TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Mente, Tobias A1 - Mayr, P. A1 - Nitsche, A. T1 - Thickness and microstructure effect on hydrogen diffusion in creep‑resistant 9% Cr P92 steel and P91 weld metal JF - Welding in the World N2 - Martensitic 9% Cr steels like P91 and P92 show susceptibility to delayed hydrogen assisted cracking depending on their microstructure. In that connection, effective hydrogen diffusion coefficients are used to assess the possible time-delay. Limited data on room temperature diffusion coefficients reported in literature vary widely by several orders of magnitude (mostly attributed to variation in microstructure). Especially P91 weld metal diffusion coefficients are rare so far. For that reason, electrochemical permeation experiments had been conducted using P92 base metal and P91 weld metal (in as-welded and heat-treated condition) with different thicknesses. From the results obtained, diffusion coefficients were calculated using to different methods, time-lag, and inflection point. Results show that, despite microstructural effects, the sample thickness must be considered as it influences the calculated diffusion coefficients. Finally, the comparison of calculated and measured hydrogen concentrations (determined by carrier gas hot extraction) enables the identification of realistic diffusion coefficients. KW - Creep-resistant steel KW - Diffusion KW - Hydrogen assisted cracking KW - Welding KW - Electrochemical permeation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540645 DO - https://doi.org/10.1007/s40194-021-01218-9 SN - 0043-2288 SP - 1 EP - 16 PB - Springer Nature Switzerland AG AN - OPUS4-54064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Richter, Tim A1 - Mente, Tobias A1 - Mayr, P. A1 - Nitsche, A. T1 - Thickness and microstructure effect on hydrogen diffusion in creep-resistant 9 % Cr P92 steel and P91 weld metal N2 - Martensitic 9 %-Cr steels like P91 and P92 show susceptibility to delayed hydrogen assisted cracking depending on their microstructure. In that connection, effective hydrogen diffusion coefficients are used to assess the possible time-delay. The small number of available diffusion coefficients varies already at room temperature by several orders of magnitude (mostly regarded as result of present microstructure). Especially P91 weld metal diffusion coefficients are rare so far. For that reason, electrochemical permeation experiments had been conducted using P92 base metal and P91 weld metal (in as-welded and heat-treated condition) with different thicknesses. The diffusion coefficients are calculated by two methods (time-lag and inflection point method) were performed. The results show that, despite of microstructural effects, the sample thickness must be considered as it influences the calculated diffusion coefficients. Finally, the comparison of calculated and measured hydrogen concentrations (determined by carrier gas hot extraction) enables the identification of realistic diffusion coefficients. T2 - IIW Annual Assembly, Meeting of Commission IX-C CY - Online meeting DA - 15.07.2021 KW - Creep-resistant steel KW - Diffusion KW - Electrochemical permeation KW - Hydrogen KW - Welding PY - 2021 AN - OPUS4-53048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Mente, Tobias T1 - Hydrogen embrittlement of steels N2 - Hydrogen assisted cracking of metals is a serious issue in the safety of components, espcially in case of welding. The current presentation gives an overview on specialized testing procedures at Department 9 including the quantitative determination of hydrogen. T2 - HYDROGENIUS BAM Joint Hydrogen Symposium CY - Online meeting DA - 06.07.2021 KW - Hydrogen KW - Embrittlement KW - Degradation KW - Carrier gas hot extraction KW - Welding PY - 2021 AN - OPUS4-53049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Joining Processes in Hydrogen Technologies - Current need and future R&D activites, a review N2 - This study gives an overview on the important field of joining processes for component fabrication in hydrogen technologies. For that reason, the current need and future research and developement activites are highlighted for the different technological field of hydrogen generation, storage, transport and use. In addition, the emerging field of additive manufacturing is included. Finally, some remarks are given for necessary changes in the standardization and its challenges. T2 - 46th Seminar - Additive Manufacturing, Hydrogen, Energy, Integrity CY - Online meeting DA - 12.10.2021 KW - Hydrogen KW - Joining process KW - Welding KW - Review KW - Research and Development PY - 2021 AN - OPUS4-53554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Richter, Tim A1 - Mente, Tobias A1 - Mayr, P. A1 - Nitsche, A. T1 - Thickness and microstructure effect on hydrogen diffusion in creep-resistant 9 % Cr P92 steel and P91 weld metal N2 - Martensitic 9 %-Cr steels like P91 and P92 show susceptibility to delayed hydrogen assisted cracking depending on their microstructure. In that connection, effective hydrogen diffusion coefficients are used to assess the possible time-delay. The small number of available diffusion coefficients varies already at room temperature by several orders of magnitude (mostly regarded as result of present microstructure). Especially P91 weld metal diffusion coefficients are rare so far. For that reason, electrochemical permeation experiments had been conducted using P92 base metal and P91 weld metal (in as-welded and heat-treated condition) with different thicknesses. The diffusion coefficients are calculated by two methods (time-lag and inflection point method) were performed. The results show that, despite of microstructural effects, the sample thickness must be considered as it influences the calculated diffusion coefficients. Finally, the comparison of calculated and measured hydrogen concentrations (determined by carrier gas hot extraction) enables the identification of realistic diffusion coefficients. T2 - IIW Intermediate Meeting, Comm. IX-C "Welding of creep and heat-resistant materials" CY - Online meeting DA - 08.03.2021 KW - Hydrogen KW - Welding KW - Diffusion KW - Creep-resistant steel KW - Electrochemical permeation PY - 2021 AN - OPUS4-52239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Rhode, Michael A1 - Wimpory, R. C. A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relief cracking during heat treatment of a creep-resistant 13CrMoV steel: Part III - Assessment of residual stresses from small-scale to real component welds JF - Welding in the world N2 - For higher operational temperatures and pressures required in petrochemical plants, the modified 13CrMoV9-10 steel was developed providing high resistance against creep and compressed hydrogen. Extreme care during the welding procedure is necessary for this steel, attributed to low toughness, high strength in as-welded state, and increased susceptibility to stress relief cracking (SRC) during post-weld heat treatment (PWHT). Previous research of SRC in creep-resistant steels discussed mainly thermal and metallurgical factors. Few previous findings addressed the influences of welding procedure on crack formation during PWHT considering real-life manufacturing conditions. These investigations focus on effects of welding heat control on stresses during welding and subsequent PWHT operations close to realistic restraint and heat dissipation conditions using a special 3D testing facility, which was presented in parts I and II of this contribution. Part III addresses investigations on residual stress evolution affecting crack formation and discusses the transferability of results from large-scale testing to laboratory-scale. Experiments with test set-ups at different scales under diverse rigidity conditions and an assessment of the residual stresses of the weld-specimens using X-ray (surface near) and neutron diffraction analysis (bulk) were performed. This study aims to provide a way of investigating the SRC behaviour considering component-specific residual stresses via small-scale testing concepts instead of expensive weld mock-ups. KW - Welding KW - Creep-resistant steel KW - Residual stresses KW - Post-weld heat treatment KW - Stress relief cracking PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524403 DO - https://doi.org/10.1007/s40194-021-01101-7 SN - 1878-6669 VL - 65 SP - 1671 EP - 1685 PB - Springer CY - Berlin AN - OPUS4-52440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Manzoni, Anna Maria A1 - Schneider, M. A1 - Laplanche, G. T1 - Welding of high-entropy alloys and compositionally complex alloys - an overview JF - Welding in the World N2 - High-entropy alloys (HEAs) and compositionally complex alloys (CCAs) represent new classes of materials containing five or more alloying elements (concentration of each element ranging from 5 to 35 at. %). In the present study, HEAs are defined as single-phase solid solutions; CCAs contain at least two phases. The alloy concept of HEAs/CCAs is fundamentally different from most conventional alloys and promises interesting properties for industrial applications (e.g., to overcome the strength-ductility trade-off). To date, little attention has been paid to the weldability of HEAs/CCAs encompassing effects on the welding metallurgy. It remains open whether welding of HEAs/CCAs may lead to the formation of brittle intermetallics and promote elemental segregation at crystalline defects. The effect on the weld joint properties (strength, corrosion resistance) must be investigated. The weld metal and heat-affected zone in conventional alloys are characterized by non-equilibrium microstructural evolutions that most probably occur in HEAs/CCAs. The corresponding weldability has not yet been studied in detail in the literature, and the existing information is not documented in a comprehensive way. Therefore, this study summarizes the most important results on the welding of HEAs/CCAs and their weld joint properties, classified by HEA/CCA type (focused on CoCrFeMnNi and AlxCoCrCuyFeNi system) and welding process. KW - High-entropy alloy KW - Compositionally complex alloy KW - Welding KW - Properties KW - Review PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527068 DO - https://doi.org/10.1007/s40194-021-01110-6 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-52706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -