropy but also pose metrological challenges for the diffraction-based residual stress determination. Here we demonstrate the influence of the build orientation and the texture on the microstructure and consequently the mechanical anisotropy of as-built Inconel 718. For this purpose, we manufactured specimens with [001]/[011]-, [001]- and [011]/[111]-type textures along their loading direction. In addition to changes in the Young’s moduli, the differences in the crystallographic textures result in variations of the yield and ultimate tensile strengths. With this in mind, we studied the anisotropy on the micromechanical scale by subjecting the specimens to tensile loads along the different texture directions during in situ neutron diffraction experiments. In this context, the response of multiple lattice planes up to a tensile strain of 10% displayed differences in the load partitioning and the residual strain accumulation for the specimen with [011]/[111]-type texture. However, the relative behavior of the specimens possessing an [001]/[011]- and [001]-type texture remained qualitatively similar. The consequences on the metrology of residual stress determination methods are discussed. KW - Laser powder bed fusion KW - Additive manufacturing KW - Electron backscatter diffraction KW - Tensile testing KW - Diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555840 DO - https://doi.org/10.1007/s10853-022-07499-9 SN - 1573-4803 VL - 2022 IS - 57 SP - 15036 EP - 15058 PB - Springer Science + Business Media B.V. CY - Dordrecht AN - OPUS4-55584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Luzin, V. A1 - Abreu Faria, G. A1 - Degener, Sebastian A1 - Polatidis, E. A1 - Čapek, J. A1 - Kromm, Arne A1 - Dovzhenko, G. A1 - Bruno, Giovanni T1 - Texture-based residual stress analysis of laser powder bed fused Inconel 718 parts N2 - Although layer-based additive manufacturing methods such as laser powder bed fusion (PBF-LB) offer an immense geometrical freedom in design, they are typically subject to a build-up of internal stress (i.e. thermal stress) during manufacturing. As a consequence, significant residual stress (RS) is retained in the final part as a footprint of these internal stresses. Furthermore, localized melting and solidification inherently induce columnar-type grain growth accompanied by crystallographic texture. Although diffraction-based methods are commonly used to determine the RS distribution in PBF-LB parts, such features pose metrological challenges in their application. In theory, preferred grain orientation invalidates the hypothesis of isotropic material behavior underlying the common methods to determine RS. In this work, more refined methods are employed to determine RS in PBF-LB/M/IN718 prisms, based on crystallographic texture data. In fact, the employment of direction-dependent elastic constants (i.e. stress factors) for the calculation of RS results in insignificant differences from conventional approaches based on the hypothesis of isotropic mechanical properties. It can be concluded that this result is directly linked to the fact that the {311} lattice planes typically used for RS analysis in nickel-based alloys have high multiplicity and less strong texture intensities compared with other lattice planes. It is also found that the length of the laser scan vectors determines the surface RS distribution in prisms prior to their removal from the baseplate. On removal from the baseplate the surface RS considerably relaxes and/or redistributes; a combination of the geometry and the scanning strategy dictates the sub-surface RS distribution. KW - Additive manufacturing KW - Electron backscattered diffraction KW - Principal stress KW - Residual stress PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578331 DO - https://doi.org/10.1107/S1600576723004855 SN - 1600-5767 VL - 56 IS - Pt 4 SP - 1076 EP - 1090 AN - OPUS4-57833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderón, Luis A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ti-6Al-4V N2 - The elastic properties (Young's modulus, shear modulus) of titanium alloy Ti-6Al-4V were investigated between room temperature and 400 °C in an additively manufactured variant (laser-based directed energy deposition with powder as feedstock, DED-LB/M) and from a conventional process route (hot rolled bar). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, microstructure, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - Ti-6Al-4V PY - 2023 DO - https://doi.org/10.5281/zenodo.7813732 PB - Zenodo CY - Geneva AN - OPUS4-57286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Piesker, Benjamin A1 - Ávila Calderón, Luis A1 - Mohr, Gunther A1 - Rehmer, Birgit A1 - Agudo Jácome, Leonardo A1 - Hilgenberg, Kai A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Tensile and Low‐Cycle Fatigue Behavior of Laser Powder Bed Fused Inconel 718 at Room and High Temperature N2 - This study investigates the room‐ and high‐temperature (650 °C) tensile and low‐cycle‐fatigue behavior of Inconel 718 produced by laser powder bed fusion (PBF‐LB/M) with a four‐step heat treatment and compares the results to the conventional wrought material. The microstructure after heat treatment is characterized on different length scales. Compared to the wrought variant, the elastic and yield properties are comparable at both test temperatures while tensile strength, ductility, and strain hardening capacity are lower. The fatigue life of the PBF‐LB/M variant at room temperature is slightly lower than that of the wrought material, while at 650 °C, it is vice versa. The cyclic stress response for both material variants is characterized by cyclic softening, which is more pronounced at the higher test temperature. High strain amplitudes (≥0.7%) at room temperature and especially a high testing temperature result in the formation of multiple secondary cracks at the transitions of regions comprising predominantly elongated grain morphology and columns of stacked grains with ripple patterns in the PBF‐LB/M material. This observation and pronounced crack branching and deflection indicate that the cracks are controlled by sharp micromechanical gradients and local crystallite clusters. KW - Additive manufacturing KW - Fatigue damage KW - Heat treatment KW - Inconel 718 KW - Laser powder bed fusion KW - Low-cycle fatigue KW - Tensile strength PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599316 DO - https://doi.org/10.1002/adem.202302122 SN - 1527-2648 SP - 1 EP - 17 PB - Wiley AN - OPUS4-59931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderón, Luis A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ni-based alloy Inconel IN718 N2 - The elastic properties (Young's modulus, shear modulus) of Ni-based alloy Inconel IN718 were investigated between room temperature and 800 °C in an additively manufactured variant (laser powder bed fusion, PBF‑LB/M) and from a conventional process route (hot rolled bar). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - IN718 PY - 2023 DO - https://doi.org/10.5281/zenodo.7813824 PB - Zenodo CY - Geneva AN - OPUS4-57287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander T1 - Separation of the Formation Mechanisms of Residual Stresses in LPBF 316L N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured parts and important factors for the residual stress formation. This study examined the influence of heat accumulation on the distribution of residual stress in two prisms produced by Laser Powder Bed Fusion (LPBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two different border fill scan strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. The goal was to reveal the effect of different heat inputs on samples featuring the same solidification shrinkage. Residual stress was characterised in one plane perpendicular to the building direction at the mid height using Neutron and Lab X-ray diffraction. Thermography data obtained during the build process were analysed in order to correlate the cooling rates and apparent surface temperatures with the residual stress results. Optical microscopy and micro computed tomography were used to correlate defect populations with the residual stress distribution. The two scanning strategies led to residual stress distributions that were typical for additively manufactured components: compressive stresses in the bulk and tensile stresses at the surface. However, due to the different heat accumulation, the maximum residual stress levels differed. We concluded that solidification shrinkage plays a major role in determining the shape of the residual stress distribution, while the temperature gradient mechanism appears to determine the magnitude of peak residual stresses. T2 - MLZ User Meeting 2020 CY - Online meeting DA - 08.12.2020 KW - Computed tomography KW - Neutron diffraction KW - X-ray diffraction KW - Additive manufacturing KW - Residual stress KW - Thermography KW - LPBF KW - Laser Powder Bed Fusion PY - 2020 AN - OPUS4-51793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D A1 - Koptyug, A. A1 - Manabaev, K. A1 - Léonard, Fabien A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Cheneler, D. A1 - Loza, K. A1 - Epple, M. A1 - Surmenev, R. A1 - Surmeneva, M. T1 - The impact of post manufacturing treatment of functionally graded Ti6Al4V scaffolds on their surface morphology and mechanical strength N2 - An ultrasonic vibration post-treatment procedure was suggested for additively manufac-tured lattices. The aim of the present research was to investigate mechanical properties andthe differences in mechanical behavior and fracture modes of Ti6Al4V scaffolds treated withtraditional powder recovery system (PRS) and ultrasound vibration (USV). Scanning electronmicroscopy (SEM) was used to investigate the strut surface and the fracture surface mor-phology. X-ray computed tomography (CT) was employed to evaluate the inner structure,strut dimensions, pore size, as well as the surface morphology of additively manufacturedporous scaffolds. Uniaxial compression tests were conducted to obtain elastic modulus,compressive ultimate strength and yield stress. Finite element analysis was performedfor a body-centered cubic (BCC) element-based model and for CT-based reconstructiondata, as well as for a two-zone scaffold model to evaluate stress distribution during elasticdeformation. The scaffold with PRS post treatment displayed ductile behavior, while USVtreated scaffold displayed fragile behavior. Double barrel formation of PRS treated scaffoldwas observed during deformation. Finite element analysis for the CT-based reconstructionrevealed the strong impact of surface morphology on the stress distribution in comparisonwith BCC cell model because of partially molten metal particles on the surface of struts,which usually remain unstressed. KW - Additive manufacturing KW - Electron beam melting KW - Computed tomography KW - FEM KW - Lattice structures PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505960 DO - https://doi.org/10.1016/j.jmrt.2019.12.019 SN - 2238-7854 VL - 9 IS - 2 SP - 1866 EP - 1881 PB - Elsevier B.V. AN - OPUS4-50596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artzt, K. A1 - Mishurova, Tatiana A1 - Bauer, P.-P. A1 - Gussone, J. A1 - Barriobero-Vila, P. A1 - Evsevleev, Sergei A1 - Bruno, Giovanni A1 - Requena, G. A1 - Haubrich, J. T1 - Pandora’s Box–Influence of Contour Parameters on Roughness and Subsurface Residual Stresses in Laser Powder Bed Fusion of Ti-6Al-4V N2 - The contour scan strategies in laser powder bed fusion (LPBF) of Ti-6Al-4V were studied at the coupon level. These scan strategies determined the surface qualities and subsurface residual stresses. The correlations to these properties were identified for an optimization of the LPBF processing. The surface roughness and the residual stresses in build direction were linked: combining high laser power and high scan velocities with at least two contour lines substantially reduced the surface roughness, expressed by the arithmetic mean height, from values as high as 30 μm to 13 μm, while the residual stresses rose from ~340 to about 800 MPa. At this stress level, manufactured rocket fuel injector components evidenced macroscopic cracking. A scan strategy completing the contour region at 100 W and 1050 mm/s is recommended as a compromise between residual stresses (625 MPa) and surface quality (14.2 μm). The LPBF builds were monitored with an in-line twin-photodiode-based melt pool monitoring (MPM) system, which revealed a correlation between the intensity quotient I2/I1, the surface roughness, and the residual stresses. Thus, this MPM system can provide a predictive estimate of the surface quality of the samples and resulting residual stresses in the material generated during LPBF. KW - Additive manufacturing KW - Ti-6Al-4V KW - Contour scan strategy KW - Surface roughness KW - Melt pool monitoring KW - Residual stress KW - Synchrotron X-ray diffraction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510585 DO - https://doi.org/10.3390/ma13153348 VL - 13 IS - 15 SP - 3348 AN - OPUS4-51058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Sydow, B. A1 - Thiede, Tobias A1 - Sizova, I. A1 - Ulbricht, Alexander A1 - Bambach, M. A1 - Bruno, Giovanni T1 - Residual Stress and Microstructure of a Ti-6Al-4V Wire Arc Additive Manufacturing Hybrid Demonstrator N2 - Wire Arc Additive Manufacturing (WAAM) features high deposition rates and, thus, allows production of large components that are relevant for aerospace applications. However, a lot of aerospace parts are currently produced by forging or machining alone to ensure fast production and to obtain good mechanical properties; the use of these conventional process routes causes high tooling and material costs. A hybrid approach (a combination of forging and WAAM) allows making production more efficient. In this fashion, further structural or functional features can be built in any direction without using additional tools for every part. By using a combination of forging basic geometries with one tool set and adding the functional features by means of WAAM, the tool costs and material waste can be reduced compared to either completely forged or machined parts. One of the factors influencing the structural integrity of additively manufactured parts are (high) residual stresses, generated during the build process. In this study, the triaxial residual stress profiles in a hybrid WAAM part are reported, as determined by neutron diffraction. The analysis is complemented by microstructural investigations, showing a gradient of microstructure (shape and size of grains) along the part height. The highest residual stresses were found in the transition Zone (between WAAM and forged part). The total stress range showed to be lower than expected for WAAM components. This could be explained by the thermal history of the component. KW - Additive manufacturing KW - Neutron diffraction KW - Residual stress KW - Hybrid manufacturing KW - WAAM KW - Ti-6Al-4V PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508245 DO - https://doi.org/10.3390/met10060701 VL - 10 IS - 6 SP - 701 PB - MDPI AN - OPUS4-50824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Müller, Bernd R. A1 - Schneider, J. A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Using SXRR to Probe the Nature of Discontinuities in SLM Additive Manufactured Inconel 718 Specimens N2 - The utilization of additive manufacturing (AM) to fabricate robust structural components relies on understanding the nature of internal anomalies or discontinuities, which can compromise the structural integrity. While some discontinuities in AM microstructures stem from similar mechanisms as observed in more traditional processes such as casting, others are unique to the AM process. Discontinuities in AM are challenging to detect, due to their submicron size and orientation dependency. Toward the goal of improving structural integrity, minimizing discontinuities in an AM build requires an understanding of the mechanisms of formation to mitigate their occurrence. This study utilizes various techniques to evaluate the shape, size, nature and distribution of discontinuities in AM Inconel 718, in a non-hot isostatic pressed (HIPed) as-built, non-HIPed and direct age, and HIPed with two step age samples. Non-destructive synchrotron radiation refraction and transmission radiography (SXRR) provides additional information beyond that obtained with destructive optical microscopy. SXRR was able to distinguish between voids, cracks and lack of melt in, due to its sensitivity to the orientation of the discontinuity. KW - Additive manufacturing KW - X-ray refraction radiography KW - INCONEL 718 KW - Selective laser melting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509836 DO - https://doi.org/10.1007/s11661-020-05847-5 SN - 1543-1940 VL - 51 IS - 8 SP - 4146 EP - 4157 PB - Springer AN - OPUS4-50983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano-Munoz, Itziar A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - The residual stress in as‑built Laser Powder Bed Fusion IN718 alloy as a consequence of the scanning strategy induced microstructure N2 - The effect of two types of scanning strategies on the grain structure and build-up of Residual Stress (RS) has been investigated in an as-built IN718 alloy produced by Laser Powder Bed Fusion (LPBF). The RS state has been investigated by X-ray diffraction techniques. The microstructural characterization was performed principally by Electron Backscatter Diffraction (EBSD), where the application of a post-measurement refinement technique enables small misorientations (< 2°) to be resolved. Kernel average misorientation (KAM) distributions indicate that preferably oriented columnar grains contain higher levels of misorientation, when compared to elongated grains with lower texture. The KAM distributions combined with X-ray diffraction stress maps infer that the increased misorientation is induced via plastic deformation driven by the thermal stresses, acting to self-relieve stress. The possibility of obtaining lower RS states in the build direction as a consequence of the influence of the microstructure should be considered when envisaging scanning strategies aimed at the mitigation of RS. KW - Additive manufacturing KW - LPBF KW - Residual stress KW - Inconel 718 KW - Kernel average misorientation KW - Texture PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511769 DO - https://doi.org/10.1038/s41598-020-71112-9 VL - 10 IS - 1 SP - 14645 AN - OPUS4-51176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritsch, Tobias A1 - Sprengel, Maximilian A1 - Evans, Alexander A1 - Farahbod-Sternahl, L. A1 - Saliwan Neumann, Romeo A1 - Hofmann, M. A1 - Bruno, Giovanni T1 - On the determination of residual stresses in additively manufactured lattice structures N2 - The determination of residual stresses becomes more complicated with increasing complexity of the structures investigated. Additive manufacturing techniques generally allow the production of ‘lattice structures’ without any additional manufacturing step. These lattice structures consist of thin struts and are thus susceptible to internal stress-induced distortion and even cracks. In most cases, internal stresses remain locked in the structures as residual stress. The determination of the residual stress in lattice structures through nondestructive neutron diffraction is described in this work. It is shown how two difficulties can be overcome: (a) the correct alignment of the lattice structures within the neutron beam and (b) the correct determination of the residual stress field in a representative part of the structure. The magnitude and the direction of residual stress are discussed. The residual stress in the strut was found to be uniaxial and to follow the orientation of the strut, while the residual stress in the knots was more hydrostatic. Additionally, it is shown that strain measurements in at least seven independent directions are necessary for the estimation of the principal stress directions. The measurement directions should be chosen according to the sample geometry and an informed choice on the possible strain field. If the most prominent direction is not measured, the error in the calculated stress magnitude increases considerably. KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Principal stress components KW - Neutron diffraction KW - Lattice structures PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520663 DO - https://doi.org/10.1107/S1600576720015344 SN - 1600-5767 VL - 54 SP - 228 EP - 236 AN - OPUS4-52066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauzon, C. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Dubiez-Le Goff, S. A1 - Murugesan, S. A1 - Bruno, Giovanni A1 - Hryha, E. T1 - Residual stresses and porosity in Ti-6Al-4V produced by laser powder bed fusion as a function of process atmosphere and component design N2 - The influence of the process gas, laser scan speed, and sample thickness on the build-up of residual stresses and porosity in Ti-6Al-4V produced by laser powder bed fusion was studied. Pure argon and helium, as well as a mixture of those (30% helium), were employed to establish process atmospheres with a low residual Oxygen content of 100 ppm O2. The results highlight that the subsurface residual stresses measured by X-ray diffraction were significantly lower in the thin samples (220 MPa) than in the cuboid samples (645 MPa). This difference was attributed to the shorter laser vector length, resulting in heat accumulation and thus in-situ stress relief. The addition of helium to the process gas did not introduce additional subsurface residual stresses in the simple geometries, even for the increased scanning speed. Finally, larger deflection was found in the cantilever built under helium (after removal from the baseplate), than in those produced under argon and an argon-helium mixture. This result demonstrates that complex designs involving large scanned areas could be subjected to higher residual stress when manufactured under helium due to the gas’s high thermal conductivity, heat capacity, and thermal diffusivity. KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Process atmosphere KW - Helium PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534209 DO - https://doi.org/10.1016/j.addma.2021.102340 VL - 47 SP - 2340 PB - Elsevier B.V. AN - OPUS4-53420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritsch, Tobias A1 - Farahbod-Sternahl, L. A1 - Serrano-Munoz, Itziar A1 - Léonard, F. A1 - Haberland, C. A1 - Bruno, Giovanni T1 - 3D Computed Tomography Quantifies the Dependence of Bulk Porosity, Surface Roughness, and Re-Entrant Features on Build Angle in Additively Manufactured IN625 Lattice Struts N2 - Layer-by-layer additive manufacturing (AM) by means of laser-powder bed Fusion (L-PBF) offers many prospects regarding the design of lattice structures used, for example, in gas turbines. However, defects such as bulk porosity, Surface roughness, and re-entrant features are exacerbated in nonvertical structures, such as tilted struts. The characterization and quantification of these kinds of defects are essential for the correct estimation of fracture and fatigue properties. Herein, cylindrical struts fabricated by L-PBF are investigated by means of X-ray computed tomography (XCT), with the aim of casting light on the dependence of the three kinds of defects (bulk porosity, surface roughness, and re-entrant features) on the build angle. Innovative analysis methods are proposed to correlate shape and position of pores, to determine the angular-resolved Surface roughness, and to quantify the amount of re-entrant surface features, q. A meshing of the XCT surface enables the correlation of q with the classical Surface roughness Pa. This analysis leads to the conclusion that there is a linear correlation between q and Pa. However, it is conjectured that there must be a threshold of surface roughness, below which no re-entrant features can be build. KW - Additive manufacturing KW - Laser powder bed fusion KW - Computed tomography KW - Surface roughness analysis KW - Re-entrant surface feature PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534728 DO - https://doi.org/10.1002/adem.202100689 IS - 2100689 SP - 1 EP - 8 PB - Wiley-VCH Verlag AN - OPUS4-53472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - Separation of the impact of residual stress and microstructure on the fatigue performance of LPBF Ti-6Al-4V at elevated temperature (Keynote) N2 - Ti-6Al-4V alloy is intensively used in the aerospace industry because of its high specific strength. However, the application of Laser Powder Bed Fusion (LPBF) Ti-6Al-4V alloy for structurally critical load-bearing components is limited. One of the main limiting factors affecting the structural integrity, are manufacturing defects. Additionally, the high cooling rates associated with LPBF process result in the formation of large residual stress (RS) with complex fields. Such RS can cause cracking and geometrical distortions of the part even right after production. Also, the microstructure of LPBF Ti-6Al-4V in the as-built condition is significantly different from that of the conventionally produced alloy. All these factors affect the mechanical behavior of the material. Therefore, to improve the material performance it is important to evaluate the individual effect of RS, defects, and microstructure on fatigue life. To this aim Ti-6Al-4V LPBF material in as-built condition and subjected to different post-processing, including two heat treatments (for stress relief and microstructural modification) and Hot Isostatic Pressing (HIP, for densification), were investigated. Prior to fatigue tests at elevated temperature, the microstructure, the mesostructure, and subsurface RS on the fatigue samples were investigated. It was found that the fatigue performance of HIPped samples is similar to that of conventionally produced Ti-6Al-4V. The tensile RS found at the surface of as-built samples decreased the fatigue life compared to heat-treated samples. Additionally, the modification of the microstructure (by heat treatment) did not affect the fatigue performance in the regime of mostly elastic strain. This shows that in the absence of tensile RS the manufacturing defects solely control the failure of LPBF components and densification has the strongest effect on the improvement of the mechanical performance. T2 - EUROMAT 2021 CY - Online meeting DA - 12.09.2021 KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Fatigue performance PY - 2021 AN - OPUS4-53278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Procedures to Quantitatively Characterize Morphological Features of Triply Periodic Minimal Surface Structures N2 - Additively manufactured (AM) metallic sheet-based Triply Periodic Minimal Surface Structures (TPMSS) meet several requirements in both bio-medical and engineering fields: Tunable mechanical properties, low sensitivity to manufacturing defects, mechanical stability, and high energy absorption. However, they also present some challenges related to quality control. In fact, the optimization of both the AM process and the properties of TPMSS is impossible without considering structural characteristics as manufacturing accuracy, internal defects, and as well as surface topography and roughness. In this study, the quantitative non-destructive analysis of TPMSS manufactured from Ti-6Al-4V alloy by electron beam melting was performed by means of laboratory X-ray computed tomography (XCT). T2 - International conference on tomography of material and structures 2022 CY - Grenoble, France DA - 27.06.2022 KW - Additive manufacturing KW - Scaffold KW - Lightweight structures KW - Computed tomography PY - 2022 AN - OPUS4-55229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - Influence of residual stress and microstructure on mechanical performance of LPBF TI-6AL-4V N2 - Ti-6Al-4V alloy is intensively used in the aerospace industry because of its high specific strength. However, the application of Laser Powder Bed Fusion (LPBF) Ti-6Al-4V alloy for structurally critical load-bearing components is limited. One of the main limiting factors affecting the structural integrity, are manufacturing defects. Additionally, the high cooling rates associated with LPBF process result in the formation of large residual stress (RS) with complex fields. Such RS can cause cracking and geometrical distortions of the part even right after production. Also, the microstructure of LPBF Ti-6Al-4V in the as-built condition is significantly different from that of the conventionally produced alloy. All these factors affect the mechanical behavior of the material. Therefore, to improve the material performance it is important to evaluate the individual effect of RS, defects, and microstructure on fatigue life. To this aim Ti-6Al-4V LPBF material in as-built condition and subjected to different post-processing, including two heat treatments (for stress relief and microstructural modification) and Hot Isostatic Pressing (HIP, for densification), were investigated. Prior to Low Cycle Fatigue (LCF) tests at operating temperature (300°C), the microstructure (phases, crystallographic texture, and grain morphology), the mesostructure (defect shape and distribution), and subsurface RS on the LCF samples were investigated. It was found that the fatigue performance of HIPped samples is similar to that of conventionally produced Ti-6Al-4V. The tensile RS found at the surface of as-built samples decreased the fatigue life compared to heat-treated samples. Additionally, the modification of the microstructure (by heat treatment) did not affect the fatigue performance in the regime of mostly elastic strain. This shows that in the absence of tensile RS the manufacturing defects solely control the failure of LPBF components and densification has the strongest effect on the improvement of the mechanical performance. T2 - ASTM ICAM 2020 CY - Online meeting DA - 16.11.2020 KW - Additive manufacturing KW - Ti-6Al-4V KW - Computed tomography KW - Residual stress PY - 2020 AN - OPUS4-51695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -