TY - CONF A1 - Bhadeliya, Ashok T1 - High Temperature Fatigue Crack Growth in Nickel-Based Alloys Refurbished by Additive Manufacturing and Brazing N2 - Hybrid additive manufacturing plays a crucial role in the restoration of gas turbine blades, where e.g., the damaged blade tip is reconstructed by the additive manufacturing process on the existing blade made of a parent nickel-based alloy. However, inherent process-related defects in additively manufactured material, along with the interface created between the additively manufactured and the cast base material, impact the fatigue crack growth behavior in bi-material components. This study investigates the fatigue crack growth behavior in bi-material specimens of nickel-based alloys, specifically, additively manufactured STAL15 and cast alloy 247DS. The tests were conducted at 950 °C with stress ratios of 0.1 and -1. Metallographic and fractographic investigations were carried out to understand crack growth mechanisms. The results revealed significant retardation in crack growth at the interface. This study highlights the potential contributions of residual stresses and microstructural differences to the observed crack growth retardation phenomenon, along with the conclusion from an earlier study on the effect of yield strength mismatch on crack growth behavior at a perpendicular interface in bi-material specimens. T2 - Superalloys 2024 Conference CY - Champion, PA, USA DA - 08.09.2024 KW - Fatigue crack growth KW - Bi-material structure KW - Nickel-based alloys KW - Additive Manufacturing KW - Brazing PY - 2024 AN - OPUS4-61047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - How 3D X-ray Imaging and Residual Stress Analysis contribute to safety of materials and structures N2 - The safety of materials and structures can be detrimentally influenced by residual stresses (RS) and defect populations (voids or other features leading to failure) if they are not correctly accounted for in the design. Therefore, the accurate characterization of these features and the consideration of their impact is crucial for the safe design of components. The ability to characterize these features non-destructively enables the direct correlation on resulting mechanical performance. 3D X-ray computed tomography (XCT) is used to resolve and quantitively analyze microstructural features (i.e., voids, porosity). This is often used to assess the capability of the manufacturing route, i.e., additive manufacturing (AM). The non-destructive nature of the method also enables the study of the evolution of damage in materials from such microstructural features [1]. Using in-situ methods such as compression or tension, the propagation of damage from initial microstructure can be assessed, aiding our understanding of which features are detrimental to safety [3]. Diffraction based residual stress analysis methods including high energy X-ray and neutron diffraction can be used to study the residual stress gradients from the surface, subsurface and into the bulk non-destructively. These methods can be used to study the influence of heat treatments on residual stress and can be combined with XCT results to correlate the interaction of residual stresses with microstructural features (i.e., void clusters). This talk will give an overview of the capabilities and opportunities of 3D XCT and diffraction based residual stress analysis to close the gap in our understanding of material degradation on mechanical performance, enabling manufacturers to adjust their designs accordingly for safety critical applications. A particular focus will be made on examples where the two advanced techniques are combined to enhance such understanding. T2 - MaterialsWeek 2025 CY - Frankfurt am Main, Germany DA - 02.04.2025 KW - Neutron Diffraction KW - Residual Stress KW - X-ray Computed Tomography KW - Additive Manufacturing KW - Large Scale facilites KW - Creep KW - Defects KW - BAMline PY - 2025 AN - OPUS4-62895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob T1 - Neutron Diffraction Based Residual Stress Analysis of Additively Manufactured Alloys N2 - Additive manufacturing methods such as laser powder bed fusion offer an enormous flexibility in the efficient design of parts. In this process, a laser locally melts feedstock powder to build up a part layer-by-layer. It is this localized processing manner imposing large temperature gradients, resulting in the formation of internal stress and characteristic microstructures. Produced parts inherently contain high levels of residual stress accompanied by columnar grain growth and crystallographic texture. On a smaller scale, the microstructure is characterized by competitive cell-like solidification with micro segregation and dislocation entanglement. In this context, it is crucial to understand the interplay between microstructure, texture, and residual stress to take full advantage of the freedom in design. In fact, X-ray and neutron diffraction are considered as the benchmark for the non-destructive characterization of surface and bulk residual stress. The latter, characterized by a high penetration power in most engineering alloys, allows the use of diffraction angle close to 90°, enabling the employment of a nearly cubic gauge volume. However, the complex hierarchical microstructures produced by additive manufacturing present significant challenges towards the reliable characterization of residual stress by neutron diffraction. Since residual stress is not the direct quantity being measured, the peak shift imposed by the residual stress present in a material must be converted into a macroscopic stress. First, an appropriate lattice plane must be selected that is easily accessible (i.e., high multiplicity) and insensitive to micro strain accumulation. Second, a stress-free reference must be known to calculate a lattice strain, which can be difficult to define for the heterogeneous microstructures produced by additive manufacturing. Third, an appropriate set of diffraction elastic constants that relate the lattice strain to the macroscopic stress must be known. In this presentation, advancements in the field of residual stress analysis using neutron diffraction are presented on the example of the Ni-based superalloy Inconel 718. The effect of the complex microstructure on the determination of residual stress by neutron diffraction is presented. It is shown, how to deal with the determination of the stress-free reference. It is also shown that the selection of an appropriate set of diffraction elastic constants depends on the microstructure. Finally, the role of the crystallographic texture in the determination of the residual stress is shown. T2 - Deutsche Neutronenstreutagung CY - Aachen, Germany DA - 16.09.2024 KW - Additive Manufacturing KW - Neutron Diffraction KW - Electron Backscatter Diffraction KW - Laser Powder Bed Fusion PY - 2024 AN - OPUS4-61476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander T1 - Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - Annual International Solid Freeform Fabrication Symposium CY - Austin, TX, USA DA - 14.08.2023 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2023 AN - OPUS4-58285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander T1 - Formation of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2024 AN - OPUS4-60295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - Laser powder bed fusion (PBF-LB/M) of metallic alloys is a layer-wise additive manufacturing process that provides significant scope for more efficient designs of components, benefiting performance and weight, leading to efficiency improvements for various sectors of industry. However, to benefit from these design freedoms, knowledge of the high produced induced residual stress and mechanical property anisotropy associated with the unique microstructures is critical. X-ray and neutron diffraction are considered the benchmark for non-destructive characterization of surface and bulk internal residual stress. The latter, characterized by the high penetration power in most engineering alloys, allows for the use of a diffraction angle close to 90° enabling a near cubic sampling volume to be specified. However, the complex microstructures of columnar growth with inherent crystallographic texture typically produced during PBF-LB/M of metallics present significant challenges to the assumptions typically required for time efficient determination of residual stress. These challenges include the selection of an appropriate set of diffraction elastic constants and a representative lattice plane suitable for residual stress analysis. In this contribution, the selection of a suitable lattice plane family for residual stress analysis is explored. Furthermore, the determination of an appropriate set of diffraction and single-crystal elastic constants depending on the underlying microstructure is addressed. In-situ loading experiments have been performed at the Swiss Spallation Neutron Source with the main scope to study the deformation behaviour of laser powder bed fused Inconel 718. Cylindrical tensile bars have been subjected to an increasing mechanical load. At pre-defined steps, neutron diffraction data has been collected. After reaching the yield limit, unloads have been performed to study the accumulation of intergranular strain among various lattice plane families. T2 - 11th European Conference on Residual Stresses CY - Prag, Czech Republic DA - 03.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction Elastic Constants KW - Microstructure KW - Electron Backscatter Diffraction PY - 2024 AN - OPUS4-60289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - In this presentation, the results of the determination of the diffraction and single-crystal elastic constants of laser powder bed fused Inconel 718 are presented. The analysis is based on high-energy synchrotron diffraction experiments performed at the Deutsches Elektronen-Synchrotron. It is shown that the characteristic microstructure of laser powder bed fused Inconel 718 impacts the elastic anisotropy and therefore the diffraction and single-crystal elastic constants. Finally, the consequences on the diffraction-based residual stress determination of laser powder bed fused Inconel 718 are discussed. T2 - AWT-Fachausschuss 13 "Eigenspannungen" CY - Wolfsburg, Germany DA - 19.03.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction KW - In-Situ Testing KW - Diffraction Elastic Constants PY - 2024 AN - OPUS4-59900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob T1 - Influence of Microstructure on the Diffraction-Based Residual Stress Determination in Laser Powder Bed Fused Inconel 718 N2 - Additive manufacturing processes such as laser powder bed fusion (PBF-LB) offer the ability to produce parts in a single manufacturing step. On the one hand, this manufacturing technique offers immense geometric freedom in part design due to its layer-by-layer manufacturing strategy. On the other hand, the localized melting and solidification impose the presence of large temperature gradients in the process. From a microstructural perspective, this inevitably results in micro-segregation and a columnar grain structure, often paired with a significant crystallographic texture. Even worse, these large temperature gradients can lead to internal stress-induced deformation or cracking during processing. At the very least, residual stress is retained in the final structures as a footprint of this internal stress. In this context, diffraction-based methods allow the non-destructive characterization of the residual stress field in a non-destructive fashion. However, the accuracy of these methods is directly related to the microstructural characteristics of the material of interest. First, diffraction-based methods access microscopic lattice strains. To relate these lattice strains to a macroscopic stress, so-called diffraction elastic constants must be known. The deformation behavior is directly linked to the microstructure. Therefore, the diffraction elastic constants also depend on the microstructure. Second, the presence of crystallographic texture should be considered in the residual stress determination, as variations in crystal orientations contribute differently to the diffraction signal. Here we present the influence of the microstructure on the determination of residual stress by diffraction-based methods in as-built PBF-LB Inconel 718 parts. We obtained different microstructures by employing two different scanning strategies. In particular, different crystallographic textures were obtained by changing the relative angle of the scan vectors to the geometric axes of the part. The texture-based characterization of the residual stress field was carried out by surface, sub-surface, and bulk residual stress measurements. It was found that the residual stress determination significantly depends on the microstructure for strong crystallographic textures. T2 - Material Science and Engineering Congress CY - Darmstadt, Germany DA - 24.09.2024 KW - Additive Manufacturing KW - Electron Backscatter Diffraction KW - Microstructure KW - Residual Stress KW - X-ray Diffraction PY - 2024 AN - OPUS4-61475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Capabilities at BAM, division 8.5- X-ray Imaging N2 - The X-ray computed tomography capabilities at BAM (especially in Division 8.5) are shown. It is also shown that the group possesses X-ray refraction radiography techniques, which are complementary to absorption radiography, and uses diffraction for residual stress analysis. Examples of applications in the field of Additive Manufacturing ale also shown. T2 - DGM AK XCT CY - Berlin, Germany DA - 27.11.2024 KW - X-ray Computed tomography KW - Defects KW - X-ray refraction radiography KW - Additive Manufacturing PY - 2024 AN - OPUS4-62046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Serrano-Munoz, Itziar T1 - How to experimentally determine residual stress in AM structures N2 - The experimental determination of residual stress becomes more complicated with increasing complexity of the structures investigated. Unlike the conventional and most of the additive manufacturing (AM) fabrication techniques, laser powder bed fusion (PBF-LB) allows the production of complex structures without any additional manufacturing step. However, due to the extremely localized melting and solidification, internal stress-induced deformation and cracks are often observed. In the best case, significant residual stress is retained in the final structures as a footprint of the internal stress during manufacturing. Here we report solutions to the most prevalent challenges when dealing with the diffraction-based determination of residual stress in AM structures, in particular the choice of the correct diffraction elastic constants. We show that for Nickel-based alloys, the diffraction elastic constants of AM material significantly deviate from their conventional counterparts. Furthermore, measurement strategies to overcome the hurdles appearing when applying diffraction-based techniques to complex-shaped lattice structures are presented: a) proper sample alignment within the beam, b) the proper determination of the residual stress field in a representative part of the structure (i.e., with an engineering meaning). Beyond the principal stress magnitude, the principal direcions of residual stress are discussed for different geometries and scan strategies, as they are relevent for failure criteria. We show that the RS in the lattice struts can be considered to be uniaxial and to follow the orientation of the strut, while the RS in the lattice knots is more hydrostatic. Additionally, we show that strain measurements in at least seven independent directions are necessary for the correct estimation of the principal stress directions. The measurement directions should be chosen according to the sample geometry and to an informed choice on the possible strain field (i.e., reflecting the scan strategy). We finally show that if the most prominent direction is not measured, the error in the calculated stress magnitude increases in such a manner that no reliable assessment of RS state can be made. T2 - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - Neutron Diffraction KW - Residual Stress KW - X-ray Computed Tomography KW - Additive Manufacturing KW - Lattice Structure KW - Inconel PY - 2024 AN - OPUS4-60423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -