TY - CONF A1 - Oster, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Ulbricht, Alexander A1 - Altenburg, Simon T1 - Investigation of the thermal history of L-PBF metal parts by feature extraction from in-situ SWIR thermography N2 - Laser powder bed fusion is used to create near net shape metal parts with a high degree of freedom in geometry design. When it comes to the production of safety critical components, a strict quality assurance is mandatory. An alternative to cost-intensive non-destructive testing of the produced parts is the utilization of in-situ process monitoring techniques. The formation of defects is linked to deviations of the local thermal history of the part from standard conditions. Therefore, one of the most promising monitoring techniques in additive manufacturing is thermography. In this study, features extracted from thermographic data are utilized to investigate the thermal history of cylindrical metal parts. The influence of process parameters, part geometry and scan strategy on the local heat distribution and on the resulting part porosity are presented. The suitability of the extracted features for in-situ process monitoring is discussed. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - SWIR camera KW - Additive manufacturing (AM) KW - Selective laser melting (SLM) KW - Laser beam melting (LBM) KW - In-situ monitoring KW - Infrared thermography PY - 2021 UR - https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11743/117430C/Investigation-of-the-thermal-history-of-L-PBF-metal-parts/10.1117/12.2587913.short?SSO=1&tab=ArticleLink AN - OPUS4-52540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander T1 - In situ thermography and optical tomography in LBM - comparison to CT N2 - - Successful proof of concept of synchronous in-situ monitoring of a L-PBF process by thermography and optical tomography - Examination method for data analysis - Identification of correlations between measured signals and defects - Identification of sources of misinterpreting T2 - Workshop on Additive Manufacturing: Process , materials , simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Laser Powder Bed Fusion KW - Thermography KW - Optical Tomography KW - Computed Tomography KW - Additive Manufacturing KW - 3D printing PY - 2019 AN - OPUS4-48521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander A1 - Heinrich, Ph. A1 - Baum, D. A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-Situ Defect Detection in Laser Powder Bed Fusion by Using Thermography and Optical Tomography—Comparison to Computed Tomography N2 - Among additive manufacturing (AM) technologies, the laser powder bed fusion (L-PBF) is one of the most important technologies to produce metallic components. The layer-wise build-up of components and the complex process conditions increase the probability of the occurrence of defects. However, due to the iterative nature of its manufacturing process and in contrast to conventional manufacturing technologies such as casting, L-PBF offers unique opportunities for in-situ monitoring. In this study, two cameras were successfully tested simultaneously as a machine manufacturer independent process monitoring setup: a high-frequency infrared camera and a camera for long time exposure, working in the visible and infrared spectrum and equipped with a near infrared filter. An AISI 316L stainless steel specimen with integrated artificial defects has been monitored during the build. The acquired camera data was compared to data obtained by computed tomography. A promising and easy to use examination method for data analysis was developed and correlations between measured signals and defects were identified. Moreover, sources of possible data misinterpretation were specified. Lastly, attempts for automatic data analysis by data Integration are presented. KW - Laser powder bed fusion (L-PBF) KW - Selective laser melting (SLM) KW - Additive manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - Optical tomography KW - Computed tomography (CT) KW - Data fusion KW - Lack-of-fusion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502417 DO - https://doi.org/10.3390/met10010103 VL - 10 IS - 1 SP - 103 PB - MDPI CY - Basel, Schweiz AN - OPUS4-50241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oster, Simon A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Bruno, Giovanni A1 - Maierhofer, Christiane A1 - Altenburg, Simon T1 - On the Registration of Thermographic In Situ Monitoring Data and Computed Tomography Reference Data in the Scope of Defect Prediction in Laser Powder Bed Fusion N2 - The detection of internal irregularities is crucial for quality assessment in metal-based additive manufacturing (AM) technologies such as laser powder bed fusion (L-PBF). The utilization of in-process thermography as an in situ monitoring tool in combination with post-process X-ray micro computed tomography (XCT) as a reference technique has shown great potential for this aim. Due to the small irregularity dimensions, a precise registration of the datasets is necessary as a requirement for correlation. In this study, the registration of thermography and XCT reference datasets of a cylindric specimen containing keyhole pores is carried out for the development of a porosity prediction model. The considered datasets show variations in shape, data type and dimensionality, especially due to shrinkage and material elevation effects present in the manufactured part. Since the resulting deformations are challenging for registration, a novel preprocessing methodology is introduced that involves an adaptive volume adjustment algorithm which is based on the porosity distribution in the specimen. Thus, the implementation of a simple three-dimensional image-to-image registration is enabled. The results demonstrate the influence of the part deformation on the resulting porosity location and the importance of registration in terms of irregularity prediction. KW - Selective laser melting (SLM) KW - Laser powder bed fusion (L-PBF) KW - Additive manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - X-ray computed tomography (XCT) KW - Defect detection KW - Image registration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549412 DO - https://doi.org/10.3390/met12060947 VL - 12 IS - 6 SP - 1 EP - 21 PB - MDPI AN - OPUS4-54941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Čapek, J. A1 - Mohr, Gunther A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Luzin, V. A1 - Bruno, Giovanni T1 - Fundamentals of diffraction-based residual stress and texture analysis of PBF-LB Inconel 718 N2 - Laser powder bed fusion (PBF-LB/M) of metallic alloys is a layer wise additive manufacturing process which provides significant scope for more efficient designs of components, benefiting performance and weight, leading to efficiency improvements for various sectors of industry. However, to benefit from these design freedoms, knowledge of the high produced induced residual stress and mechanical property anisotropy associated with the unique microstructures is critical. X-ray and neutron diffraction are considered the benchmark for non-destructive characterization of surface and bulk internal residual stress. The latter, characterized by the high penetration power in most engineering alloys, allows for the use of diffraction angle close to 90° enabling a near cubic sampling volume to be specified. However, the complex microstructures of columnar growth with inherent crystallographic texture typically produced during PBF-LB/M of metallics present significant challenges to the assumptions typically required for time efficient determination of residual stress. These challenges include the selection of an appropriate set of diffraction elastic constants and a representative strain-free reference for the material of interest. In this presentation advancements in the field of diffraction-based residual stress analysis of L-PBF Inconel 718 will be presented. The choice of an appropriate set of diffraction-elastic constants depending on the underlying microstructure will be described. T2 - MLZ User Meeting 2022 CY - Munich, Germany DA - 08.12.2022 KW - Diffraction KW - Residual Stress KW - Microstructure KW - Texture KW - Mechanical behavior PY - 2022 AN - OPUS4-56804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Nolze, Gert A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Thiede, Tobias A1 - Bruno, Giovanni T1 - Ageing in additively manufactured metallic components: from powder to mechanical failure” an overview of the project agil N2 - An overview of the BAM funed Focus Area Materials Project "AGIL" will be presented. AGIL focussed on the stdiy of the ageing characteristics of additively manufactured austenitic stainless steel with a "powder to mechanical failure" Approach. Recent Highlights are presented and a perspective for future studies. T2 - Workshop on Additive Manufacturing CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Residual stress KW - Additive Manufacturing KW - Non-destructive testing KW - Microstructure characterisation KW - Tensile testing KW - Fatigue KW - Crystal Plasticity Modelling KW - Crack propagation PY - 2019 AN - OPUS4-49823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eddah, Mustapha A1 - Markötter, Henning A1 - Mieller, Björn A1 - Beckmann, Jörg A1 - Bruno, Giovanni T1 - Synchrotron Multi-energy HDR tomography for LTCC systems N2 - LTCCs (Low-temperature co-fired ceramics) consist of three-dimensionally distributed, hermetically bonded ceramic and metallic components with structure sizes within [10; 100] µm. A non-destructive imaging technique is needed that provides 3D, sharp, high-contrast resolution of these structures, as well as porosity and defect analysis, which is made difficult by the very different X-ray absorption coefficients of the individual components of the microstructure. A HDR method is being developed that allows a combination of different tomograms, each with X-ray energies adapted to individual materials. T2 - Bessy II User Meeting CY - Berlin, Germany DA - 22.06.2023 KW - LTCC KW - Synchrotron tomography KW - Data fusion KW - In-situ tomography PY - 2023 AN - OPUS4-57795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Çağtay A1 - Rethmeier, Michael A1 - Ulbricht, Alexander A1 - Bruno, Giovanni T1 - Additive Manufacturing of High Strength Al-Mg-Si Alloys with DED-Arc N2 - Direct energy deposition additive manufacturing technologies that utilize an electric arc have great potential for generating large volume metal components. However, selecting process parameters that yield the desired near net shape design and requested mechanical component behavior is not a trivial task due to the complex relationship between all process parameters and material characteristics. This presentation exemplifies the application of a newly developed solid welding wire doped with TiB to enhance grain refinement in the deposited metal for additive manufacturing based on DED-Arc of high-strength precipitation hardening AlMgSi-aluminum alloys. It is worth noting that the solid wire is the result of our preliminary metallurgical studies on grain refinement in aluminum weld metal. Consequently, research focuses on the correlation between process parameters and component quality to understand the underlying mechanisms. This is crucial for evaluating a robust process parameter space that yields component quality in line with corresponding standards which are mainly taken from welding technology. Specifically, we examine component quality by analyzing pore size and distribution, as well as grain morphology. To enhance the mechanical properties of the deposited metal, a post-weld heat treatment was conducted, comprising of solution treatment, quenching, and artificial aging. The study also evaluates the effects of various heat treatment strategies on the final mechanical properties of the material. To demonstrate the applicability of 3D metal printing of high-strength aluminium alloys, a more complex demonstrator was created. It has been shown that DED-Arc can produce high-volume aluminium parts with the same quality as the corresponding subtractive processing strategy. Additionally, the entire additive manufacturing chain has been digitally integrated, enabling traceability of all relevant process steps, which is essential for reliable subsequent quality assessment. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - DED-Arc KW - High-stength aluminium alloys KW - Grain refinement KW - Quality assurance PY - 2024 AN - OPUS4-60248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Creep and fracture behavior of conventionally and additively manufactured stainless steel 316L N2 - A critical task within the frame of establishing process-structure-property-performance relationships in additive manufacturing (AM) of metals is producing reliable and well-documented material behavior’s data and knowledge regarding the structure-property correlation, including the role of defects. After all, it represents the basis for developing more targeted process optimizations and more reliable predictions of performance in the future. Within this context, this contribution aims to close the actual gap of limited historical data and knowledge concerning the creep behavior of the widely used austenitic stainless steel 316L, manufactured by Laser-Powder-Bed-Fusion (L-PBF). To address this objective, specimens from conventional hot-rolled and AM material were tested under application-relevant conditions according to existing standards for conventional material, and microstructurally characterized before and after failure. The test specimens were machined from single blocks from the AM material. The blocks were manufactured using a standard scan and build-up strategy and were subsequently heat-treated. The creep behavior is described and comparatively assessed based on the creep lifetime and selected creep curves and characteristic values. The effect of defects and microstructure on the material’s behavior is analyzed based on destructive and non-destructive evaluations on selected specimens. The AM material shows shorter creep lives, reaches the secondary creep stage much faster and at a lower strain, and features lower creep ductility compared to its conventional counterpart. The creep damage behavior of the AM material is more microstructure than defect controlled and is characterized by the formation and accumulation of single intergranular damage along the whole volume. Critical features identified are the grain morphology and the grain-boundary as well as the dislocation’s density. Micro-computed tomography (µCT) proves to be an alternative to metallography to analyze the creep damage. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - 316L KW - Creep behavior KW - Laser powder bed fusion KW - Additive manufacturing KW - Microstructure PY - 2020 AN - OPUS4-51823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ferrari, Bruno A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Schicchi Said, D. A1 - Darvishi Kamachali, Reza A1 - Evans, Alexander A1 - Agudo Jácome, Leonardo A1 - Serrano-Munoz, Itziar T1 - Microstructural evolution of PBF-LB/M Inconel 718 during solution-aging heat treatments - an in-situ x-ray diffraction study N2 - Inconel 718 (IN718) is a traditional age-hardenable nickel-based alloy that has been increasingly processed by additive manufacturing (AM) in recent years. In the as-solidified condition, IN718 exhibits chemical segregation and the undesired Laves phase, requiring a solution annealing (SA) prior to aging. The material produced by AM does not respond to the established thermal routines in the same way as conventionally produced IN718, and there is still no consensus on which routine yields optimal results. This work aims to provide a fundamental understanding of the heat treatment (HT) response by continuously monitoring the microstructural evolution during SA via time-resolved synchrotron x-ray diffraction, complemented by ex-situ scanning electron microscopy (SEM). The samples were produced by laser powder bed fusion to a geometry of 10x20x90 mm³, from which Ø1x5 mm³ cylindric specimens were extracted. Two different scanning strategies – incremental 67° rotations, Rot, and alternating 0°/67° tracks, Alt – were used, leading to two different as-built conditions. 1-hour SAs were carried out in the beamline ID22 of the ESRF at 50 KeV. Two SA temperatures, SA1 = 1020 °C, and SA2 = 1080 °C were tested for each scanning strategy. Data were processed using the software PDIndexer. In the as-built state, all samples showed typical subgrain columnar cell structures with predominant Nb/Mo segregation and Laves phase at the cell walls, as seen by SEM. The Alt scan induced higher intensity on the Laves peaks than the Rot scan, suggesting a greater content of Laves. Chemical homogenization in the SA was largely achieved during the heating ramp (Fig. 1). SA2 eliminated the Laves peaks just before reaching 1080 °C, and mitigated differences between Rot and Alt samples. On the other hand, SA1 induced the precipitation of the generally detrimental δ phase, also observed by SEM. Furthermore, the Rot scan showed higher δ peak intensities than the Alt scan, indicating a higher content of δ in the latter. No signs of recrystallization were observed in any of the investigated SAs. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Additive Manufacturing KW - X-Ray Diffraction KW - Inconel 718 KW - Heat Treatments KW - Microstructure PY - 2023 AN - OPUS4-58392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -