TY - CONF A1 - Quosdorf, Heike T1 - Digital object identifier for additively manufactured parts based on 3D microstructural information N2 - Additive manufacturing (AM) is rapidly emerging from prototyping to industrial production [1]. Thus, providing AM parts with a tagging feature that allows unambiguous identification, can be crucial for logistics, certification, and anti-counterfeiting purposes. The digital object identifier (DOI) acts like a fingerprint for the product throughout its entire lifecycle. Several methods are already available, which range from encasing a detector [2] to leveraging the stochastic defects of AM parts [3], printing a quick response (QR) code or a set of voids partially filled with loose powder within the part [3]. A new method is using microstructural features of the AM part without altering their properties. This technology transfer project aims to implement this authentication methode as software solution to act as certificate in the Digital Product Passport (DPP) [5]. T2 - QI Digital 2025 CY - Berlin, Germany DA - 08.10.2025 KW - Authentication KW - Unique identification KW - Open Science, Material Digital KW - Digital fingerprint KW - Open Source Software KW - X-ray Computed Tomography KW - Additive manufacturing PY - 2025 AN - OPUS4-65207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quosdorf, Heike T1 - Digital object identifier for additively manufactured parts based on 3D microstructural information N2 - Additive manufacturing (AM) is rapidly emerging from prototyping to industrial production [1]. Thus, providing AM parts with a tagging feature that allows unambiguous identification, can be crucial for logistics, certification, and anti-counterfeiting purposes. The digital object identifier (DOI) acts like a fingerprint for the product throughout its entire lifecycle. Several methods are already available, which range from encasing a detector [2] to leveraging the stochastic defects of AM parts [3], printing a quick response (QR) code or a set of voids partially filled with loose powder within the part [3]. A new method is using microstructural features of the AM part without altering their properties. This technology transfer project aims to implement this authentication methode as software solution to act as certificate in the Digital Product Passport (DPP) [5]. T2 - MaterialDigital General Assembly 2025 CY - Berlin, Germany DA - 26.11.2025 KW - Authentication KW - Unique identification KW - Open Science KW - Digital fingerprint KW - Material Digital KW - X-ray Computed Tomography KW - Additive manufacturing PY - 2025 AN - OPUS4-65208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bäßler, Ralph T1 - Review: Science, Technology and Applications of Metals in Additive Manufacturing N2 - Often 3D‐printing and additive manufacturing are mentioned as the 3rd industrial revolution. In this conjunction this book provides a brief overview on additively manufactured metal pieces. This book fulfills its intension to serve as an educational guide, providing a holistic picture encompassing science, technology and applications for the real‐life use of Metal Additive Manufacturing. KW - Additive manufacturing KW - Corrosion KW - Material properties PY - 2020 DO - https://doi.org/10.1002/maco.202070114 SN - 1521-4176 SN - 0947-5117 VL - 71 IS - 11 SP - 1929 EP - 1930 PB - WILEY‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-51514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fritzsche, Sven A1 - Weimann, Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz T1 - 2PP-TestArtifact N2 - This repository contains a test artifact (TA), also called test structure, designed for two-photon polymerization (also known as Direct Laser Writing (DLW) or Two/Multi-photon lithography (2PA/MPA)). Test artifacts can be used to compare structures, to check options used by the slicer, check the state of the 2PP machine itself or to get a construction guidelines for a certain combination of power, velocity and settings. The associated paper can be found here: https://dx.doi.org/10.1088/1361-6501/acc47a General ideas behind the test artifact: 1. optimized for 2PP-DLW 2. should be fast and easy to analyse with optical microscopy or 3. scanning electron microscopy without tilt. 3. short time to fabricate 4. include a reasonable amount of different features 5. bulk and small structures on the substrate KW - Reference structure KW - Calibration structure KW - Test structure KW - Laser writing KW - Two-photon polymerization KW - 3D printing KW - Additive manufacturing KW - Microprinting KW - Multi-photon light structuring PY - 2023 DO - https://doi.org/10.6084/m9.figshare.22285204.v2 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-57165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -