TY - CONF A1 - Mishurova, Tatiana T1 - 3D imaging and residual stress analysis of AM materials at BAM N2 - The overview of the activity of group 8.5 Micro-NDT (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). T2 - Seminar at Chalmers University and Centre for Additive Manufacture (CAM2) CY - Gothenburg, Sweden DA - 19.05.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Computed tomography KW - Synchrotron X-ray diffraction KW - X-ray refraction PY - 2022 AN - OPUS4-55019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar T1 - Multiscale residual stress analysis and synchrotron X-ray refraction of additively manufactured parts N2 - The overview of the activity of group 8.5 Micro-NDT (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The challenges in the residual stress analysis of AM components are discussed on the basis on the show studies performed in BAM. Also, the synchrotron X-ray refraction technique, available in BAM, is presented, showing example of in-situ heating test of Al10SiMg AM material. T2 - Seminar at Grenoble INP, Science et Ingénierie des Matériaux et Procédés (SIMaP) CY - Grenoble, France DA - 01.07.2022 KW - Additive manufacturing KW - Residual stress KW - X-ray refraction KW - Computed tomography PY - 2022 AN - OPUS4-55232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Mehta, Bharat A1 - Nyborg, L. A1 - Virtanen, E. A1 - Markötter, Henning A1 - Hryda, E. A1 - Bruno, Giovanni T1 - Failure Mechanisms Investigation by Means of in-situ Synchrotron Computed Tomography in Aluminum MMC-based Alloy Tailored for Additive Manufacturing (AM) N2 - Most of the Al alloys used in additive manufacturing (AM), in particular Laser Powder Bed Fusion (LPBF), do not exceed a strength of 200 MPa, whereas conventionally high-performance alloys exhibit strengths exceeding 400 MPa. The availability of such Al alloys in AM is limited due to difficulties in printability, requiring synergetic material and AM process development to satisfy harsh processing conditions during LPBF [1]. One approach is the addition of reinforcement to the based powder, allowing tailoring composition and properties of a Metal Matrix Composite (MMC) by AM. Still, the effect of the reinforcement on the resulting mechanical properties must be studied to understand the performance and limits of the newly developed material. The goal of this work was to investigate the failure mechanism of LPBF Al-based MMC material using in-situ Synchrotron X-ray Computed Tomography (SXCT) during mechanical testing. T2 - International conference on tomography of material and structures CY - Grenoble, France DA - 27.06.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Al alloy KW - MMC PY - 2022 AN - OPUS4-55228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Evlevleev, Sergei A1 - Khrapov, D. A1 - Meinel, Dietmar A1 - Surmenev, R. A1 - Surmeneva, M. A1 - Koptyug, A. T1 - Procedures to Quantitatively Characterize Morphological Features of Triply Periodic Minimal Surface Structures N2 - Additively manufactured (AM) metallic sheet-based Triply Periodic Minimal Surface Structures (TPMSS) meet several requirements in both bio-medical and engineering fields: Tunable mechanical properties, low sensitivity to manufacturing defects, mechanical stability, and high energy absorption. However, they also present some challenges related to quality control. In fact, the optimization of both the AM process and the properties of TPMSS is impossible without considering structural characteristics as manufacturing accuracy, internal defects, and as well as surface topography and roughness. In this study, the quantitative non-destructive analysis of TPMSS manufactured from Ti-6Al-4V alloy by electron beam melting was performed by means of laboratory X-ray computed tomography (XCT). T2 - International conference on tomography of material and structures 2022 CY - Grenoble, France DA - 27.06.2022 KW - Additive manufacturing KW - Scaffold KW - Lightweight structures KW - Computed tomography PY - 2022 AN - OPUS4-55229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Franchin, G. A1 - Zocca, Andrea A1 - Karl, D. A1 - Yun, H. A1 - Tian, X. T1 - Editorial: Advances in additive manufacturing of ceramics N2 - Recently, additive manufacturing of ceramics has achieved the maturity to be transferred from scientific laboratories to industrial applications. At the same time, research is progressing to expand the boundaries of this field into the territory of novel materials and applications. This feature issue addresses current progress in all aspects of additive manufacturing of ceramics, from parts design to feedstock selection, from technological development to characterization of printed components. KW - Additive manufacturing KW - Ceramic PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549361 DO - https://doi.org/10.1016/j.oceram.2022.100277 SN - 2666-5395 VL - 10 SP - 1 EP - 2 PB - Elsevier CY - Amsterdam AN - OPUS4-54936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Synchrotron x ray refraction detects microstructure and porosity evolution during in situ heat treatments in an LPBF ALSI10MG alloy N2 - The complexity of any microstructural characterization significantly increases when there is a need to evaluate the icrostructural evolution as a function of temperature. To date, this characterization is primarily performed by undertaking elaborative ex-situ experiments where the material’s heating procedure is interrupted at different temperatures or times. Moreover, these studies are often limited to a region smaller than the representative elementary volume, which can lead to partial or even biased interpretations of the collected data. This limitation can be greatly overcome by using in-situ synchrotron X-ray refraction (SXRR). T2 - ICTMS 2022 CY - Grenoble, France DA - 27.06.2022 KW - Synchrotron refraction KW - In situ heating KW - AlSi10Mg alloy KW - Additive manufacturing KW - Microstructural evolution PY - 2022 AN - OPUS4-55199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Markötter, Henning A1 - Mehta, Bharat A1 - Hryha, Eduard A1 - Bruno, Giovanni T1 - In-situ imaging of additively manufactured alloys at the BAMline N2 - In this work, we present the recent in-situ imaging developments at the BAMline (of synchrotron BESSY II, HZB), focused on the in-situ characterization and understanding of microstructural evolution of additively manufactured materials subjected to different environments. Two show cases are presented. In the first, X-ray refraction radiography (SXRR) was combined with in-situ heat treatment to monitor the microstructural evolution as a function of temperature in a laser powder bed fusion (LPBF) manufactured AlSi10Mg alloy. We show that SXRR allows detecting the changes in the Si-phase morphology upon heating using statistically relevant volumes. SXRR also allows observing the growth of pores (i.e., thermally induced porosity), usually studied via X-ray computed tomography (XCT), but using much smaller fields-of-view. In the second case study, XCT was combined with in-situ tensile test to investigate the damage mechanism in a LPBF Aluminum Metal Matrix Composite (MMC). In-situ SXCT test disclosed the critical role of the defects in the failure mechanism along with pre-cracks in the reinforcement phase of MMC. We found that cracks were initiated from lack-of-fusion defects and propagated through coalescence with other defects. T2 - New Frontiers in Materials Design for Laser Additive Manufacturing CY - Montabaur, Germany DA - 22.05.22 KW - Additive manufacturing KW - Laser powder bed fusion KW - Synchrotron X-ray computed tomography KW - Synchrotron X-ray Refraction PY - 2022 AN - OPUS4-54900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Sobol, Oded T1 - Additive manufacturing for components in hydrogen technologies N2 - With the introduction of a hydrogen-based energy and national economy, safety-relevant components for hydrogen technologies are becoming increasingly important. Characteristic of hydrogen technologies are, for example, harsh environmental conditions such as cryogenic or high-pressure storage, corrosion issues in fuel cells and electrolyzers, turbines, and many more. Additive manufacturing of components is becoming increasingly important and irreplaceable for the production of complex technical systems. Using the case studies of burners for gas turbines and electrodes and membranes for polymer (PEMFC) and solid oxide (SOFC) fuel cells, this article shows the potential of additive manufacturing of components. At the same time, however, the challenge of considering divergent mechanical properties depending on the direction of assembly in a "hydrogen-compatible" manner is also highlighted. Finally, the challenges posed by additive manufacturing and hydrogen for materials testing are highlighted under scenarios that are as realistic as possible. T2 - MPA-Workshop Hydrogen CY - Online meeting DA - 10.11.2022 KW - Additive manufacturing KW - Hydrogen KW - Technologies KW - Overview KW - Component PY - 2022 AN - OPUS4-56233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Transferability of ANN-generated parameter sets from welding tracks to 3D-geometries in Directed Energy Deposition N2 - Directed energy deposition (DED) has been in industrial use as a coating process for many years. Modern applications include the repair of existing components and additive manufacturing. The main advantages of DED are high deposition rates and low energy input. However, the process is influenced by a variety of parameters affecting the component quality. Artificial neural networks (ANNs) offer the possibility of mapping complex processes such as DED. They can serve as a tool for predicting optimal process parameters and quality characteristics. Previous research only refers to weld beads: a transferability to additively manufactured three-dimensional components has not been investigated. In the context of this work, an ANN is generated based on 86 weld beads. Quality categories (poor, medium, and good) are chosen as target variables to combine several quality features. The applicability of this categorization compared to conventional characteristics is discussed in detail. The ANN predicts the quality category of weld beads with an average accuracy of 81.5%. Two randomly generated parameter sets predicted as “good” by the network are then used to build tracks, coatings,walls, and cubes. It is shown that ANN trained with weld beads are suitable for complex parameter predictions in a limited way. KW - Welding parameter KW - Quality assurance KW - DED KW - Artificial neural network KW - Additive manufacturing PY - 2022 DO - https://doi.org/10.1515/mt-2022-0054 SN - 0025-5300 VL - 64 IS - 11 SP - 1586 EP - 1596 PB - De Gruyter AN - OPUS4-56278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voloskov, B. A1 - Mishurova, Tatiana A1 - Evlashin, S. A1 - Akhatov, I. A1 - Bruno, Giovanni A1 - Sergeichev, I. T1 - Artificial Defects in 316L Stainless Steel Produced by Laser Powder Bed Fusion: Printability, Microstructure, and Effects on the Very-High-Cycle Fatigue Behavior N2 - The printability of artificial defects inside the additively manufactured laser powder bed fusion (LPBF) 316L stainless steel is investigated. The printing parameters of the LPBF process are optimized to produce artificial defects with reproducible sizes at desired positions while minimizing redundant porosity. The smallest obtained artificial defect is 90 μm in diameter. The accuracy of the geometry of the printed defect depends on both the height and the diameter in the input model. The effect of artificial defects on the very-high-cycle fatigue (VHCF) behavior of LPBF 316L stainless steel is also studied. The specimens printed with artificial defects in the center are tested under VHCF using an ultrasonic machine. Crack initiation is accompanied by the formation of a fine granular area (FGA), typical of VHCF. Despite the presence of relatively large artificial defects, FGA formation is observed around accidental natural printing defects closer to the surface, which can still be considered as internal. The causes for this occurrence are discussed. KW - Additive manufacturing KW - Laser powder bed fusion KW - X-ray computed tomography KW - VHCF PY - 2022 DO - https://doi.org/10.1002/adem.202200831 SP - 1 EP - 13 PB - Wiley VHC-Verlag AN - OPUS4-56109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -