TY - CONF A1 - Scheuschner, Nils T1 - In-situ Prozessüberwachung in der additiven Fertigung von Metallen (PBF-LB /M) mittels TT und ET N2 - Durch die additive Fertigung ergeben sich durch die nun mögliche wirtschaftliche Fertigung hochgradig individueller und komplexer metallischer Bauteile in kleinen Stückzahlen bis hinunter zum Einzelstück für viele Industriebereiche ganz neue Möglichkeiten. Gleichzeitig entstehen jedoch neue Herausforderungen im Bereich der Qualitätssicherung, da sich auf statistischen Methoden beruhende Ansätze nicht anwenden lassen, ohne wiederum die Vorteile der Fertigung massiv einzuschränken. Eine mögliche Lösung für dieses Problem liegt in der Anwendung verschiedener In-situ-Überwachungstechniken während des Bauprozesses. Jedoch sind nur wenige dieser Techniken kommerziell verfügbar und noch nicht so weit erforscht, dass die Einhaltung strenger Qualitäts- und Sicherheitsstandards gewährleistet werden kann. In diesem Beitrag stellen wir die Ergebnisse einer Studie über mittels L-PBF gefertigte Probekörper aus der Nickelbasis-Superlegierung Haynes 282 vor, bei denen die Bildung von Defekten durch lokale Variationen der Prozessparameter wie der Laserleistung provoziert wurde. Die Proben wurden in-situ mittels Thermographie, optischer Tomographie, Schmelzbadüberwachung und Wirbelstromprüfung sowie ex-situ mittels Computertomographie (CT) überwacht, mit dem Ziel, die Machbarkeit und die Aussichten der einzelnen Methoden für die zuverlässige Erkennung der Bildung relevanter Defekte zu bewerten. T2 - DGZfP Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Additive Manufacturing KW - Thermografie KW - Additive Fertigung KW - Thermography PY - 2022 AN - OPUS4-55851 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ Monitoring of PBF-LB/M by thermography, optical tomography, melt-pool-monitoring and eddy current N2 - The formation of defects such as keyhole pores is a major challenge for the production of metal parts by Laser Powder Bed Fusion (LPBF). The LPBF process is characterized by a large number of influencing factors which can be hard to quantify. Machine Learning (ML) is a prominent tool to predict the outcome of complex processes on the basis of different sensor data. In this study, a ML model for defect prediction is created using thermographic image features as input data. As a reference, the porosity information calculated from an x-ray Micro Computed Tomography (µCT) scan of the produced specimen is used. Physical knowledge about the keyhole pore formation is incorporated into the model to increase the prediction accuracy. From the prediction result, the quality of the input data is evaluated and future demands on in-situ monitoring of LPBF processes are formulated. T2 - AM Bench 2022 CY - Bethesda, Washingthon DC, USA DA - 15.08.2022 KW - Additive Manufacturing KW - Thermography KW - Additive Fertigung KW - Thermografie PY - 2022 AN - OPUS4-55854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ monitoring of the laser powder bed fusion process by thermography, optical tomography and melt pool monitoring for defect detection N2 - For the wide acceptance of the use of additive manufacturing (AM), it is required to provide reliable testing methods to ensure the safety of the additively manufactured parts. A possible solution could be the deployment of in-situ monitoring during the build process. However, for laser powder bed fusion using metal powders (PBF-LB/M ) only a few in-situ monitoring techniques are commercially available (optical tomography, melt pool monitoring) but not researched to an extent that allows to guarantee the adherence to strict quality and safety standards. In this contribution, we present results of a study of PBF-LB/M printed parts made of the nickel-based superalloy Haynes 282. The formation of defects was provoked by local variations of the process parameters and monitored by thermography, optical tomography and melt pool monitoring. Afterwards, the defects were characterized by computed tomography (CT) to identify the detection limits of the used in-situ techniques. T2 - LiM Conference 2023 - Lasers in Manufacturing CY - Munich, Germany DA - 26.06.2023 KW - Thermography KW - High temperature alloys KW - Additive Manufacturing KW - PBF-LB/M PY - 2023 AN - OPUS4-57947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Heinrichsdorff, F. A1 - Oster, Simon A1 - Uhlmann, E. A1 - Polte, J. A1 - Gordei, A. A1 - Hilgenberg, Kai T1 - In-situ monitoring of the laser powder bed fusion process by thermography, optical tomography and melt pool monitoring for defect detection N2 - For the wide acceptance of the use of additive manufacturing (AM), it is required to provide reliable testing methods to ensure the safety of the additively manufactured parts. A possible solution could be the deployment of in-situ monitoring during the build process. However, for laser powder bed fusion using metal powders (PBF-LB/M) only a few in-situ monitoring techniques are commercially available (optical tomography, melt pool monitoring), which have not been researched to an extent that allows to guarantee the adherence to strict quality and safety standards. In this contribution, we present results of a study of PBF-LB/M printed parts made of the nickel-based superalloy Haynes 282. The formation of defects was provoked by local variations of the process parameters and monitored by thermography, optical tomography and melt pool monitoring. Afterwards, the defects were characterized by computed tomography (CT) to identify the detection limits of the used in-situ techniques. T2 - Lasers in Manufacturing Conference 2023 CY - Munich, Germany DA - 26.06.2023 KW - Thermography KW - Optical tomography KW - Melt-pool-monitoring KW - Laser powder bed fusion KW - Haynes 282 KW - Additive Manufacturing PY - 2023 UR - https://www.wlt.de/lim2023-proceedings/system-engineering-and-process-control SP - 1 EP - 10 AN - OPUS4-58466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - D'Accardi, E. A1 - Krankenhagen, Rainer A1 - Ulbricht, Alexander A1 - Pelkner, Matthias A1 - Pohl, Rainer A1 - Palumbo, D. A1 - Galietti, U. T1 - Capability to detect and localize typical defects of laser powder bed fusion (L‑PBF) process: an experimental investigation with different non‑destructive techniques N2 - Additive manufacturing (AM) technologies, generally called 3D printing, are widely used because their use provides a high added value in manufacturing complex-shaped components and objects. Defects may occur within the components at different time of manufacturing, and in this regard, non-destructive techniques (NDT) represent a key tool for the quality control of AM components in many industrial fields, such as aerospace, oil and gas, and power industries. In this work, the capability of active thermography and eddy current techniques to detect real imposed defects that are representative of the laser powder bed fusion process has been investigated. A 3D complex shape of defects was revealed by a μCT investigation used as reference results for the other NDT methods. The study was focused on two different types of defects: porosities generated in keyhole mode as well as in lack of fusion mode. Different thermographic and eddy current measurements were carried out on AM samples, providing the capability to detect volumetric irregularly shaped defects using non-destructive methods. KW - Additive Manufacturing KW - Defect detection KW - Thermography KW - Eddy-current testing KW - Micro-computed tomography PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546680 DO - https://doi.org/10.1007/s40964-022-00297-4 SN - 2363-9512 VL - 7 IS - 6 SP - 1239 EP - 1256 PB - Springer AN - OPUS4-54668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oster, Simon A1 - Scheuschner, Nils A1 - Chand, Keerthana A1 - Altenburg, Simon T1 - Local porosity prediction in metal powder bed fusion using in-situ thermography: A comparative study of machine learning techniques N2 - The formation of flaws such as internal porosity in parts produced by Metal-based Powder Bed Fusion with Laser Beam (PBF-LB/M) significantly hinders its broader industrial application, as porosity can potentially lead to part failure. Addressing this issue, this study explores the efficacy of in-situ thermography, particularly short-wave infrared thermography, for detecting and predicting porosity during manufacturing. This technique is capable of monitoring the part’s thermal history which is closely connected to the flaw formation process. Recent advancements in Machine Learning (ML) have been increasingly leveraged for porosity prediction in PBF-LB/M. However, previous research primarily focused on global rather than localized porosity prediction which simplified the complex prediction task. Thereby, the opportunity to correlate the predicted flaw position with expected part strain to judge the severity of the flaw for part performance is neglected. This study aims to bridge this gap by studying the potential of SWIR thermography for predicting local porosity levels using regression models. The models are trained on data from two identical HAYNES®282® specimens. We compare the effectiveness of feature-based and raw data-based models in predicting different porosity types and examine the importance of input data in porosity prediction. We show that models trained on SWIR thermogram data can identify systematic trends in local flaw formation. This is demonstrated for forced flaw formation using process parameter shifts and, moreover, for randomly formed flaws in the specimen bulk. Furthermore, we identify features of high importance for the prediction of lack-of-fusion and keyhole porosity from SWIR monitoring data. KW - PBF-LB/M KW - In situ monitoring KW - Thermography KW - Additive Manufacturing KW - Process monitoring KW - Porosity prediction KW - Machine Learning KW - Feature extraction PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-621798 DO - https://doi.org/10.1016/j.addma.2024.104502 SN - 2214-7810 VL - 95 SP - 1 EP - 17 PB - Elsevier B.V. AN - OPUS4-62179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L-PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in-situ mittels Thermographiekamera überwacht. Auf diese Weise konnten intrinsische Vorerwärmungstemperaturen während der Bauteilfertigung lagenweise extrahiert werden. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - 74th IIW Annual Assembly and International Conference CY - Online meeting DA - 07.07.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring KW - Thermography KW - Preheating temperature KW - Inter layer time PY - 2021 AN - OPUS4-52954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ monitoring of a laser metal deposition (LMD) process: comparison of MWIR, SWIR and high-speed NIR thermography N2 - Additive manufacturing offers a range of novel applications. However, the manufacturing process is complex and the production of almost defect-free parts with high reliability and durability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal additive manufacturing processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of measurements during the manufacturing process of a commercial laser metal deposition setup using a mid wavelength infrared camera with those from a short wavelength infrared camera and those from a visual spectrum high-speed camera with band pass filter in the near infrared range. KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - LMD KW - Metal KW - MWIR KW - SWIR KW - NIR PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516318 DO - https://doi.org/10.1080/17686733.2020.1829889 VL - 19 IS - 2 SP - 97 EP - 114 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-51631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Scheuschner, Nils ED - Meyendorf, N. ED - Ida, N. ED - Singh, R. ED - Vrana, J. T1 - In Situ Real-Time Monitoring Versus Post NDE for Quality Assurance of Additively Manufactured Metal Parts N2 - In this chapter, the current state-of-the-art of in situ monitoring and in situ NDE methods in additive manufacturing is summarized. The focus is set on methods, which are suitable for making statements about the quality and usability of a component currently being manufactured. This includes methods which can be used to determine state properties like temperature or density, other physical properties like electrical or thermal conductivity, the microstructure, the chemical composition, the actual geometry, or which enable the direct detection of defects like cracks, voids, delaminations, or inclusions. Thus, optical, thermographic, acoustic, and electromagnetic methods, as well as methods being suitable for investigating particle and fume emission are presented. The requirements of in situ monitoring methods with a focus on thermographic methods are discussed by considering different additive manufacturing processes like laser powder bed fusion (PBF-LB/M) and direct energy deposition (DED-LB/M). Examples of the successful implementation and applications of such monitoring methods at BAM are given. The in situ monitoring and NDE methods are compared against post-process NDE methods. The advantages and challenges of in situ methods concerning real-time data analysis and the application of AI algorithms are addressed and discussed. KW - Additive manufacturing KW - In situ monitoring KW - In situ NDE KW - Post NDE KW - Thermography KW - Laser powder bed fusion KW - Direct energy deposition PY - 2021 SN - 978-3-030-48200-8 DO - https://doi.org/10.1007/978-3-030-48200-8_51-1 SP - 1 EP - 37 PB - Springer Nature Switzerland AG CY - Cham, Switzerland ET - 1 AN - OPUS4-52824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ Monitoring der Additiven Fertigung von Metallen im LPA Prozess mittels Optischer Emissionsspektrometrie (OES) und Thermografie (TT) N2 - Einer der aussichtsreichsten Ansätze, die Qualität und Sicherheit der gefertigten Teile in der metallbasierten additiven Fertigung (AM) zu erhöhen und die Notwendigkeit aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen (ZfP) nach der Fertigung zu verringern, liegt in dem Einsatz von in-situ Prozessüberwachungstechniken. Viele wichtige Prozessgrößen bei der additiven Fertigung sind thermischer Natur, wie z.B. die Temperatur des Schmelzbades. Aufgrund der Zugänglichkeit zum Werkstück während des Bauprozesses bieten sich optische Verfahren zur Temperaturbestimmung an. Für die Thermografie und Optische Emissionsspektrometrie im IR-Bereich, welche für die in-situ Anwendung prinzipiell als geeignet angesehen werden können, gibt es allerdings noch wenig konkrete praktische Umsetzungen, da die Möglichkeiten und individuellen Grenzen dieser Methoden, angewendet auf AM, noch nicht ausreichend erforscht sind. Aus diesem Grund verfolgt die BAM mit dem Projekt „Process Monitoring of AM“ (ProMoAM) im Themenfeld Material das Ziel, Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Metallbauteile weiterzuentwickeln. Im Beitrag wird der Fokus auf eine Versuchsserie gelegt, bei der Aufbau von Probekörpern aus dem austenitischen Edelstahl 316L mittels Laser-Pulver-Auftragschweißen (LPA) durch od. mit Hilfe von IR-Spektrometrie und Thermografie in-situ überwacht wurde. Hierbei stellen u.a. die hohe Bandbreite der zu messenden Temperaturen, die Bestimmung der Emissivität und ihre Änderung bei Phasenübergängen des Metalls große experimentelle Herausforderungen dar, wobei jede Methode individuelle Vor- und Nachteile aufweist, welche verglichen werden. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Additive Manufacturing KW - Thermography KW - Direct Energy Deposition KW - Additive Fertigung KW - Thermografie KW - Laserauftragschweißen PY - 2021 AN - OPUS4-52744 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -