TY - GEN A1 - Smales, G. J. A1 - Pauw, Brian Richard T1 - DACHS/MOFs/AutoMOFs_1/Synthesis N2 - The DACHS (Database for Automation, Characterization and Holistic Synthesis) project aims to create completely traceable experimental data, covering syntheses, measurements, analyses, and interpretations. DACHS_MOFs focuses on the synthesis and characterisation of metal-organic frameworks, across multiple, automation-assisted experimental series (AutoMOFs), with the overall goal of producing reproducible MOF samples through tracking of the synthesis parameters. DACHS_MOFs is simultaneously used to test the DACHS principles. This upload contain synthesis data from AutoMOFs_1 in HDF5 format (.h5). Each .h5 file contains detailed information on the chemical, experimenal, and synthesis parameters used during the synthesis of a single AutoMOF sample. KW - Synthesis KW - Automation KW - Traceability KW - Procedure PY - 2024 DO - https://doi.org/10.5281/zenodo.11236031 PB - Zenodo CY - Geneva AN - OPUS4-60243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Hörmann, Anja T1 - Trinamic TMCL IOC for exposing Trinamics motor controllers to EPICS CA N2 - Trinamic TMCL IOC is a Python package designed for controlling stepper motors connected to a Trinamic board using the TMCL language (all boards supported by PyTrinamic should now work, has been tested on the TMCM 6110 and the TMCM 6214). Since it is implementing the TMCL protocol, it should be easy to adapt to other Trinamic motor controller boards. This package assumes the motor controller is connected over a machine network via a network-to-serial converter, but the underlying PyTrinamic package allows for other connections too. This allows the control of attached motors via the EPICS Channel-Access virtual communications bus. If EPICS is not desired, plain Pythonic control via motion_control should also be possible. An example for this will be provided in the example.ipynb Jupyter notebook. This package leverages Caproto for EPICS IOCs and a modified PyTrinamic library for the motor board control, and interfaces between the two via an internal set of dataclasses. Configuration for the motors and boards are loaded from YAML files (see tests/testdata/example_config.yaml). The modifications to PyTrinamic involved extending their library with a socket interface. This was a minor modification that should eventually find its way into the official package (a pull request has been submitted). KW - Instrumentation KW - Motor controller KW - EPICS KW - Channel access KW - Instrument control KW - Laboratory automation PY - 2024 DO - https://doi.org/10.5281/zenodo.10792593 PB - Zenodo CY - Geneva AN - OPUS4-59624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Moeez, A. A1 - Hörmann, Anja A1 - Breßler, Ingo T1 - Example configurations and test cases for the Python HDF5Translator framework. N2 - This is a set of use examples for the HDF5Translator framework. This framework lets you translate measurement files into a different (e.g. NeXus-compatible) structure, with some optional checks and conversions on the way. For an in-depth look at what it does, there is a blog post here. The use examples provided herein are each accompanied by the measurement data necessary to test and replicate the conversion. The README.md files in each example show the steps necessary to do the conversion for each. We encourage those who have used or adapted one or more of these exampes to create their own conversion, to get in touch with us so we may add your example to the set. KW - Measurement data conversion KW - Data conversion KW - HDF5 KW - NeXus KW - NXsas KW - Framework KW - Python PY - 2024 DO - https://doi.org/10.5281/zenodo.10925971 PB - Zenodo CY - Geneva AN - OPUS4-59796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Hörmann, Anja A1 - Moeez, Abdul A1 - Breßler, Ingo T1 - BAMresearch/HDF5Translator: A Framework for translating and transforming data between HDF5 files N2 - HDF5Translator is a Python framework for translating and transforming data between HDF5 files. It supports operations like unit conversion, dimensionality adjustments, and subtree copying, making it suitable for managing and manipulating a wide range of scientific datasets. KW - Measurement data conversion KW - Data conversion KW - HDF5 KW - NeXus KW - NXsas KW - Framework KW - Python KW - Methodology PY - 2024 DO - https://doi.org/10.5281/zenodo.10927639 PB - Zenodo CY - Geneva AN - OPUS4-59797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - DACHS/MOFs/AutoMOFs_3/Synthesis N2 - The DACHS (Database for Automation, Characterization and Holistic Synthesis) project aims to create completely traceable experimental data, covering syntheses, measurements, analyses, and interpretations. DACHS_MOFs focuses on the synthesis and characterisation of metal-organic frameworks, across multiple, automation-assisted experimental series (AutoMOFs), with the overall goal of producing reproducible MOF samples through tracking of the synthesis parameters. DACHS_MOFs is simultaneously used to test the DACHS principles. This upload contain synthesis data from AutoMOFs_3 in HDF5 format (.h5). Each .h5 file contains detailed information on the chemical, experimenal, and synthesis parameters used during the synthesis of a single AutoMOF sample. KW - Synthesis KW - Automation KW - Traceability KW - Procedure PY - 2024 DO - https://doi.org/10.5281/zenodo.11237815 PB - Zenodo CY - Geneva AN - OPUS4-60633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - DACHS/MOFs/AutoMOFs_2/Synthesis N2 - The DACHS (Database for Automation, Characterization and Holistic Synthesis) project aims to create completely traceable experimental data, covering syntheses, measurements, analyses, and interpretations. DACHS_MOFs focuses on the synthesis and characterisation of metal-organic frameworks, across multiple, automation-assisted experimental series (AutoMOFs), with the overall goal of producing reproducible MOF samples through tracking of the synthesis parameters. DACHS_MOFs is simultaneously used to test the DACHS principles. This upload contain synthesis data from AutoMOFs_2 in HDF5 format (.h5). Each .h5 file contains detailed information on the chemical, experimenal, and synthesis parameters used during the synthesis of a single AutoMOF sample. KW - Automation KW - Procedure KW - Synthesis KW - Traceability PY - 2024 DO - https://doi.org/10.5281/zenodo.11236074 PB - Zenodo CY - Geneva AN - OPUS4-60611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fritzsche, Sven A1 - Weimann, Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz T1 - 2PP-TestArtifact N2 - This repository contains a test artifact (TA), also called test structure, designed for two-photon polymerization (also known as Direct Laser Writing (DLW) or Two/Multi-photon lithography (2PA/MPA)). Test artifacts can be used to compare structures, to check options used by the slicer, check the state of the 2PP machine itself or to get a construction guidelines for a certain combination of power, velocity and settings. The associated paper can be found here: https://dx.doi.org/10.1088/1361-6501/acc47a General ideas behind the test artifact: 1. optimized for 2PP-DLW 2. should be fast and easy to analyse with optical microscopy or 3. scanning electron microscopy without tilt. 3. short time to fabricate 4. include a reasonable amount of different features 5. bulk and small structures on the substrate KW - Reference structure KW - Calibration structure KW - Test structure KW - Laser writing KW - Two-photon polymerization KW - 3D printing KW - Additive manufacturing KW - Microprinting KW - Multi-photon light structuring PY - 2023 DO - https://doi.org/10.6084/m9.figshare.22285204.v2 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-57165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Kolmangadi, Mohamed Aejaz T1 - X-ray scattering datasets associated with the publication "Molecular Mobility of Polynorbornenes with Trimethylsiloxysilyl side groups: Influence of the Polymerization Mechanism" N2 - X-ray scattering datasets for samples described in the 2022 publication "Molecular Mobility of Polynorbornenes with Trimethylsiloxysilyl side groups: Influence of the Polymerization Mechanism". This dataset includes both raw and processed X-ray scattering data for samples APTCN and MPTCN, alongside background measurements files (BKG). KW - X-ray scattering KW - SAXS KW - MOUSE KW - Membrane polymers KW - Microporous polymers PY - 2023 DO - https://doi.org/10.5281/zenodo.7621204 PB - Zenodo CY - Geneva AN - OPUS4-56972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Kolmangadi, Mohamed Aejaz T1 - X-ray scattering datasets associated with the publication "Side chain length dependent dynamics and conductivity in self assembled ion channels" N2 - X-ray scattering datasets for samples described in the 2022 publication "Side chain length dependent dynamics and conductivity in self assembled ion channels". This dataset includes both raw and processed X-ray scattering data for samples ILC8, ILC10, ILC12, ILC14 and ILC16 alongside background measurement files (BKG). KW - X-ray scattering KW - SAXS KW - MOUSE KW - Columnar ionic liquid crystals KW - Liquid crystals PY - 2023 DO - https://doi.org/10.5281/zenodo.7621358 PB - Zenodo CY - Geneva AN - OPUS4-56973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - Test artifact for fs-LDW N2 - Data to generate the given graphs in the publication as well as raw images of the shown images. KW - stl code KW - Images KW - Graphs KW - Data PY - 2023 DO - https://doi.org/10.5281/zenodo.7671945 PB - Zenodo CY - Geneva AN - OPUS4-58096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Raw and processed X-ray scattering datasets for: "Entering a new dimension in powder processing for advanced ceramics shaping" N2 - This dataset is a complete set of raw, processed and analyzed data, associated with the manuscript mentioned in the title. All associated metadata and processing history has been added. Particle size distribution analyses using McSAS are included as well. The samples consisted of a 4.2 mass% dispersion of yttria-stabilized zirconia nanoparticles in a cross-linked matrix. The measurements show a good dispersion with minimal agglomeration. The wide-angle region shows diffraction information consistent with zirconia. KW - X-ray scattering KW - Nanocomposite KW - Ceramic microprinting KW - Yttria-stabilized zirconia KW - SAXS KW - Nanomaterials KW - Two-photon polymerization KW - Transparency KW - Mechanical testing PY - 2023 DO - https://doi.org/10.5281/zenodo.7498647 PB - Zenodo CY - Geneva AN - OPUS4-56766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Kolmangadi, Mohamed Aejaz T1 - X-ray scattering datasets associated with the publication "Molecular Dynamics of Janus Polynorbornenes: Glass Transitions and Nanophase Separation" N2 - X-ray scattering datasets for samples described in the 2020 publication "Molecular Dynamics of Janus Polynorbornenes: Glass Transitions and Nanophase Separation". This dataset includes both raw and processed X-ray scattering data for samples PTCHSiO-Pr, Bu, Hx, Oc and De, alongside background measurements files (BKG). This data was collected using the MOUSE project (instrument and methodology). KW - X-ray scattering KW - SAXS KW - MOUSE KW - Alkyls KW - Polymers PY - 2023 DO - https://doi.org/10.5281/zenodo.7614835 PB - Zenodo CY - Geneva AN - OPUS4-56971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - Technical Drawings for The MOUSE Modular Sample Holder: Capillary Flow-through Cell N2 - OpenSCAD, STL and technical drawings for the capillary flow-through cell designed primarily for use with The MOUSE instruments. This flow-through cell can be used in conjunction with: - Modular sample holder (10.5281/zenodo.7499416) - Solid sample rack/plate (10.5281/zenodo.7499424) - Laser-cut sample holder (10.5281/zenodo.7499437) KW - X-ray scattering KW - SAXS KW - Sample holder KW - MOUSE PY - 2023 DO - https://doi.org/10.5281/zenodo.7499421 PB - Zenodo CY - Geneva AN - OPUS4-56776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - Technical Drawings for The MOUSE Modular Sample Holder: Solid Sample Rack/Plate N2 - OpenSCAD, STL and technical drawings for the solid sample rack designed primarily for use with The MOUSE instruments. This solid sample rack can be used in conjunction with: - Laser-cut sample holder (10.5281/zenodo.7499437) - Modular sample holder (10.5281/zenodo.7499416) - Capillary flow-cell for liquid samples (10.5281/zenodo.7499421) KW - X-ray scattering KW - SAXS KW - Sample holder KW - MOUSE PY - 2023 DO - https://doi.org/10.5281/zenodo.7499424 PB - Zenodo CY - Geneva AN - OPUS4-56778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Small-angle scattering data analysis round robin dataset - Original for participants N2 - These are four datasets that were made available to the participants of the Small-angle Scattering data analysis round robin. The intent was to find out how comparable results from different researchers are, who analyse exactly the same processed, corrected dataset. In this repository, there are: 1) a PDF document with more details for the study, 2) the datasets for people to try and fit, 3) an Excel spreadsheet to document the results. Datasets 1 and 2 were modified from: Deumer, Jerome, & Gollwitzer, Christian. (2022). npSize_SAXS_data_PTB (Version 5) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5886834 Datasets 3 and 4 were collected in-house on the MOUSE instrument. KW - Round robin KW - SAXS KW - Small angle scattering KW - SANS KW - X-ray KW - Neutron KW - Human factor KW - Data analysis KW - Data fitting KW - Human influence PY - 2023 DO - https://doi.org/10.5281/zenodo.7506365 PB - Zenodo CY - Geneva AN - OPUS4-56799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Rosalie, Julian T1 - Small-angle scattering data analysis round robin - Anonymized results, figures and Jupyter notebook N2 - The intent of this round robin was to find out how comparable results from different researchers are, who analyse exactly the same processed, corrected dataset. This zip file contains the anonymized results and the jupyter notebook used to do the data processing, analysis and visualisation. Additionally, TEM images of the samples are included. KW - Round robin KW - Small-angle scattering KW - Data analysis PY - 2023 DO - https://doi.org/10.5281/zenodo.7509710 PB - Zenodo CY - Geneva AN - OPUS4-56803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - Technical Drawings for The MOUSE Modular Sample Holder: Laser-cut Sample Holder N2 - PDF file for the laser-cut sample holder designed primarily for use with The MOUSE instruments. This sample holder can be used in conjunction with: - Solid sample rack/plate (10.5281/zenodo.7499424) - Modular sample holder (10.5281/zenodo.7499416) - Capillary flow-cell for liquid samples (10.5281/zenodo.7499421) KW - X-ray scattering KW - SAXS KW - Sample holder KW - MOUSE PY - 2023 DO - https://doi.org/10.5281/zenodo.7499437 PB - Zenodo CY - Geneva AN - OPUS4-56779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Röder, Bettina A1 - Smales, Glen Jacob T1 - High temperature in-vacuum flow-through sample holder (sandwich design version 1.1) N2 - Technical drawings and documents for building a compact, heated, vacuum compatible flow-through sample holder. This holder is in use at the BAM MOUSE instrument as well as at the I22 beamline at the Diamond Light Source (see references for instrument details). This holder has several features: - The holder can be used in vacuum environments as well as in atmosphere - It has two G 1/4" UNF fittings to attach HPLC tubing for (optionally) flowing a medium through the sample cell - There are two additional (unflowed) sample positions for backgrounds and calibrants, held at the same temperature - The low-mass design coupled with a 250W heating element can achieve heating rates of 1 degree C per second, when coupled (for example) with an Omron E5CC PID controller. - The sample holder insert can be made from various materials depending on the application. Sealing the sample from the vacuum can be achieved using kapton, teflon or Magic tape, depending on the temperature requirements. The inlet and outlet holes will need to be punctured with a needle to enable flow. - Large exit cones ensure a clear exit angle of at least 45 degrees two theta. - It has been tested with temperatures up to 400 degrees C. - Compression area has been raised and polished to ensure a good vacuum seal. KW - SAXS KW - X-ray scattering KW - Sample cell KW - Sample holder KW - Heated KW - Flow-through KW - Vacuum compatible KW - XRD KW - WAXS PY - 2023 DO - https://doi.org/10.5281/zenodo.7501030 PB - Zenodo CY - Geneva AN - OPUS4-56777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard T1 - The SPONGE v.1.0.0: Modeling scattering of shapes by STL input, with absolute intensities and size distribution. N2 - Simulates X-ray and Neutron scattering patterns from arbitrary shapes defined by STL files. Features: - Uses multithreading to compute a number of independent solutions, then uses the variance of the results to estimate an uncertainty on the output. - Can be launched from the command line using an excel sheet to define settings, or from a jupyter notebook. - Outputs scattering patterns in absolute units if the contrast is set. - A Gaussian size distribution is available, where the relative scaling of objects for each repetion can be varied. Recommended to be used with limited width (max. 10%) to avoid artefacts. - Writes results with settings to an archival HDF5 file. Application examples: This software has been used in several studies to date. For example, it has been used here to simulate a model scattering pattern for a cuboid shape, which was then fed forward into the McSAS3 analysis program for analyzing scattering patterns of polydisperse cuboids. A second use is here, where it was used for the modeling of flattened helices. In this paper, scattering pattern features could be matched with particular morphological changes in the structure. Lastly, this paper has an example where it was used to validate the analytical analysis model, and explore the realistic limits of application of the analytical model. KW - Software KW - Scattering pattern analysis KW - Scattering pattern simulation KW - X-ray KW - Neutron KW - Command-line interface KW - Scattering pattern KW - STL file input KW - Python KW - Arbitrary shapes PY - 2023 DO - https://doi.org/10.6084/m9.figshare.21857130.v1 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-56815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard T1 - McSAS3 N2 - McSAS3 is a refactored version of the original McSAS (see DOI 10.1107/S1600576715007347). This software fits scattering patterns to obtain size distributions without assumptions on the size distribution form. The refactored version has some neat features: - Multiprocessing is included, spread out over as many cores as number of repetitions! - Full state of the optimization is stored in an organized HDF5 state file. - Histogramming is separate from optimization and a result can be re-histogrammed as many times as desired. - SasModels allow a wide range of models to be used - If SasModels does not work (e.g. because of gcc compiler issues on Windows or Mac), an internal sphere model is supplied - Simulated data of the scattering of a special shape can also be used as a McSAS fitting model. Your models are infinite! - 2D fitting also works. KW - X-ray scattering KW - Polydispersity KW - Monte carlo KW - Scattering pattern analysis KW - Analysis approach KW - Neutron scattering KW - Automation KW - Command line PY - 2023 DO - https://doi.org/10.6084/m9.figshare.21814128.v1 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-56787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -