TY - CONF A1 - Ehlers, Henrik A1 - Pelkner, Matthias A1 - Thewes, R. T1 - Online ET with MR Sensor Arrays for LPBF Parts N2 - In this presentation we discuss the online monitoring of LPFB parts using eddy current testing with magenoresistive sensor arrays. The underlying principle, the developed hardware and the results of the firt online monitoring are described in the presentation. T2 - 2. Online-Workshop "In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys " CY - Online meeting DA - 19.04.2021 KW - Eddy current testing KW - LPBF KW - GMR KW - SLM KW - Haynes282 KW - Additive manufacturing PY - 2021 AN - OPUS4-52700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Ponader, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered glass monoliths as new supports for affinity columns N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 minute. Due to the glass material's excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nanofiltration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Glass KW - Purification KW - Antibodies KW - Solid support KW - HPLC KW - FPLC KW - Separation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529117 DO - https://doi.org/10.20944/preprints202103.0298.v1 SN - 2310-287X N1 - Geburtsname von Ponader, Marco: Wilke, M. - Birth name of Ponader, Marco: Wilke, M. SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-52911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Oster, Simon A1 - Sprengel, Maximilian T1 - Tales from Within: Residual Stress and Void Formation in LPBF 316L N2 - An unusual microstructure, inherent residual stresses and void formation are the three key aspects to control when assessing metallic parts made by LPBF. This talk explains an experiment to unravel the interlinked influence of the two mechanisms for the formation of residual stresses in LPBF: the temperature gradient mechanism and constricted solidification shrinkage. The impact of each mechanism on the shape and magnitudes of the residual stress distribution is described. Combined results from neutron diffraction, X-ray diffraction, computed tomography and in-situ thermography are presented. Also, influence of scan strategies as well as surface roughness of subjacent layers on void formation is shown. Results from computed tomography and in-situ thermography of a specimen dedicated to study the interaction of the melt pool with layers of powder underneath the currently illuminated surface are presented. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 19.04.2021 KW - Neutron diffraction KW - Laser powder bed fusion KW - In-situ thermography KW - Computed tomography KW - X-ray diffraction KW - Residual stress KW - Pore formation KW - AISI 316L PY - 2021 AN - OPUS4-52819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Zerbst, Uwe A1 - Madia, Mauro ED - Yadroitsev, I. ED - Yadroitsava, I. ED - Du Plessies, A. ED - McDonald, E. T1 - Structural integrity II: fatigue properties N2 - If a component is cyclically loaded, its load carrying capacity is considerably lower than in the monotonic loading case. This general observation applies in particular to L-PBF parts. The causes of this are mainly material defects such as pores and unwelded regions (Chapter 8) and a pronounced surface roughness in the as-built condition (Chapter 9). In addition, effects due to the anisotropy of the microstructure (Chapter 6) and a complex residual stress pattern (Chapter 7) play an important role. A consequence is that common strategies of fatigue assessment cannot be transferred to L-PBF applications without modifications. Due to the inhomogeneity of the material, the determination of representative material properties and the transfer to the component is a problem, and this is also the case with regard to the consideration of defects, surface roughness and residual stresses. The chapter gives a brief introduction to these problem areas. KW - Fatigue crack propagation stagesdefects KW - Fatigue strength KW - Fatigue life KW - Fracture mechanics PY - 2021 SN - 978-0-12-824090-8 DO - https://doi.org/10.1016/B978-0-12-824090-8.00015-9 SP - 377 EP - 394 PB - Elsevier Inc. CY - Amsterdam ET - 1 AN - OPUS4-52854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir T1 - Mechanical anisotropy of LPBF 316L: a modeling approach N2 - The underlying cause of mechanical anisotropy in additively manufactured (AM) parts is not yet fully understood and has been attributed to several different factors like microstructural defects, residual stresses, melt pool boundaries, crystallographic and morphological textures. To better understand the main contributing factor to the mechanical anisotropy of AM stainless steel 316L, bulk specimens were fabricated via laser powder bed fusion (LPBF). Tensile specimens were machined from these AM bulk materials for three different inclinations relative to the build plate. Dynamic Young's modulus measurements and tensile tests were used to determine the mechanical anisotropy. Some tensile specimens were also subjected to residual stress measurement via neutron diffraction, porosity determination with X-ray micro-computed tomography, and texture analysis with electron backscatter diffraction (EBSD). A crystal plasticity model was used to analyze the elastic anisotropy and the anisotropic yield behavior of the AM specimens, and it was able to capture and predict the experimental behavior accurately. Overall, it was shown that the mechanical anisotropy of the tested specimens was mainly influenced by the crystallographic texture. T2 - 2. Online-Workshop "In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys " CY - Online meeting DA - 20.04.2021 KW - Anisotropy KW - Crystal plasticity KW - Additive manufacturing PY - 2021 AN - OPUS4-52603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Assessing the safety of new technologies: Summary of Project AGIL N2 - In Additive Manufacturing everybody is talking about Free Form, Unconventional Design, Re-thinking Components, “Think out of the box”. However, there are a few outstanding question: a) What are the material properties ? They certainly differ from literature values for conventional materials; b) How about the microstructure? It is different from conventional materials. Does it stay so with ageing? How does it form? c) Do we properly take residual stress into account? We often blame them for our ignorance about failure scenarios. d) Do we apply tailored heat treatments? Very often, we follow conventional schedules… This talk describes the summary of the efforts carried out within the BAM Project AGIL. At BAM, we aimed to thoroughly investigate the microstructure and how it evolves as a function of load and temperature (service), to determine the material properties after different process and service conditions, to properly determine residual stress and the way it impacts mechanical properties and component performance, to properly quantify the impact of (unavoidable?) defects, and to determine heat treatments tailored to the process-specific material (stress relieve, microstructure homogenization etc.). The Project AGIL was and is intimately coupled with the project ProMoAM, dealing with online monitoring of AM processes. T2 - Workshop In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Mechanical properties KW - Additive manufacturing KW - Residual Stress KW - Microstructure KW - Fatigue KW - Creep PY - 2021 AN - OPUS4-52581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Short fatigue crack propagation in additively manufactured stainless steel 316L N2 - Fracture mechanics is a key to fatigue assessment in AM metal components. Short fatigue cracks are initiated at defects and pronounced surface roughness intrinsic to AM. The subsequent crack-propagation is strongly influenced by microstructural interactions and the build-up of crack-closure. The aim of the present study is to give an insight into short-crack propagation in AM-metals. Fatigue crack propagation resistance curves were determined experimentally for AISI 316L manufactured by Laser Powder Bed Fusion (L-PBF) which was heat treated at three different temperatures. Differences in the build-up of the fatigue-crack propagation threshold in between the L-PBF specimens and compared to wrought material are due to the residual stress states, a pronounced roughness of the crack-faces in the L-PBF specimens and phase transformation in the vicinity of the crack-tip, resulting in increased crack-closure. This, together with crack-branching found along the crack path, enhances the resistance to the propagation of fatigue cracks. T2 - In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - AM KW - Cyclic R-Curve KW - Fatigue Crack Propagation PY - 2021 AN - OPUS4-52587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander T1 - Creep behavior and microstructural evolution of LPBF 316L N2 - This presentation shows some experimental results of the characterization of the creep behavior of LPBF 316L, which has been poorly studied and understood to date. The presentation includes results regarding the mechanical properties, the initial microstructural state and its evolution under loading, and the damage mechanism. This work was done within the BAM focus area materials project AGIL. As a benchmark to assess the material properties of the LPBF 316L, a conventionally manufactured variant was also tested. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured alloys at BAM CY - Online Meeting DA - 19.04.2021 KW - 316L KW - Additive Manufacturing KW - Creep behavior PY - 2021 AN - OPUS4-52682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay A1 - Hirthammer, Volker A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - WelDX – progress report on the welding data exchange format N2 - The presentation shows the current development status of the Welding Data Exchange (weldx) format based on the Advanced Scientific Data Format (ASDF). The use of a complete single pass arc welding experiment example stored in a single weldx file and validated against a predefined schema definition is presented. The example includes generic experimental metadata, the workpiece geometry and materials definition following associated standards, the weld process spatial movement description, the welding process parameter descriptions and welding process measurements. The inclusion of 3D scan data of the workpiece description is also included. The full code and data is available on GitHub: https://github.com/BAMWelDX/IIW2021_joint_intermediate_CXII T2 - IIW joint intermediate meeting Comm. I,IV,XII,SG212 2021 CY - Online meeting DA - 30.03.2021 KW - WelDX KW - Research data management KW - Open science KW - Arc welding KW - Digitalization PY - 2021 AN - OPUS4-52661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Introduction to ProMoAM N2 - A brief introduction to the project ProMoAM is given. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - ProMoAM PY - 2021 AN - OPUS4-52513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -