TY - JOUR A1 - Tabin, J. A1 - Kawałko, J. A1 - Schob, Daniela A1 - Roszak, R. A1 - Brodecki, A. A1 - Bała, P. A1 - Maasch, philipp A1 - Kowalewski, Z. A1 - Ziegenhorn, M. T1 - Deformation-induced martensitic transformation in fused filament fabrication austenitic stainless steels during tension at wide range of temperatures (77 K, RT) N2 - This study investigates the mechanical behaviour of fused filament fabrication (FFF) of 316L austenitic stainless steel compared to conventional 316L at room temperature and 77 K, focusing on deformation-induced martensitic transformation (DIMT). Results reveal that the Lüders-like effect, present in conventional 316L at 77 K, is absent in FFF 316L due to porosities that hinder martensitic front propagation. At room temperature, uniform strain distribution and DIMT were observed in conventional 316L, whereas in FFF 316L, martensitic nucleation occurred around pores, serving as a localized strengthening mechanism. Microstructural analysis identified Fe-δ islands along grain boundaries in FFF 316L, which contribute to its multiphase nature. Although FFF 316L demonstrates lower yield stress and elongation compared to conventional 316L, this study does not establish design allowables. The present findings are limited to monotonic tensile behaviour, fatigue performance and corrosion resistance under cryogenic conditions were not assessed. Further optimization of fabrication parameters to minimize ferrite content and porosities is suggested to enhance mechanical performance. KW - TRIP effect KW - Fused filament fabrication KW - 316L KW - Cryogenic KW - Cryogenic temperatures KW - Microstructure PY - 2026 DO - https://doi.org/10.1016/j.msea.2025.149552 SN - 0921-5093 VL - 950 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-65141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ferrari, Bruno A1 - Fantin, Andrea A1 - Said, D. A1 - Fitch, A. N. A1 - Suárez Ocano, Patricia A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Kromm, Arne A1 - Darvishi Kamachali, Reza A1 - Bruno, Giovanni A1 - Evans, Alexander A1 - Requena, G. A1 - Agudo Jácome, Leonardo A1 - Serrano Munoz, Itziar T1 - The impact of scanning strategy on cell structures in PBF-LB/M/IN718: an in situ synchrotron x-ray diffraction study N2 - In additive manufacturing, any change of the process parameters, such as scanning strategy, directly affects the cooling rates, heat accumulation, and overall thermal history of the build. Consequently, parts built with different process parameters tend to have different levels of crystallographic texture, residual stress, and dislocation density. These features can influence the properties of the material and their development during post-processing operations. In this study, IN718 prisms were built by laser powder bed fusion (PBF-LB/M) using two different scanning strategies (continuous 67° rotations around the build direction, ROT, and alternating 0°/67° scans, ALT) to provide two different as-built conditions. In situ time-resolved synchrotron diffraction was performed during a solution heat treatment at 1027 °C for 1 h. Ex situ scanning electron microscopy was used to support and complement the in situ observations. An approach to quantify the effect of elemental microsegregation at the cell walls is developed based on the deconvolution of asymmetric γ-nickel matrix peaks. Following this approach, the scanning strategies are shown to affect the as-built fraction of cell walls in the material, resulting in a difference of approximately 5 %, in weight fraction, between ROT and ALT (19 % vs. 24 %, respectively). This microsegregation was observed to be rapidly homogenized during the heating ramp, and no significant changes to the peak shape in the γ peaks occurred during the isothermal part of the heat treatment, regardless of the scanning strategy. KW - Additive manufacturing KW - Inconel 718 KW - Synchrotron x-ray diffraction KW - Heat treatment KW - Laser powder bed fusion KW - Cellular microstructure PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650958 DO - https://doi.org/10.1016/j.jmrt.2025.11.214 SN - 2238-7854 VL - 41 SP - 593 EP - 608 PB - Elsevier B.V. AN - OPUS4-65095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Chaudhuri, Somsubhro A1 - Pittner, Andreas A1 - Winterkorn, Rene A1 - de Finis, Rosa A1 - Palumbo, Davide A1 - Galietti, Umberto T1 - Thermographic investigation of the anisotropic behaviour of additively manufactured AISI316 steel using DED-Arc N2 - Additive manufacturing is one of the most promising techniques for industrial production and maintenance, but the specifics of the layered structure must be considered. The Direct Energy Deposition-Arc process enables relatively high deposition rates, which is favourable for larger components. For this study, specimens with different orientations were prepared from one AISI316 steel block – parallel and orthogonal to the deposition plane. Quasistatic tensile loading tests were carried out, monitored by an infrared camera. The obtained surface temperature maps revealed structural differences between both orientations. The consideration of surface temperature transients yields more details about the behaviour of the material under tensile loading than the conventional stress-strain-curve. These preliminary investigations were supplemented by thermographic fatigue trials. Although the anisotropy was also observed during fatigue loading the fatigue behaviour in general was the same, at least for both inspected specimens. The presented results demonstrate the abilities and the potential of thermographic techniques for tensile tests. T2 - 17th Quantitative Infrared Thermography Conference CY - Bologna, Italy DA - 07.07.2025 KW - Thermoelastic effect KW - Wire-arc-additive manufacturing KW - thermal stress analysis KW - fatigue testing PY - 2026 DO - https://doi.org/10.21611/qirt-2024-029 SP - 1 EP - 8 AN - OPUS4-65372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kleba-Ehrhardt, Rafael A1 - Dávila, Josué A1 - Geissler, Johann A1 - Mohr, Gunther A1 - Schmidt, Johannes A1 - Heinze, Christoph A1 - Hilgenberg, Kai A1 - Gurlo, Aleksander A1 - Karl, David T1 - Influence of Haynes 282 powder oxidation on powder properties and component quality in laser powder bed fusion N2 - Reuse of powder in powder bed additive manufacturing is a common practice to enhance sustainability and reduce costs. However, the reusability of metal powder is limited by the oxidation of the powders. Even in a protective atmosphere, each build job leads to gradual oxidation of the powder, which has led to concerns about its impact on powder and part properties. Consequently, strict confidence intervals for oxygen content in nickel-based alloy feedstocks are enforced in the industry. Despite this, there is currently a lack of in-depth studies investigating the specific influence of oxygen on Haynes 282, a widely used nickel-based alloy. This study examines artificially aged Haynes 282 powder batches with oxygen content of 160 ppm, 330 ppm, 1050 ppm, and 1420 ppm. Detailed powder characterization was performed, including morphology, chemical composition, particle size, flowability, and packing behavior. Components were fabricated via PBF-LB/M to evaluate density and mechanical properties. The results showed that higher oxidation levels improved powder flowability and packing density. However, in manufactured parts, irregular melt tracks and increased surface roughness were observed, which could easily be removed by post-processing. No significant differences in density or mechanical properties at room temperature, such as tensile strength and elongation, were found. These findings indicate that H282 powder potentially remains suitable for reuse, even when the batches exhibit increased oxygen content, supporting discussions on revising the existing oxygen content confidence intervals for nickel-based alloys. The results highlight the potential for optimizing recycling strategies and reducing material waste in additive manufacturing processes. KW - Additive manufacturing KW - Powder bed fusion KW - Powder characterization KW - Powder oxidation KW - Powder recycling PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654545 DO - https://doi.org/10.1016/j.addma.2025.105050 SN - 2214-8604 VL - 116 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-65454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas T1 - Adaptive manufacturing strategies for DED-Arc: Case studies on high-strength aluminium alloys and gas-turbine blade repair N2 - In this presentation, we showcase BAM’s current research activities on DED-Arc/M processes, covering both the manufacture of novel high-strength aluminium alloys and the development of automated repair strategies for gas turbine blades, with a focus on robust process control and repeatable component quality. T2 - 12. Wissenschaftliches Kolloquium im Rahmen des SFB/TRR 375 "Multifunktionale Hochleistungskomponenten aus hybriden porösen Materialien" CY - Online meeting DA - 05.02.2026 KW - DED-Arc KW - Automation KW - Quality assessment PY - 2026 AN - OPUS4-65472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dixneit, J. A1 - Gibmeier, J. A1 - Kromm, Arne A1 - Schubnell, J. A1 - Lang, F. A1 - Loebich, F. A1 - Carl, E.-R. A1 - Ya, W. T1 - Residual stress distribution of a large component manufactured by AM-DED-Arc from high-strength weld filler material X90 N2 - Currently, DED-Arc manufactured components are not covered by design guidelines, and design factors such as residual stress factors are not defined for such components. This hinders industrial use, especially for components with a remaining surface waviness required by industry. For the first time the stress state of a high-strength, low-alloy, large-scale DED-Arc component was characterised in the as-built state and after cutting off the component from the substrate plate. Complementary methods of residual stress analyses were applied to gain a holistic insight into the residual stress distributions of a thick-walled part. In the as-built state, direction-dependent and position-dependent tensile residual stresses were found for the component at the level of the yield strength of the part. The additive manufacturing strategy continuous spiral deposition has no significant influence on the residual stresses in bead threshold area compared to the residual stresses of the remaining component. For this case, bead threshold is no structural imperfection. By removing the part from the substrate plate, the residual stresses are significantly redistributed. Tensile residual stresses are then present at a moderate level. Compressive residual stresses were determined in the volume of the deposited material. The general consideration of ‘‘high’’ tensile residual stresses in such thick-walled components is rather conservative. Therefore, design guidelines should take the manufacturing condition into account. KW - AM-DED-Arc KW - Residual stress KW - High strength steel PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655239 DO - https://doi.org/10.1177/03093247251406876 SP - 1 EP - 18 PB - SAGE AN - OPUS4-65523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Julien A1 - Treutler, Kai A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Influence of Microstructure on the Machinability and Surface Integrity of Additively Manufactured Iron Aluminides N2 - The increasing global focus on energy and resource efficiency has stimulated a growing interest in additive manufacturing. AM offers economic advantages and enables an efficient use of materials. However, AM components often require subsequent mechanical post-processing, such as machining (e.g. milling), to achieve the final contours or surfaces. This is a particular challenge due to the heterogeneous and anisotropic nature of AM structures, which affect machining and the resulting component properties. High-performance materials such as iron aluminide represent a promising alternative to conventional high-temperature materials with a significant economic advantage. However, the strength and hardness properties, which are advantageous for applications in highly stressed lightweight components, pose a challenge for economical machining in addition to the AM microstructure properties. The difficult-to-cut material causes accelerated tool wear and insufficient surface quality. This study shows that crack-free additive manufacturing of the three-component system of iron-nickel-aluminum is possible, and advantages in terms of machinability compared to FeAl-AM components are achieved. The more homogeneous microstructure leads to a reduction in cutting forces, with positive effects on the machinability and optimized surface integrity. Ultrasonic assisted milling (USAM) offers great potential to address the major challenges posed by difficult-to-cut materials and additively manufactured weld structures. Therefore, this study focuses on assessing the transferability of previous positive results by USAM to the selected iron aluminide alloys. The machinability of the aluminides is analyzed by varying significant influencing variables in finish milling experiments and evaluated in terms of the loads on the tool and the resulting surface integrity. T2 - AA Meeting of Commission IX ‘Behavior of Metals subject to Welding’ CY - Rhodes, Greece DA - 08.07.2024 KW - Iron aluminide KW - Additive manufacturing KW - Machinability KW - Surface integrity KW - Ultrasonic-assisted milling PY - 2026 SP - 1 EP - 16 AN - OPUS4-65530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai T1 - EOS M300 as the heart of the QI living lab: Advancing with digital process chains N2 - This presentation shows how the connectivity of the EOS-M300/4 laser powder bed system is used to capture machine and process data as part of the living lab in QI Digital and how this can enable future digital quality assurance in additive manufacturing. T2 - AM Forum 2025 CY - Berlin, Germany DA - 17.03.2025 KW - Additive manufacturing KW - Quality assurance KW - QI Digital KW - Living lab PY - 2025 AN - OPUS4-62740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saber, Yassin A1 - Clague, Leighton T1 - Automated Fused Filament Fabrication of Ceramics and Metals - Remote and in Space N2 - Component manufacturing in remote (i.e., geographically isolated) settings poses significant challenges where access to conventional manufacturing facilities is limited or non-existent. Fused Filament Fabrication (FFF) enables the rapid manufacturing of plastic, metallic and ceramic components with complex geometries. Ceramic and metallic parts formed by FFF require subsequent debinding and sintering to reach full density. Debinding and sintering are typically executed in separate steps with different equipment, necessitating extensive human handling which hinders process automation and may be challenging for the operator in isolated environments. Here an innovative approach is presented: the integration of all process steps into a single, fully automated system, streamlining the process and minimizing human involvement. Our system combines a dual extrusion filament printer with a porous and heat-resistant ceramic print bed. The porous print bed enables mechanical interlocking of the first printed layers, ensuring adhesion and structural integrity during FFF. Ceramic and metallic parts are printed onto thin sacrificial rafts, which are built using an interface material with the same binder as the loaded filament. After the print is completed, the heat-resistant print bed with all parts is transferred seamlessly with a carrier system into a high-temperature furnace for debinding and sintering. During sintering the sacrificial raft is disintegrated, allowing for unconstrained sintering and easy removal of the finished parts. In conclusion, our integrated approach enables significant advancements in the fabrication of complex ceramic or metallic components in remote environments with increased efficiency and minimal human handling. T2 - AM Forum 2025 CY - Berlin, Germany DA - 17.03.2025 KW - Fused Filament Fabrication KW - Ceramics KW - Metalls KW - Process automation PY - 2025 AN - OPUS4-62745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Nathalie A1 - Kister, Alexander A1 - Schnellhardt, Thorben A1 - Fetz, Maximilian A1 - Hecker, Dirk A1 - Wirtz, Tim ED - Meo, Rosa ED - Silvestri, Fabrizio T1 - Reinforcement Learning for Segmented Manufacturing N2 - The manufacturing of large components is, in comparison to small components, cost intensive. This is due to the sheer size of the components and the limited scalability in number of produced items. To take advantage of the effects of small component production we segment the large components into smaller parts and schedule the production of these parts on regular-sized machine tools. We propose to apply and adapt recent developments in reinforcement learning in combination with heuristics to efficiently solve the resulting segmentation and assignment problem. In particular, we solve the assignment problem up to a factor of 8 faster and only a few percentages less accurate than a classic solver from operations research. T2 - European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2023 CY - Turin, Italy DA - 18.09.2023 KW - Reinforcement Learning KW - Assignment Problem KW - Large component manufacturing PY - 2025 DO - https://doi.org/10.1007/978-3-031-74640-6_38 VL - 1 IS - 1 SP - 470 EP - 485 PB - Springer Cham AN - OPUS4-63031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Siefke, Lennart A1 - Linden, Anna T1 - Towards a robust automated surface inspection method for CT-scanned cannulas N2 - For certain cardiovascular diseases, cannulas are implanted into the blood circuit. To match the patients individual anatomy of the heart, there is research for cannulas to be custom-designed and manufactured aided by 3D printing. However, cannulas have to hold very high standards with regard to the smoothness of their surfaces, as rough patches can lead to formation of blood clots. Therefore, this work uses computer vision to detect such patches as part of quality assurance. First, the produced cannula is scanned using a precise CT scanner and transformed into a 3D mesh object. Rough patches in an otherwise smooth but curved surface are detected by using cosine similarity between neighboring faces and a statistical evaluation. In the end, this method is able to raise a warning when curved surfaces are not smooth enough and visualizes the problematic patches. However, there is just limited access to test data currently and the scanner used needs to be upgraded. T2 - 3D in Science & Applications (3D-iSA) 2024 CY - Berlin, Germany DA - 26.11.2024 KW - Algorithm KW - Additive manufacturing KW - Surface evaluation PY - 2025 UR - https://www.gfai.de SN - 978-3-942709-34-7 SP - 66 EP - 70 AN - OPUS4-63057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strauß, Lea A1 - Duarte, Larissa A1 - Kruse, Julius A1 - Madia, Mauro A1 - Löwisch, Günther T1 - An equivalent stress approach for predicting fatigue behavior of additively manufactured AlSi10Mg N2 - Laser-based powder bed fusion (PBF-LB) is an advanced additive manufacturing technique renowned for its precision and capability to fabricate complex metal components. However, the high thermal gradients and rapid cooling rates intrinsic to this process introduce significant process-induced effects, such as inhomogeneities, surface roughness, anisotropy, and residual stress, all of which critically influence the fatigue behavior of the produced parts. This study investigates the fatigue performance of AlSi10Mg samples produced by PBF-LB, examining the impact of varying surface conditions, geometries, and residual stress levels. Fatigue-life prediction models are formulated based on nominal stress amplitude, residual stress, form factor, crack-initiating inhomogeneity, and surface roughness, with smooth samples serving as a baseline reference. The study presents two empirical models for predicting fatigue life and fatigue strength using S–N curves and the Kitagawa–Takahashi diagram with the El Haddad approach, derived from comprehensive experimental data, including finite element modeling, fatigue-life measurements, surface roughness evaluations, and residual stress analysis. KW - AlSi10Mg KW - Kitagawa–Takahashi diagram KW - El Haddad KW - Equivalent stress KW - Fatigue-life prediction KW - PBF-LB/M PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625176 DO - https://doi.org/10.1007/s40964-025-00974-0 SP - 1 EP - 16 PB - Springer Science and Business Media LLC AN - OPUS4-62517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poka, Konstantin A1 - Ali, Sozol A1 - Saeed, Waleed A1 - Merz, Benjamin A1 - Epperlein, Martin A1 - Hilgenberg, Kai T1 - Quality assurance via a cyber physical system of a PBF-LB/M machine N2 - Powder Bed Fusion with Laser Beam of Metals (PBF-LB/M) faces challenges in reproducibility and quality assurance, even for widely applied alloys like AlSi10Mg. This work introduces a digital provenance framework for PBF-LB/M, showcased through the EOS M 300–4 multi-laser machine. An Extract, Transform, Load (ETL) pipeline autonomously captures machine data, including scan vectors as well as process signals, and organizes them into a Digital Shadow (DS). The DS is further extended by external data sources, such as Melt Pool Monitoring (MPM), to enable comprehensive analysis and root cause identification. This approach ensures continuous data representation and facilitates the development of new quality metrics. Moreover, the framework enhances quality assurance and traceability, supports compliance with industry standards, and improves productivity. It also enables more precise cost calculations and predictive maintenance. By addressing these challenges, the framework is essential for advancing PBF-LB/M in industrial applications, achieving greater consistency and scalability in production. KW - PBF-LB/M KW - Data driven quality assurance KW - Data engineering KW - Digital shadow PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625187 DO - https://doi.org/10.1007/s40964-025-00978-w SN - 2363-9520 VL - 10 IS - 3 SP - 1771 EP - 1783 PB - Springer Science and Business Media LLC AN - OPUS4-62518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maasch, Philipp T1 - Numerical Modelling of Deformation-Induced Martensitic Transformation in Additively Manufactured 316L Stainless Steel under Cryogenic Conditions N2 - Cryogenic structural components, including collars, bladders, and keys for superconducting magnets, as well as elements for liquid hydrogen storage systems, are often fabricated from austenitic stainless steel (e.g., 316L) due to favorable mechanical properties and corrosion resistance. However, producing these complex geometries through traditional methods is challenging. Additive manufacturing presents a promising alternative, though the numerical understanding of material behavior under extreme cryogenic conditions remains limited. This study advances the numerical simulation of deformation-induced martensitic transformation (DIMT) in additively manufactured fused filament fabricated (FFF) 316L stainless steel. Central to this effort is the prediction of tensile behavior at temperatures ranging from ambient down to 4K. Supporting experiments—including tensile tests and microstructural characterization via scanning electron microscopy (SEM) and computed tomography (CT)—provide essential input parameters and validation data for the numerical framework. The numerical modelling in this study is based on a nonlinear, temperature-dependent finite element approach incorporating a newly developed constitutive material law. This law couples a phase-kinetic description of the martensitic transformation with a mixed kinematic/isotropic plastic hardening formulation. By solving the underlying conservation laws and boundary conditions while considering temperature-dependent material parameters, the model provides a realistic representation of stress-strain states and evolving martensitic phase fractions across a wide range of thermal conditions. The implementation within a commercial finite element software relies on user-defined subroutines that integrate the constitutive relations and transformation kinetics. The simulations use adaptive time-stepping and iterative strategies to handle highly nonlinear, cryogenic loading scenarios efficiently. After parameter identification through experimental data, the numerical results are systematically compared with measured values from tensile tests and microstructural analyses. This iterative validation process continuously enhances the predictive capability of the model. By merging advanced material-theoretical concepts with robust numerical methods, the presented framework offers deeper insight into the mechanical behavior of additively manufactured austenitic steels under extreme thermal conditions. Ultimately, it supports the targeted design and optimization of cryogenic lightweight components and contributes to the fundamental understanding of material modeling challenges in applied mechanics. T2 - 95th GAMM 2025 Poznan CY - Poznan, Poland DA - 07.04.2025 KW - Constitutive Modelling KW - Deformation-induced martensitic transformation KW - Cryogenic Conditions KW - Fused Filament Fabrication KW - Austenitic stainless steel 316L PY - 2025 AN - OPUS4-63198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro T1 - Influence of defects on the fatigue strength of parts repaired by cold spray N2 - Cold spray repair is a promising and cost-saving alternative to replacing worn parts. Depositing of materials into machined damage volumes in decent quality can restore the performance of refurbished parts and extend their working life. Furthermore, repair counts as resource-efficient and green process in a world targeting at decarbonization of many industrial sectors. Despite the advantages, cold spray repair still suffers from major limitations which prevent its application in safety relevant parts. The main factors influencing the structural integrity concern the adhesion strength, inherent non-bonded internal interfaces, the reduced ductility by work hardening during the manufacturing process, and the presence of residual stresses. This work presents the results of the collaborative project CORE devoted to the development of automatized repair of aerospace parts by cold spray. The investigations considered the aluminum alloy Al6061-T6 which combines medium-high strength, good workability, and high corrosion resistance. Quasi-static tensile tests, high cycle fatigue and fatigue crack propagation tests were performed to compare the performance of base and repaired materials. These were complemented by fractographic and microstructural investigations. T2 - 5th International Symposium on Fatigue Design and Material Defects CY - Trento, Italy DA - 14.05.2025 KW - Cold Spray KW - Component Repair KW - Fatigue Strength KW - Defects KW - Surface Treatment PY - 2025 AN - OPUS4-63146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quosdorf, Heike T1 - A Digital Object Identifier for Additively Manufactured Parts as Open Source Software Package N2 - A method to uniquely identify samples without printed or handwritten labels is an advantage not just for additively manufactured parts. To kickstart industry use cases it is important to provide a ready made implementation kit. Following an open science and open source software approach Germanys Federal Institute for Materials Research and Testing BAM seeks to promote digital solutions of ongoing Research projects. With this software package a novel method based on microstructural features as identifiers DOI4AM (digital object identifier for additively manufactured parts will be explained alongside its implementation as open source Python software package. The digital object identifier (DOI) links product data clearly and forgery proof with real components. Its implementation helps to identify and securely authenticate additively manufactured components during its product life cycle by using characteristic microstructure features just like a fingerprint. To calculate the DOI fingerprint, a few preprocessing steps need to be performed to detect the uniquely distributed microstructure features that occur during the 3D printing process. A go through guide show s the preprocessing steps that include computer tomography (CT) image capturing, feature segmentation and data distribution via CSV files. While all steps can be followed along in a Jupyter notebook with sample data, the software package includes functions to create and compare fingerprints, as well, as an application programming interface (API) for integration in existing software platforms. A quick showcase of our industry partners implementation of the algorithm as containerized micro service in their digital product passport (DPP) web solution PASS X proves the first successful technology transfer of this project. T2 - MSE Research Data Forum 2025 CY - Siegburg, Germany DA - 08.07.2025 KW - Open Science KW - Authentication KW - Unique identification KW - Digital fingerprint KW - X-ray Computed Tomography KW - Additive manufacturing KW - Open Source Software PY - 2025 AN - OPUS4-63904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, Keke A1 - Wang, Zhuoqun A1 - Haak, Viktor A1 - Olfert, Viktoria A1 - El-Sari, Bassel A1 - Hein, David A1 - Biegler, Max A1 - Rethmeier, Michael A1 - Meschut, Gerson T1 - A novel welding schedule for expanding the expulsion-free process window in resistance spot welding of dissimilar joints with ultra-high strength steel N2 - This study introduces a novel approach to expanding the maximum expulsion-free process window in resistance spot welding (RSW) of dissimilar joints between ultra-high strength steel (UHSS) and mild steel. Quantitative analysis revealed that expulsion is driven by the interaction between nugget growth rate and plastic shell thickness. Based on this finding, the welding schedule was optimized by applying a preheating current to form an initial plastic shell, followed by a ramp-up current profile during the main welding phase. Welding simulations indicated that the ramp-up current slowed nugget growth, improved plastic shell formation, and prevented nugget breakthrough, thereby reducing the risk of expulsion. Experimental validation showed a 19 % increase in maximum expulsion-free heat input, with the nugget diameter increasing by 7.6 % to 8.94 mm compared to the reference welding schedule. Furthermore, even when expulsion occurred beyond the process window, this optimization delayed its occurrence, minimizing its impact on spot weld quality. Finally, the optimized welding schedule also exhibited significant robustness. Despite a 2 mm initial gap disturbance, the maximum expulsionfree heat input increased by 57 %, while the nugget diameter grew by 30 % to 8.92 mm. These results confirm that the proposed approach effectively extends the process window by preventing expulsion and enhances process stability. KW - Expulsion KW - Resistance spot welding KW - Finite element modelling KW - Preheating KW - Ultra-high-strength steel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626877 DO - https://doi.org/10.1016/j.jmapro.2025.02.009 SN - 2212-4616 VL - 137 SP - 306 EP - 309 PB - Elsevier BV AN - OPUS4-62687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Iskhakov, Tagir T1 - Computational modeling of temperature compensation for eddy current testing during PBF-LB/M N2 - The laser powder bed fusion (PBF-LB/M) process enables the production of highly customized parts with complex geometries. However, the mechanical performance of additively manufactured parts can be compromised by the presence of microstructural inhomogeneities. To address this issue, a reliable process monitoring tool is required to detect these flaws and improve part quality. Eddy current testing presents a promising solution for such monitoring. However, the high temperature gradients within the manufactured specimen affect the electrical conductivity of the material, which, in turn, influences the eddy current testing performance. Therefore, accurately predicting the temperature distribution is essential for reliable flaw detection, which is the focus of this work. In this study, a Finite Element (FE) transient thermal model is developed to predict the temperature field in multipart build jobs. In this model, scan vectors are grouped into clusters based on their timestamps, enabling the homogenization of thermal loads from multiple scan vectors. When a single cluster is used, the thermal load is applied to the entire layer in a single step. Increasing the number of clusters per layer — and thus the number of steps — enhances the accuracy of temperature predictions. This approach allows for optimizing the trade-off between modeling accuracy and computational efficiency. The study evaluates the prediction accuracy required for eddy current testing and investigates the optimal number of clusters (i.e., the adequate level of homogenization) needed to achieve this accuracy. The model predictions are validated through comparison with thermography images and thermocouple measurements. Finally, the concept of eddy current testing with simulation-based temperature compensation is evaluated on specimens with simple geometries. T2 - SIM-AM 2025 CY - Pavia, Italy DA - 09.09.2025 KW - Eddy current testing KW - FEM KW - 316L PY - 2025 AN - OPUS4-64121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geranmayeh, Ali T1 - Laser Metal Deposition of NiTi Shape Memory Alloys: Influence of Process Parameters on Thermal Profiles and Part Properties N2 - Laser Metal Deposition (LMD), a laser powder–directed energy deposition technology (LP-DED), offers unique flexibility for fabricating complex metallic components. Among candidate materials, Nitinol (NiTi) is particularly attractive due to its shape memory and superelastic properties, though its high sensitivity to processing conditions demands precise parameter control. In this work, prealloyed NiTi powder was deposited as single tracks, and process parameters were optimized using a Design of Experiments methodology. A Central Composite Design (CCD) was implemented with laser power, scan speed, and powder feed rate as inputs, while track’s height, width, aspect ratio, and dilution served as optimization responses. To address the strong susceptibility of NiTi to heat accumulation, hatch spacing was further optimized using a geometrically derived formula, enabling the use of maximum spacing while ensuring dense parts with smooth surfaces and minimal waviness. The presented framework establishes a systematic route for parameter optimization in NiTi LMD, offering practical guidelines for balancing densification and surface quality. T2 - WGF Assistant Seminar CY - Rechenberg-Bienenmühle, Germany DA - 10.09.2025 KW - Additive manufacturing KW - Shape memory alloys KW - Nitinol KW - Laser metal deposition KW - Design of experiments PY - 2025 AN - OPUS4-64164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linden, Anna T1 - AMVAD - Additive manufacturing for ventricular assist devices N2 - Some children are born with a univentricular heart, meaning their heart has only one pumping chamber instead of two. To improve circulation, patients often undergo the Fontan procedure, which reroutes blood flow — but this can put stress on other organs. In some cases, ventricular assist devices, or VADs, are used to support the heart’s pumping function. This involves an artificial pump connected directly to the patient's heart via silicone-based cannulas. Unique anatomical conditions introduce special challenges for cannula geometry. Additive manufacturing offers innovative solutions by enabling the production of personalized medical devices. The aim of the project is to develop the manufacturing workflow for the individualized cannula from digital imaging of the patient and customized design to additive manufacturing. Besides technical feasibility, validating the entire process is crucial for regulatory approval. The selection and testing of suitable additive manufacturing processes and biocompatible materials for individualized silicone cannulas, ensuring compliance with quality standards for high-risk medical products, will be presented. T2 - AMBER Spotlight On: 3D Printing meets Health & Biotech CY - Berlin, Germany DA - 16.09.2025 KW - Additive manufacturing KW - Medical device KW - Liquid silicone rubber PY - 2025 AN - OPUS4-64101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Clozel, Melanie A1 - Neumann, Christian A1 - Thore, Johannes A1 - Kolbe, Matthias A1 - Yang, Fan A1 - Gutowski, Olof A1 - Dippel, Ann-Christin A1 - Ruschel, Lucas M. A1 - Busch, Ralf A1 - Altenbach, Christoph A1 - Akuata, Chijioke Kenneth A1 - Zander, Daniela A1 - Wilbig, Janka A1 - Meyer, Andreas T1 - Microstructure formation during gas flow-assisted additive manufacturing of a metallic glass powder on ground and in microgravity N2 - We studied bulk metallic glasses produced from gas flow-assisted laser-based powder bed fusion process, which is capable of additive manufacturing metallic parts in microgravity. A Zr-based bulk metallic glass composition Zr₅₉ˏ₃Cu₂₈ˏ₈Al₁₀ˏ₄Nb₁ˏ₅ has been processed on ground and in microgravity in a compact sounding rocket payload MARS-M. Microstructure characterization was performed using electron microscopy and X-ray diffraction computed tomography, which cope with small amounts of sample materials, especially for those fabricated under microgravity conditions. Very similar microstructures and crystalline fractions are observed in sample manufactured on ground and in microgravity, which shows that process parameters of conventional laser powder bed fusion for manufacturing metallic glasses can be transferred to the processes in microgravity. Two different origins of crystallization have been identified in the Zr₅₉ˏ₃Cu₂₈ˏ₈Al₁₀ˏ₄Nb₁ˏ₅ sample. The preferred occurrence of CuZr₂ at the interlayer boundaries is likely a result of recrystallization from the undercooled melt and hence associated with laser scanning strategy. In contrast, the more uniformly distributed Al₃Zr₄ phase is considered to be triggered by the formation of Cu₂Zr₄O. Thus, for the fabrication of fully amorphous builds both on ground and in space, our findings point to higher scanning speeds and lower oxygen contents, while the latter can also be used to tune the crystalline fractions in the sample. KW - Gas flow-assisted laser-based powder bed fusion KW - Microgravity KW - Glass-forming alloys KW - X-ray diffraction tomography PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-641253 DO - https://doi.org/10.1007/s40964-025-01275-2 SN - 2363-9512 SP - 1 EP - 14 PB - Springer Science and Business Media LLC CY - Cham, Switzerland AN - OPUS4-64125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yalçınyüz, Aybike A1 - Raute, Julius A1 - Gonzalez-Gutierrez, Joamin A1 - Pei, Eujin A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Electron Beam Bonding: A novel method for joining additively manufactured carbon fiber thermoplastic composites with aluminum to produce multi-material joints for lightweight applications N2 - In recent years, new solutions have been explored to reduce the weight of components for the automotive, railway, and aerospace industries. For this reason, Carbon Fiber Composites (CFCs) have increasingly replaced metals in products that need to be lightweight. However, due to their poor thermal conductivity, CFCs have limited use in applications requiring efficient heat dissipation. In such applications, conventionally manufactured metal alloys are typically utilized. To address these limitations, a novel approach using a combination of additively manufactured aluminum and CFCs is proposed to exploit the distinct advantages of both materials. These innovative hybrid structures aim to combine good structural and thermal management properties with reduced weight compared to conventionally produced metal products. In this study, additively manufactured aluminum alloy (AlSi10Mg) and short carbon fiber Polyamide 6 composite (sCF-PA6) are utilized to produce metal–polymer pairs using electron beam energy to bond the two materials. Direct irradiation of short CFCs with electron beam leads to polymer degradation. Thus, a novel method “Electron Beam Bonding” for joining CFCs with aluminum alloy in various joint configurations using electron beam technology is demonstrated. This innovative approach presents a promising solution for creating metal–polymer multi-materials for lightweight applications. KW - Electron beam bonding KW - Multi-material KW - Lightweight KW - Additive manufactured materials KW - Short carbon fiber composites KW - AlSi10Mg KW - Joining PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-641705 DO - https://doi.org/10.1007/s40964-025-01206-1 SN - 2363-9512 SP - 1 EP - 7 PB - Springer International Publishing CY - Cham AN - OPUS4-64170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Jonathan T1 - Near-real-time in-situ powder bed anomaly detection using machine learning algorithms for high-resolution image analysis in PBF-LB/M N2 - In-situ captured visual images of the laser powder bed fusion process (PBF-LB/M) provide valuable insights into process dynamics. Automatic analysis of after-recoating images using machine learning algorithms enables the detection of process deviations to reduce scrap production. However, current industrial monitoring systems for PBF-LB/M are limited by low image resolution. While higher resolutions enable the system’s ability to capture smaller features, they increase storage and computational demand. Edge devices offer a solution by enabling near-real-time, on-premises image analysis within the machine and company network. In this study, high-resolution after-recoating images, captured with a spatial resolution of 17 µm/pixel and an image size of 9344 x 7000 pixels, were processed on an Nvidia Jetson Orin NX16 edge device. The images were downscaled, and anomaly detection algorithms were used to identify regions of interest for segmentation and classification at full resolution. To address computational constraints, state-of-the-art anomaly detection algorithms were evaluated and an appropriate downscaling factor for the on-edge implementation was determined. The EfficientAD algorithm achieved promising results, detecting anomalies within an inference time of less than 10 seconds. The presented framework enables anomaly detection with a maximum delay of one layer. This lays the foundation for the future development of near-real-time intervention in the PBF-LB/M process. T2 - ISAM 2025 – 6th International Symposium on Additive Manufacturing CY - Dresden, Germany DA - 21.05.2025 KW - Additive manufacturing KW - Image processing KW - In-situ monitoring KW - Powder bed fusion PY - 2025 AN - OPUS4-63231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schob, Daniela T1 - Numerical and Experimental Investigation of Deformation Induced Martensitic Transformation in Fused Filament Fabricated Austenitic Stainless Steel for Cryogenic Applications N2 - Cryogenic structural components, such as collars, bladders, keys for superconducting magnets, and elements of liquid hydrogen storage systems like hoses and valves, are frequently constructed from austenitic stainless steel due to its favorable properties. However, manufacturing these components using traditional methods is challenging due to their complex geometries. Additive manufacturing emerges as a promising solution, though a comprehensive understanding of the associated material behavior under extrem e conditions is still developing. This study aims to explore the deformation induced martensitic transformation (DIMT) in fused filament fabricated (FFF) 316L stainless steel through both experimental testing and numerical simulation. The research focuses on predicting the material’s respo nse under tensile stress at ambient, 77K, and 4K temperatures. Numerical simulations employ a finite element approach to incorporate the constitutive model and its temperature dependent phase transformation kinetics, enabling detailed investigation of stress and strain distributions at various cryogenic temperatures. These simulations are systematically calibrated and validated against corresponding experimental datasets, ensuring that the computational predictions mirror the observed microstructural evolution and macroscopic response under tensile loading. By comparin g simulation results to experimental findings obtained at temperatures from room temperature down to 4K, the reliability of the model can be assessed, and its predictive capabilities can be refined. Ultimately, the research seeks to expand the understanding of DIMT in additively manufactured 316L components, supporting the development of advanced, simulation driven material models tailored for demanding cryogenic structural applications. T2 - Cryogenic Engineering Conference (CEC) and International Cryogenic Materials Conference (ICMC) CY - Reno, NV, USA DA - 18.05.2025 KW - Phase transformation KW - Deformation induced martensitic transformation KW - 316L KW - Fused Deposition Modelling PY - 2025 AN - OPUS4-63238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander T1 - Do Microbes like Additively Manufactured Aluminium? First Details of a Corrosion Test using Sulphate-Reducing Bacteria N2 - Additively manufactured metals become relevant for industrial application. Although many studies on wet corrosion of these metals have been conducted, to the authors knowledge no study seems to contain microbiological corrosion (MIC). In the presented study an experiment was conducted on PBF-LB/AlSi10Mg to test this material's susceptibility for MIC. The tested specimen were analysed using Computed Tomography before and after the MIC experiment to enable a detailed characterisation the damage on the specimens' global and local level. A global reduction of material was observed. In addition, localised damage along process inherent features of the materials microstructure was observed. T2 - Beiratssitzung TF Umwelt CY - Berlin, Germany DA - 17.03.2025 KW - Computed Tomography KW - Additive Manufacturing KW - Biocorrosion KW - Sulphate-reducing Bacteria KW - Microbially influenced corrosion PY - 2025 AN - OPUS4-62772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, Max A1 - Yang, Keke A1 - Meschut, Gerson A1 - Rethmeier, Michael T1 - Occurrence and avoidance of liquid metal embrittlement in resistance spot welding of springback-afflicted deep-drawn components N2 - This study investigates the occurrence and mitigation of liquid metal embrittlement occurring during resistance spot welding in deep-drawn automotive components, specifically focusing on an S-Rail made from advanced high-strength steel. A simulation-based liquid metal embrittlement risk criterion based on local major component stresses was established and used to quantify and compare liquid metal embrittlement risks between different tests. Experimental and numerical analyses were conducted, revealing that springback significantly impacts liquid metal embrittlement formation. Adjustments in electrode geometry and hold time post-welding were found to mitigate liquid metal embrittlement risks. The effects of stack-up configuration and related parameter settings on liquid metal embrittlement occurrence were identified and liquid metal embrittlement was effectively prevented across both stack-up configurations. These findings advance the understanding of liquid metal embrittlement mechanisms and provide practical approaches to enhance the spot weld quality in AHSS-based body-in-whites. KW - Liquid metal embrittlement KW - Crack KW - Advanced high-strength steels KW - Resistance spot welding KW - Weld current KW - Heat input KW - Simulation KW - Springback KW - Deep drawing KW - S-Rail PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-636577 DO - https://doi.org/10.1177/13621718251340452 SN - 1362-1718 SP - 1 EP - 9 PB - SAGE Publications AN - OPUS4-63657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Vinzenz A1 - Fasselt, Janek Maria A1 - Klötzer-Freese, Christian A1 - Kruse, Tobias A1 - Kleba-Ehrhardt, Rafael A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Recycling nickel aluminium bronze grinding chips to feedstock for directed energy deposition via impact whirl milling: Investigation on processability, microstructure and mechanical properties N2 - During the production of ship propellers, considerable quantities of grinding chips from nickel aluminium bronze are produced. This paper examines the mechanical comminution of such chips via impact whirl milling and the utilization of two chip-powder batches as feedstock for a laser-based directed energy deposition process. The materials are characterized via digital image analysis, standardized flowability tests, scanning electron microscopy and energy dispersive X-ray spectroscopy and are compared to conventional, gas atomized powder. The specimens deposited via directed energy deposition are analyzed for density, hardness and microstructure and tensile properties for vertical and horizontal build up directions are compared. At elevated mill rotation speeds, the comminution with impact whirl milling produced rounded particles, favorable flow properties and particle size distribution, making them suitable to deposit additive specimens. The microstructure exhibited characteristic martensitic phases due to the high cooling rates of the additive manufacturing process. The presence of ceramic inclusions was observed in both the powder and on the tensile fracture surfaces, partly impairing the mechanical properties. However, specimens in the vertical build-up direction (Z) showed competitive tensile results, with 775 MPa in tensile strength, 455 MPa in yield strength and 12.6 % elongation at break. The findings of this study indicate that recycling of machining chips to additive manufacturing feedstock can be a viable option for reducing material costs and environmental impact. KW - Nickel aluminium bronze KW - Grinding chips KW - Recycling KW - Directed energy deposition KW - Material characterization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-633442 DO - https://doi.org/10.1016/j.addma.2025.104804 SN - 2214-8604 VL - 105 SP - 1 EP - 9 PB - Elsevier BV AN - OPUS4-63344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marquardt, Raphael A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Influence of laser power on the melt pool shape of handheld laser beam welding of 1.5 mm thick micro alloyed steel N2 - Manual welding of structures requires highly skilled welders due to the large heat-affected zone of arc-based processes, that can negatively impact microstructure and cause distortion. Handheld laser beam welding is a promising alternative with high welding velocity and a concentrated heat input. However, its current use in industry is limited to parts with aesthetic requirements, often made of high-alloyed steel. To extend the use of handheld laser beam welding to low-cost steels with good mechanical properties, this study investigates the influence of laser power on the melt pool shape for micro-alloyed steel with a thickness of 1.5 mm. Tested joint geometries are T-joints welded with filler wire as well as butt joints and overlap joints without filler wire, which are typically found in assemblies under mechanical load. Weld quality is assessed by weld porosity analysis. The results show that the handheld laser beam welding with filler wire produces T-joints with a very good external appearance, but with porosity between level C and D in the cross sections according to DIN EN ISO 13919-1. By increasing the laser power, a deep penetration of the T-joint zone can be achieved without increasing the actual throat thickness. For handheld laser beam welding of butt joints a full penetration weld of the highest quality class can be reached. Overlap joints can be welded with full or partial penetration depending on the laser power selected, with quality classes between B and C in terms of porosity. T2 - 20th Nordic Laser Materials Processing Conference CY - Kongens Lyngby, Denmark DA - 26.08.2025 KW - Hand held laser welding KW - Laser beam welding KW - Low alloyed steel KW - Process parameter PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-641671 DO - https://doi.org/10.1088/1757-899X/1332/1/012015 SN - 1757-899X VL - 1332 SP - 1 EP - 6 PB - Institute of Physics CY - London [u.a.] AN - OPUS4-64167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marquardt, Raphael T1 - Influence of laser power on the melt pool shape of handheld laser beam welding of 1.5 mm thick micro alloyed steel N2 - Manual welding of structures requires highly skilled welders due to the large heat-affected zone of arc-based processes, that can negatively impact microstructure and cause distortion. Handheld laser beam welding is a promising alternative with high welding velocity and a concentrated heat input. However, its current use in industry is limited to parts with aesthetic requirements, often made of high-alloyed steel. To extend the use of handheld laser beam welding to low-cost steels with good mechanical properties, this study investigates the influence of laser power on the melt pool shape for micro-alloyed steel with a thickness of 1.5 mm. Tested joint geometries are T-joints welded with filler wire as well as butt joints and overlap joints without filler wire, which are typically found in assemblies under mechanical load. Weld quality is assessed by weld porosity analysis. The results show that the handheld laser beam welding with filler wire produces T-joints with a very good external appearance, but with porosity between level C and D in the cross sections according to DIN EN ISO 13919-1. By increasing the laser power, a deep penetration of the T-joint zone can be achieved without increasing the actual throat thickness. For handheld laser beam welding of butt joints a full penetration weld of the highest quality class can be reached. Overlap joints can be welded with full or partial penetration depending on the laser power selected, with quality classes between B and C in terms of porosity. T2 - 20th Nordic Laser Materials Processing Conference CY - Kongens Lyngby, Denmark DA - 26.08.2025 KW - Hand held laser welding KW - Laser beam welding KW - Low alloyed steel KW - Process parameter PY - 2025 AN - OPUS4-64169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Jonathan T1 - High-resolution in-situ image analysis in laser powder bed fusion N2 - Visual images captured - in-situ - in laser powder bed fusion (PBF-LB/M) provide valuable insights into process dynamics. This poster presents methods for analyzing high-resolution images with a spatial resolution of 17 µm/pixel and a size of 9344 × 7000 pixels. In the context of identifying microstructural anomalies, the relationship between the contrast values derived from the grey-level co-occurrence matrix (GLCM) of post-exposure images and ex situ measurements of surface roughness, porosity, and melt pool depth is illustrated. Furthermore, a workflow to detect process anomalies in post recoating images using an edge device is presented. T2 - BAM Advisory Council Meeting CY - Berlin, Germany DA - 25.06.2025 KW - Additive manufacturing KW - High resolution camera KW - Image processing KW - In situ monitoring KW - Powder bed fusion PY - 2025 AN - OPUS4-63990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Robens-Radermacher, Annika T1 - Efficient cooling time optimization in Wire Arc Additive Manufacturing using a multi-layer reduced order model N2 - Additive manufacturing (AM) has transformed the industry by enabling the production of complex geometries and parts with customized properties. Among various AM techniques, wire arc additive manufacturing (WAAM) stands out due to its high deposition rate and low equipment cost. However, WAAM’s complex thermal history poses challenges for real-time simulation, essential for online process control and optimization. Consequently, experimental optimization remains the state-of-the-art approach. A critical parameter to optimize is the cooling phase duration, which prevents structural overheating, controls the molten pool size, and influences the mechanical properties of the final product. For efficient cooling time optimization, a fast-to-evaluate model of the temperature field during multi-layer deposition is necessary. This study proposes a reduced order model (ROM) using the proper generalized decomposition (PGD) method as a powerful tool to minimize computational effort. Given the moving heat source in WAAM processes, a mapping approach is employed to achieve a fully separated representation of the temperature field. Building on the authors’ previous one-layer approach, this contribution extends the model to multiple layers through enhanced mapping and compression techniques. The compression reduces the total number of PGD modes as the number of layers increases. The extended mapping allows computations with a fixed mesh over the simulation time, in contrast to standard methods such as the element birth technique. For cooling time optimization, the cooling duration of each layer is incorporated as PGD variables, enabling time-efficient computation of the temperature field for varying cooling times. The developed ROM is applied to optimize the cooling time of a multiple layer example. Therefore a 5-10 layer wall structure is investigated using the austenitic stainless steel 1.4404 (AISI 316 L). The resulting cooling times and the efficiency of the approach are discussed. T2 - 12th European solid mechanics conference (ESMC) CY - Lyon, France DA - 07.07.2025 KW - Model order reduction KW - Proper generalized decomposition KW - Welding KW - Additive manufacturing KW - Optimzation PY - 2025 UR - https://esmc2025.sciencesconf.org/ AN - OPUS4-63855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Santi, Alberto A1 - Schröder, Jakob A1 - Serrano-Munoz, Itziar A1 - Bayat, Mohamad A1 - Hattel, Jesper Henri T1 - Exploring the Flash Heating method in additive manufacturing for residual stress prediction: A comparative study with diffraction results from X-ray and neutron techniques N2 - Residual stress (RS) control is crucial for ensuring the performance and reliability of components produced through laser-based powder bed fusion (PBF-LB) additive manufacturing (AM). This study evaluates the Flash Heating (FH) method as an efficient approach for RS prediction, comparing its outcomes with multiple experimental techniques, including X-ray diffraction, neutron diffraction, and layer removal methods. These experimental assessments are conducted in different regions of the component, both before and after detachment from the baseplate. The study validates the FH method and analyzes key numerical parameters, such as meta-layer height, contact time, and time-stepping strategies. Results indicate that FH effectively predicts bulk RS distributions but shows discrepancies in surface stress estimations, likely due to unaccounted factors like surface roughness. Additionally, implementing experimentally derived material properties from as-built AM samples significantly enhances model accuracy compared to conventional material datasets. These findings underscore the potential of FH for efficient RS prediction in PBF-LB while identifying areas for further improvement. Refinements should focus on incorporating anisotropic, temperature-dependent material behavior derived from as-built AM samples and surface roughness effects. This work advances the understanding of key factors necessary for accurate and computationally efficient RS prediction, supporting the optimization of AM processes. KW - Finete element method KW - Inconel 718 KW - Metal additive manufacturing KW - Residual stress KW - Thermomechanics PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639533 DO - https://doi.org/10.1080/01495739.2025.2541862 SN - 0149-5739 SP - 1 EP - 24 PB - Taylor & Francis AN - OPUS4-63953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Jonathan A1 - Merz, Benjamin A1 - Poka, Konstantin A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Surface structure analysis using visual high-resolution in situ process monitoring in laser powder bed fusion N2 - Parameter studies are a common step in selecting process parameters for laser powder bed fusion of metals (PBF-LB/M). Density cubes are commonly used for this purpose. Density cubes manufactured with varied process parameters can exhibit distinguishable surface structures visible to the human eye. The layer-wise process enables such surface structures to be detected during manufacturing. However, industrial visual in situ monitoring systems for PBF-LB/M currently have limited resolution and are incapable of reliably capturing small differences in the surface structures. In this work, a 65 MPixel high-resolution monochrome camera was integrated into an industrial PBF-LB/M machine together with a high-intensity LED (light-emitting diode) bar. Post-exposure images were taken to analyse differences in light reflection of fused areas. It is revealed that the grey-level co-occurrence matrix can be used to quantify the visual surface structure of nickel-based superalloy Inconel®939 density cubes per layer. The properties of the grey-level co-occurrence matrix correlate to the energy input and the resulting porosity of density cubes. Low-energy samples containing lack of fusion flaws show an increased contrast in the grey-level co-occurrence matrix compared to specimens with optimal energy input. The potential of high-resolution images for quality assurance via in situ process monitoring in PBF-LB/M is further discussed. KW - Additive manufacturing KW - Powder bed fusion KW - In situ monitoring KW - Image processing KW - High resolution camera PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626685 DO - https://doi.org/10.1007/s40194-025-01955-1 SN - 1878-6669 SP - 1 EP - 15 PB - Springer Science and Business Media LLC AN - OPUS4-62668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Scharf-Wildenhain, R. A1 - Schröpfer, Dirk A1 - Hälsig, A. A1 - Kannengießer, Thomas A1 - Hensel, J. T1 - Influence of heat input on properties and residual stresses in hybrid addi-tive manufacturing of high strength steels using MSG processes N2 - The application of steels with a higher yield strength allows reductions in wall thickness, component weight and production costs. Hybrid additive manufacturing based on Gas Metal Arc Welding (GMAW) processes (DED-Arc) can be used to realise highly effi-cient component modifications and repairs on semi-finished products and additively manufactured structures. There are still a number of key issues preventing widespread implementation, particularly for SMEs. In addition to the manufacturing design, detailed information about assembly strategy and geometric adaptation of the component for modifications or repairs are missing. These include the welding-related stresses associ-ated with the microstructural influences caused by the additive manufacturing steps, particularly in the transition area of the substrate and filler material interface. The pre-sent research focuses the effect of welding heat control during DED-Arc process on the residual stresses, especially in the transition area. Defined specimens were welded fully automatically with a high-strength solid wire (yield strength > 790 MPa) especially adapted for DED-Arc on S690QL substrate. The working temperature and heat input were systematically varied for a statistical effect analysis on the residual stress state of the hybrid manufactured components. Regarding heat control, t8/5 cooling times within the recommended processing range (approx. 5 s to 20 s) were complied. The investiga-tion revealed a significant influence of the working temperature Ti on the compressive residual stresses in the transition area and the tensile residual stresses at the base of the substrate. High working temperatures result in lower compressive residual stresses, heat input E does not significantly affect the tensile stresses. T2 - 6. Symposium Materialtechnik CY - Clausthal-Zellerfeld, Germany DA - 20.02.2025 KW - DED-Arc KW - Residual stress KW - Heat control PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-632188 DO - https://doi.org/10.21268/20250506-3 SP - 110 EP - 122 AN - OPUS4-63218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breese, Philipp Peter A1 - Altenburg, Simon T1 - Absolute temperature determination in laser powder bed fusion (PBF-LB/M) via hyperspectral thermography N2 - Temperature is a key characteristic in laser powder bed fusion of metals (PBF-LB/M). As a quantitative physical property, the temperature can determine the actual process quality independently from the nominal process parameters. Thus, establishing a process evaluation on temperatures rather than the comparison of process conditions is expected to be more effective. However, quantitative in situ temperature measurements with classical thermographic methods are virtually impossible. The reason is that the required emissivity value changes drastically throughout the process. Additionally, large temperature ranges along with the highly dynamic nature of the PBF-LB/M process make temperature measurements difficult. Based on this challenge, this work presents a method for hyperspectral temperature determination. The spectral exitance (in W/m2⋅nm) was measured in situ at many adjacent wavelengths in the short-wave infrared (SWIR). This enabled a local temperature determination via Planck’s law in combination with a spectral emissivity function. The temperature field of the melt pool crossing the 1D measurement line was reconstructed from the information, gathered at nearly 20 kHz sampling rate. The reconstructed melt pool had a spatial resolution of 17 µm by 40 µm, and temperatures between 2700 and 1300 K were observable. Comparison of the 316L stainless steel solidification temperature and the observed solidification plateau in the gathered thermal data revealed a relative error of less than 6% in the absolute temperature measurement. These initial results of hyperspectral temperature determination in PBF-LB/M show the potential in the method. It allows for physically founded process evaluation, and the prospects for tuning and validation of numerical simulations are highly promising. KW - Additive Manufacturing KW - Infrared Thermography KW - In-situ Monitoring KW - Quantitative Temperature Measurement KW - Emissivity PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631977 DO - https://doi.org/10.1007/s40964-025-01148-8 SN - 2363-9512 SP - 1 EP - 10 PB - Springer Science and Business Media LLC AN - OPUS4-63197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Measurement of real temperatures in metal powder bed fusion: Hyperspectral thermography N2 - Detailed knowledge about the physics of the PBF-LB/M process is still lacking, and the simulation of the fast and small-scale process is challenging. Especially the experimental validation of complex simulations lacks a suitable measurement technique for temperature distributions at high speeds and spatial resolution. The complicated process physics, specifically the rapidly changing emissivity in and around the meltpool, pose a severe challenge for usual thermographic approaches. Here, we present first results of a hyperspectral measurement approach to reconstruct temperature and emissivity maps during the PBF-LB/M process in a custom manufacturing machine. The camera setup measures the thermal radiation of the process along a line at a rate of 20 kHz, spectrally resolved between 1 µm and 1.6 µm. When the meltpool travels perpendicularly across this line, a typical meltpool can be reconstructed by pointwise fitting for temperature emissivity separation, based on typical spectral emissivities from reference measurements. T2 - Lasers in Manufacturing Conference - LiM CY - Munich, Germany DA - 23.06.2025 KW - PBF-LB/M KW - In situ monitoring KW - Thermography KW - Additive Manufacturing KW - Process monitoring KW - Hyperspectral PY - 2025 AN - OPUS4-63564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gupta, Kanhaiya A1 - Poka, Konstantin A1 - Ulbricht, Alexander A1 - Waske, Anja T1 - Identification and authentication of additively manufactured components using their microstructural fingerprint N2 - In the field of additive manufacturing, the ability to uniquely identify and authenticate parts is crucial for certification, logistics, and anti-counterfeiting efforts. This study introduces a novel methodology that leverages the intrinsic microstructural features of additively manufactured components for their identification, authentication, and traceability. Unlike traditional tagging methods, such as embedding QR codes on the surface or within the volume of parts, this approach requires no alteration to the printing process, as it utilizes naturally occurring microstructural characteristics. The proposed workflow involves the analysis of 3D micro-computed tomography data to identify specific voids that meet predefined identification criteria. This method is demonstrated on a batch of 24 parts manufactured with identical process parameters, proving capable of achieving unambiguous identification and authentication. By establishing a tamper-proof link between the physical part and its digital counterpart, this methodology effectively bridges the physical and digital realms. This not only enhances the traceability of additively manufactured parts but also provides a robust tool for integrating digital materials, parts databases, and product passports with their physical counterparts. KW - Authentication KW - Additive manufacturing KW - X-ray Computed Tomography KW - Digital fingerprint KW - Unique identification PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630356 DO - https://doi.org/10.1016/j.matdes.2025.113986 SN - 1873-4197 VL - 254 SP - 1 EP - 12 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-63035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano-Munoz, Itziar A1 - Agudo Jácome, Leonardo A1 - Thompsom, Sean A1 - Schneider, Judy T1 - On the transferability of post-processing heat treatments designed for PBF-LB IN718 alloys to directed energy deposition specimens N2 - Many processes are being developed for metal additive manufacturing (AM) which vary by their heat source and feedstock. The use of directed energy deposition (DED) is growing due to its ability to build larger structures outside of a contained powder bed chamber. However, the only standard exclusively for post-build heat treatment of AM IN718 is ASTM standard F3055-14a, developed for powder bed fusion (PBF). This study evaluates the applicability of this current heat treatment standard to AM IN718 specimens produced using two methods of DED: laser-blown powder (LP)-DED and arc-wire (AW)-DED. Electron microscopy and X-ray diffraction techniques were used to characterize the specimens in the as-built condition and after the full heat treatment (FHT) specified in F3055. No evidence of remaining Laves phase was observed in the two DED specimens after the FHT. Yield strengths for the DED specimens were 1049 MPa for FHT AW-DED and 1096 MPa for LP-DED, higher than the minimum stated for PBF-LB IN718 of 920 MPa. The size, morphology, inter-spacing, and diffraction patterns of the γ´ and γ´´ strengthening precipitates are found to be similar for both DED processes. Differences were observed in the microstructure evolution where the F3055 heat treatments resulted in partial recrystallization of the grain structure, with a higher content of annealing twins observed in the AW-DED. These microstructural differences correlate with differences in the resulting elongation to failure. Thus, it is proposed that variations in heat treatments are needed for optimizing IN718 produced by different AM processes. KW - Additive manufacturing variants KW - Directed energy deposition (DED) KW - Post-process heat treatments KW - SEM-EBSD and TEM microscopy KW - XRD phase analysis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-628165 DO - https://doi.org/10.1007/s00170-025-15386-1 SN - 1433-3015 VL - 137 IS - 7-8 SP - 3949 EP - 3965 PB - Springer Science and Business Media LLC AN - OPUS4-62816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Michael T1 - Automated Repair of Gas Turbine Blades Using DED-Arc N2 - Gas turbine blades are critical components in aerospace and power generation, often subject to wear, erosion, and fatigue-induced damage. Traditional repair methods are labor-intensive, costly, prone to inconsistencies, and not rapidly adaptable. This work presents an automated approach for repairing gas turbine blade tips using Wire and Arc Directed Energy Deposition (DED-Arc) in combination with a high-precision point to point registration technique of laser line triangulation (LLT) 3D scans. The proposed workflow begins with affixation of the milled down turbine blade to a work piece manipulator using a 3D printed clamping mechanism and a rough alignment of the turbine tip. Subsequently, the turbine blade’s geometry is acquired using a fully integrated 3D laser triangulation sensor, transforming, and aggregating the captured 2D line data into a 3D scan in the working user coordinate system using live feedback data from a finely calibrated industry robot. This point cloud representation of the real-world turbine blade is then used as the target during an advanced point-to-point shape registration technique transforming the digital representation of the repair process containing all relevant tool path and geometry data into the coordinate system of the real-world turbine blade. Afterwards, the turbine tip is then iteratively repaired whereby the turbine tip geometry is divided into differentiated sections, each with its own optimized process parameter set. A key innovation in this approach is the adaptability of the repair process through a closed-loop monitoring system. After each DED-Arc deposition, a 3D scan is performed to document the deposited geometry, to detect the interaction of the different process parameter sets, to activate an intervention if necessary, and calculate subsequent tool paths based on current geometry data. The results indicate that the combination of precise 3D scan registration with DED-Arc is a viable solution for the industrial-scale repair of gas turbine blades leading to significant reduction in labor, tooling, process, and time related cost. T2 - IIW Assembly CY - Genoa, Italy DA - 22.06.2025 KW - DED-Arc KW - Additive Manufacturing KW - Repair KW - Turbine Blade KW - Automation PY - 2025 AN - OPUS4-63624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huo, Wenjie A1 - Schmies, Lennart A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Wolter, Katinka T1 - Prediction of mean strain from laser beam welding images and detection of defects via strain curves based on machine learning N2 - With the advancement of machine learning, many predictions and measurements in visual tasks can be achieved by convolutional neural networks (CNNs). Solidification hot cracking is a significant defect in laser beam welding, commonly encountered in practical applications. Existing theories indicate that the formation of cracks is closely related to strain accumulation near the solidification front. In this paper, we first leverage supervised Regression networks to design CNNs that achieve real-time average strain estimation for each frame in the collected welding videos. Two different architectures are proposed and compared: the first model stacks two frames at a set interval and feeds them into the network, while the second model extracts image features individually and predicts the results by calculating the correlation between them. Each network has its own advantages in Terms of computational efficiency and accuracy. Finally, we further train a multilayer perceptron (MLP) classification model that can detect the occurrence of cracks based on the predicted strain behaviors. KW - Laser beam welding KW - Mean strain prediction KW - Solidification cracking detection Convolutional neural networks KW - Convolutional neural networks PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644495 DO - https://doi.org/10.1016/j.optlastec.2025.113975 SN - 0030-3992 VL - 192, Part F SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-64449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Machine Learning and Thermography as Tools for Local Porosity Prediction in AM of Metals N2 - Quality assurance of metal additive manufacturing (PBF-LB/M) is still a challenge. Offering deep process insights, thermography is a well-suited monitoring technique. Here, we show how machine learning based on thermographic data enables a local part porosity prediction. T2 - Laser Applications Conference (LAC) CY - Prague, Czech Republic DA - 19.10.2025 KW - PBF-LB/M KW - In situ monitoring KW - Thermography KW - Additive Manufacturing KW - Process monitoring KW - Porosity prediction KW - Machine Learning KW - Feature extraction PY - 2025 AN - OPUS4-64669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scharf-Wildenhain, R. A1 - Engelking, Lorenz A1 - Hälsig, A. A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Hensel, J. T1 - Effect of heat control on mechanical properties and residual stresses at the transition zone of component and substrate in hybrid DED‑arc manufacturing N2 - In hybrid additive manufacturing, components or semi-finished products manufactured by conventional primary forming are enhanced or modified by additive manufactured structures. However, systematic investigations focusing on the critical transition area between the specific properties of the substrate (like high-strength) and the additively manufactured component, made of specific filler material, are still lacking. The focus of the present study was to determine the influence of heat control on the Δt8/5 cooling time, the distortion, the mechanical properties, and the residual stresses in the transition area of hybrid-additive components. This contributed to the knowledge regarding the safe avoidance of cold cracking, excessive distortion, a reduction in yield stress, and the implementation of hybrid DED-arc manufacturing. The heat control was varied by means of heat input and working temperature such that the Δt8/5 cooling times corresponded to the recommended processing range. The heat input has a greater influence on the cooling time in the transition area than the working temperature. Working temperature and the total energy applied per layer have a significant effect on component distortion. The lowest working temperature of 100 °C in combination with the highest total energy per layer leads to significantly greater distortion compared to manufacturing with a high working temperature of 300 °C and low total energy per layer. In addition, the longitudinal residual compressive stresses in the sensitive transition area are reduced from − 500 MPa to approx. − 200 MPa by adjusting the working temperature from 100 to 300 °C. Such complex interactions must be clarified comprehensively to provide users with easily applicable processing recommendations and standard specifications for an economical hybrid additive manufacturing of components made, for example, of high-strength steels in the transition area. T2 - IIW Annual Assembly and International Conference CY - Rhodes Island, Greece DA - 07.07.2024 KW - Hybrid additive manufacturing KW - DED-arc KW - Heat control KW - High-strength metals KW - Residual stress PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630415 DO - https://doi.org/10.1007/s40194-025-02036-z SN - 1878-6669 SP - 1 EP - 15 PB - Springer AN - OPUS4-63041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chaurasia, Prashant Kumar A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - De, Amitava A1 - Rethmeier, Michael T1 - Automated in situ monitoring and analysis of process signatures and build profiles during wire arc directed energy deposition N2 - Wire arc directed energy deposition (DED-Arc) is an emerging metal additive manufacturing process to build near-net shaped metallic parts in a layer-by-layer with minimal material wastage. Automated in situ monitoring and fast-responsive analyses of process signatures and deposit profiles during DED-Arc are in ever demand to print dimensionally consistent parts and reduce post-deposition machining. A comprehensive experimental investigation is presented here involving real-time synchronous measurement of arc current, voltage, and the deposit profile using a novel multi-sensor monitoring framework integrated with the DED-Arc set-up. The recorded current–voltage transients are used to estimate the time-averaged arc power, and energy input in real time for an insight of the influence of wire feed rate and printing travel speed on the deposit characteristics. A unique attempt is made to represent the geometric profiles of the single-track deposits in a generalized mathematical form corresponding to a segmented ellipse, which has exhibited the minimum root-mean-square error of 0.03 mm. The dimensional inconsistency of multi-track deposits is evaluated quantitatively in terms of waviness using build profile monitoring and automated estimation, which is found to increase with an increase in step-over ratio and energy input. For the multi-track mild steel deposits, the suitable range of step-over ratio for the minimum surface waviness is observed to lie between 0.6 and 0.65. Collectively, the proposed framework of synchronized process monitoring and real-time analysis provides a pathway to achieve dimensionally consistent and defect-free parts, and highlights the potential for closed-loop control systems for a wider industrial application of DED-Arc. KW - Additive Manufacturing KW - Arc welding KW - DED-arc KW - Real-time monitoring and control KW - Dimensional inconsistency PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-642029 DO - https://doi.org/10.1007/s40964-025-01333-9 SN - 2363-9512 SP - 1 EP - 20 PB - Springer Science and Business Media LLC CY - Cham AN - OPUS4-64202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chaurasia, Prashant Kumar T1 - Automated In-situ Monitoring and Analysis of Process Signatures and Build Profile During Arc-based Directed Energy Deposition N2 - Automated in-situ synchronous monitoring and analysis of key process signatures during arc-based directed energy deposition (DED) process are the key challenges for layer-by-layer printing of large-scale parts. An attempt is presented here for real-time monitoring of process transients, deposit profile, and quantitative assessment of arc power, energy input and its influence on deposit dimensions. The workflow including setup, job generation and data analysis is fully automated in Python to allow large scale experiments with fast analysis results. T2 - 2nd Online Young Welding Professional International Conference CY - Online meeting DA - 06.02.2025 KW - Additive Manufacturing KW - Arc welding KW - DED-arc KW - Monitoring KW - Deposition profile PY - 2025 AN - OPUS4-62663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay T1 - Welding Process Data Management - openBIS workflows and lab integration N2 - Arc welding processes are an important manufacturing technology applied to a wide range of critical materials and components such as offshore constructions, pressure vessels and additive manufacturing. Data management for experimental arc welding research faces the challenge of constantly changing experimental setups, incorporating a wide range of custom sensor integrations. Measurements include timeseries process and temperature recordings, 3D-geometry data and video recordings of the process from a sub-millisecond scale to multiple hour-long experiments. In addition, various manual pre-processing steps of the workpieces need to be considered to track the complete manufacturing process and its analysis – from raw materials to final dataset and publication. As a unified RDM system, the BAM Data Store offers the capability to incorporate all steps – albeit not without its own challenges. The talk gives an overview of the different workflows and processing steps along the welding experiments together with their integration into the BAM Data Store. Current solutions and ongoing integration work is explained and discussed. This includes the direct integration and upload of automated processing steps into the Data Store from different machines and sensors using custom Python APIs. Ultimately the complete processing chain across multiple internal steps should be represented in the Data Store. T2 - openBIS user group meeting 2025 CY - Berlin, Germany DA - 22.09.2025 KW - Data Store KW - Openbis KW - Research Data Management KW - Research data KW - Digitalisation PY - 2025 AN - OPUS4-64203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dávila, Josué A1 - Kleba-Ehrhardt, Rafael A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Influence Of Initial Powder Oxidation Level On Process-induced Material Degradation During The Laser Powder Bed Fusion Of Nickel-based Haynes 282 N2 - This study examines the impact of varying oxidation levels in nickel-based Haynes 282 powder on particle degradation during laser powder bed fusion (PBF-LB|M). Four powder batches with oxygen content levels of approximately from 140 ppm to1400 ppm were processed using PBF-LB|M. A powder collection container was fabricated to sample unmelted powder from heat-affected regions of the powder bed. Recoating and melting proceeded without issues; however, increased fume emissions were observed at higher oxidation levels, indicating intensified spatter formation. Post-process analysis revealed that finer particles exhibited greater surface oxidation due to their higher surface-to-volume ratio. Despite significant oxygen uptake, chemical analysis showed no measurable changes in key alloying elements in either the unmelted or spatter particles. Additionally, changes in particle size distribution became more pronounced at high oxidation levels. These findings provide a basis for understanding oxidation-driven degradation and optimizing powder reuse strategies to maintain material performance. T2 - Euro Powder Metallurgy 2025 Congress & Exhibition CY - Glasgow, United Kingdom DA - 14.09.2025 KW - Recycling KW - Additive manufacturing KW - Laser powder bed fusion (PBF-LB/M) KW - Powder quality KW - Powder degradation KW - Powder oxidation KW - Spatter particles KW - Particles ejected KW - Powder reuse PY - 2025 DO - https://doi.org/10.59499/EP256767986 SP - 1 EP - 9 PB - EPMA AN - OPUS4-64369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poka, Konstantin A1 - Ali, Sozol A1 - Ulbricht, Alexander A1 - Schröder, Jakob A1 - Khambayat, Jiganesh A1 - Scholz, Maik A1 - Saeed, Waleed A1 - Merz, Benjamin A1 - Epperlein, Martin A1 - Hilgenberg, Kai T1 - Reduction of extraneous variance in powder bed fusion with laser beam of metals by means of advanced digital preprocessing N2 - Data-driven quality assurance and reproducibility are critical for advancing the industrial maturity of Powder Bed Fusion with Laser Beam of Metals (PBF-LB/M). This study addresses the extraneous variance in scan vectors that arises even for identical cross sections of nominally identical components but located at different positions on the build platform. This inherent variance, common across most PBF-LB/M machines, is caused by scan vector computation relative to the machine coordinate origin and subsequent projection of the resulting pattern onto individual component cross sections. In this work, scan vectors are computed still following conventional slicing, but relative to the workpiece origin of each component, using an EOS M 300-4. This digital preprocessing approach homogenizes fabrication conditions, ensuring that anomalies, such as scan vector overlaps, occur consistently across identical components. The impact during fabrication is assessed through powder bed imaging, melt pool monitoring, and operational data from the multilaser PBF-LB/M machine. Components are manufactured from AlSi10Mg for each scan vector computation origin and subsequently qualified using x-ray computed tomography, optical coordinate measurement, and optical surface measurement. A comprehensive evaluation is conducted, comparing the results in terms of component density, geometric accuracy, and surface roughness to those obtained using conventional preprocessing. Based on these findings, practical recommendations are provided, focusing on achieved quality criteria to identify potential drawbacks, while also considering the life cycle analysis of fabrication. Finally, the study emphasizes the significance of consistent scan vector provisioning for identical components placed at different build platform positions, assuming no roll or pitch during nesting. T2 - ICALEO CY - Orlando, FL, USA DA - 13.10.2025 KW - Quality assurance KW - Data management KW - 3D printing KW - Laser fabrication KW - Life cycle analysis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-642104 DO - https://doi.org/10.2351/7.0001890 SN - 1042-346X VL - 37 IS - 4 SP - 1 EP - 14 PB - American Institute of Physics Publishing CY - New York AN - OPUS4-64210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hernandez Garcia, Maria Amparo T1 - Optical biosensor using free form prototyped elements for targeted explosives immunodetection N2 - Ensuring the safety and security of citizens necessitates a considerable investment of resources and the development of innovative tools by national and international agencies and governments, particularly in the context of explosives detection [1]. The necessity for the detection of improvised explosive devices (IEDs) and homemade explosives (HMEs) at the point of suspicion has increased exponentially due to the simplicity with which the precursors can be obtained, and the reagents synthesised. The restricted availability of immunoanalytical instruments for the detection of homemade explosives (HMEs) offers a valuable opportunity for the development of innovative devices that can rapidly identify and recognise the target analyte with high specificity and sensitivity [2]. In this study, we present the development of an optical biosensor for highly specific and sensitive HME detection. The immunoassay system is situated within a matrix that is permeable to the target analyte and transparent to light, which enables the interrogation via fluorescence. The immunoanalytical system's readout is achieved through the utilisation of supercritical angle fluorescence (SAF), an advanced microscopy technique. To this end, we employed recent, commercially available high-resolution (less than 22 μm) liquid crystal display SLA printers to fabricate a free-form parabolic optical element with a high refractive index (RI greater than 1.5) and transmission values exceeding 90% from commercial photo-resins. The objective is to develop a new generation of sensors that can not only meet the requirements of trace detection but also be used for substance identification. The combination of immunoanalytical recognition with SAF detection offers a modular and versatile solution that is particularly well suited to the measurement of target analytes at trace levels. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Biosensor KW - SAF KW - Free-form optics KW - 3D printing KW - Security PY - 2025 AN - OPUS4-62802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay T1 - Welding Process Data Management - Perspectives on the BAM Data Store N2 - Arc welding processes are an important manufacturing technology applied to a wide range of critical materials and components such as offshore constructions, pressure vessels and additive manufacturing. Data management for experimental arc welding research faces the challenge of constantly changing experimental setups, incorporating a wide range of custom sensor integrations. Measurements include timeseries process and temperature recordings, 3D-geometry data and video recordings of the process from a sub-millisecond scale to multiple hour-long experiments. In addition, various manual pre-processing steps of the workpieces need to be considered to track the complete manufacturing process and its analysis – from raw materials to final dataset and publication. As a unified RDM system, the BAM Data Store offers the capability to incorporate all steps – albeit not without its own challenges. The talk gives an overview of the different workflows and processing steps along the welding experiments together with their integration into the BAM Data Store. Current solutions and ongoing integration work is explained and discussed. This includes the direct integration and upload of automated processing steps into the Data Store from different machines and sensors using custom Python APIs. Ultimately the complete processing chain across multiple internal steps should be represented in the Data Store. T2 - Data Store Days CY - Berlin, Germany DA - 09.03.2025 KW - Data Store KW - Openbis KW - Research Data Management KW - Reference Data KW - Welding PY - 2025 AN - OPUS4-62976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gottschalk, Götz-Friedrich A1 - Chaurasia, Prashant Kumar A1 - Goecke, Sven-Frithjof T1 - Zero-defect Printing with DED-GMA via Adaptive Controls N2 - Gas metal arc assisted directed energy deposition (DED-GMA) is a metal additive manufacturing process for fabricating large-scale parts with a higher printing rate. An accurate monitoring and control of the melt pool geometric features is critical for printing zero-defect parts. In this study, the melt pool thermography is used for the real-time detection of the melt pool boundary, centreline, and transient cooling time using an efficient deep learning technique. The presented real-time process monitoring and control methodology using deep learning allows adaptive control of the DED-GMA process. T2 - Twenty-Second International Conference on Flow Dynamics (ICFD 2025) CY - Sendai, Japan DA - 10.11.2025 KW - Additive manufacturing KW - DED-Arc KW - Monitoring KW - Control PY - 2025 SP - 1332 EP - 1335 AN - OPUS4-64837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - Comparability issues of test specimens in laser powder bed fusion - how to consider differences in thermal history of complex components and primitive test specimens N2 - The capability to produce complexly and individually shaped metallic parts is one of the main advantages of the laser powder bed fusion (PBF-LB/M) process. However, the thermal history during additive manufacturing of complex components can differ significantly from the thermal history of geometrically primitive test specimens. This can result in divergent microstructures and resulting mechanical properties. It drastically limits the comparability of different built parts and requires expensive full component testing. Moreover, the thermal history as the spatiotemporal temperature distribution has been identified as a major cause for flaw formation. Therefore, it can be hypothesized that a similar thermal history between components and test specimens enhances their comparability. In this talk, the concept of representative test specimens is introduced, which enables the transfer of thermal histories from complex geometries to simple geometries, which can lead to better comparability of material properties. T2 - 4th Asia-Pacific International Conference on Additive Manufacturing (APICAM) CY - Melbourne, Australia DA - 30.06.2025 KW - Additive Manufacturing PY - 2025 AN - OPUS4-64527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin T1 - ISO TC 261 / JG 85 Projects N2 - Dieser Vortrag fasst die laufenden Aktivitäten der ISO TC 261 JG 85 zusammen. Insbesondere die Gewinnung und Verarbeitung von PBF-LB/M Prozessdaten steht im Fokus. T2 - ISO TC 261 / ASTM F.42 Meeting CY - Manila, Philippines DA - 22.09.2025 KW - Additive Fertigung KW - PBF-LB/M KW - Digitalisierung PY - 2025 AN - OPUS4-64399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Jonathan T1 - High resolution visual in-situ process monitoring in SONRISA N2 - The LuFo Project "SONRISA" presented an update on its objectives for the coming years to Working Group 3 – In-Situ Process Monitoring – during the EASA/FAA Additive Manufacturing Workshop 2025. As part of this update, BAM provided a brief overview of its prior work in high-resolution visual in-situ process monitoring for PBF-LB/M, which will be integrated into the project. The presentation included a comparison between the BAM system and the OEM in-situ monitoring system “EOSTATE PowderBed” and an outline of the correlation between texture contrast and the occurrence of lack-of-fusion anomalies in high resolution after exposure images.g. T2 - EASA–FAA AM Workshop 2025 CY - Cologne, Germany DA - 21.10.2025 KW - Additive manufacturing KW - High resolution camera KW - Lack of fusion PY - 2025 AN - OPUS4-64456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Walter, Tina T1 - Does multispectral optical tomography add value in recognizing process deviations in the PBF-LB/M process? N2 - Die Qualitätssicherung im Laserstrahlschmelzen metallischer Pulver (PBF-LB/M) stellt eine zentrale Herausforderung für die industrielle Anwendung additiver Fertigungsverfahren dar. Insbesondere die frühzeitige Vorhersage von Defekten, wie z.B. Porositäten, ist entscheidend für die Prozessstabilität und resultierende Bauteilqualität. In diesem Beitrag wird ein neuartiger Ansatz, die multispektrale optische Tomografie (MS-OT), vorgestellt und erste Forschungsergebnisse hinsichtlich der Defekterkennung präsentiert. T2 - Promotionsretreat 2025 CY - Würzburg, Germany DA - 10.03.2025 KW - AM KW - Additive Fertigung KW - Process Monitoring KW - Optische Tomografie PY - 2025 AN - OPUS4-64988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hébrard, Louis T1 - Comparison of Room and High Temperature Fatigue Behavior of a New LPBF VDM 780 Alloy N2 - The actual environmental challenges require a huge effort from all industrial sectors to reduce their emissions of greenhouse gasses and pollutants. In this context, aeronautics is deeply concerned as one of the most emissive industrial sectors (cf. EU Green Deal). The answer to this pressing challenge is complex and involves new fuels and engine concepts, new aerostructures with higher weight-savings, as well as new, energy-efficient, and sustainable manufacturing technologies and materials. Two technologies may contribute particularly to achieving the goals: (i) new and more energy-efficient processes such as additive manufacturing (AM) can be used for part production; (ii) the engine efficiency of airplanes can be significantly improved to save fuel and reduce gas emissions. The latter can be achieved by increasing the engine thermal efficiency, i.e., increasing the turbine inlet temperature. Currently, only single-crystalline cast materials are available to be used for the thermally highest-loaded parts in the gas turbine engine, i.e., the turbine blades in the high-pressure turbine just behind the combustion chamber. These materials rely on a special casting technology, although they lose these original material performances when additive manufactured. In addition, current materials suitable for metal additive manufacturing have a limited range of temperature application. Therefore, the focus is on the development of new materials targeting higher in-service operation temperatures and durability. Recently, a new Ni-based superalloy (VDM 780) has been developed to ensure microstructural stability up to 800 °C. The goal of this work is to provide a deeper understanding of the high temperature fatigue properties of this alloy. This will enable the identification of the maximum operating temperature of this alloy and assess its performance in order to establish its potential in view of a new generation of more efficient aero-engines. T2 - 11th Edition of Fatigue Design International Conference CY - Senlis, France DA - 19.11.2025 KW - Fatigue KW - Additive Manufacturing KW - Ni-based superalloy KW - High Temperature PY - 2025 AN - OPUS4-64992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Davila, Josue T1 - Influence Of Initial Powder Oxidation Level On Process-induced Material Degradation During The Laser Powder Bed Fusion Of Nickel-based Haynes 282 N2 - This study examines the impact of varying oxidation levels in nickel-based Haynes 282 powder on particle degradation during laser powder bed fusion (PBF-LB/M). Four powder batches with oxygen content levels of approximately from 140 ppm to1400 ppm were processed using PBF-LB/M. A powder collection container was fabricated to sample unmelted powder from heat-affected regions of the powder bed. Recoating and melting proceeded without issues; however, increased fume emissions were observed at higher oxidation levels, indicating intensified spatter formation. Post-process analysis revealed that finer particles exhibited greater surface oxidation due to their higher surface-to-volume ratio. Despite significant oxygen uptake, chemical analysis showed no measurable changes in key alloying elements in either the unmelted or spatter particles. Additionally, changes in particle size distribution became more pronounced at high oxidation levels. These findings provide a basis for understanding oxidation-driven degradation and optimizing powder reuse strategies to maintain material performance. T2 - Euro Powder Metallurgy 2025 Congress & Exhibition CY - Glasgow, Scotland DA - 15.09.2025 KW - Additive manufacturing KW - Laser powder bed fusion (PBF-LB/M) KW - Powder quality KW - Powder degradation KW - Powder oxidation KW - Spatter particles KW - Particles ejected KW - Powder reuse PY - 2025 AN - OPUS4-64965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fabry, Çağtay A1 - Hirthammer, Volker A1 - Scherer, Martin K. T1 - weldx-widgets: advanced visualisation and jupyter widgets for weldx N2 - This package provides advanced visualisation and interactive widgets for the weldx core package. KW - Weldx KW - Welding KW - Research data KW - Visualisation PY - 2025 DO - https://doi.org/10.5281/zenodo.17790485 PB - Zenodo CY - Geneva AN - OPUS4-64973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fabry, Çağtay T1 - pytcs: a TwinCAT Scope text export file reader N2 - A Python package for reading exported TwinCAT Scope Files. Export your TwinCAT Scope .svdx files to .txt/.csv and read them into Python. KW - Python KW - TwinCAT Scope KW - File reader KW - File format KW - Measurement data PY - 2025 DO - https://doi.org/10.5281/zenodo.17791125 PB - Zenodo CY - Geneva AN - OPUS4-64975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Breese, Philipp Peter T1 - Additive Manufacturing with In-situ Measurement and Closed-loop Control for the Powder Flow in Laser Metal Deposition N2 - The powder mass flow rate is one of the three main factors directly influencing geometry and quality in the Additive Manufacturing (AM; also 3D printing) process of Laser Metal Deposition (LMD), also known as Directed Energy Deposition (DED-LB/M). However, the pneumatic transport of the metal powder lacks stability, repeatability, and traceability. There is currently no reliable in-situ measurement of the mass flow rate available in industry. As a result, time-consuming powder flow measurements before the manufacturing are typical while no recording or feedback takes place during the manufacturing. Based on this problem statement, this thesis introduces a holistic approach for in-situ measurement and closed-loop control of pneumatic powder flows. For the in-situ measurement, a widely available nonintrusive optoelectronic sensor was used. Found mathematical dependencies reliably convert the sensor output into a powder mass flow rate dependent on powder parameters and feeding conditions. Therefore, the model is usable with various powder types while achieving a Mean Relative Error (MRE) of less than 4% at 125 Hz. Similarly, a model was introduced for the powder velocity using a second sensor further downstream. This provided insight into the powder’s movement while the model achieved an MRE of less than 3%. As a second main research endeavor, the sensor output was used to implement and investigate a closed-loop powder flow control on a vibration feeder. PID controller gains were calculated empirically at set operating points for the nonlinear system. Again, a usage with various metal powders is possible as the influences of powder parameters and feeding conditions were investigated and incorporated into the model. In addition, the dependence on the previous powder flow (memory effect) was factored in as well. With this, faster recovery from blockages and a reduction in standard deviation during steady state feeding by more than 20% were demonstrated. Complementary numerical CFD simulations investigated the effect of the carrier gas flow rates on powder flow homogeneity and powder particle size separations. A second modeling approach demonstrated the use of machine learning with the optoelectronic sensor output. A 1D convolutional neural network (CNN) was shown to be able to predict the powder flow with a Weighted Absolute Percentage Error (WAPE) of less than 4% compared to the actual flow. With this, the model’s capability to detect slightly elevated moisture (at <0.4wt%) in the powder as well as differences in particle size distribution was proven on in-situ data from powder feeding. Finally, the methods were validated on the LMD process by additively manufacturing test components. The active closed-loop powder flow control shows a significant improvement in repeatability for LMD. The in-situ measurement allows a monitoring of the powder mass flow rate with the recorded data throughout the entire AM process. In addition, Scanning Electron Microscopy (SEM) images showed potential benefits at the microscopic level like reduced defects. With this, the whole chain for a powder flow improvement method was investigated, implemented, and validated in the context of Laser Metal Deposition. Furthermore, a high potential for retrofitting is given while at low cost. This lays the foundation for a more traceable and digital AM process in industry leading to repeatable and safe products. KW - Pneumatic powder flow KW - Direct Energy Deposition KW - DED-LB/M KW - 3D printing KW - In-situ monitoring PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650261 DO - https://doi.org/10.14279/depositonce-23032 SP - 1 EP - 198 PB - TU Berlin CY - Berlin AN - OPUS4-65026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk T1 - Influence of Ultrasonic-Assisted Milling on Surface Integrity of Additively Manufactured Components Using DED-Arc/GMAW N2 - Additive manufacturing (AM) is increasingly used for producing complex metallic com-ponents. Subsequent machining is essential to achieve final geometries and surface conditions. The resulting surface integrity, particularly the near-surface residual stress state, plays a crucial role in component performance and fatigue life. This study inves-tigates the potential of ultrasonic-assisted milling (USAM), a hybrid machining process, to improve surface integrity and machinability compared to conventional milling (CM). Three materials were investigated, two difficult-to-cut materials CoCr26Ni9Mo5W and FeNi36 and a low-alloy steel S355J2C. The CoCr26Ni9Mo5W and FeNi36 were addi-tively manufactured via DED-Arc and then machined with varying cutting speeds and feed rates within a Design of Experiments. USAM exhibited enhanced machinability and surface integrity, particularly at low cutting speeds, by reducing cutting forces up to 40% and shifting near-surface residual stresses from tensile to compressive. For S355J2C, USAM reduced cutting forces by approximately 45% and induced surface-near compressive residual stresses up to approximately -700 MPa, leading to a 11% higher fatigue strength compared to CM. These findings highlight the advantages of ultrasonic assistance in post-AM machining, offering enhanced fatigue performance and surface quality for various metallic materials. T2 - 4th International Conference on Advanced Joining Processes 2025 CY - Coimbra, Portugal DA - 16.10.2025 KW - Ultrasonic-assisted milling KW - Additive manufacturing KW - Surface integrity KW - Fatigue strength KW - Residual stress PY - 2025 AN - OPUS4-65051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk T1 - Influence of Substrate Design on Properties and Residual Stresses in Hybrid AM/DED-Arc of High-Strength Steels N2 - High-strength, fine-grained structural steels are increasingly used in modern steel construction to meet economic and environmental demands through lightweight design and reduced material usage. Additive manufacturing (AM), in particularly direct energy deposition with gas metal arc welding (DED-Arc), offers significant advantages in flex-ibility, production speed, and cost efficiency. In hybrid AM, conventionally manufac-tured parts are extended or modified using AM processes. Welding-induced residual stresses, especially in the transition area, pose challenges to structural integrity. This study investigates the influence of substrate design and thermal pretreatment on the residual stress state of hybrid AM components made from base material steel S690QL and a welding filler, a modified solid wire G79. Two substrate geometries (I- and T-substrate) are analysed, which are additively and conventionally manufactured, re-spectively. Results show that substrate geometry significantly affects local residual stresses, microstructure and hardness, particularly in the transition are. The findings contribute to a better understanding of the evolution of welding stresses in hybrid AM components to achieve reliable, crack-resistant and economic high-strength steel structures. T2 - 4th International Conference on Advanced Joining Processes 2025 CY - Coimbra, Portugal DA - 16.10.2025 KW - DED-Arc KW - Residual stress KW - Hybrid additive manufacturing PY - 2025 AN - OPUS4-65048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. T1 - Influence of build-up height on residual stresses in additive repair and modification of multi-material composites using DED-Arc N2 - The application of steels with a higher yield strength allows reductions in wall thickness, component weight and production costs. Hybrid additive manufacturing based on Gas Metal Arc Welding (GMAW) processes (DED-Arc) can be used to realise highly effi-cient component modifications and repairs on semi-finished products and additively manufactured structures. There are still a number of key issues preventing widespread implementation, particularly for SMEs. In addition to the manufacturing design, detailed information about assembly strategy and geometric adaptation of the component for modifications or repairs are missing. These include the welding-related stresses associ-ated with the microstructural influences caused by the additive manufacturing steps, particularly in the transition area of the substrate and filler material interface. The present research focuses the effect of component height on residual stress distribution. Defined specimens were welded fully automatically with a high-strength solid wire (yield strength > 790 MPa) especially adapted for DED-Arc on S690QL substrate. T2 - IIW intermediate meeting for commission IX CY - Trollhätten, Sweden DA - 12.03.2025 KW - DED-Arc KW - Residual stress KW - Component height PY - 2025 AN - OPUS4-65046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Barik, Birendra Kumar A1 - Chaurasia, Prashant Kumar A1 - Kumar, Vikram A1 - Dak, Gauravkumar Roshanlal A1 - Goecke, Sven-F. A1 - De, Amitava T1 - Probing smartphone-based photogrammetry for part profiling in wire arc directed energy deposition N2 - Fast dynamic part profiling during wire arc directed energy deposition (DED-Arc) is required to maintain the dimensional consistency of the fabricated part as it is printed over several overlapped tracks and successive layers. The metrology methods such as laser scanning, though accurate, are costly and less flexible for monitoring of layer-wise deposition. Photogrammetry is an optical measurement technique to reconstruct a 3D geometry using a series of 2D images in different orientations to ensure complete coverage. We propose here a novel attempt for rapid dimensioning of the deposit geometry using smartphone-based photogrammetry for wire arc directed energy deposition (DED-Arc). The recorded images from multiple viewpoints are used for feature extraction and matching and triangulation-based 3D reconstruction of the deposit geometry using open-source software. The reconstructed deposit surface is compared with the original CAD geometry to compare the dimensional consistency of parts during the DED-Arc process. Experimental validation is performed on both simple (cuboid) and complex (hollow cylindrical) aluminum geometries, as well as a steel deposit against laser scanning data. The results demonstrate that the smartphone-based photogrammetry can capture the layer-wise geometry variations with the maximum height deviations well within 15% of the laser scan measurements. Although reconstruction and post-processing times are slightly longer in photogrammetry, the approach provides a flexible, accessible, and cost-effective alternative for part profile monitoring. KW - DED-Arc KW - Monitoring KW - Dimensional consistency KW - 3D reconstruction KW - Part profiling PY - 2025 DO - https://doi.org/10.1007/s40194-025-02273-2 SN - 0043-2288 SP - 1 EP - 14 PB - Springer Science and Business Media LLC AN - OPUS4-65084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Iskhakov, Tagir A1 - Breese, Philipp A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - Numerical and experimental analysis of temperature compensation for eddy current testing during laser powder bed fusion N2 - The quality of parts produced via laser powder bed fusion (PBF-LB/M) can be affected by microstructural defects inherent to the process. In-situ monitoring technologies are crucial for ensuring consistent component quality. Eddy current testing (ECT) offers a viable method for real time monitoring during the PBF-LB/M build cycle. However, complex temperature fields arising during manufacturing significantly impact electrical conductivity, posing a challenge for ECT accuracy. Thus, precise temperature distribution prediction is essential for reliable flaw detection. This study develops a Finite Element (FE) model to predict the temperature field in multi-part build cycles. Scan vectors are grouped into clusters based on their timestamps, enabling the homogenization of thermal loads from multiple scan vectors. This approach allows for optimizing the trade-off between modeling accuracy and computational efficiency in a multi-part build. The study assesses the prediction accuracy required for ECT and investigates the appropriate level of homogenization needed to achieve it. Model predictions are validated through comparisons with thermography images and thermocouple measurements conducted during the manufacturing of 316L steel components. KW - PBF-LB/M KW - FEM KW - Heat accumulation KW - Eddy current testing KW - 316L PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650165 DO - https://doi.org/10.1007/s40964-025-01429-2 SP - 1 EP - 20 PB - Springer Nature AN - OPUS4-65016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schob, Daniela T1 - ICY PRECISION - Material Testing for Cryogenic Hydrogen Applications N2 - For cryogenic hydrogen storage in aerospace applications, reliable mechanical characterisation at 20 K is indispensable. While testing at 77 K (liquid nitrogen) and 4 K (liquid helium) is well established, stand-ardised procedures in the temperature range relevant for liquid hydrogen are still lacking. This gap rep-resents a key challenge for materials development. A critical aspect is the accurate measurement of strain under extreme conditions: clip-on extensometers provide global yet contact-based data, whereas digital image correlation (DIC) enables non-contact, full-field strain acquisition. Using glass cryostats, DIC has been successfully applied at 4 K and 77 K, allowing the capture of high-resolution deformation fields. As a next step, a newly developed test rig is introduced, based on a helium circulation system. It enables not only isothermal testing down to 20 K but also programmable temperature profiles between 10 and 350 K, providing an essential opportunity to reproduce thermomechanical loading conditions close to service environments. An integrated observation window further allows direct measurement of the true stress–strain response. This opens the prospect of assessing materials under realistic cryogenic conditions in a reproducible and comparable manner. T2 - DGM - 43. Werkstoffprüfung CY - Dresden, Germany DA - 27.11.2025 KW - Cryogenic material testing KW - Digital image correlation KW - Quasi-static KW - Low cycle fatigue PY - 2025 AN - OPUS4-65250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Vinzenz A1 - Klement, Oliver A1 - Sander, Steffen A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Recycling of Stainless Steel Milling Chips for Additive Manufacturing: A Three-Stage Comminution Approach Using a Fine Impact Mill N2 - The production of conventional metal powders for additive manufacturing process is energy intensive and costly. This study introduces a sustainable alternative by recycling stainless steel milling chips as feedstock for laser-powder directed energy deposition. The recycling process employs a three-stage mechanical comminution method utilizing a fine impact mill UPZ100 from Hosokawa Alpine AG. Characterization of the resulting powders is conducted through particle morphology analysis, flowability tests, and mechanical property assessments. The chip-derived powders exhibit comparable aspect ratios and sphericity to conventional water atomized powders, though with reduced flowability due to a pronounced fine fraction content. Elevated levels of oxides are observed, leading to the formation of an oxide layer on specimen blocks, without impairing the mechanical properties. Analyses of porosity, microstructure, and hardness indicate no significant differences when compared to conventional powders from water or gas atomization. This recycling approach not only mitigates waste but also enhances the potential for a circular and sustainable manufacturing process in the additive manufacturing industry and beyond. KW - Directed Energy Deposition KW - Recycling KW - Stainless steel KW - Comminution KW - Powder characteristics PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652037 DO - https://doi.org/10.1088/1757-899X/1332/1/012014 SN - 1757-8981 VL - 1332 IS - 1 SP - 1 EP - 7 PB - IOP Publishing AN - OPUS4-65203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Julien T1 - The Impact of Ultrasonic-Assisted Milling and Alloying Elements on the Surface Integrity of Additively Manufactured Iron Aluminides N2 - The increasing focus on energy and resource efficiency has driven the implementation of additive manufacturing (AM) of high-performance materials, particularly in lightweight constructions with optimization of material efficiency. Iron aluminides (FeAl) hold great potential due to their low density, excellent corrosion and wear resistance, high-temperature stability, and vast availability. However, the inherent heterogeneity and anisotropy of FeAl-AM structures pose significant challenges, especially regarding hardness and brittleness. These material characteristics complicate the mostly necessary post-processing via mechanical finish machining, often resulting in elevated cutting forces, accelerated tool wear, and suboptimal surface integrity. Ultrasonic-assisted milling (USAM), a hybrid machining process, offers significant advantages over conventional milling (CM), including the reduction of cutting forces and tool wear. Notably, USAM has been demonstrated to decrease surface defect density and mitigate tensile residual stresses, while potentially inducing beneficial compressive residual stresses within the depth profile of the component’s surface. These effects can significantly enhance crack propagation resistance, improve corrosion behavior, and extend the fatigue life of components in safety-relevant applications. The present study investigates the effects of additional alloying elements such as molybdenum, nickel, titanium and Vanadium in FeAl as well as milling parameters, including cutting speed vc and feed rate fz, on the surface integrity with special regard to residual stress formations. T2 - 4th International Conference on Advanced Joining Processes CY - Coimbra, Portugal DA - 16.10.2025 KW - Additive Manufacturing KW - Wear Protection KW - Ultrasonic-assisted Milling KW - Iron-aluminides KW - MPEA KW - Surface Integrity KW - Residual Stresses PY - 2025 AN - OPUS4-65235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kianinejad, Kaveh T1 - Multiscale Modelling of Creep Anisotropy in Additively Manufactured IN738LC N2 - Excellent creep resistance at elevated temperatures, i.e. T / Tm> 0.5, due to gamma-gamma’ microstructure is one of the main properties of nickel-based superalloys. Due to its great importance for industrial applications, much research has been devoted to understanding the underlying deformation mechanism in a broad spectrum of temperature and loading conditions. Additive Manufactured (AMed) nickel-based superalloys, while being governed by similar \gamma-gamma’ microstructure, exhibit AM-process specific microstructural characteristics, such as columnar grains, firm crystallographic texture (typically <001> fibre texture parallel to build direction) and compositional inhomogeneity, which in turn leads to anisotropic creep response in both stationary and tertiary phases. Despite the recent insights on the correlation between process parameters and the resulting microstructure, these materials' anisotropic creep behaviour and corresponding deformation mechanism are insufficiently understood. One reason is the lack of capable material models that link the microstructure to the mechanical behaviour. Within the present work, a multiscale approach has been developed to overcome this challenge by combining microstructure-based mesoscale and phenomenological macroscale models. The mesoscale model utilizes the Crystal Plasticity Finite Element Method (CPFEM) to include the microstructural characteristics and the relevant deformation mechanism on the polycrystalline scale. The mesoscale model was then used to perform virtual creep experiments required to calibrate the macroscale model. The developed approach has been applied to characterise the creep behaviour of AMed IN738LC. The effect of different slip systems, crystallographical texture, grain morphology, and Grain Boundary Sliding (GBS) on creep anisotropy at 850°C has been investigated. The approach's ability to capture the AM-specific characteristics and link them to the observed macroscale anisotropic response has been demonstrated, and the contribution of primary underlying deformation mechanisms to creep anisotropy has been elucidated. KW - Creep anisotropy KW - Crystal plasticity KW - Addtively manufactured Nickel-based Alloys alloy PY - 2025 SP - 1 EP - 135 PB - RWTH Aachen CY - Aachen AN - OPUS4-64598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kianinejad, Kaveh A1 - Czediwoda, Fabian A1 - Glatzel, U. A1 - Völkl, R. A1 - Stöhr, B. A1 - Ávila Calderón, Luis A1 - Schriever, Sina A1 - Saliwan Neumann, Romeo A1 - Fedelich, Bernard A1 - Darvishi Kamachali, Reza T1 - Microstructure-based modelling of the anisotropic creep behaviour in additively manufactured INCONEL 718 N2 - The existing gap in the adequate prediction of the microstructure-property relationships remains a significant barrier to the safe application of the additively manufactured materials. This challenge is fundamentally tied to the intricate microstructural defects that emerge during the processing. Systematic microstructure-based modelling can offer solutions to address this bottleneck. In this work, we utilize a crystal plasticity model, developed for gamma''-strengthened Ni-base alloys and calibrated with single crystal tensile and creep tests of Inconel 718. By systematically refining the representative volume element complexity---from equiaxed to elongated grain morphologies, and from unimodal to bimodal orientation and grain size distributions---we demonstrate how each layer of structural realism contributes to the model’s predictive capacity. Creep tests of laser-based powder bed fusion (PBF-LB/M) manufactured samples in three orientations (with the tensile axis parallel, perpendicular, and 45° tilted relative to the building direction) were performed at 650° C, accompanied by electron backscatter secondary diffraction measurements. The results of our simulations reveal that the bimodal grain morphology and crystallographical texture significantly influence the observed creep anisotropy. We show that the elongated grain structure combined with grain boundary sliding plays a major role in the creep response, specifically in tilted specimens. KW - Additive manufactured Ni-base superalloys KW - Creep Anisotropy KW - Crystal plasticity PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-646884 DO - https://doi.org/10.1016/j.msea.2025.149029 VL - 945 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-64688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Vinzenz A1 - Fasselt, Janek Maria A1 - Klötzer-Freese, Christian A1 - Kruse, Tobias A1 - Kleba-Ehrhardt, Rafael A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Recycling nickel aluminium bronze grinding chips to feedstock for directed energy deposition via impact whirl milling: Investigation on processability, microstructure and mechanical properties N2 - During the production of ship propellers, considerable quantities of grinding chips from nickel aluminium bronze areproduced. This paper examines the mechanical comminution of such chips via impact whirl milling and the utilization of twochip-powder batches as feedstock for a laser-based directed energy deposition process. The materials are characterized viadigital image analysis, standardized flowability tests, scanning electron microscopy and energy dispersive X-ray spectroscopyand are compared to conventional, gas atomized powder. The specimens deposited via directed energy deposition areanalyzed for density, hardness and microstructure and tensile properties for vertical and horizontal build up directions arecompared. At elevated mill rotation speeds, the comminution with impact whirl milling produced rounded particles, favorableflow properties and particle size distribution, making them suitable to deposit additive specimens. The microstructureexhibited characteristic martensitic phases due to the high cooling rates of the additive manufacturing process. The presenceof ceramic inclusions was observed in both the powder and on the tensile fracture surfaces, partly impairing the mechanicalproperties. However, specimens in the vertical build-up direction (Z) showed competitive tensile results, with 775 MPa intensile strength, 455 MPa in yield strength and 12.6 % elongation at break. The findings of this study indicate that recyclingof machining chips to additive manufacturing feedstock can be a viable option for reducing material costs and environmentalimpact. KW - Nickel aluminium bronze KW - Grinding chips KW - Recycling KW - Directed energy deposition KW - Material characterization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651214 DO - https://doi.org/10.1016/j.addma.2025.104804 SN - 2214-8604 VL - 105 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-65121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lemke, J. T1 - Water and gas atomized AISI 316L powder for DED-LB: A comparative study on powder properties and build quality N2 - Powder properties are considered a key factor in part quality in laser additive manufacturing, although few studies have investigated the effects in directed energy deposition (DED). Water atomized (WA) and gas atomized (GA) powders are frequently used but may result in different part properties due to powder properties. To examine their qualification for DED-LB, this work examines powders and build quality of AISI 316L. Also, examination techniques are compared. The results show that the powder production has no relevant influence on porosity and Archimedian density of built parts. WA powders show good processability in DED-LB, despite unfavorable morphology. In contrast, WA specimen reach only 10% fracture elongation in tensile testing whereas GA-based specimen achieve 30%. Tensile strength of both is above 500 MPa. The reason for the lower mechanical property values can be attributed to defects and oxides. WA powders may provide a cost-effective alternative for DED-LB when mechanical load requirements are not important. T2 - Lasers in Manufacturing Conference CY - Munich, Germany DA - 23.06.2025 KW - DED-LB KW - Porosity KW - AISI 316L KW - Water atomized KW - Gas atomized KW - Powder PY - 2025 AN - OPUS4-65120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. T1 - Influence of build up height on residual stresses in additive repair and modification using DED Arc N2 - Directed Energy Deposition (DED)-Arc is suitable for the hybrid additive manufacturing, modification and repair of large metal components with high deposition rates. Residual stresses and distortion are of central importance when characterizing the manufactured components and the sensitive transition area between AM component and semi-finished product. Residual stresses caused by the thermal cycles during the manufacturing process can impair the mechanical properties of the manufactured parts and can lead component failure. Therefore, understanding and controlling residual stresses, especially when combining different base and filler materials, is critical to improving the quality and efficiency of the hybrid DED-Arc process. This article deals with the influence of the build-up height on the residual stress distribution of additively manufactured components with a selected base and filler material combination. Using a robot-assisted DEDsystem and a controlled short arc, systematic step cancellation tests were carried out at a selected working temperature (200 C°) and heat input (600 kJ/m). In a 5-stage termination experiment, straight walls were produced using a one bead per layer strategy and selected increasing component heights between 15 mm and 300 mm. The influence of the build height on the longitudinal residual stress in the process direction was analyzed and discussed. All experiments showed a comparable stress distribution in the area of the substrate plate up to the heat-affected zone (HAZ) and the transition zone, regardless of the buliding height. However, the height showed a significant influence on the of residual stress distribution of the deposited AM-component. High positive stress gradients with a maximum range between 300 MPa to 400 MPa were always found in the last approx. 18 component layers (upper 40 mm), which can be explained by the shrinkage of the nonheat- treated top layer. Underlying layers, where present, showed a homogeneous residual stress distribution characterized by low compressive stresses. This can be explained by the process related tempering during the deposition of the upper layers. A constant boundary layer number was determined for all specimens. Once this number was exceeded, the distribution of residual stresses no longer changed, but merely shifted with the increasing height of the component in the direction of build-up. These correlations contribute to the understanding of residual stress development with increasing structure height. This study is part of a running research project on the properties of hybrid additive components and processes. It aims the stress optimized hybrid additive manufacturing of high-strength components and the necessary recommendations for application. T2 - 78th IIW Annual Assembly and International Conference on Welding and Joining CY - Genoa, Italy DA - 22.06.2025 KW - DED-Arc KW - Additive manufacturing KW - Residual stress PY - 2025 AN - OPUS4-65192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk T1 - Wear resistance of modified Ni based claddings in relation to the resulting machinability via ultrasonic-assisted milling N2 - In the field of plastics processing, extruder screws are subjected to significant wear stresses. The extruder screw is the main wear component in those production machines and is usually coated with intermetallic wear protection alloys composed of Ni-based alloys, specifically Colmonoy C56 PTA (NiMoCrSi). There is a growing demand for providing an economic machinability of these alloys to achieve defined contours with a sufficient surface integrity. Recent investigations exhibit promising results applying ultrasonic milling for such hard-to-cut materials. The Colmonoy C56 is modified by various alloying additions Ti, Nb, Mo, Hf, and Al, and then cladded on a steel S355 via Plasma Transferred Arc process. The effect of alloying additions on the microstructure is analyzed regarding their resistance to abrasive and adhesive wear. With Miller test ASTM G75 the influence of alloying elements on resistance to abrasive wear for two abrasive materials is investigated (high-grade corundum F220 and quartz powder). The wear loss is not increased for additions of Nb and Ti compared to the base material C56. Modifications with Hf or Al reduces the resistance to abrasive wear and significantly increases material loss. The extruder screw is also subject to adhesive wear, which can be quantified by means of the pin-roll test. It is demonstrated that the addition of Hf, for example, contributes to a reduction in wear loss. Aim of the investigations is to find suitable modifications for the wear claddings of C56 for a sufficient machineability, without compemising the wear resistant. The machinability is considerably affected by the alloy additions, and is determined using ultrasonic-assisted milling. The addition of hafnium reduces machinability, i.e. significantly increases cutting forces. The incorporation of Nb exhibits a significant reduction of cutting forces, and results in reduced tool wear and an enhanced of surface integrity (roughness, density of defects, residual stresses). T2 - Wear of Materials 2025 CY - Sitges, Spain DA - 13.04.2025 KW - Abrasive wear KW - Adhesive wear KW - Colmonoy C56 KW - PTA welding KW - Service life and efficiency KW - Substitution of critical raw materials KW - Surface integrity KW - Ultrasonic-assisted milling process PY - 2025 AN - OPUS4-65189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Energy conversion of waste heat using thermomagnetic materials N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. We demonstrated that guiding the magnetic flux with a pretzel-type topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude [1]. From an ideal material’s perspective, several similarities with magnetocaloric materials [2] can be found, like a sharp first-order like magnetostructural transition, low hysteresis and high thermal diffusivity. This makes some magnetocaloric materials good candidates also for thermomagnetic energy harvesting, like e.g. (MnFe)2P-based and La(Fe,Si)13-based compounds. Recently, the EU MSCA initial training network Heat4Energy [2] was started with the aim of making three thermomagnetic energy converters for low grade waste heat (<100°C) to electricity with different power output ranges. While the smallest demonstrator operates with thin film materials, the two larger machines use bulk material, for which different processing and shaping routes are explored. In collaboration with the industrial stakeholders of the project, up-scalability and practical application issues of materials processing will be addressed during the project. After an introduction into the technological background and the ITN project, we will present first results on 3D printing and non-destructive imaging of the thermomagnetic parts. T2 - Advances in Magnetics (AIM) 2025 CY - Bressanone, Italy DA - 10.02.2025 KW - Energy harvesting KW - Thermomagnetic energy conversion KW - Magnetic materials PY - 2025 AN - OPUS4-65201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Energy conversion of waste heat using thermomagnetic materials N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. We demonstrated that guiding the magnetic flux with a pretzel-type topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude [1]. From an ideal material’s perspective, several similarities with magnetocaloric materials [2] can be found, like a sharp first-order like magnetostructural transition, low hysteresis and high thermal diffusivity. This makes some magnetocaloric materials good candidates also for thermomagnetic energy harvesting, like e.g. (MnFe)2P-based and La(Fe,Si)13-based compounds. Recently, the EU MSCA initial training network Heat4Energy [2] was started with the aim of making three thermomagnetic energy converters for low grade waste heat (<100°C) to electricity with different power output ranges. While the smallest demonstrator operates with thin film materials, the two larger machines use bulk material, for which different processing and shaping routes are explored. In collaboration with the industrial stakeholders of the project, up-scalability and practical application issues of materials processing will be addressed during the project. After an introduction into the technological background and the ITN project, we will present first results on 3D printing and non-destructive imaging of the thermomagnetic parts. Furthermore, we will review criticality issues of materials employed in this new technology. T2 - MRS Spring Meeting Seattle CY - Seattle, WA, USA DA - 07.04.2025 KW - Energy harvesting KW - Magnetic materials KW - Thermomagnetic energy conversion PY - 2025 AN - OPUS4-65198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Energy conversion of waste heat using thermomagnetic materials N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. We demonstrated that guiding the magnetic flux with a pretzel-type topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude [1]. From an ideal material’s perspective, several similarities with magnetocaloric materials [2] can be found, like a sharp first-order like magnetostructural transition, low hysteresis and high thermal diffusivity. This makes some magnetocaloric materials good candidates also for thermomagnetic energy harvesting, like e.g. (MnFe)2P-based and La(Fe,Si)13-based compounds. Recently, the EU MSCA initial training network Heat4Energy [2] was started with the aim of making three thermomagnetic energy converters for low grade waste heat (<100°C) to electricity with different power output ranges. While the smallest demonstrator operates with thin film materials, the two larger machines use bulk material, for which different processing and shaping routes are explored. In collaboration with the industrial stakeholders of the project, up-scalability and practical application issues of materials processing will be addressed during the project. After an introduction into the technological background and the ITN project, we will present first results on 3D printing and non-destructive imaging of the thermomagnetic parts. Furthermore, we will review criticality issues of materials employed in this new technology. T2 - MRS Fall Meeting Boston CY - Boston, MA, USA DA - 01.12.2025 KW - Energy harvesting KW - Thermomagnetic energy conversion KW - Magnetic materials PY - 2025 AN - OPUS4-65197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk T1 - Comparative residual stress analysis on a DED-Arc manufactured high-strength steel component using the contour method and XRD N2 - Lightweight construction is a vital approach for reducing CO₂ emissions. It contributes to the development of more energy-efficient structures and supports the overall goal of achieving carbon neutrality in the transition to sustainable manufacturing. Thus, a topology-optimized design often leads to complex geometries. Additive manufacturing (AM) processes such as direct energy deposition with arc (DED-Arc) offers a great design freedom due to the build-up of components in layers. Furthermore, they enable efficient production due to the high deposition rate, process reliability and good automation capability. Further efficiency can be achieved through weight optimization, enabled by high-strength steels. However, a major challenge is the process induced residual stresses (RS) in the component. High tensile residual stresses are detrimental as they increase the risk of cold cracking. Knowledge of residual stress distribution is crucial for predicting service life of the component and structural integrity assessment, especially for safety critical applications. Therefore, this study focuses on the use of Contour method (CM) to analyse the full field longitudinal residual stresses in an open hollow cuboid component (dimensions: 120 x 50 x 30 mm3) manufactured by DED-Arc (yield strength > 730 MPa). In the contour method, the component is cut along a desired plane of interest and the contour of deformed cut surface is measured. A finite element model is used to reconstruct the residual stresses field in the 2-dimensional plane of cut. In this paper a modified cutting strategy was employed, post cutting the deformed cut surfaces were measured utilizing two surface measurement techniques i.e., coordinate measuring machine (CMM) and a 3D Scanner. The accuracy of the contour method was validated against surface stresses measured using X-ray diffraction. Additionally, a comparison of neutron diffraction experiments was conducted. The residual stresses were further correlated with hardness measurements. The results from surface measurement techniques showed good agreement regarding the measured displacement contours and the contour method results revealed peak stresses in the DED-Arc walls, bending deformation in substrate induces tensile stresses at the bottom of the substrate plate and compressive stresses in the middle top region. The residual stresses obtained from diffraction and contour method showed a good agreement and correlated qualitatively with the hardness measurements. T2 - 78th IIW Annual Assembly and International Conference on Welding and Joining CY - Genoa, Italy DA - 22.06.2025 KW - Residual stress KW - Contour method KW - DED-Arc/M KW - High-strength steel KW - Filler metals KW - XRD KW - Neutron diffraction PY - 2025 AN - OPUS4-65215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk T1 - Residual stress evaluation using the contour method of an additive manufactured high-strength steel solid cuboid N2 - Direct Energy Deposition with Arc (DED-Arc) enables the weight-optimized and near-net-shape manufacturing of complex structures. Lightweight construction principles allow a reduction of CO2 emissions by saving time, costs, and resources. Further optimisations can be achieved by using high-strength steel. This allows for a reduction in wall thickness and optimisation of weight. However, manufacturing intricate geometries using high-strength steels poses challenges in managing residual stresses (RS), which are essential for ensuring the structural integrity of welded components. High residual stresses can increase the risk of cold cracking, arising from the complex interactions between material properties, process conditions, and component design. Despite the availability of suitable filler metals, the lack of comprehensive knowledge and guidelines on residual stress formation limits the industrial application. Therefore, in the present study, the contour method (CM) was used to analyse the full field longitudinal residual stresses in an solid cuboid component (dimensions: 120 × 50 × 35 mm³) manufactured by DED-Arc. The CM enables the analysis of the two-dimensional map of residual stresses normal to a cutting plane using a finite element model. For this purpose, a solid cuboid component was welded fully automatically with a high-strength solid wire specially adapted for DED-Arc (yield strength > 790 MPa) onto conventionally manufactured substrates made of S690QL. The residual stresses from CM in the volume are compared with residual stress analyses using X-Ray diffraction on the surface. Additionally, comparative data from previous studies on hollow cuboid structures was included in order to identify similarities and differences in the resulting stress state, and to complement and validate the CM results. These results demonstrate the significant influence of the geometry on the residual stress profiles within the solid cuboid in relation to the open hollow. T2 - 4th International Conference on Advanced Joining Processes 2026 CY - Coimbra, Portugal DA - 16.10.2025 KW - Residual stress KW - Contour method KW - DED-Arc/M KW - High-strength steel KW - Filler metals KW - Neutron diffraction PY - 2025 AN - OPUS4-65209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chaurasia, Prashant Kumar A1 - Cagtay, Fabry A1 - Andreas, Pittner A1 - Rethmeier, Michael T1 - Automated in situ monitoring and analysis of process signatures and build profiles during wire arc directed energy deposition N2 - Wire arc directed energy deposition (DED-Arc) is an emerging metal additive manufacturing process to build near-net shaped metallic parts in a layer-by-layer with minimal material wastage. Automated in situ monitoring and fast-responsive analyses of process signatures and deposit profiles during DED-Arc are in ever demand to print dimensionally consistent parts and reduce post-deposition machining. A comprehensive experimental investigation is presented here involving real-time synchronous measurement of arc current, voltage, and the deposit profile using a novel multi-sensor monitoring framework integrated with the DED-Arc set-up. The recorded current–voltage transients are used to estimate the time-averaged arc power, and energy input in real time for an insight of the influence of wire feed rate and printing travel speed on the deposit characteristics. A unique attempt is made to represent the geometric profiles of the single-track deposits in a generalized mathematical form corresponding to a segmented ellipse, which has exhibited the minimum root-mean-square error of 0.03 mm. The dimensional inconsistency of multi-track deposits is evaluated quantitatively in terms of waviness using build profile monitoring and automated estimation, which is found to increase with an increase in step-over ratio and energy input. For the multi-track mild steel deposits, the suitable range of step-over ratio for the minimum surface waviness is observed to lie between 0.6 and 0.65. Collectively, the proposed framework of synchronized process monitoring and real-time analysis provides a pathway to achieve dimensionally consistent and defect-free parts, and highlights the potential for closed-loop control systems for a wider industrial application of DED-Arc. T2 - IIW Annual Assembly 2025 CY - Genova, Italy DA - 23.06.2025 KW - Additive Manufacturing KW - Arc welding KW - Real-time monitoring and control KW - Dimensional inconsistency KW - DED-arc PY - 2025 AN - OPUS4-65231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - A unique authenticator for additively manufactured parts derived from their microstructure N2 - The international research community is currently devoting extensive resources to the development of digital material data spaces and the associated digital twins and product passports of materials and components. A common weak link in these projects to date has been the connection between physical components / samples and their digital data and documents. This is where the concept of the unique identification comes in. Components produced using additive manufacturing can be marked for unique identification and secure authentication [1,2]. Serial numbers and machine-readable codes can be used to identify the component, and link digital product-related data (i.e., a digital product passport) to the actual components. The most prevailing solution consists of local process manipulation, such as printing a quick response (QR) code [3] or a set of blind holes on the surface or the internal cavity of hollow components. However, local manipulation of components may alter the properties, and external tagging features can be altered or even removed by post-processing treatments. This work provides a new methodology for identification, authentication, and traceability of additively manufactured (AM) components using microstructural features that are unique to each part. X-ray computed tomography (XCT) was employed to image the microstructural features of a batch of AlSi10Mg parts. Based on size and geometry, the most prominent features were selected to create a unique digital authenticator. We implemented a framework in Python using open-access modules that can successfully create a digital object authenticator using the segmented microstructure information from XCT. We show that this method allows to authenticate individual parts from the build job based on its microstructural fingerprint. This is our contribution to enhancing the security and product protection of additively manufactured components. T2 - FEMS EUROMAT CY - Granada, Spain DA - 15.09.2025 KW - Authentication KW - Fingerprint KW - Non-destructive testing PY - 2025 AN - OPUS4-65202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - A unique authenticator for additively manufactured parts derived from their microstructure N2 - Components produced using additive manufacturing can be marked for unique identification and secure authentication [1,2]. Serial numbers and machine-readable codes can be used to identify the component, and link digital product-related data (i.e., a digital product passport) to the actual components. The most prevailing solution consists of local process manipulation, such as printing a quick response (QR) code [3] or a set of blind holes on the surface of the internal cavity of hollow components. However, local manipulation of components may alter the properties, and external tagging features can be altered or even removed by post-processing treatments. This work therefore aims to provide a new methodology for identification, authentication, and traceability of additively manufactured (AM) components using microstructural features that are unique to each part. X-ray computed tomography (XCT) was employed to image the microstructural features of AlSi10Mg parts. Based on size and geometry, the most prominent features were selected to create a unique digital authenticator. We implemented a framework in Python using open-access modules that can successfully create a digital object authenticator using the segmented microstructure information from XCT. The authenticator is stored as a QR code, along with the 3D information of the selected features. T2 - MRS Spring Meeting Seattle CY - Seattle, WA, USA DA - 07.04.2025 KW - Additive Manufacturing KW - Fingerprint KW - Non-destructive testing PY - 2025 AN - OPUS4-65199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Julien T1 - The Impact of Ultrasonic-Assisted Milling and Alloying Elements on the Surface Integrity of Additively Manufactured Iron Aluminides N2 - The increasing focus on energy and resource efficiency has driven the implementation of additive manufacturing (AM) of high-performance materials, particularly in lightweight constructions with optimization of material efficiency. Iron aluminides (FeAl) hold great potential due to their low density, excellent corrosion and wear resistance, high-temperature stability, and vast availability. However, the inherent heterogeneity and anisotropy of FeAl-AM structures pose significant challenges, especially regarding hardness and brittleness. These material characteristics complicate the mostly necessary post-processing via mechanical finish machining, often resulting in elevated cutting forces, accelerated tool wear, and suboptimal surface integrity. Ultrasonic-assisted milling (USAM), a hybrid machining process, offers significant advantages over conventional milling (CM), including the reduction of cutting forces and tool wear. Notably, USAM has been demonstrated to decrease surface defect density and mitigate tensile residual stresses, while potentially inducing beneficial compressive residual stresses within the depth profile of the component’s surface. These effects can significantly enhance crack propagation resistance, improve corrosion behavior, and extend the fatigue life of components in safety-relevant applications. The present study investigates the effects of additional alloying elements such as molybdenum, nickel, titanium and Vanadium in FeAl as well as milling parameters, including cutting speed vc and feed rate fz, on the surface integrity with special regard to residual stress formations. T2 - BMDK der OvGU Magdeburg CY - Magdeburg, Germany DA - 10.12.2025 KW - Additive Manufacturing KW - Wear Protection KW - Ultrasonic-assisted Milling KW - Iron-aluminides KW - MPEA KW - Surface Integrity KW - Residual Stresses PY - 2025 AN - OPUS4-65234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Graebner, Maraike A1 - Giese, Marcel A1 - Lorenz, Svenja A1 - Treutler, Kai A1 - Schröpfer, Dirk A1 - Wesling, Volker A1 - Kannengießer, Thomas T1 - Wear resistance of modified NiMoCrSi claddings in relation to the resulting surface machinability via ultrasonic-assisted milling N2 - In the field of plastics processing, extruder screws are subjected to significant wear stresses. The extruder screw is the main wear component in those production machines and is usually coated with intermetallic wear protection alloys composed of Ni-based alloys, specifically Colmonoy C56 PTA (NiMoCrSi). There is a growing demand for providing an economic machinability of these alloys to achieve defined contours with a sufficient surface integrity. Recent investigations exhibit promising results applying ultrasonic milling for such hard-to-cut materials. The Colmonoy C56 is modified by various alloying additions Ti, Nb, Mo, Hf, and Al, and then cladded on a steel S355 via Plasma Transferred Arc process. The effect of alloying additions on the microstructure is analyzed regarding their resistance to abrasive and adhesive wear. With Miller test ASTM G75 the influence of alloying elements on resistance to abrasive wear for two abrasive materials is investigated (high-grade corundum F220 and quartz powder). The wear loss is not increased for additions of Nb and Ti compared to the base material C56. Modifications with Hf or Al reduces the resistance to abrasive wear and significantly increases material loss. The extruder screw is also subject to adhesive wear, which can be quantified by means of the pin-roll test. It is demonstrated that the addition of Hf, for example, contributes to a reduction in wear loss. Aim of the investigations is to find suitable modifications for the wear claddings of C56 for a sufficient machineability, without compemising the wear resistant. The machinability is considerably affected by the alloy additions, and is determined using ultrasonic-assisted milling. The addition of hafnium reduces machinability, i.e. significantly increases cutting forces. The incorporation of Nb exhibits a significant reduction of cutting forces, and results in reduced tool wear and an enhanced of surface integrity (roughness, density of defects, residual stresses). KW - Colmonoy C56 KW - PTA welding KW - Adhesive wear KW - Abrasive wear KW - Ultrasonic-assisted milling process KW - Surface integrity KW - Service life and efficiency KW - Substitution of critical raw materials PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651530 DO - https://doi.org/10.1016/j.wear.2025.205830 SN - 0043-1648 VL - 571 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-65153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tidblad, Johan A1 - Moya Núñez, Alice A1 - de la Fuente, Daniel A1 - Ebell, Gino A1 - Flatlandsmo Berglen, Tore A1 - Grøntoft, Terje A1 - Hans, Ulrik A1 - Christodoulakis, Ioannis A1 - Kajánek, Daniel A1 - Kreislová, Kateřina A1 - Kwiatkowski, Lech A1 - La Torreta, Teresa A1 - Lutze, Rafał A1 - Pinar Larrubia, Guadalupe A1 - Pintus, Valentina A1 - Prange, Michael A1 - Spezzano, Pasquale A1 - Varotsos, Costas A1 - Verney-Carron, Aurélie A1 - Vuorio, Tiina A1 - Yates, Tim T1 - Corrosion and Soiling in the 21st Century: Insights from ICP Materials and Impact on Cultural Heritage N2 - This paper reviews results published by the International Co-operative Programme on Effects on Materials including Historic and Cultural Monuments (ICP Materials) with emphasis on those obtained after the turn of the century. Data from ICP Materials come from two main sources. The first is through exposures of materials and collection of environmental data in a network of atmospheric exposure test sites mainly distributed across Europe. Corrosion of carbon steel has continued to decrease during the period 2000–2020 but corrosion of zinc only up until 2014, and the trend in zinc corrosion is only visible when examining four-year data. Surface recession of limestone as well as soiling of modern glass show no decreasing trend during 2000–2020. The second is through case studies performed at heritage sites across Europe. Risk analysis of corrosion and soiling for twenty-six sites indicate that currently soiling is a more significant maintenance trigger than corrosion. Costs for maintaining heritage sites are substantial and costs attributable to air pollution is estimated from 40% to as much as 80% of the total cost. Future directions of the program are work on effects of particulate matter, improving the scientific basis for the work, and making the monitoring data publicly available. KW - Corrosion KW - Atmospheric corrosion KW - Soiling PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644651 DO - https://doi.org/10.3390/cmd6040054 SN - 2624-5558 VL - 6 IS - 4 SP - 1 EP - 25 PB - MDPI AG AN - OPUS4-64465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quosdorf, Heike T1 - Digital object identifier for additively manufactured parts as software package N2 - A method to uniquely identify samples without printed or handwritten labels is an advantage not just for additively manufactured parts. To kickstart industry use cases, it is also important to provide a ready-made implementation kit. Following an open-science and open-source software approach Germanys Federal Institute for Materials Research and Testing (BAM) seeks to promote digital solutions of ongoing research projects. With this software package a novel method based on microstructural features as identifiers – DOI4AM (digital object identifier for additively manufactured parts) – will be explained alongside its implementation as open-source Python software package. The digital object identifier (DOI) links product data clearly and forgery-proof with real components. Its implementation helps to identify and securely authenticate additively manufactured components during its product life cycle by using characteristic microstructure features - just like a fingerprint. To calculate the DOI fingerprint, a few preprocessing steps need to be performed to detect the uniquely distributed microstructure features that occur during the 3D printing process. A go-through guide shows the preprocessing steps that include CT image capturing, feature segmentation, and data distribution with CSV files. While all steps can be followed along in a Jupyter notebook, the software package includes an application for creating and checking of previously created fingerprints, as well, as a containerized API (application programming interface) service for implementation in existing software platforms or workflows. While data visualization is crucial to understanding the methodology and an essential tool to check for data correctness, an implementation in an industry use case needs to be slim and resource efficient. Therefor the software’s API can be used as an independent service. The project's industry partner proofs its first successful implementation in their digital product passport web solution PASS-X. T2 - AI MSE 2025 CY - Bochum, Germany DA - 18.11.2025 KW - Authentication KW - Unique identification KW - Digital object identifier KW - Additive Manufacturing KW - Non-destructive testing KW - Open Source Software KW - Digital fingerprint KW - X-ray Computed Tomography KW - Open Science PY - 2025 AN - OPUS4-65293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonrado T1 - Low-Cycle Fatigue Behavior of Laser Powder Bed Fused Inconel 718 at Room and High Temperature N2 - The nickel-base superalloy Inconel 718 (IN718) is one of the most commonly used Ni-based superalloys for high temperature structural applications for its remarkable strength, as well as creep, fatigue, and corrosion resistance up to 650 °C. While IN718 has traditionally been employed as cast or wrought material, it is difficult to machine because of its high strength and toughness. The additive manufacturing of IN718 components made by metal AM has thus gained extensive attention to produce expensive near-net shaped components of high-temperature alloys such as IN718, for it saves material and costs in processing and machining steps. Among all metal additive manufacturing (AM) technologies, laser powder bed fusion (PBF-LB/M) is the most widespread, IN718 being one of the most common alloys produced with it. However, high cooling rates associated to the PBF-LB/M process, hinders the primary strengthening phases γ’’ and γ’ to form, as these cooling rates induce a dislocation cellular substructure, at which walls primary Laves phases bind segregating Nb, Ti and Mo. Many of the therefore needed heat-treatment strategies can then promote Laves-phase transformation into the stable δ phase along the cell and grain boundaries. Laves and δ phases, as well as grain-boundary primary carbides may have adverse effects on mechanical properties. The mostly needle-shaped δ phase was namely found to have a detrimental effect on creep rupture life while no direct effect on LCF fatigue life was evident. In this work room- and high-temperature (650 °C) low-cycle fatigue behavior of PBF-LB/M IN718 is investigated in the four-step heat-treated state and compared to wrought IN718. The microstructure of both materials is characterized across length scales via microscopy methods. The fatigue life at room temperature of the PBF-LB/M IN718 material is slightly lower than that for the wrought material, which is reversed at 650 °C. The cyclic stress response for both materials is marked by cyclic softening that is more pronounced at higher test temperatures. Multiple secondary cracks form at high strain amplitudes, at both room and high temperatures. High testing temperatures enhance specially crack formation at the transitions of regions between elongated grains and columns of stacked grains with ripple patterns in the PBF-LB/M material. Additional to this behavior, pronounced crack branching and deflection indicate that the cracks are controlled by sharp micromechanical gradients. T2 - EUROMAT 2025 CY - Granada, Spain DA - 14.09.2025 KW - Additive manufacturing KW - Low-cycle fatigue KW - Microstructural characterization KW - Ni-base superalloy PY - 2025 AN - OPUS4-64354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suarez Ocano, Patricia T1 - Influence of heat-treatment-induced microstructural evolution on the Low Cycle Fatigue behavior of 316L stainless steel fabricated by Laser Powder Bed Fusion N2 - Additive manufacturing, particularly the laser powder bed fusion (PBF-LB/M) process, has gained significant attention in recent years due to its ability to produce complex geometries with enhanced mechanical properties. Among the various materials used, 316L stainless steel is highly favored for cyclically loaded components due to its exceptional mechanical strength, high-temperature performance, and corrosion resistance, making it widely applicable across various industries. 316L SS fabricated by PBF-LB/M (PBF-LB/M/316L) exhibits a unique hierarchical microstructure, with high density of low-angle grain boundaries (LAGBs), nano-dispersed silicates, chemical micro-segregations, and solidification-induced cellular structures. Particularly, the submicron-sized cellular features enriched with chromium (Cr) and molybdenum (Mo), along with high dislocation densities, contribute to a superior strength-ductility balance compared to conventionally manufactured 316L SS. The dispersed silicate particles act also as a strengthening phase, impeding dislocation movement and enhancing plastic deformation resistance. This study explores the effect of heat treatments on the low-cycle fatigue (LCF) behavior of PBF-LB/M/316L at room temperature (RT) and 600 °C. First, three heat treatment conditions were applied to the as-built material: 450 °C for 4 hours (HT450/4), 800 °C for 3 hours (HT800/3), and 900 °C for 1 hour (HT900/1) to investigate their influence on microstructural evolution. Microstructural analysis revealed that the HT450/4 condition preserved the cellular structure with high dislocation density, while the HT800/3 condition showed partial dissolution of cells together with reduction in segregated elements along the cell walls and a reduced dislocation density. The HT900/1 condition resulted in complete segregation and cellular structure dissolution with comparable dislocation density to HT800/3 while maintaining the crystallographic texture and grain morphology. Intermetallic χ phase was mostly observed at the grain boundaries in HT800/3, but not in HT900/1. Fully reversed LCF tests were conducted under strain-controlled conditions with a strain amplitude of 0.8 %. Tests were interrupted at specific intervals to analyze the interaction between hierarchical microstructural features and deformation mechanisms in the three heat-treated conditions. Due to the pronounced dislocation cell structures and elemental segregation, the microstructure of the HT450/4 condition significantly impact deformation and damage mechanisms during cyclic loading, which in turn, differ from the conventional produced counterparts. The results provide insights into the relationship between microstructural features and fatigue performance, highlighting key deformation and failure mechanisms under cyclic loading. T2 - FEMS 2025 EUROMAT 18th European Congress and Exhibition on Advanced Materials and Processes CY - Granada, Spain DA - 14.09.2025 KW - Additive manufacturing KW - 316L stainless steel KW - Heat treatments KW - Low Cycle Fatigue KW - Microstructure PY - 2025 AN - OPUS4-64238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evans, Alexander A1 - Schröder, Jakob A1 - Pirling, T. A1 - Ulbricht, Alexander A1 - Suárez Ocaño, Patricia A1 - Bruno, Giovanni T1 - Resolving the Subsurface Residual Stress Maximum in Laser Powder Bed-Fused 316L Stainless Steel by Diffraction-Based Analysis N2 - Laser powder bed fusion (PBF-LB/M) is a metal additive manufacturing process. Due to the complex nature of the layer-wise, repeated heating and cooling cycles, it tends to generate high-magnitude residual stresses. If not correctly understood and mitigated through in- or post-process approaches, these residual stresses can be detrimental as they are often tensile at the surface. However, determining the magnitude and location of peak tensile residual stresses is not trivial as they are often located subsurface. This work focuses on determining the magnitude and location of these deleterious tensile residual stresses in a PBF-LB/316L specimen. Two diffraction-based Methods are used to reveal the relationship between the residual stresses and the underlying microstructure. On the one hand, high spatial resolution Neutron diffraction is used to determine triaxial stresses from the bulk to a depth of 0.15 mm. On the other hand, laboratory X-ray diffraction coupled with electrolytical layer removal allows the biaxial residual stress depth profile to be probed from the surface to a depth of about 0.6 mm. The results show a good agreement between the two methods. The peak residual stress is shown to be 500 MPa, which appears as a plateau between 0.08 and 0.35 mm in depth. KW - Residual stress KW - Diffraction KW - Laser Powder Bed Fusion KW - 316L KW - Additive manufacturing KW - Microstructure KW - AGIL PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652138 DO - https://doi.org/10.1007/s11837-025-07719-y SN - 1543-1851 VL - 77 IS - 12 SP - 9726 EP - 9737 PB - Springer Nature AN - OPUS4-65213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Creep Behavior of Stainless Steel 316L Manufactured by Laser Powder Bed Fusion N2 - The broader industrial adoption of metal AM in safety-critical applications is limited, among others, by the still in-sufficient understanding of process–structure–property relationships and a lack of reliable mate-rial data. The content presented here approaches this limitation regarding the creep behavior of one of the most studied AM alloys: PBF-LB/M/316L stainless steel. A nearly as-built and a condition heat treated at 900 °C for 1 h, along with a conventionally manufactured variant are investigated. The creep behavior until reaching the minimum creep rate is mainly determined by the solidification cell structure. The damage is overall mainly intergranular, independent of the heat treated condition. The heat treatment at 900 °C for 1 h partially influenced the microstructure (mainly in terms of cell structure). The creep behavior until reaching the minimum creep rate remained nearly unchanged. The creep lifetime and ductility were enhanced. The crystallographic texture evolved after creep deformation. T2 - TMS 2025 Annual Meeting & Exhibition CY - Las Vegas, NV, USA DA - 23.03.2025 KW - AGIL KW - Creep KW - 316L KW - Microstructure PY - 2025 AN - OPUS4-63456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beygi Nasrabadi, Hossein A1 - Klotz, Ulrich E. A1 - Tiberto, Dario A1 - Vafaeenezhad, Hossein A1 - Mishurova, Tatiana A1 - Skrotzki, Birgit T1 - Effect of keyhole and lack-of-fusion pores on the anisotropic microstructure and mechanical properties of PBF-LB/M-produced CuCrZr alloy N2 - Due to the high reflectance and heat conductivity of copper and its alloys, the processing window for laser-based powder bed fusion (PBF-LB/M) processing of high-density copper components fundamentally overlaps with conduction and keyhole melting zones, resulting in the emergence of certain pores in the structure of printed parts. The present research aims to study how the development of process-induced lack-of-fusion or keyhole porosities during the PBF-LB/M process can affect the anisotropic microstructure and mechanical properties of the produced copper alloys. For this purpose, several samples were produced utilizing a similar CuCrZr-feedstock composition but varied process parameters from different areas of the PBF-LB/M processing window, specifically at laser powers of 300 W and 380 W which define the boarders of the conduction and keyhole regimes. X-ray computed tomography (XCT) revealed that the 300-W and 380-W samples achieved relative densities of 98.88% and 99.99%, respectively, with elongated lack-of-fusion pores forming at 300 W and semi-spherical keyhole pores at 380 W. Microstructural analyses employing scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) demonstrated strong anisotropy in different build directions of the samples, owing to the growth of long columnar grains with intense < 101  orientation along the build directions. Here, the emergence of different types of pores can cause competition between the epitaxial growth of columnar grains and the heterogeneous nucleation of new grains on the layers’ interfaces, thereby significantly varying the grain size, preferred orientation, crystallographic texture, and microstructural anisotropy of the samples. Furthermore, compression tests and nanoindentation measurements of the printed alloys in the longitudinal and transverse directions revealed that the 300 W and 380 W samples exhibited compressive strength anisotropies of 0.061 and 0.072, and average nanoindentation hardness values of 1.3 GPa and 1.5 GPa, respectively. The orientation of elongated lack-of-fusion porosities perpendicular to the loading axis was identified as the most damaging factor, significantly reducing mechanical performance compared to the uniformly distributed keyhole pores. KW - Copper Alloy KW - Laser-based powder bed fusion KW - Microstructure KW - Mechanical properties KW - X-ray computed tomography (XCT) KW - Porosity KW - Anisotropy PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625655 DO - https://doi.org/10.1007/s40964-025-00972-2 SN - 2363-9520 SP - 1 EP - 15 PB - Springer Science and Business Media LLC AN - OPUS4-62565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chand, Keerthana A1 - Fritsch, Tobias A1 - Oster, Simon A1 - Ulbricht, Alexander A1 - Bruno, Giovanni T1 - Review on image registration methods for the quality control in additive manufacturing N2 - A critical challenge in Additive Manufacturing is to ensure the safety and dimensional accuracy of produced parts. Since quality control is made by means of different online and offline imaging techniques (e.g. Thermography, X-ray and Optical Computer Tomography), image registration plays an important role in addressing these challenges. This paper introduces the main motivation, challenges, and research gaps of image registration in Additive Manufacturing. Furthermore, it introduces the main transformations, registration methods, similarity matrices and accuracy measurement. The main aim of the paper is to present a comprehensive review on the available methods for image registration in Additive Manufacturing based on the measurement techniques. Various registration methods, including landmark-based, point cloud-based, image intensity-based, and shape-based techniques, are examined in their applications for quality control, defect detection, and distortion quantification. KW - Image processing KW - Image fusion KW - Computed tomography KW - Computer-aided design KW - Additive manufacturing PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-624495 DO - https://doi.org/10.1007/s40964-024-00932-2 SN - 2363-9520 SP - 1 EP - 27 PB - Springer Science and Business Media LLC AN - OPUS4-62449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Fritsch, Tobias A1 - Ferrari, Bruno A1 - Altmann, Mika León A1 - Bruno, Giovanni A1 - Toenjes, Anastasiya T1 - Laser powder bed fusion: Defect type influences critical porosity re-growth during reheating after hot isostatic pressing N2 - Despite the remarkable product design flexibility offered by additive manufacturing (AM) techniques, such as laser powder bed fusion, AM processes are susceptible to the formation of defects. In this context, the control of process parameters and the application of post-processing treatments, such as hot isostatic pressing (HIP), are of paramount importance to achieve the desired mechanical properties. The present study investigates the effectiveness of HIP as a function of process parameters in laser powder bed fused Ti-6V-4Al (PBF-LB/Ti64) using X-ray computed tomography. The process parameters are modified to obtain reference samples with low porosity, lack of fusion defects, or keyhole porosity. In all instances, subsurface keyhole porosity was observed in the as-built parts. Moreover, it was found that the efficacy of pore closure is dependent on the specific defect type. In the case of low porosity and keyhole pores, HIP resulted in effective closure. Conversely, larger lack of fusion defects were not closed due to their interconnectivity and the entrapment of argon gas. Subsequent heat treatments above the β-transus temperature allowed the investigation of the impact of defect type on porosity re-growth. For the first time, we reveal that lack of fusion defects are affected by considerable pore re-growth during post-HIP heat treatments of PBF-LB/Ti64. Such phenomenon is driven by the increasing internal pore pressure and local creep deformation at high temperatures. In contrast, re-growth is limited in samples with low porosity or keyhole pores. KW - Additive Manufacturing KW - Hot Isostatic Pressing KW - Titanium KW - Laser Powder Bed Fusion KW - X-ray Computed Tomography KW - Heat Treatment KW - Porosity PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-629289 DO - https://doi.org/10.1016/j.jmatprotec.2025.118839 VL - 340 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-62928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chand, Keerthana A1 - Fritsch, Tobias A1 - Oster, Simon A1 - Ulbricht, Alexander A1 - Poka, Konstantin A1 - Bruno, Giovanni T1 - A Comparative Study of Rigid Three-Dimensional Image Registration Methods for Powder Bed Fusion with Laser Beam of Metals Using a Gold Standard Approach N2 - In Additive Manufacturing (AM), precise rigid three-dimensional (3D) image registration between X-ray Computed Tomography (XCT) scans and Computer-Aided Design (CAD) models is an important step for the quantification of distortions in produced parts. Given the absence of standardized benchmarks for image registration in AM, we introduce a gold standard for 3D image registration, using a reference base plate beneath the build structure. This gold standard is used to quantify the accuracy of rigid registration, with a proof of concept demonstrated in PBF-LB/M. In this study, we conduct a comparative analysis of various rigid 3D registration methods useful for quality assurance of PBF-LB/M parts including feature-based, intensity-based, and point cloud-based approaches. The performance of each registration method is evaluated using measures of alignment accuracy based on the gold standard and computational efficiency. Our results indicate significant differences in the efficacy of these methods, with point cloud based Coherent Point Drift (CPD) showing superior performance in both alignment and computational efficiency. The rigidly registered 3D volumes are used to estimate the deformation field of the printed parts relative to the nominal CAD design using Digital Volume Correlation (DVC). The quality of the estimated deformation field is assessed using the Dice score metric. This study provides insights into methods for enhancing the precision and reliability of AM process. KW - Digital volume correlation KW - 3D image registration KW - 3D image processing KW - X-ray computed tomography KW - Computer-aided design KW - Displacement field estimation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627043 DO - https://doi.org/10.1007/s10921-025-01174-0 SN - 1573-4862 VL - 44 IS - 30 SP - 1 EP - 20 PB - Springer AN - OPUS4-62704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fardan, Ahmed A1 - Fazi, Andrea A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Deckers, Tobias A1 - Bruno, Giovanni A1 - Thuvander, Matthias A1 - Markström, Andreas A1 - Brodin, Hakan A1 - Hryha, Eduard T1 - Microstructure tailoring for crack mitigation in CM247LC manufactured by powder bed fusion – Laser beam N2 - Tailored microstructures in powder bed fusion – laser beam (PBF-LB) can aid in crack mitigation of non-weldable Ni-base superalloys such as CM247LC. This study explores the effect of a range of stripe widths from 5 mm down to 0.2 mm to control solidification cracking, microstructure, and residual stress in CM247LC manufactured by PBF-LB. The decrease in melt pool depth with the reduction in stripe width from 5 to 0.2 mm promoted the < 100 > crystallographic texture along the build direction. The crack density measurements indicated that there is an increase from 0.62 mm/mm2 (5 mm) to 1.71 mm/mm2 (1 mm) followed by a decrease to 0.33 mm/mm2 (0.2 mm). Atom probe tomography investigations at high-angle grain boundaries revealed that there is higher Hf segregation in 0.2 mm stripe width when compared to 5 mm. This indicates that the cracking behavior is likely influenced by the grain boundary segregation which in turn is dependent on melt pool shape/size and mushy zone length indicated by accompanying simulations. Residual stress, measured by X-ray diffraction, decreased from 842 MPa (5 mm) to 690 MPa (1 mm), followed by an abnormal rise to 842 MPa (0.7 mm) and 875 MPa (0.5 mm). This residual stress behavior is likely associated with the cracks acting as a stress relief mechanism. However, the 0.2 mm stripe width exhibited the lowest stress of 647 MPa, suggesting a different mechanism for stress relief, possibly due to re-melting. These findings highlight the critical role of stripe width as a scan strategy in PBF-LB processing of crack-susceptible alloys. KW - Additive manufacturing KW - Residual stress KW - Scanning strategy KW - Non-weldable superalloy KW - Solidification cracking PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-624606 DO - https://doi.org/10.1016/j.addma.2025.104672 SN - 2214-7810 VL - 99 SP - 1 EP - 14 PB - Elsevier B.V. AN - OPUS4-62460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Malladi, Sri Bala Aditya A1 - Mishurova, Tatiana A1 - Anilkumar, Vishnu A1 - Mehta, Bharat A1 - Evans, Alexander A1 - Surreddi, Kumar Babu T1 - Reducing plastic anisotropy through stress induced martensitic transformation in an additively manufactured metastable medium entropy alloy N2 - Powder bed fusion laser beam (PBF-LB) is particularly effective for fabricating compositionally complex alloys such as high-entropy alloys (HEAs) or medium-entropy alloys (MEAs). Fabricating non-equiatomic metastable MEAs using PBF-LB can lead to the formation of unique microstructures that enhance the mechanical performance of these alloys. Nevertheless, plastic anisotropy in materials prepared by additive manufacturing routes including PBF-LB remains to be a technical challenge. This work presents the fabrication of a metastable non-equiatomic Co45Cr25(FeNi)30 MEA using PBF-LB. As-printed samples exhibited the formation of nano-scaled ε-martensite (HCP) phase along with the FCC phase. The HCP phase exhibited Shoji-Nishiyama orientation relationship with the FCC phase. High energy synchrotron X-ray diffraction (HEXRD) and electron backscatter diffraction (EBSD) in-situ tensile testing were employed to investigate the influence of the HCP phase on the alloy's deformation behavior. The presence of the HCP phase initiates stress-induced martensitic transformation well below the macroscopic yield strength. This transformation led to the non-linear stress and strain response for the FCC phase. Further straining resulted in significant load partitioning, with the HCP phase taking the majority of the load as it formed, significantly strain hardening the alloy and reducing the plastic anisotropy induced by texture in the as-printed material. KW - Neutron Diffraction KW - X-ray computed tomography KW - Mechanical Properties KW - Additive Manufacturing KW - Residual stress PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630588 DO - https://doi.org/10.1016/j.msea.2025.148308 SN - 1873-4936 VL - 933 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-63058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lapenna, M. A1 - Tsamos, Athanasios A1 - Faglion, F. A1 - Fioresi, R. A1 - Zanchetta, F. A1 - Bruno, Giovanni T1 - Vision GNN (ViG) architecture for a fine‑tuned segmentation of a complex Al–Si metal matrix composite XCT volume N2 - In this paper, we implement a vision graph neural network (ViG) architecture to segment microstructures in X-ray computed tomography 3D data. Our ViG architecture is first trained on a synthetic augmented dataset, and then fine-tuned on experimental data to obtain an improved segmentation. Successively, we assess the accuracy of the segmentation on manually-labeled experimental slices. We exemplarily use the approach on a complex microstructure: a metal matrix composite, reinforced with two ceramic phases, intermetallic inclusions and a silicon network, in order to show the generality of our method. ViG model proves to be more efficient than U-Nets in adapting to new data when fine-tuned on a small portion of the experimental data. The fine-tuned ViG shows comparable performance to U-Nets, while largely reducing the number of trainable parameters, with the potential of greater adaptability and efficiency. KW - X-ray Computed tomography KW - Machine Learning KW - Virtual XCT KW - Segmentation KW - Composites PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630593 DO - https://doi.org/10.1007/s10853-025-10834-5 SN - 1573-4803 VL - 60 SP - 6907 EP - 6921 PB - Springer AN - OPUS4-63059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rahimi, A. A1 - Coduri, M. A1 - Fitch, A. A1 - Vedani, M. A1 - Schröder, J. A1 - Bruno, Giovanni A1 - Casati, R. T1 - Synchrotron investigation of heat treatment effects on the 3D residual stress distribution in laser powder bed fused AlSi7Mg alloys N2 - For the first time, we utilized synchrotron diffraction to determine 3D maps of residual stresses across the entire volume of thick AlSi7Mg alloy prisms produced by PBF-LB. Samples were subjected to different heat treatment processes: direct aging (T5), solution treatment, and solution treatment followed by aging (T6). The T6 heat treatment resulted in the lowest residual tensile strains, while the T5 treatment resulted in significantly higher residual strains. Maximum residual stresses decreased from the as-built condition to the T6 heat-treated specimen. Although the T5 condition provides greater strength, it also retains higher tensile residual stresses near the surface, which can negatively affect fatigue properties. KW - Neutron Diffraction KW - Residual Stress KW - Large Scale Facilities KW - Additive Manufacturing PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631089 DO - https://doi.org/10.1016/j.matlet.2025.138742 SN - 0167-577X VL - 396 SP - 1 EP - 5 PB - Elsevier B.V. AN - OPUS4-63108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Chand, Keerthana A1 - Fritsch, Tobias A1 - Hejazi, Bardia A1 - Poka, Konstantin A1 - Bruno, Giovanni T1 - Deep Learning Based 3D Volume Correlation for Additive Manufacturing Using High-Resolution Industrial X-Ray Computed Tomography N2 - Quality control in Additive Manufacturing (AM) is vital for industrial applications in areas such as the automotive, medical, and aerospace sectors. Geometric inaccuracies caused by shrinkage and deformations can compromise the life and performance of additively manufactured components. Such deviations can be quantified using Digital Volume Correlation (DVC), which compares the Computer-Aided Design (CAD) model with the X-ray Computed Tomography (XCT) geometry of the components produced. However, accurate registration between the two modalities is challenging due to the absence of a ground truth or reference deformation field. In addition, the extremely large data size of high-resolution XCT volumes makes computation difficult. In this work, we present a deep learning-based approach for estimating voxel-wise deformations between CAD and XCT volumes. Our method uses a dynamic patch-based processing strategy to handle high-resolution volumes. In addition to the Dice score, we introduce a Binary Difference Map (BDM) that quantifies voxel-wise mismatches between binarized CAD and XCT volumes to evaluate the accuracy of the registration. Our approach shows a 9.2% improvement in the Dice score and a 9.9% improvement in the voxel match rate compared to classic DVC methods, while reducing the interaction time from days to minutes. This work sets the foundation for deep learning-based DVC methods to generate compensation meshes that can then be used in closed-loop correlations during the AM production process. Such a system would be of great interest to industry, as it would make the manufacturing process more reliable and efficient, saving time and material. KW - Deep learning PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-646293 DO - https://doi.org/10.3233/FAIA251475 SN - 0922-6389 VL - 413 SP - 5368 EP - 5375 PB - IOS Press AN - OPUS4-64629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lapenna, Michela A1 - Faglioni, Francesco A1 - Chand, Keerthana A1 - Hejazi, Bardia A1 - Fioresi, Rita A1 - Bruno, Giovanni T1 - Chamfer distance for non-linear registration of Triply Periodic Minimal Surface lattices N2 - We present a 3D image registration technique for non-linear deformation estimation in Additive Manufacturing processes. The methodology involves comparing X-ray Computed Tomography (XCT) data with Computer Aided Design (CAD) models for Triply Periodic Minimal Surface (TPMS) lattices and employs the Chamfer distance to refine mesh non-linear deformations. KW - X-ray Computed tomography KW - Defects KW - Machine Learning KW - Digital Twin KW - Registration PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637367 DO - https://doi.org/10.1016/j.addlet.2025.100299 SN - 2772-3690 VL - 14 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-63736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Hejazi, Bardia A1 - Chand, Keerthana A1 - Fritsch, Tobias A1 - Bruno, Giovanni T1 - D-CNN and VQ-VAE Autoencoders for Compression and Denoising of Industrial X-Ray Computed Tomography Images N2 - The ever-growing volume of data in imaging sciences stemming from advancements in imaging technologies, necessitates efficient and reliable storage solutions for such large datasets. This study investigates the compression of industrial X-ray computed tomography (XCT) data using deep learning autoencoders and examines how these compression algorithms affect the quality of the recovered data. Two network architectures with different compression rates were used, a deep convolution neural network (D-CNN) and a vector quantized variational autoencoder (VQ-VAE). The XCT data used was from a sandstone sample with a complex internal pore network as a good test case for the importance of feature preservation. The quality of the decoded images obtained from the two different deep learning architectures with different compression rates were quantified and compared to the original input data. In addition, to improve image decoding quality metrics, we introduced a metric sensitive to edge preservation, which is crucial for three-dimensional data analysis. We showed that different architectures and compression rates are required depending on the specific characteristics needed to be preserved for later analysis. The findings presented here can aid scientists in determining the requirements and strategies needed for appropriate data storage and analysis. T2 - 28th European Conference on Artificial Intelligence – Including 14th Conference on Prestigious Applications of Intelligent Systems (PAIS 2025) CY - Bologna, Italy DA - 25.10.2025 KW - Data Compression KW - Deep Learning KW - X-ray Computed Tomography PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644758 UR - https://ebooks.iospress.nl/doi/10.3233/FAIA251480 DO - https://doi.org/10.3233/FAIA251480 SN - 0922-6389 SP - 1 EP - 8 PB - IOS Press AN - OPUS4-64475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -