TY - JOUR A1 - D'Accardi, E. A1 - Krankenhagen, Rainer A1 - Ulbricht, Alexander A1 - Pelkner, Matthias A1 - Pohl, Rainer A1 - Palumbo, D. A1 - Galietti, U. T1 - Capability to detect and localize typical defects of laser powder bed fusion (L‑PBF) process: an experimental investigation with different non‑destructive techniques JF - Progress in Additive Manufacturing N2 - Additive manufacturing (AM) technologies, generally called 3D printing, are widely used because their use provides a high added value in manufacturing complex-shaped components and objects. Defects may occur within the components at different time of manufacturing, and in this regard, non-destructive techniques (NDT) represent a key tool for the quality control of AM components in many industrial fields, such as aerospace, oil and gas, and power industries. In this work, the capability of active thermography and eddy current techniques to detect real imposed defects that are representative of the laser powder bed fusion process has been investigated. A 3D complex shape of defects was revealed by a μCT investigation used as reference results for the other NDT methods. The study was focused on two different types of defects: porosities generated in keyhole mode as well as in lack of fusion mode. Different thermographic and eddy current measurements were carried out on AM samples, providing the capability to detect volumetric irregularly shaped defects using non-destructive methods. KW - Additive Manufacturing KW - Defect detection KW - Thermography KW - Eddy-current testing KW - Micro-computed tomography PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546680 DO - https://doi.org/10.1007/s40964-022-00297-4 SN - 2363-9512 VL - 7 IS - 6 SP - 1239 EP - 1256 PB - Springer AN - OPUS4-54668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L-PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in-situ mittels Thermographiekamera überwacht. Auf diese Weise konnten intrinsische Vorerwärmungstemperaturen während der Bauteilfertigung lagenweise extrahiert werden. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - 74th IIW Annual Assembly and International Conference CY - Online meeting DA - 07.07.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring KW - Thermography KW - Preheating temperature KW - Inter layer time PY - 2021 AN - OPUS4-52954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Heinrichsdorff, F. A1 - Gordei, A. A1 - Ehlers, Henrik A1 - Kochan, J. A1 - Jahangir, H. A1 - Pelkner, Matthias A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-situ Prozessüberwachung in der additiven Fertigung von Metallen (PBF-LB /M) mittels TT und ET N2 - Durch die additive Fertigung ergeben sich durch die nun mögliche wirtschaftliche Fertigung hochgradig individueller und komplexer metallischer Bauteile in kleinen Stückzahlen bis hinunter zum Einzelstück für viele Industriebereiche ganz neue Möglichkeiten. Gleichzeitig entstehen jedoch neue Herausforderungen im Bereich der Qualitätssicherung, da sich auf statistischen Methoden beruhende Ansätze nicht anwenden lassen, ohne wiederum die Vorteile der Fertigung massiv einzuschränken. Eine mögliche Lösung für dieses Problem liegt in der Anwendung verschiedener In-situ-Überwachungstechniken während des Bauprozesses. Jedoch sind nur wenige dieser Techniken kommerziell verfügbar und noch nicht so weit erforscht, dass die Einhaltung strenger Qualitäts- und Sicherheitsstandards gewährleistet werden kann. In diesem Beitrag stellen wir die Ergebnisse einer Studie über mittels L-PBF gefertigte Probekörper aus der Nickelbasis-Superlegierung Haynes 282 vor, bei denen die Bildung von Defekten durch lokale Variationen der Prozessparameter wie der Laserleistung provoziert wurde. Die Proben wurden in-situ mittels Thermographie, optischer Tomographie, Schmelzbadüberwachung und Wirbelstromprüfung sowie ex-situ mittels Computertomographie (CT) überwacht, mit dem Ziel, die Machbarkeit und die Aussichten der einzelnen Methoden für die zuverlässige Erkennung der Bildung relevanter Defekte zu bewerten. T2 - DGZfP Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Additive Manufacturing KW - Thermografie KW - Additive Fertigung KW - Thermography PY - 2022 AN - OPUS4-55851 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Heinrichsdorff, F. A1 - Gordei, A. A1 - Ehlers, Henrik A1 - Kochan, J. A1 - Jahangir, H. A1 - Pelkner, Matthias A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-situ Monitoring of PBF-LB/M by thermography, optical tomography, melt-pool-monitoring and eddy current N2 - The formation of defects such as keyhole pores is a major challenge for the production of metal parts by Laser Powder Bed Fusion (LPBF). The LPBF process is characterized by a large number of influencing factors which can be hard to quantify. Machine Learning (ML) is a prominent tool to predict the outcome of complex processes on the basis of different sensor data. In this study, a ML model for defect prediction is created using thermographic image features as input data. As a reference, the porosity information calculated from an x-ray Micro Computed Tomography (µCT) scan of the produced specimen is used. Physical knowledge about the keyhole pore formation is incorporated into the model to increase the prediction accuracy. From the prediction result, the quality of the input data is evaluated and future demands on in-situ monitoring of LPBF processes are formulated. T2 - AM Bench 2022 CY - Bethesda, Washingthon DC, USA DA - 15.08.2022 KW - Additive Manufacturing KW - Thermography KW - Additive Fertigung KW - Thermografie PY - 2022 AN - OPUS4-55854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Starting new adventures at BAM. The focus area projects PROMOAM and AGIL N2 - While additive manufacturing (AM) is blossoming in nearly every industrial field, and the most different process are being used to produce components and materials, little attention is paid on the safety concerns around AM materials and processes. Leveraging on our leading expertise in non-destructive testing (NDT) and materials characterization, we approach AM at BAM under two important viewpoints: first the on-line monitoring of the process and of the product, second the evolution of the (unstable) microstructure of AM materials under external loads. These two subjects are the core of the two new-born internal projects ProMoAM and AGIL, respectively. A detailed view of the goals and the organization of these two projects will be given, together with the expected output, and some preliminary results. T2 - Vortragsveranstaltung Bauhaus Universität, im Rahmen der Kolloquien der Fakultät Bauwesen. CY - Weimar, Germany DA - 01.06.2018 KW - Thermography KW - Additive Manufacturing KW - Non-destructive testing KW - On-line monitoring KW - Residual stress PY - 2018 AN - OPUS4-45118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Scheuschner, Nils A1 - Hilgenberg, Kai T1 - In situ heat accumulation by geometrical features obstructing heat flux and by reduced inter layer times in laser powder bed fusion of AISI 316L stainless steel JF - Procedia CIRP N2 - Material qualification for laser powder bed fusion (L-PBF) processes are often based on results derived from additively manufactured (AM) bulk material or small density cubes, although it is well known that the part geometry has a tremendous influence on the heat flux and, therefore, on the thermal history of an AM component. This study shows experimentally the effect of simple geometrical obstructions to the heat flux on cooling behavior and solidification conditions of 316L stainless steel processed by L-PBF. Additionally, it respects two distinct inter layer times (ILT) as well as the build height of the parts. The cooling behavior of the parts is in-situ traced by infrared (IR) thermography during the built-up. The IR signals reveal significant differences in cooling conditions, which are correlated to differences in melt pool geometries. The acquired data and results can be used for validation of computational models and improvements of quality assurance. KW - Selective laser beam melting KW - Thermography KW - Melt pool depth KW - Inter layer time KW - Ppreheating temperature KW - Additive Manufacturing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512549 DO - https://doi.org/10.1016/j.procir.2020.09.030 VL - 94 SP - 155 EP - 160 PB - Elsevier B.V. AN - OPUS4-51254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - D'Accardi, E. A1 - Krankenhagen, Rainer A1 - Ulbricht, Alexander A1 - Palumbo, D. A1 - Galietti, U. T1 - Capability of active thermography to detect and localize pores in Metal Additive Manufacturing materials N2 - A powerful tool to understand, demonstrate and explain the limits of the pulsed technique in terms of detectability and localizability of AM keyhole pores has been assessed by comparing the active thermographic approach (both experimental and FEM simulations) to Computed Tomography results; ✓ µCT results demonstrate that the intended defect geometry is not achieved; indeed a network of voids (microdefects consisting of small sharp-edged hollows with a complicated, almost fractal, inner surface) was found; ✓ both Exp-PT and FEM results explains clearly why no indication of defect related to the thermal contrasts could be found during the investigation of an uncoated surface. However, the application of further data evaluations focusing on the thermal behavior and emissivity evaluation (PPT post data processing) enable the detection of some defects; ✓ coating facilitates a closer inspection of inner defects, but inhomogeneities of the coating could impair the spatial resolution and lead to the emergence of hotspots (the FEM simulation reached its limit with this extreme geometry where a 25 µm thin disc is considered at a 1 cm thick specimen in millisecond time resolution); ✓ both Exp-PT and FEM results allow the conclusion that very short pulses of 200 ms or shorter should be sufficient to detect these defects below, but near the surface; besides a short duration of the thermal phenomenon it should be emphasized, about 0.04 s (high frame rate camera); T2 - Convegno AIAS 2020 CY - Online meeting DA - 02.09.2020 KW - Additive Manufacturing KW - Laser powderbed fusion KW - Pores KW - Thermography PY - 2020 AN - OPUS4-51922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - D'Accardi, E. A1 - Ulbricht, Alexander A1 - Krankenhagen, Rainer A1 - Palumbo, D. A1 - Galietti, U. T1 - Capability of active thermography to detect and localize pores in Metal Additive Manufacturing materials T2 - IOP conference series: Materials science and engineering N2 - Active thermography is a fast, contactless and non-destructive technique that can be used to detect internal defects in different types of material. Volumetric irregularities such as the presence of pores in materials produced by the Additive Manufacturing processes can strongly affect the thermophysical and the mechanical properties of the final component. In this work, an experimental investigation aimed at detecting different pores in a sample made of stainless AISI 316L produced by Laser Powder Bed Fusion (L-PBF) was carried out using pulsed thermography in reflection mode. The capability of the technique and the adopted setups in terms of geometrical and thermal resolution, acquisition frequency and energy Density of the heating source were assessed to discern two contiguous pores as well as to detect a single pore. Moreover, a quantitative indication about the minimum resolvable pore size among the available and analysed defects was provided. A powerful tool to assess the Limits and the opportunities of the pulsed technique in terms of detectability and localizability was provided by comparing active thermography results to Computed Tomography as well as a related Finite Element Analysis (FEA) to simulate the pulsed heating transfer with Comsol. T2 - 49th Italian Association for Stress Analysis Conferencee (AIAS 2020) CY - Online meeting DA - 02.09.2020 KW - Additive manufacturing KW - Laser powderbed fusion KW - Pores KW - Thermography KW - Micro-CT PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519231 DO - https://doi.org/10.1088/1757-899X/1038/1/012018 VL - 1038 SP - 1 EP - 17 PB - Institute of Physics CY - London AN - OPUS4-51923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Heinrichsdorff, F. A1 - Oster, Simon A1 - Uhlmann, E. A1 - Polte, J. A1 - Gordei, A. A1 - Hilgenberg, Kai T1 - In-situ monitoring of the laser powder bed fusion process by thermography, optical tomography and melt pool monitoring for defect detection N2 - For the wide acceptance of the use of additive manufacturing (AM), it is required to provide reliable testing methods to ensure the safety of the additively manufactured parts. A possible solution could be the deployment of in-situ monitoring during the build process. However, for laser powder bed fusion using metal powders (PBF-LB/M ) only a few in-situ monitoring techniques are commercially available (optical tomography, melt pool monitoring) but not researched to an extent that allows to guarantee the adherence to strict quality and safety standards. In this contribution, we present results of a study of PBF-LB/M printed parts made of the nickel-based superalloy Haynes 282. The formation of defects was provoked by local variations of the process parameters and monitored by thermography, optical tomography and melt pool monitoring. Afterwards, the defects were characterized by computed tomography (CT) to identify the detection limits of the used in-situ techniques. T2 - LiM Conference 2023 - Lasers in Manufacturing CY - Munich, Germany DA - 26.06.2023 KW - Thermography KW - High temperature alloys KW - Additive Manufacturing KW - PBF-LB/M PY - 2023 AN - OPUS4-57947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Heinrichsdorff, F. A1 - Oster, Simon A1 - Uhlmann, E. A1 - Polte, J. A1 - Gordei, A. A1 - Hilgenberg, Kai T1 - In-situ monitoring of the laser powder bed fusion process by thermography, optical tomography and melt pool monitoring for defect detection T2 - Lasers in Manufacturing Conference 2023 N2 - For the wide acceptance of the use of additive manufacturing (AM), it is required to provide reliable testing methods to ensure the safety of the additively manufactured parts. A possible solution could be the deployment of in-situ monitoring during the build process. However, for laser powder bed fusion using metal powders (PBF-LB/M) only a few in-situ monitoring techniques are commercially available (optical tomography, melt pool monitoring), which have not been researched to an extent that allows to guarantee the adherence to strict quality and safety standards. In this contribution, we present results of a study of PBF-LB/M printed parts made of the nickel-based superalloy Haynes 282. The formation of defects was provoked by local variations of the process parameters and monitored by thermography, optical tomography and melt pool monitoring. Afterwards, the defects were characterized by computed tomography (CT) to identify the detection limits of the used in-situ techniques. T2 - Lasers in Manufacturing Conference 2023 CY - Munich, Germany DA - 26.06.2023 KW - Thermography KW - Optical tomography KW - Melt-pool-monitoring KW - Laser powder bed fusion KW - Haynes 282 KW - Additive Manufacturing PY - 2023 UR - https://www.wlt.de/lim2023-proceedings/system-engineering-and-process-control SP - 1 EP - 10 AN - OPUS4-58466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Scheuschner, Nils ED - Meyendorf, N. ED - Ida, N. ED - Singh, R. ED - Vrana, J. T1 - In Situ Real-Time Monitoring Versus Post NDE for Quality Assurance of Additively Manufactured Metal Parts T2 - Handbook of Nondestructive Evaluation 4.0 N2 - In this chapter, the current state-of-the-art of in situ monitoring and in situ NDE methods in additive manufacturing is summarized. The focus is set on methods, which are suitable for making statements about the quality and usability of a component currently being manufactured. This includes methods which can be used to determine state properties like temperature or density, other physical properties like electrical or thermal conductivity, the microstructure, the chemical composition, the actual geometry, or which enable the direct detection of defects like cracks, voids, delaminations, or inclusions. Thus, optical, thermographic, acoustic, and electromagnetic methods, as well as methods being suitable for investigating particle and fume emission are presented. The requirements of in situ monitoring methods with a focus on thermographic methods are discussed by considering different additive manufacturing processes like laser powder bed fusion (PBF-LB/M) and direct energy deposition (DED-LB/M). Examples of the successful implementation and applications of such monitoring methods at BAM are given. The in situ monitoring and NDE methods are compared against post-process NDE methods. The advantages and challenges of in situ methods concerning real-time data analysis and the application of AI algorithms are addressed and discussed. KW - Additive manufacturing KW - In situ monitoring KW - In situ NDE KW - Post NDE KW - Thermography KW - Laser powder bed fusion KW - Direct energy deposition PY - 2021 SN - 978-3-030-48200-8 DO - https://doi.org/10.1007/978-3-030-48200-8_51-1 SP - 1 EP - 37 PB - Springer Nature Switzerland AG CY - Cham, Switzerland ET - 1 AN - OPUS4-52824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ monitoring of a laser metal deposition (LMD) process: comparison of MWIR, SWIR and high-speed NIR thermography JF - Quantitative InfraRed Thermography Journal N2 - Additive manufacturing offers a range of novel applications. However, the manufacturing process is complex and the production of almost defect-free parts with high reliability and durability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal additive manufacturing processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of measurements during the manufacturing process of a commercial laser metal deposition setup using a mid wavelength infrared camera with those from a short wavelength infrared camera and those from a visual spectrum high-speed camera with band pass filter in the near infrared range. KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - LMD KW - Metal KW - MWIR KW - SWIR KW - NIR PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516318 DO - https://doi.org/10.1080/17686733.2020.1829889 VL - 19 IS - 2 SP - 97 EP - 114 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-51631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Comparison of MWIR and NIR thermography in a laser metal deposition (LMD) process N2 - Additive manufacturing (AM) offers a range of novel applications. However, the manufacturing process is complex and the production of defect-free parts with a high reliability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal AM processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of first measurements during the manufacturing process of a commercial laser metal deposition (LMD) setup using a MWIR camera with those from a VIS high-speed camera with band pass filter in the NIR range. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Additive manufacturing KW - Laser metal deposition KW - ProMoAM PY - 2018 AN - OPUS4-45408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Sommer, Konstantin A1 - Knobloch, Tim A1 - Altenburg, Simon A1 - Recknagel, Sebastian A1 - Bettge, Dirk A1 - Hilgenberg, Kai T1 - Process Induced Preheating in Laser Powder Bed Fusion Monitored by Thermography and Its Influence on the Microstructure of 316L Stainless Steel Parts JF - Metals N2 - Undetected and undesired microstructural variations in components produced by laser powder bed fusion are a major challenge, especially for safety-critical components. In this study, an in-depth analysis of the microstructural features of 316L specimens produced by laser powder bed fusion at different levels of volumetric energy density and different levels of inter layer time is reported. The study has been conducted on specimens with an application relevant build height (>100 mm). Furthermore, the evolution of the intrinsic preheating temperature during the build-up of specimens was monitored using a thermographic in-situ monitoring set-up. By applying recently determined emissivity values of 316L powder layers, real temperatures could be quantified. Heat accumulation led to preheating temperatures of up to about 600 °C. Significant differences in the preheating temperatures were discussed with respect to the individual process parameter combinations, including the build height. A strong effect of the inter layer time on the heat accumulation was observed. A shorter inter layer time resulted in an increase of the preheating temperature by more than a factor of 2 in the upper part of the specimens compared to longer inter layer times. This, in turn, resulted in heterogeneity of the microstructure and differences in material properties within individual specimens. The resulting differences in the microstructure were analyzed using electron back scatter diffraction and scanning electron microscopy. Results from chemical analysis as well as electron back scatter diffraction measurements indicated stable conditions in terms of chemical alloy composition and austenite phase content for the used set of parameter combinations. However, an increase of the average grain size by more than a factor of 2.5 could be revealed within individual specimens. Additionally, differences in feature size of the solidification cellular substructure were examined and a trend of increasing cell sizes was observed. This trend was attributed to differences in solidification rate and thermal gradients induced by differences in scanning velocity and preheating temperature. A change of the thermal history due to intrinsic preheating could be identified as the main cause of this heterogeneity. It was induced by critical combinations of the energy input and differences in heat transfer conditions by variations of the inter layer time. The microstructural variations were directly correlated to differences in hardness. KW - Additive manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring KW - Thermography KW - Heat accumulation KW - Inter layer time KW - Cellular substructure PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529240 DO - https://doi.org/10.3390/met11071063 VL - 11 IS - 7 SP - 1063 PB - MDPI CY - Basel, Schweiz AN - OPUS4-52924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ Thermografie in der additiven Fertigung mittels Laser-Pulver-Auftragsschweißen N2 - Im Rahmen des Themenfeld Projektes „Process Monitoring of AM“ (ProMoAM) evaluiert die BAM gegenwärtig die Anwendbarkeit verschiedenster ZfP-Verfahren, darunter die Thermografie, zur Prozessüberwachung in der additiven Fertigung von Metallen in Hinblick auf die Qualitätssicherung. In diesem Beitrag werden SWIR-Thermografiemessungen während des Bauprozesses mittels Laser Pulver Auftragsschweißen (LPA) vorgestellt. Eine Herausforderung im Rahmen dieser Messungen liegt in der Positionierung der Kamera, welche entweder fixiert am Schweißarm, also mitbewegt, oder fixiert in der Baukammer, also stationär, erfolgen kann, wobei beide Varianten mit individuellen Vor- und Nachteilen verbunden sind. Eine stationäre Befestigung der Kamera ermöglicht zwar eine einfachere Zuordnung der Messdaten zu der jeweiligen Position im Bauteil, führt jedoch bei komplexeren Geometrien zwangsläufig zu Problemen durch Abschattungen und zu defokussierten Bereichen. Zur Auswertung von Thermogrammen, welche durch eine mit dem Schweißarm mitbewegte Kamera aufgenommen wurden, sind hingegen für jedes Bild akkurate Positionsdaten der Kamera nötig um die Messdaten einer Position im Bauteil zuzuordnen. Da die Positionsdaten des Schweißarmes im allgemeinen Fall durch die Anlagensoftware nicht zur Verfügung gestellt werden, muss diese Information durch zusätzliche Messungen aufgezeichnet werden. Hierzu verwenden wir einen an der Kamera befestigten Beschleunigungssensor. Dieser ermöglicht einen zeitlichen Abgleich mit dem vorprogrammierten Verfahrweg des Schweißarmes, welcher im Allgemeinen noch Unsicherheiten bezüglich genauer Geschwindigkeiten und Beschleunigungen offenlässt. Weiterhin untersuchen wir den Einfluss des empfindlichen Spektralbereiches der IR-Kamera durch den Vergleich von Messungen mit verschiedenen schmalbandigen Bandpassfiltern (25 nm FWHM) in einem Bereich von 1150 nm bis 1550 nm. T2 - Thermographie-Kolloquium 2019 CY - Halle (Saale), Germany DA - 19.09.2019 KW - Additive manufacturing KW - 3D printing KW - Thermography KW - Direct energy deposition KW - Laser Metal Deposition KW - 3D Druck KW - Laser Pulver Auftragsschweißen KW - Additive Fertigung KW - Thermografie PY - 2019 AN - OPUS4-49078 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Altenburg, Simon A1 - Myrach, P. A1 - Mohr, Gunther A1 - Gumenyuk, Andrey T1 - Crack detection in metal additive manufacturing with laser thermography N2 - BAM ensures and represents high standards for safety in technology and chemistry. Additive manufacturing (AM) changes the requirements for conventional non-destructive testing (NDT) as new processes of defect creation occur. Especially in safety critical areas, such as aerospace and automotive, new manufacturing processes and materials always require reliability tests and new standards which is a big challenge for NDT. T2 - Internationales Laser- und Fügesymposium CY - Dresden, Germany DA - 27.02.2018 KW - Laser Beam Melting KW - Laser Metal Deposition KW - Thermography KW - In-situ monitoring PY - 2018 AN - OPUS4-45619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Baensch, Franziska A1 - Rethmeier, Michael T1 - Laser Metal Deposition (LMD) in ProMoAM N2 - During the last years Additive Manufacturing (AM) became increasingly important. That becomes clear, while looking at the advantages like a high degree of freedom concerning the geometry of the parts, low waste rates and a reduction of postprocessing, to name just three. Laser Metal Deposition (LMD) is one of those AM- methods. It can be used for different kinds of applications, e.g. repair weldings of used parts, coatings to increase the corrosion resistance or to build up new components. But for all applications, the production of defect free parts is crucial. Therefore, different kinds of non-destructive monitoring techniques were tested for the LMD-process to identify their potential to detect imperfections in-situ. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Acoustic Emission KW - LMD KW - Thermography KW - Optical Emission Spectroscopy PY - 2019 AN - OPUS4-49657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Sprengel, Maximilian A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Hofmann, M. A1 - Bruno, Giovanni T1 - Separation of the Formation Mechanisms of Residual Stresses in LPBF 316L JF - Metals N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured parts and important factors for the residual stress formation. This study examined the influence of heat accumulation on the distribution of residual stress in two prisms produced by Laser Powder Bed Fusion (LPBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two different border fill scan strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. The goal was to reveal the effect of different heat inputs on samples featuring the same solidification shrinkage. Residual stress was characterised in one plane perpendicular to the building direction at the mid height using Neutron and Lab X-ray diffraction. Thermography data obtained during the build process were analysed in order to correlate the cooling rates and apparent surface temperatures with the residual stress results. Optical microscopy and micro computed tomography were used to correlate defect populations with the residual stress distribution. The two scanning strategies led to residual stress distributions that were typical for additively manufactured components: compressive stresses in the bulk and tensile stresses at the surface. However, due to the different heat accumulation, the maximum residual stress levels differed. We concluded that solidification shrinkage plays a major role in determining the shape of the residual stress distribution, while the temperature gradient mechanism appears to determine the magnitude of peak residual stresses. KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - LPBF KW - AISI 316L KW - Online Process Monitoring KW - Thermography KW - Residual Stress KW - Neutron Diffraction KW - X-ray Diffraction KW - Computed Tomography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512903 DO - https://doi.org/10.3390/met10091234 VL - 10 IS - 9 PB - MDPI CY - Basel AN - OPUS4-51290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Scheuschner, Nils A1 - Chand, Keerthana A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Heinrichsdorff, F. A1 - Altenburg, Simon T1 - From Thermographic In-situ Monitoring to Porosity Detection – A Deep Learning Framework for Quality Control in Laser Powder Bed Fusion T2 - SMSI - Sensor and Measurement Science International - Proceedings N2 - In this study, we present an enhanced deep learning framework for the prediction of porosity based on thermographic in-situ monitoring data of laser powder bed fusion processes. The manufacturing of two cuboid specimens from Haynes 282 (Ni-based alloy) powder was monitored by a short-wave infrared camera. We use thermogram feature data and x-ray computed tomography data to train a convolutional neural network classifier. The classifier is used to perform a multi-class prediction of the spatially resolved porosity level in small sub-volumes of the specimen bulk. T2 - SMSI - Sensor and Measurement Science International 2023 CY - Nürnberg, Germany DA - 08.05.2023 KW - Porosity KW - Laser powder bed fusion KW - In-situ monitoring KW - Thermography KW - Machine Learning PY - 2023 UR - https://www.ama-science.org/proceedings/details/4404 DO - https://doi.org/10.5162/SMSI2023/C5.4 SP - 179 EP - 180 AN - OPUS4-57616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Pignatelli, Giuseppe A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - Thermography and optical emission spectroscopy: Simultaneous temperature measurement during the LMD process N2 - For metal-based additive manufacturing, sensors and measuring systems for monitoring of the energy source, the build volume, the melt pool and the component geometry are already commercially available. Further methods of optics, spectroscopy and non-destructive testing are described in the literature as suitable for in-situ application, but there are only a few reports on practical implementations. Therefore, a new BAM project aims to develop process monitoring methods for the in-situ evaluation of the quality of additively manufactured metal components. In addition to passive and active thermography, this includes optical tomography, optical emission and absorption spectroscopy, eddy current testing, laminography, X-ray backscattering and photoacoustic methods. These methods are used in additive manufacturing systems for selective laser melting, laser metal deposition and wire arc additive manufacturing. To handle the sometimes huge amounts of data, algorithms for efficient preprocessing are developed and characteristics of the in-situ data are extracted and correlated to defects and inhomogeneities, which are determined using reference methods such as computer tomography and metallography. This process monitoring and fusion of data of different measurement techniques should result in a significant reduction of costly and time-consuming, destructive or non-destructive tests after the production of the component and at the same time reduce the production of scrap. Here, first results of simultaneous measurements of optical emission spectroscopy and thermography during the laser metal deposition process using 316L as building material are presented. Temperature values are extracted from spectroscopic data by fitting of blackbody emission spectra to the experimental data and compared with results from a thermographic camera. Measurements with and without powder flow reveal significant differences between welding at a pristine metal surface and previously melted positions on the build plate, illustrating the significant influence of the partial oxidation of the surface during the first welding process on subsequent welding. The measurement equipment can either be mounted stationary or following the laser path. While first results were obtained in the stationary mode, future applications for online monitoring of the build of whole parts in the mobile mode are planned. This research was funded by BAM within the focus area Material. T2 - 2nd international congress on welding, additive manufacturing and associated non-destructive testing CY - Metz, France DA - 05.06.2019 KW - Additive manufacturing KW - Laser metal deposition KW - Thermography KW - Optical emission spectroscopy KW - Process monitoring PY - 2019 AN - OPUS4-48228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - Vergleich der Messungen der Schmelzbadtemperatur bei der Additiven Fertigung von Metallen mittels IR-Spektroskopie und Thermografie T1 - Comparison of measurements of the melt pool temperature during the additive production of metals by means of IR spectroscopy and thermography JF - tm – Technisches Messen N2 - Im Rahmen des Themenfeldprojektes „Process Monitoring of AM“ (ProMoAM) evaluiert die Bundesanstalt für Materialforschung und -Prüfung (BAM) gegenwärtig die Anwendbarkeit verschiedenster ZfP-Verfahren zur in-situ Prozessüberwachung in der additiven Fertigung (AM) von Metallen in Hinblick auf die Qualitätssicherung. Einige der wichtigsten Messgrößen sind hierbei die Temperatur des Schmelzbades und die Abkühlrate, welche starken Einfluss auf das Gefüge und die Eigenspannung haben. Aufgrund der Zugänglichkeit zum Werkstück während des Bauprozesses bieten sich optische Verfahren zu Temperaturbestimmung an. Hierbei stellen jedoch u. a. die hohe Bandbreite der zu messenden Temperaturen, die Bestimmung der Emissivität und ihre Änderung bei Phasenübergängen der verwendeten Legierung große experimentelle Herausforderungen dar. Eine weitere Herausforderung stellt für die IR-Spektroskopie die Absorption durch das Schutzgas und weitere optische Elemente dar. Um diese auch in einem industriellen Umfeld kompensieren zu können, wurde eine Methode entwickelt, die das gemessene Spektrum bei der Verfestigung des Werkstoffes als Referenz nutzt. In diesem Beitrag wird die Anwendung dieser Methode für die IR-Spektrometrie als auch Thermografische Messungen beim Laser-Pulver-Auftragschweißen von 316L gezeigt, wobei beide Methoden weiterhin in Hinblick auf ihre individuellen Vor- und Nachteile miteinander verglichen werden. N2 - Within the topic area project “Process Monitoring of AM” (ProMoAM) the Federal Institute for Materials Research and Testing is currently evaluating the applicability of various NDT methods for in-situ process Monitoring in the additive manufacturing (AM) of metals with regard to quality assurance. Two of the most important variables to measure are the temperature of the molten pool and the cooling rate, which have a strong influence on the microstructure and the residual stress. Due to the accessibility of the workpiece during the construction process, optical methods for temperature determination are suitable. However, the wide range of temperatures to be measured, the determination of emissivity and its change during phase transitions of the alloy pose great experimental challenges. Another challenge for IR spectroscopy is the absorption by the inert gas and other optical elements. In order to be able to compensate for this in an industrial environment, a method was developed which uses the measured spectrum as a reference when the material is solidified. This paper shows the application of this method for IR spectrometry as well as thermographic measurements during laser powder cladding of 316L. Furthermore both methods are compared with respect to their individual Advantages and disadvantages. KW - Laser-Pulver-Auftragschweißen KW - Thermografie KW - Direct Energy Deposition KW - IR-Spektroskopie KW - Additive Fertigung KW - Laser metal deposition KW - Thermography KW - IR-spectroscopy KW - Additive manufacturing PY - 2021 DO - https://doi.org/10.1515/teme-2021-0056 VL - 88 IS - 10 SP - 626 EP - 632 PB - De Gruyter CY - Oldenburg AN - OPUS4-52987 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - On the limitations of small cubes as test coupons for process parameter optimization in laser powder bed fusion of metals JF - Journal of Laser Applications N2 - The capability to produce complexly and individually shaped metallic parts is one of the main advantages of the laser powder bed fusion (PBF LB/M) process. Development of material and machine specific process parameters is commonly based on results acquired from small cubic test coupons of about 10 mm edge length. Such cubes are usually used to conduct an optimization of process parameters to produce dense material. The parameters are then taken as the basis for the manufacturing of real part geometries. However, complex geometries go along with complex thermal histories during the manufacturing process, which can significantly differ from thermal conditions prevalent during the production of simply shaped test coupons. This may lead to unexpected and unpredicted local inhomogeneities of the microstructure and defect distribution in the final part and it is a root cause of reservations against the use of additive manufacturing for the production of safety relevant parts. In this study, the influence of changing thermal conditions on the resulting melt pool depth of 316L stainless steel specimens is demonstrated. A variation of thermo-graphically measured intrinsic preheating temperatures was triggered by an alteration of inter layer times and a variation of cross section areas of specimens for three distinct sets of process parameters. Correlations between the preheating temperature, the melt pool depth, and occurring defects were analyzed. The limited expressiveness of the results of small density cubes is revealed throughout the systematic investigation. Finally, a clear recommendation to consider thermal conditions in future process parameter optimizations is given. T2 - Icaleo 2023 CY - Chicago, IL, USA DA - 16.10.2023 KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Representative specimens KW - Thermography PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586558 DO - https://doi.org/10.2351/7.0001080 SN - 1042-346X VL - 35 IS - 4 SP - 1 EP - 10 AN - OPUS4-58655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - On the limitations of small cubes as test coupons for process parameter optimization in laser powder bed fusion of metals N2 - The capability to produce complexly and individually shaped metallic parts is one of the main advantages of the laser powder bed fusion (PBF LB/M) process. Development of material and machine specific process parameters is commonly based on results acquired from small cubic test coupons of about 10 mm edge length. Such cubes are usually used to conduct an optimization of process parameters to produce dense material. The parameters are then taken as the basis for the manufacturing of real part geometries. However, complex geometries go along with complex thermal histories during the manufacturing process, which can significantly differ from thermal conditions prevalent during the production of simply shaped test coupons. This may lead to unexpected and unpredicted local inhomogeneities of the microstructure and defect distribution in the final part and it is a root cause of reservations against the use of additive manufacturing for the production of safety relevant parts. In this study, the influence of changing thermal conditions on the resulting melt pool depth of 316L stainless steel specimens is demonstrated. A variation of thermo-graphically measured intrinsic preheating temperatures was triggered by an alteration of inter layer times and a variation of cross section areas of specimens for three distinct sets of process parameters. Correlations between the preheating temperature, the melt pool depth, and occurring defects were analyzed. The limited expressiveness of the results of small density cubes is revealed throughout the systematic investigation. Finally, a clear recommendation to consider thermal conditions in future process parameter optimizations is given. T2 - Icaleo 2023 CY - Chicago, IL, USA DA - 16.10.2023 KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Representative specimens KW - Thermography PY - 2023 AN - OPUS4-58656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Thiede, Tobias A1 - Maierhofer, Christiane A1 - Bruno, Giovanni A1 - Rethmeier, Michael A1 - Hilgenberg, Kai A1 - Mishurova, Tatiana A1 - Straße, Anne T1 - AM activities at BAM with focus on process monitoring N2 - The presentation gives an overview of current projects in additive manufacturing at BAM. In particular, the results of the ProMoAm project were presented. T2 - VAMAS - Materials Issues in Additive Manufacturing CY - Berlin, Germany DA - 25.06.2018 KW - Additive Manufacturing KW - Laser Metal Deposition KW - Thermography KW - Data Fusion KW - In-situ monitoring PY - 2018 AN - OPUS4-45620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion JF - Additive manufacturing N2 - Laser powder bed fusion (L-PBF) is the most prominent additive manufacturing (AM) technology for metal part production. Among the high number of factors influencing part quality and mechanical properties, the inter layer time (ILT) between iterative melting of volume elements in subsequent layers is almost completely unappreciated in the relevant literature on L-PBF. This study investigates the effect of ILT with respect to build height and under distinct levels of volumetric energy density (VED) using the example of 316L stainless steel. In-situ thermography is used to gather information on cooling conditions during the process, which is followed by an extensive metallographic analysis. Significant effects of ILT and build height on heat accumulation, sub-grain sizes, melt pool geometries and hardness are presented. Furthermore, the rise of defect densities can be attributed to a mutual interplay of build height and ILT. Hence, ILT has been identified as a crucial factor for L-PBF of real part components especially for those with small cross sections. KW - Laser powder bed fusion (L-PBF) KW - Laser beam melting (LBM) KW - Selective laser melting (SLM) KW - Dwell-time KW - Thermography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503300 DO - https://doi.org/10.1016/j.addma.2020.101080 SN - 2214-8604 VL - 32 SP - 101080-1 EP - 101080-13 PB - Elsevier CY - Amsterdam AN - OPUS4-50330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Scheuschner, Nils A1 - Altenburg, Simon T1 - Machine Learning based defect detection in Laser Powder Bed Fusion utilizing thermographic feature data N2 - The formation of irregularities such as keyhole porosity pose a major challenge to the manufacturing of metal parts by laser powder bed fusion (PBF-LB/M). In-situ thermography as a process monitoring technique shows promising potential in this manner since it is able to extract the thermal history of the part which is closely related to the formation of irregularities. In this study, we investigate the utilization of machine learning algorithms to detect keyhole porosity on the base of thermographic features. Here, as a referential technique, x-ray micro computed tomography is utilized to determine the part's porosity. An enhanced preprocessing workflow inspired by the physics of the keyhole irregularity formation is presented in combination with a customized model architecture. Furthermore, experiments were performed to clarify the role of important parameters of the preprocessing workflow for the task of defect detection . Based on the results, future demands on irregularity prediction in PBF-LB/M are derived. T2 - International Conference on NDE 4.0 CY - Berlin, Germany DA - 24.10.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Convolutional Neural Networks PY - 2022 AN - OPUS4-56332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Tina A1 - Breese, Philipp P A1 - Metz, Christian A1 - Altenburg, Simon T1 - In-situ monitoring for PBF-LB/M processes: Does multispectral optical tomography add value in recognizing process deviations? JF - IOP Conference Series: Materials Science and Engineering N2 - Laser powder bed fusion of metallic components (PBF-LB/M) is gaining acceptance in industry. However, the high costs and lengthy qualification processes required for printed components create the need for more effective in-situ monitoring and testing methods. This article proposes multispectral Optical Tomography (OT) as a new approach for monitoring the PBF-LB/M process. Compared to other methods, OT is a low-cost process monitoring method that uses long-time exposure imaging to observe the build process. However, it lacks time resolution compared to expensive thermographic sensor systems. Monochromatic OT (1C-OT) is already commercially available and observes the building process layer-wise using a single wavelength window in the NIR range. Multispectral OT (nC-OT) utilizes a similar setup but can measure multiple wavelength ranges per location simultaneously. By comparing the classical 1C-OT and nC-OT approaches, this article examines the advantages of nC-OT (two channel OT and RGB-OT) in reducing the false positive rate for process deviations and approximating maximum temperatures for a better comparison between different build processes and materials. This could ultimately reduce costs and time for part qualification. The main goal of this contribution is to assess the advantages of nC-OT compared to 1C-OT for in-situ process monitoring of PBF-LB/M. T2 - Nolamp 2023 CY - Turku, Finland DA - 22.08.2023 KW - Thermography KW - Process Monitoring KW - Additive manufacturing KW - BPF-LB/M KW - In-situ PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592498 DO - https://doi.org/10.1088/1757-899X/1296/1/012008 VL - 1296 SP - 1 EP - 11 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-59249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Breese, Philipp Peter A1 - Altenburg, Simon T1 - Porosity prediction in metal based additive manufacturing utilizing in situ thermography N2 - Quality assessment of components produced by metal based additive manufacturing (AM) technologies such as laser powder bed fusion is rising in importance due to the increased use of AM in industrial production. Here, the presence of internal porosity was identified as a limiting factor for the final component quality. The utilization of thermography as an in-situ monitoring technique allows the determination of the part’s thermal history which was found to be connected to the porosity formation [1]. Combining the local thermal information derived from thermography with the porosity information obtained by x-ray micro computed tomography, machine learning algorithms can be utilized to predict the porosity distribution in the part. In this study, a first approach for the prediction of keyhole porosity in a cylindric specimen from AISI 316L stainless steel is presented. It is based on data augmentation using the “SmoteR” algorithm [2] to cure the dataset imbalance and a 1-dimensional convolutional neural network. [1] C.S. Lough et al., Local prediction of Laser Powder Bed Fusion porosity by short-wave infrared thermal feature porosity probability maps. Journal of Materials Processing Technology, 302, p. 117473 (2022) https://dx.doi.org/10.1016/j.imatprotec.2021.117473 [2] L. Torgo et al., SMOTE for Regression. Progress in Artificial Intelligence, Chapter 33, p. 378-289 (2013) https://dx.doi.org/10.1007/978-3-642-40669-0_33 T2 - KI-Tag Arbeitskreis Chemometrik & Qualitätssicherung - Chemometrics meets Artificial Intelligence CY - Berlin, Germany DA - 01.04.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - Defect Prediction KW - Convolutional Neural Networks PY - 2022 AN - OPUS4-54621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Scheuschner, Nils A1 - Altenburg, Simon T1 - Summary of in-situ monitoring in additive manufacturing - ProMoAM N2 - The quality of additively manufactured components is significantly influenced by the process parameters used during production. Thus, sensors and measuring systems are already commercially available for process monitoring, at least in metal-based additive manufacturing. However, it is not yet possible to detect defects and inhomogeneities directly or indirectly during the building process. The aim of the project ProMoAM is to develop spectroscopic and non-destructive testing methods for the in-situ evaluation of the quality of additively manufactured metal components in laser- or arc-based AM processes. In addition to passive and active methods of thermography, this includes optical tomography, optical emission spectroscopy, eddy current testing, laminography (radiography), X-ray backscattering, particle emission spectroscopy and photoacoustic methods. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - In-situ monitoring KW - Additive manufacturing KW - Metals KW - Thermography PY - 2021 AN - OPUS4-52539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Thermography in laser powder bed fusion of metals: time over threshold as feasible feature in thermographic data N2 - Thermography is one on the most promising techniques for in-situ monitoring for metal additive manufacturing processes. The high process dynamics and the strong focus of the laser beam cause a very complex thermal history within the produced specimens, such as multiple heating cycles within single layer expositions. This complicates data interpretation, e.g., in terms of cooling rates. A quantity that is easily calculated is the time a specific area of the specimen is at a temperature above a chosen threshold value (TOT). Here, we discuss variations occurring in time-over-threshold-maps during manufacturing of a defect free cuboid specimen. T2 - 15th Quantitative InfraRed Thermography conference CY - Online meeting DA - 21.09.2020 KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - L-PBF KW - Time over threshold PY - 2020 AN - OPUS4-51630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ thermographic monitoring of the laser metal deposition process T2 - II International Conference on Simulation for Additive Manufacturing - Sim-AM 2019 N2 - In this paper shortwave infrared (SWIR) thermographic measurements of the manufacturing of thin single-line walls via laser metal deposition (LMD) are presented. As the thermographic camera is mounted fixed to the welding arm, an acceleration sensor was used to assist in reconstructing the spatial position from the predefined welding path. Hereby we could obtain data sets containing the size of the molten pool and the oxide covered areas as functions of the position in the workpiece. Furthermore, the influence of the acquisition wavelength onto the thermograms was investigated in a spectral range from 1250 nm to 1550 nm. All wavelengths turned out to be usable for the in-situ process monitoring of the LMD process. The longer wavelengths are shown to be beneficial for the lower temperature range, while shorter wavelengths show more details within the molten pool. T2 - Sim-AM 2019 - 2. International Conference on Simulation for Additive Manufacturing CY - Pavia, Italy DA - 11.09.2019 KW - Additive manufacturing KW - 3D printing KW - Thermography KW - Direct energy deposition KW - Laser Metal Deposition KW - 3D Druck KW - Laser Pulver Auftragsschweißen KW - Additive Fertigung KW - Thermografie PY - 2019 UR - http://congress.cimne.com/SIM-AM2019/frontal/Doc/proceedings.pdf SN - 978-84-949194-8-0 SP - 246 EP - 255 AN - OPUS4-49086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane T1 - Improving additive manufacturing technologies by in-situ monitoring: Thermography N2 - Additive manufacturing of metals gains increasing relevance in the industrial field for part production. However, especially for safety relevant applications, a suitable quality assurance is needed. A time and cost efficient route to achieve this goal is in-situ monitoring of the build process. Here, the BAM project ProMoAM (Process monitoring in additive manufacturing) is briefly introduced and recent advances of BAM in the field of in-situ monitoring of the L-PBF and the LMD process using thermography are presented. T2 - Anwenderkonferenz Infratec GmbH CY - Online meeting DA - 04.11.2021 KW - Additive Manufacturing KW - Process monitoring KW - Thermography PY - 2021 AN - OPUS4-54026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Altenburg, Simon T1 - Multispectral in-situ monitoring of a L-PBF manufacturing process using three thermographic camera systems N2 - The manufacturing of metal parts for the use in safety-relevant applications by Laser Powder Bed Fusion (L-PBF) demands a quality assurance of both part and process. Thermography is a nondestructive testing method that allows the in-situ determination of the thermal history of the produced part which is connected to the mechanical properties and the formation of defects [1]. A wide range of commercial thermographic camera systems working in different spectral ranges is available on the market. The understanding of the applicability of these cameras for qualitative and quantitative in-situ measurements in L-PBF is of vital importance [2]. In this study, the building process of a cylindrical specimen (Inconel 718) is monitored by three camera systems simultaniously. These camera systems are sensitive in various spectral bandwidths providing information in different temperature ranges. The performance of each camera system is explored in the context of the extraction of image features for the detection of defects. It is shown that the high temporal and thermal process dynamics are limiting factors on this matter. The combination of different spectral camera systems promises the potential of an improved defect detection by data fusion. T2 - LASER SYMPOSIUM & ISAM 2021 CY - Online meeting DA - 07.12.2021 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Defect detection PY - 2021 AN - OPUS4-54141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oster, Simon A1 - Scheuschner, Nils A1 - Chand, Keerthana A1 - Altenburg, Simon A1 - Gerlach, G. T1 - Potentials and challenges of deep-learning-assisted porosity prediction based on thermographic in-situ monitoring in laser powder bed fusion JF - Technisches Messen N2 - Laser powder bed fusion is one of the most promising additive manufacturing techniques for printing complex-shaped metal components. However, the formation of subsurface porosity poses a significant risk to the service lifetime of the printed parts. In-situ monitoring offers the possibility to detect porosity already during manufacturing. Thereby, process feedback control or a manual process interruption to cut financial losses is enabled. Short-wave infrared thermography can monitor the thermal history of manufactured parts which is closely connected to the probability of porosity formation. Artificial intelligence methods are increasingly used for porosity prediction from the obtained large amounts of complex monitoring data. In this study, we aim to identify the potential and the challenges of deep-learning-assisted porosity prediction based on thermographic in-situ monitoring. Therefore, the porosity prediction task is studied in detail using an exemplary dataset from the manufacturing of two Haynes282 cuboid components. Our trained 1D convolutional neural network model shows high performance (R² score of 0.90) for the prediction of local porosity in discrete sub-volumes with dimensions of (700 x 700 x 40) μm³. It could be demonstrated that the regressor correctly predicts layer-wise porosity changes but presumably has limited capability to predict differences in local porosity. Furthermore, there is a need to study the significance of the used thermogram feature inputs to streamline the model and to adjust the monitoring hardware. Moreover, we identified multiple sources of data uncertainty resulting from the in-situ monitoring setup, the registration with the ground truth X-ray-computed tomography data and the used pre-processing workflow that might influence the model’s performance detrimentally. T2 - XXXVII. Messtechnisches Symposium 2023 CY - Freiburg, Germany DA - 27.09.2023 KW - Porosity prediction KW - Defect detection KW - Laser powder bed fusion (PBF-LB/M, L-PBF) KW - Selective laser melting KW - Thermography KW - Machine learning PY - 2023 DO - https://doi.org/10.1515/teme-2023-0062 SN - 0171-8096 SN - 2196-7113 VL - 90 SP - 85 EP - 96 PB - De Gruyter CY - Berlin AN - OPUS4-58366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ thermographic monitoring of the laser metal deposition process N2 - By allowing economic on demand manufacturing of highly customized and complex workpieces, metal based additive manufacturing (AM) has the prospect to revolutionize many industrial areas. Since AM is prone to the formation of defects during the building process, a fundamental requirement for AM to become applicable in most fields is the ability to guarantee the adherence to strict quality and safety standards. A possible solution for this problem lies in the deployment of various in-situ monitoring techniques. For most of these techniques, the application to AM is still very poorly understood. Therefore, the BAM in its mission to provide safety in technology has initiated the project “Process Monitoring of AM” (ProMoAM). In this project, a wide range of in-situ process monitoring techniques, including active and passive thermography, optical tomography, optical emission and absorption spectroscopy, eddy current testing, laminography, X-ray backscattering and photoacoustic methods, are applied to laser metal deposition (LMD), laser powder bed fusion and wire arc AM. Since it is still unclear which measured quantities are relevant for the detection of defects, these measurements are performed very thoroughly. In successive steps, the data acquired by all these methods is fused and compared to the results of reference methods such as computer tomography and ultrasonic immersion testing. The goal is to find reliable methods to detect the formation of defects during the building process. The detailed acquired data sets may also be used for comparison with simulations. Here, we show first results of high speed (> 300 Hz) thermographic measurements of the LMD process in the SWIR range using 316L as building material. For these experiments, the camera was mounted fixed to the welding arm of the LMD machine to keep the molten pool in focus, regardless of the shape of the specimen. As the thermograms do not contain any information about the current spatial position during the building process, we use an acceleration sensor to track the movement and synchronize the measured data with the predefined welding path. This allows us to reconstruct the geometry of the workpieces and assign the thermographic data to spatial positions. Furthermore, we investigate the influence of the acquisition wavelength on the thermographic data by comparing measurements acquired with different narrow bandpass filters (50 nm FWHM) in a spectral range from 1150 nm to 1550 nm. This research was funded by BAM within the Focus Area Materials. T2 - Sim-AM 2019 - 2. International Conference on Simulation for Additive Manufacturing CY - Pavia, Italy DA - 11.09.2019 KW - Additive manufacturing KW - 3D printing KW - Thermography KW - Direct energy deposition KW - Laser Metal Deposition KW - 3D Druck KW - Laser Pulver Auftragsschweißen KW - Additive Fertigung KW - Thermografie PY - 2019 AN - OPUS4-49070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Thermography in laser powder bed fusion of metals: time over threshold as feasible feature in thermographic data T2 - Proceedings of Conference QIRT 2020 N2 - Thermography is one on the most promising techniques for in-situ monitoring of metal additive manufacturing processes. Especially in laser powder bed fusion processes, the high process dynamics and the strong focus of the laser beam cause a very complex thermal history within the produced specimens, such as multiple heating cycles within single layer expositions. This complicates data interpretation, e.g., in terms of cooling rates. A quantity that is easily calculated is the time a specific area of the specimen is at a temperature above a chosen threshold value (TOT). Here, we discuss variations occurring in time-over-threshold-maps during manufacturing of an almost defect free cuboid specimen. T2 - 15th Quantitative InfraRed Thermography conference CY - Online meeting DA - 21.09.2020 KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - L-PBF KW - Time over threshold PY - 2020 DO - https://doi.org/10.21611/qirt.2020.005 SP - 1 EP - 5 PB - QIRT Council CY - Quebec, Canada AN - OPUS4-52014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Comparison of MWIR thermography and high-speed NIR thermography in a laser metal deposition (LMD) process T2 - Proceedings of Conference QIRT 2018 N2 - Additive manufacturing (AM) offers a range of novel applications. However, the manufacturing process is complex and the production of defect-free parts with high reliability and durability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal AM processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of measurements during the manufacturing process of a commercial laser metal deposition setup using a mid-wavelength-IR camera with those from a visual spectrum high-speed camera with band pass filter in the near-IR range. T2 - Conference QIRT 2018 CY - Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Laser metal deposition KW - ProMoAM KW - Thermography PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454993 UR - http://www.qirt.org/archives/qirt2018/papers/p35.pdf DO - https://doi.org/10.21611/qirt.2018.p35 SP - 1 EP - 5 PB - QIRT Council CY - Quebec, Canada AN - OPUS4-45499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Thermography in metal AM: Comparison of high-speed NIR thermography and MWIR thermography N2 - Additive manufacturing (AM) opens the route to a range of novel applications.However, the complexity of the manufacturing process poses a challenge for the production of defect-free parts with a high reliability. Since process dynamics and resulting microstructures of AM parts are strongly influenced by the involved temperature fields, thermography is a valuable tool for process surveillance. The high process temperatures in metal AM processes allow one to use cameras usually operating in the visible spectral range to detect the thermally emitted radiation from the process. In our work, we compare the results of first measurements during the manufacturing processes of a commercial laser metal deposition (LMD) setup and a laser beam melting (LBM) setup using a MWIR camera with those from a VIS high-speed camera with band pass filter in the NIR range. T2 - Additive Manufacturing Benchmarks 2018 CY - Gaithersburg, MA, USA DA - 18.06.2018 KW - Thermography KW - Additive manufacturing KW - Laser metal deposition KW - Laser beam melting KW - ProMoAM PY - 2018 AN - OPUS4-45401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander T1 - In situ thermography and optical tomography in LBM - comparison to CT N2 - - Successful proof of concept of synchronous in-situ monitoring of a L-PBF process by thermography and optical tomography - Examination method for data analysis - Identification of correlations between measured signals and defects - Identification of sources of misinterpreting T2 - Workshop on Additive Manufacturing: Process , materials , simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Laser Powder Bed Fusion KW - Thermography KW - Optical Tomography KW - Computed Tomography KW - Additive Manufacturing KW - 3D printing PY - 2019 AN - OPUS4-48521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Straße, Anne A1 - Maierhofer, Christiane A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - In-situ Monitoring der Additiven Fertigung von Metallen im LPA Prozess mittels Optischer Emissionsspektrometrie (OES) und Thermografie (TT) N2 - Einer der aussichtsreichsten Ansätze, die Qualität und Sicherheit der gefertigten Teile in der metallbasierten additiven Fertigung (AM) zu erhöhen und die Notwendigkeit aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen (ZfP) nach der Fertigung zu verringern, liegt in dem Einsatz von in-situ Prozessüberwachungstechniken. Viele wichtige Prozessgrößen bei der additiven Fertigung sind thermischer Natur, wie z.B. die Temperatur des Schmelzbades. Aufgrund der Zugänglichkeit zum Werkstück während des Bauprozesses bieten sich optische Verfahren zur Temperaturbestimmung an. Für die Thermografie und Optische Emissionsspektrometrie im IR-Bereich, welche für die in-situ Anwendung prinzipiell als geeignet angesehen werden können, gibt es allerdings noch wenig konkrete praktische Umsetzungen, da die Möglichkeiten und individuellen Grenzen dieser Methoden, angewendet auf AM, noch nicht ausreichend erforscht sind. Aus diesem Grund verfolgt die BAM mit dem Projekt „Process Monitoring of AM“ (ProMoAM) im Themenfeld Material das Ziel, Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Metallbauteile weiterzuentwickeln. Im Beitrag wird der Fokus auf eine Versuchsserie gelegt, bei der Aufbau von Probekörpern aus dem austenitischen Edelstahl 316L mittels Laser-Pulver-Auftragschweißen (LPA) durch od. mit Hilfe von IR-Spektrometrie und Thermografie in-situ überwacht wurde. Hierbei stellen u.a. die hohe Bandbreite der zu messenden Temperaturen, die Bestimmung der Emissivität und ihre Änderung bei Phasenübergängen des Metalls große experimentelle Herausforderungen dar, wobei jede Methode individuelle Vor- und Nachteile aufweist, welche verglichen werden. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Additive Manufacturing KW - Thermography KW - Direct Energy Deposition KW - Additive Fertigung KW - Thermografie KW - Laserauftragschweißen PY - 2021 AN - OPUS4-52744 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Straße, Anne A1 - Oster, Simon A1 - Gumenyuk, Andrey A1 - Hilgenberg, Kai A1 - Maierhofer, Christiane T1 - Infrared Thermography of the DED-LB/M and PBF LB/M processes N2 - Infrared thermography is a technique that allows to measure the temperatures of objects by analyzing the intensity of the thermal emission without the need of direct contact with very high spatial and temporal resolution. As the temperature is a fundamental factor for the additive manufacturing processes of metals, infrared thermography can provide experimental data that can be used for the validation of simulations and improving the understanding of the processes as well as for in-situ process monitoring for nondestructive evaluation (NDE) for quality control. In this talk we will provide an overview over the possibilities of state of the art thermographic in-situ monitoring systems for the DED-LB/M and PBF-LB/M processes and the challenges such as phase transitions and unknown emissivity values in respect to the determination of real temperatures. We define the requirements for different camera systems in various configurations and give examples on the selection of appropriate measurement parameters and data acquisition techniques as well as on techniques for data analysis and interpretation. Finally, we compare in-situ monitoring methods against post NDE methods by analyzing the advantages and disadvantages of both. This research was funded by BAM within the Focus Area Materials. T2 - Coupled2021 - IX International Conference on Coupled Problems in Science and Engineering CY - Online meeting DA - 13.06.2021 KW - Additive Manufacturing KW - Thermography KW - Direct Energy Deposition PY - 2021 AN - OPUS4-54399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Tina A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Maierhofer, Christiane T1 - Multi measurand in-situ monitoring of the laser powder bed fusion process by means of multispectral optical tomography N2 - Laser Powder Bed Fusion (L-PBF), as one of the most promising production process in the field of metal additive manufacturing, enables traditional constructive solutions to be rethought and the manufacturing of optimized components according to the "form follows function" principle. The most significant obstacle for a broad industrial application of the L-PBF process is the inadequate quality assurance during the manufacturing process so far, leading to high production costs. Although several mainly camera based commercial in-process monitoring systems are already available, a deep understanding of the interpretation of the monitored data and correlation with actual defects is still lacking. One reason for this is the reduction of the complex process signature to just one measurement value. The focus of this contribution is the presentation of the multispectral optical tomography as alternative to single measurand in-situ monitoring systems. The potential of this approach is hereby shown on L-PBF printed samples with induced process instabilities. Beyond that, an in-house developed L-PBF printer for further testing of multi-sensor in-situ monitoring systems is presented. T2 - ICAM2021 CY - Online meeting DA - 01.11.2021 KW - In-situ monitoring KW - L-PBF KW - Optical tomography KW - 3d printing KW - Thermography PY - 2021 AN - OPUS4-54388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Scheuschner, Nils A1 - Chand, Keerthana A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Heinrichsdorff, F. A1 - Altenburg, Simon T1 - From Thermographic In-situ Monitoring to Porosity Detection – A Deep Learning Framework for Quality Control in Laser Powder Bed Fusion N2 - In this study, we present an enhanced deep learning framework for the prediction of porosity based on thermographic in-situ monitoring data of laser powder bed fusion processes. The manufacturing of two cuboid specimens from Haynes 282 (Ni-based alloy) powder was monitored by a short-wave infrared camera. We use thermogram feature data and x-ray computed tomography data to train a convolutional neural network classifier. The classifier is used to perform a multi-class prediction of the spatially resolved porosity level in small sub-volumes of the specimen bulk. T2 - Sensor and Measurement Science International CY - Nurnberg, Germany DA - 08.05.2023 KW - Laser powder bed fusion KW - In-situ monitoring KW - Thermography KW - Machine Learning KW - Porosity PY - 2023 AN - OPUS4-57614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Scheuschner, Nils A1 - Chand, Keerthana A1 - Altenburg, Simon A1 - Gerlach, Gerald T1 - Potentials and challenges of deep-learning-assisted porosity prediction based on thermographic in-situ monitoring in PBF-LB/M N2 - Laser powder bed fusion is one of the most promising additive manufacturing techniques for printing complex-shaped metal components. However, the formation of subsurface porosity poses a significant risk to the service lifetime of the printed parts. In-situ monitoring offers the possibility to detect porosity already during manufacturing. Thereby, process feedback control or a manual process interruption to cut financial losses is enabled. Short-wave infrared thermography can monitor the thermal history of manufactured parts which is closely connected to the probability of porosity formation. Artificial intelligence methods are increasingly used for porosity prediction from the obtained large amounts of complex monitoring data. In this study, we aim to identify the potential and the challenges of deep-learning-assisted porosity prediction based on thermographic in-situ monitoring. Therefore, the porosity prediction task is studied in detail using an exemplary dataset from the manufacturing of two Haynes282 cuboid components. Our trained 1D convolutional neural network model shows high performance (R2 score of 0.90) for the prediction of local porosity in discrete sub-volumes with dimensions of (700 x 700 x 40) μm³. It could be demonstrated that the regressor correctly predicts layer-wise porosity changes but presumably has limited capability to predict differences in local porosity. Furthermore, there is a need to study the significance of the used thermogram feature inputs to streamline the model and to adjust the monitoring hardware. Moreover, we identified multiple sources of data uncertainty resulting from the in-situ monitoring setup, the registration with the ground truth X-ray-computed tomography data and the used pre-processing workflow that might influence the model’s performance detrimentally. T2 - XXXVII. Messtechnisches Symposium 2023 CY - Freiburg im Breisgau, Germany DA - 27.09.2023 KW - Porosity prediction KW - Defect detection KW - Laser Powder Bed Fusion (PBF-LB/M, L-PBF) KW - Selective Laser Melting KW - Thermography KW - Machine Learning PY - 2023 AN - OPUS4-59192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Process monitoring in LBM using thermography and optical tomography N2 - Additive manufacturing (AM) opens the route to a range of novel applications. However, the complexity of the manufacturing process poses a challenge to produce defect-free parts with a high reliability. Since process dynamics and resulting microstructures of AM parts are strongly influenced by the involved temperature fields and cooling rates, thermography is a valuable tool for process monitoring. Another approach to monitor the energy input into the part during process is the use of optical tomography. Common visual camera systems reach much higher spatial resolution than infrared thermography cameras, whereas infrared thermography provides a much higher temperature dynamic. Therefore, the combined application increases the depth of information. Here, we present first measurement results using a laser beam melting setup that allows simultaneous acquisition of thermography and optical tomography from the same point of view using a beam splitter. A high-resolution CMOS camera operating in the visible spectral range is equipped with a near infrared bandpass filter and images of the build plate are recorded with long-term exposure during the whole layer exposing time. Thus, areas that reach higher maximum temperature or are at elevated temperature for an extended period of time appear brighter in the images. The used thermography camera is sensitive to the mid wavelength infrared range and records thermal videos of each layer exposure at an acquisition rate close to 1 kHz. As a next step, we will use computer tomographic data of the built part as a reference for defect detection. This research was funded by BAM within the focus area Materials. T2 - 3rd International Symposium Additive Manufacturing (ISAM 2019) CY - Dresden, Germany DA - 30.01.2019 KW - Additive manufacturing KW - Laser beam melting KW - Thermography KW - Optical Tomography PY - 2019 AN - OPUS4-47299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Sprengel, Maximilian A1 - Thiede, Tobias A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - How Temperature Gradient Influences the Formation of Residual Stresses in Metallic Parts Made by L-PBF N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured (AM) parts and important factors for residual stress formation which have implications on structural integrity. This study examined the influence of heat input on the distribution of residual stresses in two prisms produced by laser powder bed fusion (L-PBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two distinct helix scanning strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. Residual stresses were characterised at one plane perpendicular to the building direction at half of its build height using neutron diffraction. In addition, the defect distribution was analysed via micro X-ray computed tomography (µCT) in a twin specimen. Both scanning strategies reveal residual stress distributions typical for AM: compressive stresses in the bulk and tensile stresses at the surface. However, temperature gradients and maximum stress levels differ due to the different heat input. Regarding the X-ray µCT results, they show an accumulation of defects at the corners where the laser direction turned through 90°. The results demonstrate that neutron diffraction and X-ray µCT can be successfully used as non-destructive methods to analyse through-thickness residual stress and defect distribution in AM parts, and in the presented case, illustrate the influence of scanning strategies. This approach contributes to deeper assessment of structural integrity of AM materials and components. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norwegen DA - 09.09.2019 KW - AGIL KW - Neutron diffraction KW - Thermography KW - Additive manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Sprengel, Maximilian A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Hofmann, Michael A1 - Bruno, Giovanni T1 - Separation of the Formation Mechanisms of Residual Stresses in LPBF 316L N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured parts and important factors for the residual stress formation. This study examined the influence of heat accumulation on the distribution of residual stress in two prisms produced by Laser Powder Bed Fusion (LPBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two different border fill scan strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. The goal was to reveal the effect of different heat inputs on samples featuring the same solidification shrinkage. Residual stress was characterised in one plane perpendicular to the building direction at the mid height using Neutron and Lab X-ray diffraction. Thermography data obtained during the build process were analysed in order to correlate the cooling rates and apparent surface temperatures with the residual stress results. Optical microscopy and micro computed tomography were used to correlate defect populations with the residual stress distribution. The two scanning strategies led to residual stress distributions that were typical for additively manufactured components: compressive stresses in the bulk and tensile stresses at the surface. However, due to the different heat accumulation, the maximum residual stress levels differed. We concluded that solidification shrinkage plays a major role in determining the shape of the residual stress distribution, while the temperature gradient mechanism appears to determine the magnitude of peak residual stresses. T2 - MLZ User Meeting 2020 CY - Online meeting DA - 08.12.2020 KW - Computed tomography KW - Neutron diffraction KW - X-ray diffraction KW - Additive manufacturing KW - Residual stress KW - Thermography KW - LPBF KW - Laser Powder Bed Fusion PY - 2020 AN - OPUS4-51793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Maierhofer, Christiane T1 - Towards hyperspectral in-situ temperature measurement in metal additive manufacturing N2 - The industrial use of additive manufacturing for the production of metallic parts with high geometrical complexity and lot sizes close to one is rapidly increasing as a result of mass individualisation and applied safety relevant constructions. However, due to the high complexity of the production process, it is not yet fully understood and controlled, especially for changing (lot size one) part geometries. Due to the thermal nature of the Laser-powder bed fusion (L-PBF) process – where parts are built up layer-wise by melting metal powder via laser - the properties of the produced part are strongly governed by its thermal history. Thus, a promising route for process monitoring is the use of thermography. However, the reconstruction of temperature information from thermographic data relies on the knowledge of the surface emissivity at each position on the part. Since the emissivity is strongly changing during the process due to phase changes, great temperature gradients, possible oxidation, and other potential influencing factors, the extraction of real temperature data from thermographic images is challenging. While the temperature development in and around the melt pool, where melting and solidification occur is most important for the development of the part properties. Also, the emissivity changes are most severe in this area, rendering the temperature deduction most challenging. A possible route to overcome the entanglement of temperature and emissivity in the thermal radiation is the use of hyperspectral imaging in combination with temperature emissivity separation (TES) algorithms. As a first step towards the combined temperature and emissivity determination in the L-PBF process, here, we use a hyperspectral line camera system operating in the short-wave infrared region (0.9 µm to 1.7 µm) to measure the spectral radiance emitted. In this setup, the melt pool of the L-PBF process migrates through the camera’s 1D field of view, so that the radiation intensities are recorded simultaneously for multiple different wavelength ranges in a spatially resolved manner. At sufficiently high acquisition frame rate, an effective melt pool image can be reconstructed. Using the grey body approximation (emissivity is independent of the wavelength), a first, simple TES is performed, and the resulting emissivity and temperature values are compared to literature values. Subsequent work will include reference measurements of the spectral emissivity in different states allowing its analytical parametrisation as well as the adaption and optimisation of the TES algorithms. An illustration of the proposed method is shown in Fig.1. The investigated method will allow to gain a deeper understanding of the L-PBF process, e.g., by quantitative validation of simulation results. Additionally, the results will provide a data basis for the development of less complex and cheaper sensor technologies for L-PBF in-process monitoring (or for related process), e.g., by using machine learning. T2 - 21st International Conference on Photoacoustic and Photothermal Phenomena CY - Bled, Slovenia DA - 19.06.2022 KW - Thermography KW - Additive manufacturing KW - L-PBF KW - Hyperspectral PY - 2022 AN - OPUS4-55152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Ulbricht, Alexander A1 - Fritsch, Tobias A1 - Mohr, Gunther A1 - Altenburg, Simon T1 - Defect prediction on the Base of Thermographic features in Laser Powder Bed Fusion Utilizing Machine Learning Algorithms N2 - Avoiding the formation of defects such as keyhole pores is a major challenge for the production of metal parts by Laser Powder Bed Fusion (LPBF). The use of in-situ monitoring by thermographic cameras is a promising approach to detect defects, however the data is hard to analyze by conventional algorithms. Therefore, we investigate the use of Machine Learning (ML) in this study, as it is a suitable tool to model complex processes with many influencing factors. A ML model for defect prediction is created based on features extracted from process thermograms. The porosity information calculated from an x-ray Micro Computed Tomography (µCT) scan is used as reference. Physical characteristics of the keyhole pore formation are incorporated into the model to increase the prediction accuracy. Based on the prediction result, the quality of the input data is inferred and future demands on in-situ monitoring of LPBF processes are derived. T2 - Additive Manufacturing Benchmarks 2022 CY - Bethesda, MA, USA DA - 14.08.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Machine Learning KW - Defect prediction PY - 2022 AN - OPUS4-55591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Ulbricht, Alexander A1 - Frisch, Tobias A1 - Mohr, Gunther A1 - Altenburg, Simon T1 - Defect prediction in laser powder bed fusion based on thermographic features utilizing convolutional neural networks N2 - The appearance of irregularities such as keyhole porosity is a major challenge for the production of metal parts by laser powder bed fusion (PBF-LB/M). The utilization of thermographic in-situ monitoring is a promising approach to extract the thermal history which is closely related to the formation of irregularities. In this study, we investigate the utilization of convolutional neural networks to predict keyhole porosity based on thermographic features. Here, the porosity information calculated from an x-ray micro computed tomography scan is used as reference. Feature engineering is performed to enable the model to learn the complex physical characteristics of the porosity formation. The model is examined with regard to the choice of hyperparameters, the significance of thermal features and characteristics of the data acquisition. Based on the results, future demands on irregularity prediction in PBF-LB/M are derived. T2 - GIMC SIMAI YOUNG 2022 CY - Pavia, Italy DA - 29.09.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Convolutional Neural Networks PY - 2022 AN - OPUS4-56331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -