TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 8) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 U6 - https://doi.org/10.5281/zenodo.7852823 PB - Zenodo CY - Geneva AN - OPUS4-57448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - A Quantum-Chemical Bonding Database for Solid-State Materials (JSONS: Part 1) N2 - This database consists of bonding data computed using Lobster for 1520 solid-state compounds consisting of insulators and semiconductors. It consists of two kinds of json files. Smaller lightweight JSONS consists of summarized bonding information for each of the compounds. The files are named as per ID numbers in the materials project database. Here we provide also the larger computational data json files for 700 compounds. This files consists of all important LOBSTER computation output files data stored as dictionary. KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 U6 - https://doi.org/10.5281/zenodo.7794811 PB - Zenodo CY - Geneva AN - OPUS4-57439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - A Quantum-Chemical Bonding Database for Solid-State Materials (JSONS: Part 2) N2 - This database consists of bonding data computed using Lobster for 1520 solid-state compounds consisting of insulators and semiconductors. The files are named as per ID numbers in the materials project database. Here we provide the larger computational data JSON files for the rest of the 820 compounds. This file consists of all important LOBSTER computation output files data stored as a dictionary. KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 U6 - https://doi.org/10.5281/zenodo.7821727 PB - Zenodo CY - Geneva AN - OPUS4-57440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 1) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) Refer to README.md file instructions to reproduce the data. KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 U6 - https://doi.org/10.5281/zenodo.7852082 PB - Zenodo CY - Geneva AN - OPUS4-57441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 2) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 U6 - https://doi.org/10.5281/zenodo.7852107 PB - Zenodo CY - Geneva AN - OPUS4-57442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 3) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 U6 - https://doi.org/10.5281/zenodo.7852791 PB - Zenodo CY - Geneva AN - OPUS4-57443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 4) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 U6 - https://doi.org/10.5281/zenodo.7852798 PB - Zenodo CY - Geneva AN - OPUS4-57444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 5) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 U6 - https://doi.org/10.5281/zenodo.7852806 PB - Zenodo CY - Geneva AN - OPUS4-57445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 6) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 U6 - https://doi.org/10.5281/zenodo.7852808 PB - Zenodo CY - Geneva AN - OPUS4-57446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 7) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 U6 - https://doi.org/10.5281/zenodo.7852820 PB - Zenodo CY - Geneva AN - OPUS4-57447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Laskina, Sofya A1 - Naik, Aakash Ashok A1 - Smales, Glen Jacob A1 - George, Janine A1 - Breßler, Ingo A1 - Benner, Philipp T1 - Jupyter notebook and VASP calculation details accompanying the manuscript: "Ultima Ratio: Simulating wide-range X-ray scattering and diffraction" N2 - ## Summary: This notebook and associated datasets (including VASP details) accompany a manuscript available on the ArXiv (https://doi.org/10.48550/arXiv.2303.13435) and hopefully soon in a journal as short communication as well. Most of the details needed to understand this notebook are explained in that paper with the same title as above. For convenience, the abstract is repeated here: ## Paper abstract: We demonstrate a strategy for simulating wide-range X-ray scattering patterns, which spans the small- and wide scattering angles as well as the scattering angles typically used for Pair Distribution Function (PDF) analysis. Such simulated patterns can be used to test holistic analysis models, and, since the diffraction intensity is presented coupled to the scattering intensity, may offer a novel pathway for determining the degree of crystallinity. The ``Ultima Ratio'' strategy is demonstrated on a 64-nm Metal Organic Framework (MOF) particle, calculated from $Q<0.01$\,$\mathrm{nm}^{-1}$ up to $Q\approx150$\,$\mathrm{nm}^{-1}$, with a resolution of 0.16\,\AA. The computations exploit a modified 3D Fast Fourier Transform (3D-FFT), whose modifications enable the transformations of matrices at least up to $8000^3$ voxels in size. Multiple of these modified 3D-FFTs are combined to improve the low-$Q$ behaviour. The resulting curve is compared to a wide-range scattering pattern measured on a polydisperse MOF powder. While computationally intensive, the approach is expected to be useful for simulating scattering from a wide range of realistic, complex structures, from (poly-)crystalline particles to hierarchical, multicomponent structures such as viruses and catalysts. KW - X-ray KW - Simulation KW - Scattering KW - MOUSE KW - Nanomaterials KW - XRD KW - SAXS KW - PDF KW - total scattering KW - 3D Fourier Transform KW - High Resolution KW - FFT PY - 2023 UR - https://doi.org/10.48550/arXiv.2303.13435 U6 - https://doi.org/10.5281/zenodo.7764044 PB - Zenodo CY - Geneva AN - OPUS4-57207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Muth, Thilo T1 - MassIVE MSV000089620 - Critical Assessment of MetaProteome Investigation (CAMPI): A multi-lab comparison of established workflows N2 - Metaproteomics, the study of the collective proteome within a microbial ecosystem, has substantially grown over the past few years. This growth comes from the increased awareness that it can powerfully supplement metagenomics and metatranscriptomics analyses. Although metaproteomics is more challenging than single-species proteomics, its added value has already been demonstrated in various biosystems, such as gut microbiomes or biogas plants. Because of the many challenges, a variety of metaproteomics workflows have been developed, yet it remains unclear what the impact of the choice of workflow is on the obtained results. Therefore, we set out to compare several well-established workflows in the first community-driven, multi-lab comparison in metaproteomics: the critical assessment of metaproteome investigation (CAMPI) study. In this benchmarking study, we evaluated the influence of different workflows on sample preparation, mass spectrometry acquisition, and bioinformatic analysis on two samples: a simplified, lab-assembled human intestinal sample and a complex human fecal sample. We find that the same overall biological meaning can be inferred from the metaproteome data, regardless of the chosen workflow. Indeed, taxonomic and functional annotations were very similar across all sample-specific data sets. Moreover, this outcome was consistent regardless of whether protein groups or peptides, or differences at the spectrum or peptide level were used to infer these annotations. Where differences were observed, those originated primarily from different wet-lab methods rather than from different bioinformatic pipelines. The CAMPI study thus provides a solid foundation for benchmarking metaproteomics workflows, and will therefore be a key reference for future method improvement. [doi:10.25345/C5SX64D9M] [dataset license: CC0 1.0 Universal (CC0 1.0)] KW - Benchmarking KW - Data set PY - 2021 U6 - https://doi.org/10.25345/c5sx64d9m PB - University of California CY - San Diego AN - OPUS4-58087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -