TY - JOUR A1 - Baglo, K. A1 - Sauermoser, M. A1 - Lid, M. A1 - Paschke, T. A1 - Bin Afif, A. A1 - Lunzer, M. A1 - Bock, Robert A1 - Steinert, M. A1 - Flaten, A. A1 - Torgersen, J. T1 - Overcoming the transport limitations of photopolymer-derived architected carbon N2 - Photopolymer derived carbon grows in popularity, yet the range in available feature sizes is limited. Here we focus on expanding the field to low surface to volume ratio (SVR) structures. We describe a high temperature acrylic photopolymerizable precursor with FTIR and DSC and develop a thermal inert-gas treatment for producing architected carbon in the mm scale with SVR of 1.38 x10-3 μm-1. Based on TGA and MS, we distinguish two thermal regimes with activation energies of ~79 and 169 kJ mol-1, which we reason with mechanisms during the polymer’s morphologic conversion between 300 - 500 °C. The temperature range of the major dimensional shrinkage (300-440 °C, 50%) does not match the range of the largest alteration in elemental composition (440-600 °C, O/C 0.25-0.087%). The insights lead to an optimized thermal treatment with an initial ramp (2 °C min-1 to 350 °C), isothermal hold (14h), post hold ramp (0.5 °C min-1 to 440 °C) and final ramp (10 °C min-1 to 1000 °C). The resulting carbon structures are dimensionally stable, non-porous at the μm scale, and comprise an unprecedented variation in feature sizes (from mm to μm scale). The findings shall advance architected carbon to industrially relevant scales. KW - Carbon KW - Photopolymer KW - Transport limitations KW - Porous materials KW - Additive manufacturing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575038 DO - https://doi.org/10.1002/admt.202300092 SN - 2365-709X SP - 2300092 PB - Wiley-VCH GmbH AN - OPUS4-57503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Konert, Florian A1 - Popiela, Bartosz A1 - Sarif, Raduan T1 - H2Safety@BAM: Competence Center for safe hydrogen technologies N2 - Presentation of the competence center H2Safety@BAM at the European PhD Hydrogen Conference 2024 in Ghent, Belgium. T2 - European PhD Hydrogen Conference 2024 (EPHyC2024) CY - Ghent, Belgium DA - 20.03.2024 KW - H2safety KW - Hydrogen KW - Safety KW - Competence center PY - 2024 AN - OPUS4-59756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bock, Robert T1 - Bundesanstalt für Materialforschung und –prüfung - Reallabor Wasserstofftankstelle N2 - Die Bundesanstalt für Materialforschung und -prüfung (BAM) ist eine wissenschaftlich-technische Bundesoberbehörde mit Sitz in Berlin, die zum Geschäftsbereich des Bundesministeriums für Wirtschaft und Klimaschutz gehört. Unsere Hauptaufgabe besteht darin, durch Forschung, Prüfung und Beratung zum Schutz von Mensch, Umwelt und Sachgütern beizutragen. Dies umfasst die Bewertung der Sicherheit von Materialien, Stoffen und Produkten sowie die Entwicklung von Methoden und Standards in Bereichen wie Materialwissenschaft, Werkstofftechnik und Chemie. Wir forschen und prüfen an drei Standorten in Berlin, sowie auf unserem Testgelände Technische Sicherheit in Horstwalde in Brandenburg. Hier haben wir weitreichende Möglichkeiten, Versuche im Realmaßstab durchzuführen. Besonderes Augenmerk möchten wir heute auf das Reallabor Wasserstofftankstelle richten. Diese voll digitalisierte technische Anlage, die die Wertschöpfungskette von Wasserstoff abbildet, wurde gerade eröffnet und steht nun Partnern aus Industrie und Forschung sowie kleinen mittelständischen Unternehmen oder Start-Ups zum gemeinsamen Forschen und Erproben neuer Technologie zur Verfügung. Ihre Besonderheiten umfassen z.B. eine umfassende Prozessüberwachung nach Industrie 4.0, die dafür nötige IT/OT Infrastruktur, Digitale Zwillinge auf verschiedenen Ebenen, großflächige Aufstellung und baulicher Schutz, Gas-Probenahmestellen auf dem Weg durch die Anlage und H2-Sensornetzwerke zur frühzeitigen Erfassung und Ortung von Leckagen. T2 - Wasserstoffforum Lausitz CY - Senftenberg, Germany DA - 03.11.2025 KW - Wasserstoff KW - Reallabor KW - TTS PY - 2025 AN - OPUS4-64697 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bock, Robert T1 - Pilotprojekt Wasserstofftankstelle - Session 2: Verlässliche Wassertofftankstellen N2 - Was ist QI? Qualitätsinfrastruktur – Das Zusammenwirken von nationalen Institutionen im Bereich der Metrologie, Normung und Standardisierung, Akkreditierung, Konformitätsbewertung und Marktüberwachung, mit dem Ziel die Qualitätssicherung bei Produkten und Prozessen in Deutschland zu gewährleisten. Unser Ziel ist es, unsere bewährte Qualitätsinfrastruktur (QI) noch besser zu machen und so einen Beitrag zur Lösung von sozioökonomischen, ökologischen und technologischen Herausforderungen unserer Zeit zu leisten. Eine der bedeutendsten technologischen Herausforderungen unserer Zeit ist die Digitalisierung. Die zentralen Akteure der deutschen QI wollen diese digitalisieren. Beteiligte Institutionen sind aktuell BAM (Konformitätsbewertungen in bestimmten Bereichen), DAKKS (Akkreditierung), DIN/DKE (Normung), PTB (Metrologie). Wir wollen also ein Reallabor errichten, das die Wertschöpfungskette einer Tankstelle abbildet, also eine Wasserstofftankstelle beinhaltet, die dann mit erweiterter Sensorik ausgestattet werden soll. Somit sollen digitale Prozesse abgebildet werden können sowie sensorgestützte Verfahren zur qualitätsgesicherten Datenerfassung und -auswertung genutzt werden. Diese gesammelten Daten sollen dann in eine Dateninfrastruktur eingehen und mithilfe eines Datenmanagementsystems sowie künstlicher Intelligenz in einem Digitalen Zwilling zusammenlaufen, der die digitale Prozessüberwachung der Sicherheit möglich macht. Schließlich sollen die in QI Digital entwickelten digitalen Strukturelemente der QI erprobt werden, insbesondere die QI Cloud, Smart Standards und digitalen Zertifikate. Im Zusammenspiel ermöglicht das unter anderem die Entwicklung von Predictive Maintenance Verfahren für: 1. die Optimierung von Wartungszyklen und Minimierung von Ausfallzeiten Erhöhung der Betriebssicherheit durch frühzeitige Identifikation kritischer Zustände im Gesamtsystem 2. Entwicklung verlässlicher Qualitäts- und Sicherheitsstandards  3. Digital-gestützte Risikobeurteilung und Konformitätsbewertung Die im Pilotprojekte betrachteten Sicherheitsaspekte sind also zusammenfassbar als: a) Auswirkungsbetrachtungen bei möglichen Fehlfunktionen oder Defekten b) Die genannte vorrauschauende Instandhaltung und damit verbundene Lebensdauerprognose, die in Kombination eine bessere allgemeine Verfügbarkeit garantieren sollen Als Grundlage hierfür benötigen wir aber Änderungen im Bereich der technischen Regeln und Normen, um die neuen digitalen Werkzeuge zuzulassen und nutzbar zu machen. T2 - QI Forum 2022 CY - Berlin, Germany DA - 11.10.2022 KW - Wasserstoff KW - Qualitätsinfrastruktur KW - Digitalisierung PY - 2022 AN - OPUS4-61356 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bock, Robert T1 - Introduction Living Lab Hydrogen Refueling Station N2 - Die Bundesanstalt für Materialforschung und -prüfung (BAM) forscht und prüft für Sicherheit in Technik und Chemie an drei Standorten in Berlin, sowie auf dem Testgelände Technische Sicherheit in Horstwalde in Brandenburg. Hier haben wir weitreichende Möglichkeiten, Großversuche im Realmaßstab durchzuführen. Besonderes Augenmerk richten wir heute auf das Reallabor Wasserstofftankstelle. Diese voll digitalisierte technische Anlage, die die Wertschöpfungskette von Wasserstoff abbildet, wurde gerade eröffnet und steht nun Partnern aus Industrie und Forschung sowie kleinen mittelständischen Unternehmen oder Start-Ups zum gemeinsamen Forschen und Erproben neuer Technologie zur Verfügung. Ihre Besonderheiten umfassen z.B. eine umfassende Prozessüberwachung nach Industrie 4.0, die dafür nötige IT/OT Infrastruktur, Digitale Zwillinge auf verschiedenen Ebenen, großflächige Aufstellung und baulicher Schutz, Gas-Probenahmestellen auf dem Weg durch die Anlage und H2-Sensornetzwerke zur frühzeitigen Erfassung und Ortung von Leckagen. T2 - Sonderkolloquium H2safety@BAM CY - Berlin, Germany DA - 04.11.2025 KW - Wasserstoff KW - Reallabor KW - Digitalisierung PY - 2025 AN - OPUS4-64699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bock, Robert A1 - Mair, Georg W. T1 - Pilotprojekt "Verlässliche Wasserstofftechnologie" - Beispielanwendung für eine technische Anlage N2 - Kurzvorstellung des Pilotprojektes Verlässliche Wasserstofftechnologie in QI Digital. Anwendung der QI Digital Werkzeuge an einer technischen Anlage beispielhaft gezeigt anhand von sechs im Projekt entwickelten Demonstratoren. Unser erklärtes Ziel ist die Unterstützung des Markthochlaufs von Wasserstofftechnologien durch Digitalisierung der QI. Bei der Qualitätsinfrastruktur von technischen Anlagen geht es vor allem die Themen QI Dokumentation und Zugänglichkeit, Verfügbarkeit der Anlage und Informationen darüber, sowie Inspektionszyklen mit zeitaufwändigen und teuren manuellen Prüfungen. Mit dem Übergang zu einer digitalen QI streben wir hier an, eine kontinuierliche Überwachung des momentanen Gesundheitszustandes der Anlage und automatisierter Dokumentation hierüber, die fälschungssicher und vertraulich zugänglich gemacht werden kann, zu erreichen. Hierzu sollen die im Gesamtprojekt entwickelten QI Digital Werkzeuge zum Einsatz kommen. T2 - QI Forum 2024 CY - Berlin, Germany DA - 09.10.2024 KW - Wasserstoff KW - Qualitätsinfrastruktur KW - Digitalisierung PY - 2024 AN - OPUS4-61354 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bock, Robert A1 - Mair, Georg W. A1 - Tiebe, Carlo A1 - Melzer, Michael A1 - Klaus, Christian A1 - Nattuveettil, Keerthana A1 - Engel, Thomas A1 - Prager, Jens T1 - Eine digitale QI für technische Anlagen: Beispiel Wasserstofftankstelle (H2) N2 - Mit der Initiative QI-Digital werden völlig neue Perspektiven für das Sicherheitsmanagement und die Qualitätssicherung technischer Anlagen erschaffen. Unsere Forschung im Kontext einer Wasserstofftankstelle zeigt, wie digitale Innovationen und Verfahren die Herausforderungen effizienter und verlässlicher Qualitätssicherung für komplexe Anlagen bewältigen können. In diesem Vortrag werden Potentiale und Beispiele der digitalen QI für technische Anlagen demonstriert und diskutiert: Moderne Anlagenüberwachung mit digitalen Zwillingen und KI sowie Kalibriermanagement mithilfe digitaler Kalibrierscheine und elektronischem Siegel. T2 - 2. QI Digital Forum CY - Berlin, Germany DA - 10.10.2023 KW - Wasserstoff KW - Sensorik KW - Qualitätsinfrastruktur KW - Digitalisierung KW - Druckspeicher KW - Verwaltungsschale PY - 2023 AN - OPUS4-58599 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan T1 - Improving onset picking in ultrasonic testing by using a spectral entropy criterion N2 - In ultrasonic testing, material and structural properties of a specimen can be derived from the time-of-flight (ToF). Using signal features, such as the first peak or envelope maximum, to calculate the ToF is error-prone in multipath arrangements or dispersive and attenuating materials, which is not the case for the signal onset. Borrowing from seismology, researchers used the Akaike information criterion (AIC) picker to automatically determine onset times. The most commonly used formulation, Maeda's AIC picker, is reassessed and found to be based on inappropriate assumptions for signals often used in ultrasonic testing and dependent on arbitrary parameters. Consequently, an onset picker for ultrasonic through-transmission measurements is proposed, based on a spectral entropy criterion (SEC) to model the signal using the AIC framework. This SEC picker takes into account the spectral properties of the ultrasonic signal and is virtually free of arbitrary parameters. Synthetic and experimental data are used to compare the performance of SEC and AIC pickers. It is shown that the accuracy of onset picking is improved for densely sampled data. KW - Akaike information criterion picker KW - Nondestructive testing KW - Ultrasound KW - Time of flight PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594284 UR - https://pubs.aip.org/asa/jasa/article/155/1/544/3061576/Improving-onset-picking-in-ultrasonic-testing-by DO - https://doi.org/10.1121/10.0024337 SN - 0001-4966 VL - 155 IS - 1 SP - 544 EP - 554 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-59428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Camplese, Davide T1 - Safety assessment of MLI super-insulation systems for cryogenic liquid-hydrogen tanks in fire scenarios N2 - In the context of green energy transition, cryogenic tanks featuring MLI systems are emerging as a leading solution to store hydrogen in heavy-duty vehicles. However, the integrity of such tanks can be jeopardized by fire. In such a scenario, MLI materials degradation can occur, leaving the tank unprotected from the fire heat flux, with consequent rapid pressurization and a high risk of failure. This study presents an assessment of aluminum-based MLI for liquid hydrogen cryogenic tanks under fire exposure based on the estimation of the time to mechanical failure of the equipment. This is calculated through an innovative model that simulates the thermomechanical response of the tank, including the MLI thermal degradation and the pressure-relief valve (PRV) operation. The application to several case studies that consider a typical LH2 tank featuring a wide range of MLI configurations demonstrated the likelihood of failure in case of exposure to a hydrocarbon pool fire, providing also comprehensive insights into the impact of the insulation characteristics and operating conditions on the time to failure. T2 - 18th EFCE International Symposium on Loss Prevention and Safety Promotion in the Process Industries CY - Bologna, Italy DA - 08.06.2025 KW - LH2 KW - Insulation KW - Tanks KW - Fire KW - LNG PY - 2025 AN - OPUS4-63427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Camplese, Davide A1 - Cozzolino, Chiara A1 - Scarponi, Giordano Emrys A1 - Eberwein, Robert A1 - Otremba, Frank A1 - Cozzani, Valerio T1 - Safety Assessment of MLI Super-Insulation Systems for Cryogenic Liquid-Hydrogen Tanks in Fire Scenarios N2 - In the context of green energy transition, cryogenic tanks insulated by MLI and vacuum are emerging as a leading solution to store hydrogen in heavy-duty vehicles. However, the integrity of such tanks can be jeopardized by fire. In such a scenario, MLI materials degradation can occur, leaving the tank unprotected from the fire heat flux, with consequent rapid pressurization and a high risk of failure. This study presents a safety assessment of non-combustible MLI under fire exposure based on the estimation of the time to mechanical failure of the equipment. This is calculated through an innovative model that simulates the thermomechanical response of the tank, including the MLI thermal degradation and the pressure-relief valve (PRV) operation. The application to several case studies that consider a typical LH2 tank featuring a wide range of MLI configurations demonstrated the likelihood of failure in case of exposure to a hydrocarbon pool fire, providing also comprehensive insights into the impact of the insulation characteristics and operating conditions on the time to failure. T2 - Loss Prevention 2025 CY - Bologna, Italien DA - 09.06.2025 KW - LH2 KW - LNG KW - Fire KW - Insulation KW - Safety KW - Tank PY - 2025 DO - https://doi.org/10.3303/CET25116036 SN - 2283-9216 IS - 116 SP - 211 EP - 216 PB - AIDIC AN - OPUS4-63739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Otremba, Frank A1 - Cozzani, Valerio T1 - Comparative performance assessment of multilayer insulation (MLI) systems for liquid hydrogen vessels in fire scenarios N2 - Multilayer Insulation (MLI) systems are a mature technology for cryogenic liquid hydrogen (LH2) tank thermal insulation. Recent tests evidenced that MLI materials may be damaged when exposed to fire, resulting in critical safety issues in the case of accidents. Thus, an innovative approach to the performance assessment of aluminum and polyester-based MLIs for LH2 tanks in fire scenarios was developed. A specific model integrating the hightemperature degradation of MLIs and the thermodynamic modeling of the tank lading was coupled to specific key performance indicators. Results of the analysis applied to a vehicle-scale tank equipped with 80 MLI layers indicate that MLI degradation and consequent tank failure may occur in less than 20 min for external shell temperatures above 1160 K in the presence of full engulfment, regardless of insulation used. Conversely, degradation does not occur earlier than 3600s below 603 and 928 K for polyester and aluminum-based MLI, respectively. KW - LH2 KW - LNG KW - Cryogenic storage tank KW - Fire KW - Insulation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630841 DO - https://doi.org/10.1016/j.ijhydene.2025.04.534 SN - 0360-3199 VL - 135 SP - 537 EP - 552 PB - Elsevier Ltd. AN - OPUS4-63084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Duffner, Eric A1 - el Dsoki, Chalid A1 - John, Sebastian A1 - Schmidt, Anita A1 - Mair, Georg W. A1 - Loechner, Derek A1 - Drousch, Björn T1 - Sicherheitstechnische Bewertung thermischer Betriebsbelastung auf sicherheitskritische Ausrüstung am Beispiel von Composite-Atemluftflaschen und Lithiumbatterien N2 - Ziel des Vorhabens war es, den Einfluss der realen Temperaturbelastung auf Atemschutzflaschen und Lithiumbatterien in Funkgeräten (FG) im Löscheinsatz von Rettungskräften zu ermitteln und deren Auswirkung auf die Alterung und Lebensdauer sowie die potenziellen Gesundheitsgefahren bei deren Nutzung besser beurteilen zu können und Handlungshilfen abzuleiten. Im Rahmen dieses Vorhabens wurden zum einen unterschiedlich thermisch gealterte Composite-Atemluftflaschen systematisch hinsichtlich ihrer Restfestigkeiten untersucht. Zum anderen wurden Lithiumbatterien aus FG hinsichtlich der Einwirkung von kritischen Temperaturen untersucht, ab denen es zu einem thermischen Durchgehen der Batterien kommen kann. Für diese beiden wichtigen Komponenten, Lithiumbatterien und Composite-Atemluftflaschen, wurden kritische Temperatur-Zeit-Profile ermittelt, die Auswirkungen durch geeignete Methodiken untersucht und die sich ergebenden Gefährdungen für den Träger bewertet. Als Methodische Vorgehensweise wurden durch Realversuche die tatsächlichen und zuvor durch Literatur-recherche ermittelten Temperaturprofile verifiziert und auf deren Grundlage die Laborbelastungen abgeleitet. Um den Eigenschaften der aus Faserverbundwerkstoffen hergestellten Composite-Atemluftflaschen Rechnung zu tragen, wurden an zwei repräsentativen Baumustern unterschiedlicher Hersteller Stichprobengruppen unterschiedlicher thermischer Belastung ausgesetzt und hinsichtlich ihrer verbleibenden Restfestigkeitsabnahme geprüft und mit thermisch unbelasteten Baumustern verglichen. Neben den statischen Berstversuchen wurden auch kombinierte Alterungs- und Restfestigkeitsuntersuchungen an zyklisch belasteten Behältern durchgeführt. Die FG wurden thermisch sowohl statischen als auch zyklischen Belastungen ausgesetzt und mit Kapazitätsmessungen begleitet. Die statischen Versuche dienten dem Zweck, die maximale thermische Belastbarkeit der Akkus zu ermitteln, bei der noch kein Versagen auftritt. Bei den zyklischen Versuchen wurde der Temperaturverlauf bei Löscheinsätzen so nah wie möglich im Labor nachgestellt. Hierbei wurden die Akkus wiederholt einem Belastungsprofil mit konstanter Temperatur ausgesetzt und nach einigen Intervallen die Restkapazitäten am Akku gemessen und so die Degradation bestimmt. Als Fazit der im Rahmen dieses Vorhabens durchgeführten Untersuchungen an zwei repräsentativen Baumustern von Atemschutzflaschen kann gefolgert werden, dass die thermischen Belastungen abhängig vom Baumuster einen z.T. deutlichen Einfluss auf die Restfestigkeiten der Atemschutzflaschen haben. Höhere thermische Exposition ist, zumindest an den untersuchten Atemschutzflaschen, deutlich zu erkennen und die Flaschen können durch die zuständigen Gerätewarte leicht ausgesondert und ersetzt werden. Die thermischen Belastungen, wie sie im Rettungseinsatz auftreten, waren für die untersuchten Atemschutzflaschen und die Rettungskräfte nicht kritisch sind. Die langjährige Erfahrung etablierter Hersteller dürfte hier aber nicht ohne Einfluss sein. Es ist somit kein Grund erkennbar, von der Verwendung der leichteren Typ 4 Atemschutzflaschen abzuraten, wenn Atemschutzflaschen, die visuell erkennbare thermische Einwirkungen (Farbänderungen, Materialschmelzungen o.ä.) aufweisen, unmittelbar ersetzt werden. Die Ergebnisse an den FG zeigen, dass trotz hoher Temperaturen keine Selbstentzündung der Lithiumbatterien ausgelöst wird. Der Kapazitätsverlust der Batterien infolge der Belastung führt ebenfalls nicht zu einem Funktionsausfall. Es konnte gezeigt werden, dass die Kapazitätsbestimmung als zuverlässiges und geeignetes Kriterium für die Sicherheitsbewertung der Akkus herangezogen werden kann, wenn die Kapazitätsmessung bei gleichbleibenden Bedingungen (gleiche Raumtemperaturen, gleiche Messgeräte, etc.) stattfindet. Es wird empfohlen, die Akkus ab einer Restkapazität von unter 80% zu tauschen. Als schnelle und sehr einfache Überprüfung kann eine Sichtprüfung an den FG stattfinden. Die im Projekt verwendeten FG zeigten eine Verformung der Kunststoffhülle bei zu hohen Belastungen. N2 - The aim of the project was to determine the influence of the real temperature load on breathing apparatus cylinders and Lithium batteries in radio devices in firefighting operations by rescue services and to be able to better assess their effect on ageing and service life time as well as the potential health hazards and to derive guidelines for action. As part of this project, composite breathing air cylinders that had undergone different thermal ageing processes were systematically analysed with regard to their residual strength. as a second use case, lithium batteries used in radio devices were analysed with regard to the effect of critical temperatures above which thermal runaway of the batteries can occur. Critical temperature-time profiles were determined for these two important components, lithium batteries and composite breathing air cylinders, the effects for the user were analysed using suitable methods and the resulting hazards for the wearer were assessed. As a methodical approach, the actual temperature profiles previously determined by literature research were first verified in real tests and the laboratory loads were derived on this basis. In order to take into account the properties of composite breathing air cylinders made of fibre composites, sample groups were subjected to different thermal loads and examined with regard to their residual strength reduction and in comparison to thermally unloaded samples from two representative samples from different manufacturers. In addition to the static burst tests, combined ageing and residual strength tests were also carried out on cyclic loaded cylinders. The radio devices were subjected to both static and cyclic thermal loads with accompanying capacity measurements. The purpose of the static tests was to determine the maximum thermal load capacity of the batteries at which no failure occurs. In the cyclic tests, practical conditions were simulated as closely as possible in the laboratory. For this purpose, the batteries were repeatedly subjected to a load profile at a constant temperature and the residual capacity of the battery was measured after several intervals to determine the degradation. As a conclusion of the tests carried out on two representative types of breathing apparatus cylinders as part of this project, it can be concluded that the thermal loads have a sometimes significant influence on the residual strength of the breathing apparatus cylinders, depending on the type. Higher thermal exposure is clearly recognizable, at least on the breathing apparatus cylinders tested, and the cylinders can be easily remove and replaced by the responsible equipment maintainers. The thermal loads that occur during rescue operations were not critical for the tested breathing protection cylinders and the rescue teams. However, the many years of experience of established manufacturers should not be without influence here. There is therefore no reason to advise against the use of the lighter Type 4 breathing protection breathing apparatus cylinders if cylinders with visually recognizable thermal effects (color changes, material melting, etc.) are replaced immediately. The results on the radio devices showed that determination of the capacity can serve as a suitable criterion for the safety assessment for the batteries. The loss of capacity of the batteries as a result of the load also does not lead to a functional failure. The capacity determination can be used as a reliable and suitable criterion for the safety assessment of the batteries if the capacity measurement is carried out under constant conditions (same room temperatures, same measuring devices, etc.). It is recommended to replace the batteries when the remaining capacity is below 80%. A visual inspection of the radio devices can be carried out as a quick and very simple check. The radio devices used in the project showed deformation of the plastic casing when subjected to excessive loads. KW - Composite KW - Atemluftflaschen KW - Litiumbatterien KW - Funkgeräte KW - Thermische Belastung KW - Rettungskräfte KW - Feuerwehr KW - PSA KW - DGUV PY - 2024 UR - https://www.dguv.de/ifa/forschung/projektverzeichnis/ff-fp0462.jsp N1 - Abschlussbericht zum Vorhaben mit der Projekt-Nr. FF-FP 0462 (CoLiBri), Laufzeit 01.03.2021–29.02.2024, Bericht vom 15.04.2024 SP - 1 EP - 66 PB - Deutsche Gesetzliche Unfallversicherung (DGUV) CY - Berlin AN - OPUS4-59877 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duffner, Eric A1 - Kästle, Emanuel D. T1 - Acoustic Emission Testing of COPV’s Current Work in DAVID Project N2 - Acoustic Emission Testing is a promising approach to better understand and monitor damage progression in composite pressure vessels and to predict failure. The presentation shows some of the ongoing work at the BAM within the DAVID project. T2 - DGZfP Tagung Fachausschuss Schallemission Herbst 2024 CY - Berlin, Germany DA - 08.10.2024 KW - Acoustic Emission KW - Carbon-Fibre Overwrapped Pressure Vessels KW - Impact Damage KW - Cluster Analysis KW - Frequency Features PY - 2024 AN - OPUS4-61678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert T1 - Energy Transportation and Storage with Liquid Hydrogen N2 - Hydrogen is seen as a potential energy source that enables us to achieve our climate targets. Hydrogen can be well integrated into the electrical energy infrastructure, and its production and use is free of direct GHG emissions. However, tanks are needed for worldwide storage and transportation, which require further development and upscaling. In the EU-funded NICOLHy project, novel insulation concepts based on Vacuum Insulation Panels (VIP) are being investigated. These aim to enable the safe, cost- and energy-efficient storage of large quantities of LH₂. Such large-scale LH₂ storage technology is necessary to build transport and stationary tanks with capacities ranging from 40,000 m³ to more than 200,000 m³ of LH₂, similar to current LNG applications. However, new design concepts are needed, as the technologies currently used for small and medium-sized storage are not suitable for upscaling. The main disadvantages of the current state of the art in terms of upscaling are long production times due to complex process chains, low failure tolerance, and the spherical shape of the tanks, which reduces payload in technical applications by up to 50% compared to other geometries. The novel concept aims to overcome these limitations by being modular, open-form, energy-efficient, time- and cost-efficient in production, operation, and maintenance, safe while being multi-failure tolerant, and suitable for both transport and stationary applications. To achieve these ambitious objectives, experts from all over Europe in the fields of thermodynamics, cryogenics, marine, chemistry, process, and safety engineering are working hand in hand. Within the NICOLHy project, several insulation concepts have been developed and will be benchmarked using a set of key performance indicators aligned with the overall project goals. During the development process, refined and detailed research questions were formulated, which are being addressed through ongoing theoretical and experimental studies. In this context, small to large-scale test rigs are being built to evaluate and quantify insulation materials and concepts. The presentation will showcase the NICOLHy project and its progress. NICOLHy will contribute to accelerating the integration of hydrogen into the European energy economy and industry—supporting the European Green Deal and fostering public trust in both policy and technology. T2 - Hydrogen Research and Innovation Days CY - Brussels, Belgium DA - 24.11.2025 KW - LH2 KW - Insulation PY - 2025 AN - OPUS4-64829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert T1 - Forschung zum Thema Feuer an der BAM N2 - Feuer und deren Auswirkung stellen ein Querschnittsthema über die Aktivitätsfelder der BAM dar. Schwerpunkte stellen dabei Brände in Gebäuden, Industrieanlagen und Lagerräumen, der Vegetation, an Fahrzeugen und Tanks sowie Brände im Zusammenhang mit neuen Energieträgern dar. Im Vortrag werden die einzelnen Themen und exemplarische für deren Erforschung nutzbare Infrastruktur vorgestellt. T2 - Transfer on Fire 2 CY - Luckenwalde, Germany DA - 10.07.2025 KW - Feuer KW - Brandlasten PY - 2025 AN - OPUS4-63686 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert T1 - Repeatable Testing of a Cryogenic Storage Tank with Variable Insulation Material in Fire Like Conditions N2 - For decarbonizing the energy industry and transport, cryogenic energy carriers have great potential. The storage takes place in tanks with thermal super-insulations, which are in application for decades, but there is only limited knowledge about its behaviour in a fire scenario. This represents a major incident that may generate extraordinary loads on the tank and its insulation system, and that eventually lead to a sudden tank failure. This paper presents a test rig called the Cryogenic High Temperature Thermal Vacuum Chamber (CHTTVC), which can be used to test typical thermal superinsulation’s under cryogenic and fire-like conditions in parallel. The test method makes it possible to measure the heat flow through the thermal superinsulation over time and to investigate the degradation behaviour of the insulation within a test. In the paper results from the first tests are presented. T2 - 18th Cryogenics 2025, IIR Conference CY - Prague, Czech Republic DA - 07.04.2025 KW - LH2 KW - LNG KW - Fire KW - Insulation PY - 2025 AN - OPUS4-62979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert T1 - New concepts in liquid hydrogen storage N2 - On the way to the energy transition, cryogenic fluids such as Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) are very important. They enable the large-scale economic transport and storage of energy as well as they represent alternative fuels for energy-intensive mobile applications such as aircrafts, ships and HGVs. For the last one, the number of vehicles and fuel stations has increased rapidly in the last 10 years all over Europe. Does this also entail new risks, for instance from a BLEVE in case of fires? To answer this question, BAM has conducted several research projects over the last decades and intensified the research recently with several experimental, numerical, and empirical outcomes on how a tank with insulation behaves in a fire. The presentation shows an overview of this research. The findings are relevant for global standardization procedures and to improve the overall safety in chemistry and technics. T2 - Hydrogen Refueling Station Opening CY - Baruth/Mark, Germany DA - 03.07.2025 KW - LH2 KW - Insulation KW - Fire KW - LNG KW - Safety PY - 2025 AN - OPUS4-63628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eberwein, Robert T1 - NICHOLHy - Novel insulation concepts for liquefied hydrogen storage tanks N2 - Liquefied Hydrogen is a promising energy carrier for the flexible import of energy to Europe. But, tanks in the relevant scale of 40 000 to 200 000 m³ do not exist yet. The upscaling of liquid hydrogen (LH2) storage tanks from the current largest tank of 4700 m³ requires a new concept for thermal insulation. NICOLHy studies novel concepts based on multiple layers of vacuum insulation panels (VIPs). Current LH2 tanks rely on the intactness of a single vacuum layer that covers the whole tank. The multilayered VIP systems offer redundancy and improve manufacturability. The Article describes the progress within the project. KW - LH2 KW - Insulation KW - Tanks PY - 2026 UR - https://www.europeanenergyinnovation.eu/content/files/2025/12/EEI-Magazine---Winter-2025-Digital-Version-Spreads-2.pdf SN - 3049-5431 VL - 2026/1 SP - 33 EP - 33 PB - Pantograf Media Ltd. CY - London AN - OPUS4-65481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Otremba, Frank A1 - Camplese, Davide A1 - Scarponi, Giordano E. A1 - Cozzani, Valerio A1 - Seidlitz, Holger T1 - Repeatable testing of a cryogenic storage tank with variable insulation material in fire like conditions N2 - For decarbonizing the energy industry and transport, cryogenic energy carriers have great potential. The storage takes place in tanks with thermal super-insulations, which are in application for decades, but there is only limited knowledge about its behaviour in a fire scenario. This represents a major incident that may generate extraordinary loads on the tank and its insulation system, and that eventually lead to a sudden tank failure. This paper presents a test rig called the Cryogenic High Temperature Thermal Vacuum Chamber (CHTTVC), which can be used to test typical thermal superinsulation’s under cryogenic and fire-like conditions in parallel. The test method makes it possible to measure the heat flow through the thermal superinsulation over time and to investigate the degradation behaviour of the insulation within a test. In the paper results from the first tests are presented. T2 - 18th Cryogenics 2025, IIR Conference CY - Prague, Czech Republic DA - 07.04.2025 KW - LH2 KW - LNG KW - Fire KW - Insulation KW - Safety PY - 2025 DO - https://doi.org/10.18462/iir.cryo.2025.0007 SP - 205 EP - 210 CY - Prag AN - OPUS4-63740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Heßmann, Jennifer A1 - Werner, Jan A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio A1 - Otremba, Frank T1 - Investigation of realistic fire scenarios involving cryogenic storage tanks N2 - The number of vehicles using or transporting cryogenic fuels such as Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) increases fast in the land transportation sector. Does this also entail new risks for instance from a BLEVE? A key to answer this question is to research representative fires by its characterization and its effect on the insulation. At BAM’s technical test side in Germany, a test series was started to answer this question among others. This paper presents results on a pool fire under a colorimeter, that simulates a tank. The investigation points out, that the full fire characterization approach allows to represent the fire. The findings are relevant for the investigation of a representative design fire that is applicable for the approval and improvement of tanks as well as to research accident scenarios and their consequences. T2 - 18th EFCE International Symposium on Loss Prevention and Safety Promotion in the Process Industries CY - Bologna, Italy DA - 08.06.2025 KW - LH2 KW - Insulation KW - Fire KW - Liquefied Natural Gas KW - Safety PY - 2025 AN - OPUS4-63425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eberwein, Robert A1 - Heßmann, Jennifer A1 - Werner, Jan A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio A1 - Otremba, Frank T1 - Investigation of Realistic Fire Scenarios Involving Cryogenic Storage Tanks N2 - The number of vehicles using or transporting cryogenic fuels such as Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) increases fast in the land transportation sector. Does this also entail new risks for instance from a BLEVE? A key to answer this question is to research representative fires by its characterization and its effect on the insulation. At BAM’s technical test side in Germany, a test series was started to answer this question among others. This paper presents results on a pool fire under a colorimeter, that simulates a tank. The investigation points out, that the full fire characterization approach allows to represent the fire. The findings are relevant for the investigation of a representative design fire that is applicable for the approval and improvement of tanks as well as to research accident scenarios and their consequences. T2 - Loss Prevention 2025 CY - Bologna, Italien DA - 09.06.2025 KW - LH2 KW - LNG KW - Fire KW - Tank KW - Safety PY - 2025 DO - https://doi.org/10.3303/CET25116031 SN - 2283-9216 IS - 116 SP - 181 EP - 186 PB - AIDIC AN - OPUS4-63738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Ustolin, Federico A1 - Zervaki, Anna A1 - Okpeke, Bright A1 - Harwege, Finn A1 - Tugnoli, Alessandro T1 - NICOLHy - 3rd Stakeholder Advisory Board meeting N2 - The NICOLHy project aims to develop a novel insulation concept based on Vacuum Insulation Panels (VIP) that enables the safe, cost- and energy efficient storage of large quantities of LH2. Such large scale LH2 storage technology is necessary for establishing a hydrogen economy with dimensions between 40.000 m³ and more than 200.000 m³ of LH2. However, new design concepts are needed because the currently available technologies used in small and medium storages today are not suitable for up-scaling. The main problems prohibiting the up-scaling are the long production time due to the process chain, the low failure tolerance and the spherical shape, which reduces the payload in technical applications by up to 50% compared to other shapes. The novel concept will change these conditions by a system which is modular, open-form, time-and cost efficient while production, operation and service, multi-failure tolerant and applicable for onshore and offshore applications. The presentations shows details to the concept and presents several safety concerns the project has to deal with. T2 - NICOLHy 3rd Stakeholder Meeting CY - Online meeting DA - 27.06.2025 KW - LH2 KW - Insulation KW - Tanks PY - 2025 AN - OPUS4-63730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Ustolin, Federico A1 - Zervaki, Anna A1 - Okpeke, Bright A1 - Harwege, Finn A1 - Tugnoli, Alessandro T1 - NICOLHy - 4th Stakeholder Advisory Board Meeting N2 - The NICOLHy project aims to develop a novel insulation concept based on Vacuum Insulation Panels (VIP) that enables the safe, cost- and energy efficient storage of large quantities of LH2. Such large scale LH2 storage technology is necessary for establishing a hydrogen economy with dimensions between 40.000 m³ and more than 200.000 m³ of LH2. However, new design concepts are needed because the currently available technologies used in small and medium storages today are not suitable for up-scaling. The main problems prohibiting the up-scaling are the long production time due to the process chain, the low failure tolerance and the spherical shape, which reduces the payload in technical applications by up to 50% compared to other shapes. The novel concept will change these conditions by a system which is modular, open-form, time-and cost efficient while production, operation and service, multi-failure tolerant and applicable for onshore and offshore applications. The presentations shows details to the concept and presents several safety concerns the project has to deal with. T2 - NICOLHy 4th Stakeholder Advisory Board Meeting CY - Hamburg, Germany DA - 23.01.2026 KW - LH2 KW - Insulation KW - Life cycle assessment KW - Tank PY - 2026 AN - OPUS4-65437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghaznavi, Ali T1 - Damage monitoring of hydrogen composite pressure vessels using acoustic emission technique and machine learning N2 - A good understanding of the structural stability of hydrogen composite overwrapped pressure vessels (COPV) is important for the cost-effective design and safe operation of hydrogen storage systems. Acoustic emission (AE) monitoring is a non-destructive method sensitive to microstructural damages such as e.g. fiber breakage, and matrix cracking in COPVs. This study proposes a novel approach for damage monitoring by integrating acoustic emission techniques with machine learning (ML) algorithms to classify and predict damage types in COPVs. However, training accurate classification models requires extensive labeled datasets, which are very challenging to generate due to the nature of AE signal data and the lack of in-situ observations of microscopic failures in COPVs. Our research overcomes this limitation by automating the labeling process of AE signal data for different COPVs using unsupervised ML methods. The most representative features were extracted and then selected from recorded AE signals. Different unsupervised clustering algorithms were utilized based on various extracted feature combinations. The most stable clustering result was achieved and later used as appropriate labels for training classification algorithms. A deep neural network-based deep learning (DL) architecture was used to train discriminative models on AE data, identify patterns, and classify damage types into different classes with improved accuracy and speed for each COPV. Results demonstrate the potential of the proposed combined deep learning approach to train predictive models in identifying failure patterns. The trained models based on individual COPVs show high training, validation, and test accuracy for unseen datasets and offer enhanced predictive capabilities by following advanced DL techniques compared to traditional monitoring methods. The proposed method highlights its potential to improve the efficiency and safety of hydrogen storage systems. T2 - SCHALL 25 CY - Dresden, Germany DA - 26.03.2025 KW - Acoustic Emission KW - Composite Overwrapped Pressure Vessels, KW - Damage monitoring KW - Machine Learning KW - Deep Learning KW - Deep Neural Network KW - Sequential Neural Network PY - 2025 AN - OPUS4-62915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghaznavi, Ali T1 - Machine Learning Approach for Robust Acoustic Emission-Based Damage Classification in Pressure Vessels N2 - Accurate damage classification of Composite Pressure Vessels (CPVs) is crucial for understanding failure behaviour of hydrogen storage systems. Acoustic Emission (AE) monitoring is a non-destructive testing technique capable of detecting signals from different failure mechanisms such as fiber breakage and matrix cracking, supporting durability assessment of CPVs. Therefore, the main objective of this study is to combine AE and advanced deep learning techniques to develop a robust framework for automatic and accurate identification and classification of damage mechanisms across various CPVs. The evolutionary Genetic Algorithms (GA) was used for feature selection, followed by unsupervised clustering to generate automatic labels for model training. Two different FCNN and CNN-LSTM architectures were used to train individual models based on different AE datasets. Later, Adaptive Transfer Learning (ATL) and Meta Ensemble Learning (MEL) techniques were applied to handle data variability and train predictive generalized model over varied AE datasets. The ATL fine-tunes a pre-trained models to leverage their knowledge, while MEL uses pre-trained models' predictions as meta features to train a meta model. Experimental results demonstrate that while both generalized ATL and MEL trained models perform well across different AE datasets, the MEL framework outperforms ATL method in terms of evaluation metrics. The Mean-Accuracy score reaches 0.9026, and 0.9900 for ATL, and MEL, respectively. The most accurate multi-class classification results was achieved using MEL method in terms of the Mean-Accuracy and Recall metrics. The proposed framework provides a scalable, adaptive approach for automated damage classification using AE signals across diverse CPVs in real-world settings. T2 - BAM Colloquium Abteilung 3 CY - Berlin, Germany DA - 14.10.2025 KW - Acoustic Emission KW - Machine Learning KW - Sequential Neural Network KW - Deep Learning KW - Deep Neural Network PY - 2025 AN - OPUS4-65184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghaznavi, Ali A1 - Kästle, Emanuel D. A1 - Popiela, Bartosz A1 - Duffner, Eric T1 - Damage monitoring of hydrogen composite pressure vessels using acoustic emission technique and machine learning N2 - A good understanding of the structural stability of hydrogen composite overwrapped pressure vessels (COPV) is important for the cost-effective design and safe operation of hydrogen storage systems. Acoustic emission (AE) monitoring is a non-destructive method sensitive to microstructural damages such as e.g. fiber breakage, and matrix cracking in COPVs. This study proposes a novel approach for damage monitoring by integrating acoustic emission techniques with machine learning (ML) algorithms to classify and predict damage types in COPVs. However, training accurate classification models requires extensive labeled datasets, which are very challenging to generate due to the nature of AE signal data and the lack of in-situ observations of microscopic failures in COPVs. Our research overcomes this limitation by automating the labeling process of AE signal data for different COPVs using unsupervised ML methods. The most representative features were extracted and then selected from recorded AE signals. Different unsupervised clustering algorithms were utilized based on various extracted feature combinations. The most stable clustering result was achieved and later used as appropriate labels for training classification algorithms. A deep neural network-based deep learning (DL) architecture was used to train discriminative models on AE data, identify patterns, and classify damage types into different classes with improved accuracy and speed for each COPV. Results demonstrate the potential of the proposed combined deep learning approach to train predictive models in identifying failure patterns. The trained models based on individual COPVs show high training, validation, and test accuracy for unseen datasets and offer enhanced predictive capabilities by following advanced DL techniques compared to traditional monitoring methods. The proposed method highlights its potential to improve the efficiency and safety of hydrogen storage systems. T2 - SCHALL 25 CY - Dresden, Germany DA - 26.03.2025 KW - Sequential Neural Network KW - Acoustic Emission KW - Composite Overwrapped Pressure Vessels KW - Damagemonitoring KW - Machine Learning KW - Deep Learning KW - Deep Neural Network PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-629040 DO - https://doi.org/10.58286/30958 SP - 1 EP - 12 AN - OPUS4-62904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giannakopoulos, Antonios E. A1 - Zisis, Athanasios A1 - Zervaki, Anna D. A1 - Dimopoulos, Christos D. A1 - Platypodis, Efstathios A1 - Eberwein, Robert T1 - Effective elastic moduli and failure mechanisms of a random assembly of thin walled glass microbubbles N2 - In this work a methodology is presented to estimate the elastic properties and failure mechanisms of an assembly of random, brittle microbubbles. The approach is based on the mechanics of frictionless micro-contact between hollow spherical shells by employing relations from classical shell theory and verified by two dimensional axisymmetric Finite Elements. The estimated values are in agreement with available experimental values. Moreover, a granular type analytical homogenization model provides an isotropic elastic constitutive law to be used for the macroscopic deformation of an assembly of glass micro-bubbles when it is compressed by external loads. In addition, approximate estimates are also proposed for two important micro-failure mechanisms of such assemblies that relate either to the splitting or to the buckling of a brittle spherical shell, prior its complete crushing. The results are novel and are expected to enhance the application of glass microbubbles directly in acute thermal insulation problems such as liquid hydrogen storage. KW - LH2 KW - Cryogenic Vessels KW - Insulation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634354 DO - https://doi.org/10.1016/j.ijsolstr.2025.113528 SN - 0020-7683 VL - 320 SP - 1 EP - 11 PB - Elsevier BV CY - Amsterdam AN - OPUS4-63435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günzel, Stephan T1 - Normung und Sicherheit im Leichtbau - Sicherheitsbetrachtungen aus Sicht der Regelsetzung am Beispiel von Behältern für den Wasserstofftransport N2 - Es werden Methoden, Betrachtungen und Bewertungen der Sicherheit aus Sicht der Regelsetzung am Beispiel von Behältern für den Wasserstofftransport vorgestellt. T2 - 18. Cottbuser Leichtbauworkshop CY - Cottbus, Germany DA - 14.03.2024 KW - Sicherheit KW - Wasserstoff KW - Gefahrgut KW - Bewertung KW - Druckgefäß PY - 2024 AN - OPUS4-59697 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günzel, Stephan T1 - Safety aspects of hydrogen transportation N2 - In this presentation safety aspects of hydrogen transportation are discussed. At first, the regulatory background and level of safety are presented. In the second part, the modelling of consequence due to sudden rupture of pressure receptacles is explained. Finally, the results are used to define a limit for consequence to enable an acceptable and safe transport of hydrogen. T2 - 3rd Germany-Korea Hydrogen Conference CY - Berlin, Germany DA - 27.09.2022 KW - Safety KW - Hydrogen KW - Wasserstoff KW - Gefahrgut KW - Consequence PY - 2022 AN - OPUS4-59902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günzel, Stephan T1 - Safety assessment of hydrogen gas storage systems N2 - In this lecture, the safety assessment of hydrogen gas storage systems is presented using the example of composite pressure vessels. The main element is a probabilistic approval approach based on five steps. Firstly, the testing and evaluation of properties at the beginning of life are shown. Secondly, methods for artificial aging and the effect on the residual strength are presented. Thirdly, testing against dedicated accidents is introduced. Fourthly, effects on the surveillance of production quality are discussed. Finally, degradation and the end of life are estimated. Background information and examples are given for each step. The assessment presented is a method applicable for many safety-related systems. T2 - Masterstudiengang Wasserstofftechnologie - Modul 8: Safety and Public Acceptance – Sicherheitsaspekte, Akzeptanz und werkstofftechnische Herausforderungen des Wasserstoffs CY - Online meeting DA - 25.08.2023 KW - Safety KW - Hydrogen KW - Wasserstoff KW - Bewertung KW - Assessment PY - 2023 AN - OPUS4-59899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günzel, Stephan T1 - Safety assessment of hydrogen gas storage systems N2 - In this lecture, the safety assessment of hydrogen gas storage systems is presented using the example of composite pressure vessels. The main element is a probabilistic approval approach based on five steps. Firstly, the testing and evaluation of properties at the beginning of life are shown. Secondly, methods for artificial aging and the effect on the residual strength are presented. Thirdly, testing against dedicated accidents is introduced. Fourthly, effects on the surveillance of production quality are discussed. Finally, degradation and the end of life are estimated. Background information and examples are given for each step. The assessment presented is a method applicable for many safety-related systems. T2 - Joint European Summer School 2021 on Fuel Cell, Electrolyser, and Battery Technologies CY - Online meeting DA - 12.09.2021 KW - Safety KW - Hydrogen KW - Wasserstoff KW - Bewertung KW - Assessment PY - 2021 AN - OPUS4-59905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günzel, Stephan T1 - Safety assessment of hydrogen gas storage systems N2 - In this lecture, the safety assessment of hydrogen gas storage systems is presented using the example of composite pressure vessels. The main element is a probabilistic approval approach based on five steps. Firstly, the testing and evaluation of properties at the beginning of life are shown. Secondly, methods for artificial aging and the effect on the residual strength are presented. Thirdly, testing against dedicated accidents is introduced. Fourthly, effects on the surveillance of production quality are discussed. Finally, degradation and the end of life are estimated. Background information and examples are given for each step. The assessment presented is a method applicable for many safety-related systems. T2 - Joint European Summer School 2023, Hydrogen Safety CY - Online meeting DA - 17.09.2023 KW - Safety KW - Hydrogen KW - Wasserstoff KW - Bewertung KW - Assessment PY - 2023 AN - OPUS4-59903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günzel, Stephan T1 - Safety assessment of hydrogen gas storage systems N2 - In this lecture, the safety assessment of hydrogen gas storage systems is presented using the example of composite pressure vessels. The main element is a probabilistic approval approach based on five steps. Firstly, the testing and evaluation of properties at the beginning of life are shown. Secondly, methods for artificial aging and the effect on the residual strength are presented. Thirdly, testing against dedicated accidents is introduced. Fourthly, effects on the surveillance of production quality are discussed. Finally, degradation and the end of life are estimated. Background information and examples are given for each step. The assessment presented is a method applicable for many safety-related systems. T2 - Joint European Summer School 2022, Hydrogen Safety CY - Athens, Greece DA - 18.09.2022 KW - Safety KW - Hydrogen KW - Wasserstoff KW - Bewertung KW - Assessment PY - 2022 AN - OPUS4-59904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hajhariri, Aliasghar T1 - Steps towards a safe integration of LH2 into energy systems N2 - Liquid hydrogen (LH₂) is a promising energy carrier for decarbonizing heavy-duty transport and future energy systems. However, its cryogenic storage poses significant challenges, particularly regarding safety and insu-lation efficiency. In mobile applications, multilayer insulation (MLI) under vacuum conditions is widely used due to its lightweight and high thermal resistance. Yet, under accidental scenarios such as fire exposure, MLI can degrade rapidly—leading to increased heat ingress and potential hazards like BLEVE or jet fires. To enable the safe integration of LH₂ into transport infrastructure and, eventually, broader energy supply chains, critical safety concerns must be addressed to gain public and industrial acceptance. This study inves-tigates the thermal degradation behavior of MLI under extreme conditions and introduces a model to quan-tify its impact on heat transfer. The results demonstrate that insulation integrity plays a pivotal role in sys-tem safety, and tailored mitigation strategies can be developed accordingly. These findings contribute essen-tial knowledge toward safer LH₂ storage and support the broader adoption of hydrogen as a sustainable energy vector. T2 - DKV-Tagung 2025 CY - Magdeburg, Germany DA - 19.11.2025 KW - Hydrogen Storages KW - Liquid Hydrogen KW - Safety KW - Energy efficiency KW - Process development PY - 2025 AN - OPUS4-64853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hajhariri, Aliasghar T1 - Safer Insulation For LH2 (How to do a Business Development) N2 - To expand the hydrogen supply value chain, the transportation of this highly energy-dense material in its liquid phase presents significant challenges. However, developing an efficient and cost-effective insulation solution can substantially improve the economic feasibility of large-scale hydrogen transport. Such improvements not only enhance the profitability of storing and delivering high energy content within a limited volume, but also strengthen the overall value of the supply chain. Ultimately, this will support more efficient integration of hydrogen into the energy system and improve its economic viability. T2 - Workshop of Entrepreneurship HWR University CY - Berlin, Germany DA - 18.10.2025 KW - Super-Insulation KW - Liquid Hydrogen KW - Safety KW - Supply Chain PY - 2025 AN - OPUS4-64498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hajhariri, Aliasghar T1 - Behavior of a LH2 storage tank under fire N2 - As the world moves towards green energy production, effective storage and transportation solutions become essential. To support this transition, energy carriers with minimal or zero environmental impact are required. Liquified hydrogen represents a promising candidate due to its emissions-neutral properties. However, its highly flammable nature necessitates adherence to strict safety codes and standards. Storing hydrogen often requires advanced super-insulation materials. To enhance the safety of cryogenic hydrogen storage tanks under extreme conditions, such as those encountered during fire accidents, it is crucial to understand the thermal behaviour of the tank. Predicting pressurization and potential failure in advance demands a robust and comprehensive model. However, still such models suffer lack of detailed heat transfer models which account for various sub-processes during an accident scenario. Hence, this study introduces a comprehensive model for the pressurization of cryogenic tanks equipped with multi-layer insulation (MLI) systemsin the event of fire, which comprises several sub-models. These sub-models account for heat transfer phenomena through the thermal insulation at nominal conditions and its thermal degradation during fire exposure, the fluid, the internal pressurization, and the performance of the pressure relief valve. This study provides valuable insights into the safety and the behaviour of hydrogen storage tanks under thermal loads. T2 - 18th EFCE International Symposium on Loss Prevention and Safety Promotion in the Process Industries CY - Bologna, Italy DA - 08.06.2024 KW - Hydrogenstorage KW - Cryogenic Storage KW - Safety KW - Heat Transfer KW - MLI PY - 2025 AN - OPUS4-63479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hajhariri, Aliasghar A1 - Eberwein, Robert T1 - Cryogenic storage system behaviour under fire : A study of the insulation impact N2 - The transition from fossil fuels to low-emission alternatives is essential to mitigate carbon emissions in energy-intensive sectors. Liquid hydrogen (LH2) is a promising energy carrier due to its high gravimetric energy density, but its storage requires advanced insulation to minimize heat ingress and prevent excessive boil-off losses. Multilayer insulation (MLI), perlite, and microspheres are commonly used under vacuum conditions, yet their performance under fire exposure remains a critical concern. This study investigates the thermal degradation of insulation materials and its impact on heat transfer in an event with extreme thermal load conditions using the Cryogenic High-Temperature Thermal Vacuum Chamber (CHTTVC). The heat flow dynamics are analyzed, and an equivalent heat transfer coefficient is proposed to quantify the impact of insulation deterioration as the outer wall temperature increases. Additionally, a novel liquid-vapor interface monitoring method is introduced to improve real-time detection of phase changes within the tank. The results highlight that insulation failure substantially increases the heat flow, which, if not mitigated, can lead to boiling liquid expanding vapor explosions (BLEVE), jet fires, or catastrophic tank failure. The findings provide valuable insights into optimizing LH2 storage safety and improving emergency response strategies for cryogenic tanks exposed to extreme thermal conditions. T2 - 11th International Conference on Hydrogen Safety ICHS 2025 CY - Seoul, South Korea DA - 22.09.2025 KW - Multi-Layer Insulation KW - Cryogenic KW - Liquid Hydrogen KW - Heat transfer PY - 2025 AN - OPUS4-64200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hajhariri, Aliasghar A1 - Eberwein, Robert A1 - Camplese, Davide A1 - Emrys Scarponi, Giordano A1 - Otremba, Frank A1 - Cozzani, Valerio A1 - Seidlitz, Holger T1 - A Comprehensive Numerical Study of the Behaviour of an LH2 Storage Tank in the Event of a Fire N2 - As the world moves towards green energy production, effective storage and transportation solutions become essential. To support this transition, energy carriers with minimal or zero environmental impact are required. Liquified hydrogen represents a promising candidate due to its emissions-neutral properties. However, its highly flammable nature necessitates adherence to strict safety codes and standards. Storing hydrogen often requires advanced super-insulation materials. To enhance the safety of cryogenic hydrogen storage tanks under extreme conditions, such as those encountered during fire accidents, it is crucial to understand the thermal behaviour of the tank. Predicting pressurization and potential failure in advance demands a robust and comprehensive model. However, still such models suffer lack of detailed heat transfer models which account for various sub-processes during an accident scenario. Hence, this study introduces a comprehensive model for the pressurization of cryogenic tanks equipped with multi-layer insulation (MLI) systemsin the event of fire, which comprises several sub-models. These sub-models account for heat transfer phenomena through the thermal insulation at nominal conditions and its thermal degradation during fire exposure, the fluid, the internal pressurization, and the performance of the pressure relief valve. This study provides valuable insights into the safety and the behaviour of hydrogen storage tanks under thermal loads. KW - Heat transfer KW - Multi-Layer Insulation KW - Cryogenic KW - Liquid Hydrogen PY - 2025 DO - https://doi.org/10.3303/CET25116114 VL - 116 SP - 679 EP - 684 PB - AIDIC AN - OPUS4-63813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Harwege, Finn T1 - Testing of vacuum insulation panels for liquefied hydrogen storage tanks N2 - For the future use of liquefied hydrogen (LH2) as a green energy carrier, new concepts for storage tanks and in particular their insulation are necessary. The methodology applied in current LH2 tanks has some disadvantages while manufacturing and operation of large tanks that may be required in the future. While liquefied natural gas tanks exist in the necessary capacities, they are incompatible with LH2 due to its significantly lower storage temperature. In this paper, the possibility of using vacuum insulation panels (VIPs) as an alternative to the conventional double walled, powder filled vacuum insulation is presented. The two systems are introduced and compared on a conceptual level with a focus on the loss of vacuum failure mode. Furthermore, a test rig that enables the testing and quantification of thermal properties of VIP based insulations in ordinary and loss of vacuum conditions is presented. The test rig is a boil-off calorimeter using liquefied nitrogen and features a square cold surface with a side length of 2 m. An overview over the planned testing and its goals is given. T2 - 18th International Symposium on Loss Prevention and Safety Promotion in the Process Industries CY - Bologna, Italy DA - 08.06.2025 KW - Liquefied Hydrogen KW - LH2 KW - Cryogenics KW - Vacuum KW - Vacuum Insulation Panel PY - 2025 AN - OPUS4-63426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Harwege, Finn T1 - Testing of vacuum insulation panels for liquid hydrogen storage tanks N2 - Vacuum insulation panel (VIP) based insulation could present an alternative to the common double walled vacuum insulation for large liquefied Hydrogen (LH2) storage tanks. In this paper a brief introduction on VIPs and the envisioned design of VIP-based LH2-tank insulation is given. The design of a flat plate boil-off calorimeter for the testing of the insulation concept is shown, with regard to thermal design, mechanical design and instrumentation. Finally, an overview over the particular challenges for modelling VIP-based insulation and the proposed testing to be performed on the test rig is presented. T2 - 18th Cryogenics IIR International Conference CY - Prague, Czech Republic DA - 07.04.2025 KW - Liquefied Hydrogen KW - Insulation KW - Calorimeter KW - LH2 KW - VIP KW - Vacuum Insulation Panel PY - 2025 AN - OPUS4-62988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Harwege, Finn A1 - Eberwein, Robert T1 - Testing of vacuum insulation panels for liquefied hydrogen storage tanks N2 - For the future use of liquefied hydrogen (LH2) as a green energy carrier, new concepts for storage tanks and in particular their insulation are necessary. The methodology applied in current LH2 tanks has some disadvantages while manufacturing and operation of large tanks that may be required in the future. While liquefied natural gas tanks exist in the necessary capacities, they are incompatible with LH2 due to its significantly lower storage temperature. In this paper, the possibility of using vacuum insulation panels (VIPs) as an alternative to the conventional double walled, powder filled vacuum insulation is presented. The two systems are introduced and compared on a conceptual level with a focus on the loss of vacuum failure mode. Furthermore, a test rig that enables the testing and quantification of thermal properties of VIP based insulations in ordinary and loss of vacuum conditions is presented. The test rig is a boil-off calorimeter using liquefied nitrogen and features a square cold surface with a side length of 3 m. An overview over the planned testing and its goals is given. KW - Liquefied Hydrogen KW - Insulation KW - Vacuum Insulation Panel KW - LH2 KW - Cryogenics PY - 2025 DO - https://doi.org/10.3303/CET2511612 SN - 2283-9216 VL - 2025 IS - 116 SP - 769 EP - 774 PB - AIDIC CY - Milano, Italy AN - OPUS4-63716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Harwege, Finn A1 - Schmidt, Heiko A1 - Eberwein, Robert T1 - Testing of vacuum insulation panels for liquid hydrogen storage tanks N2 - Vacuum insulation panel (VIP) based insulation could present an alternative to the common double walled vacuum insulation for large liquefied Hydrogen (LH2) storage tanks. In this paper a brief introduction on VIPs and the envisioned design of VIP-based LH2-tank insulation is given. The design of a flat plate boil-off calorimeter for the testing of the insulation concept is shown, with regard to thermal design, mechanical design and instrumentation. Finally, an overview over the particular challenges for modelling VIP-based insulation and the proposed testing to be performed on the test rig is presented. T2 - 18th Cryogenics IIR International Conference CY - Prague, Czech Republic DA - 07.04.2025 KW - Liquefied Hydrogen KW - Insulation KW - Calorimeter KW - Vacuum Insulation Panel KW - LH2 PY - 2025 SN - 0151-1637 DO - https://doi.org/10.18462/iir.cryo.2025.0010 SN - 978-2-36215-053-1 VL - 2025 SP - 168 EP - 174 PB - ICCEX CY - Prag AN - OPUS4-62959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heimann, Jan T1 - Innovative Real-Time Monitoring of H2 Pressure Vessels for Enhanced Safety and Reliability N2 - The significantly increased number of pressure vessels for storage and transport of H2 makes periodic manual inspections virtually impossible. Structural health monitoring enables proactive maintenance, extends the vessel’s lifespan, and ensures compliance with regulations, all while minimizing operational risks and downtime. T2 - QI-Digital Forum 2024 CY - Berlin, Germany DA - 09.10.2024 KW - Structural Health Monitoring KW - Pressure Vessel KW - Hydrogen KW - Reliability KW - Quality Infrastructure KW - Demonstrator PY - 2024 AN - OPUS4-61485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heimann, Jan A1 - Yilmaz, Bengisu A1 - Charmi, Amir A1 - Duffner, Eric A1 - Schukar, Marcus A1 - Prager, Jens T1 - Structural Health Monitoring (SHM) for continuous monitoring of hydrogen pressure vessels N2 - While hydrogen is one of the most promising energy carriers, the safety of hydrogen storage technology remains one of the most important factors for technological and societal approval. While the engineering safety factors of the pressure vessels are kept high, the periodic inspection and the limited lifetime are making the application very costly considering manpower, time, money, and material waste. The development of an integrated structural health monitoring system can allow an easy transition from the current situation to cost-effective predictive maintenance. Hence, we propose to integrate three different SHM systems into hydrogen pressure vessels, namely guided wave ultrasonics, acoustic emission, and fibre optic sensing, to continuously monitor the condition and integrity. In this work, we evaluated the condition of a Type IV composite overwrapped pressure vessel using ultrasonic guided wave propagation. We mounted fifteen piezo-electric wafers on the composite cylinder by shaping three rings containing five sensors each. We acquired data from the sensor network following different boundary conditions with artificial damages on the selected locations. The data were evaluated with guided wave tomography techniques using ultrasonic features (amplitude, frequency, etc.) as well as artificial intelligence (AI). The results suggest that both traditional guided wave fusion techniques and AI-based characterization methods can detect artificial damages. In future work, it is planned to integrate acoustic emission and fibre optic sensing. Moreover, the measurement and the test results will be implemented into a digital twin to derive trends and make predictions on the damage propagation as well as the remaining useful lifetime. This work has received funding from German Ministry of Economic Affairs and Climate Actions within the QI-Digital initiative (www.qi-digital.de). T2 - SCHALL 23 CY - Wetzlar, Germany DA - 21.03.2023 KW - Structural Health Monitoring KW - Ultrasonic Guided Waves KW - Composite Overwrapped Pressure Vessel KW - Hydrogen PY - 2023 AN - OPUS4-58026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holtappels, Kai T1 - Hydrogen - Trust through safety N2 - In den Virtual Talks der DECHEMA wurden allgemeine Aspekte der Sicherheit und Akzeptanz von Wasserstofftechnologien vorgestellt. Wie kann Vertrauen in neue Technologien geschaffen werden, wenn Unfälle aus der Vergangenheit zu Mythen und Märchen führten? Der Vortrag räumt mit allgemeinen Vorurteilen auf und zeigt, dass der Umgang mit Wasserstoff weder unsicherer, noch sicherer ist als der Umgang mit anderen Brenngasen. Basis für den sicheren Umgang mit Wasserstoff ist immer eine Risikoanalyse. N2 - In the DECHEMA Virtual Talks, general aspects of the safety and acceptance of hydrogen technologies were presented. How can trust in new technologies be built when past accidents led to myths and fairy tales? The presentation does away with general prejudices and shows that handling hydrogen is neither more unsafe nor safer than handling other fuel gases. The basis for the safe handling of hydrogen is always a risk analysis. T2 - DECHEMA Virtual Talks CY - Online meeting DA - 23.11.2020 KW - Hydrogen KW - Wasserstoff KW - Safety KW - Sicherer Umgang KW - Sicherheit PY - 2020 AN - OPUS4-52082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holtappels, Kai T1 - Competence Centre H2Safety@BAM - We build trust in hydrogen technologies N2 - Der Beraterkreis Gase wird regelmäßig von der Berufsgenossenschaft Rohstoffe und chemische Industrie, Bereich Prävention, organisiert. Die Veranstaltung dient dem Austausch zwischen Wissenschaft und Wirtschaft zu aktuellen sicherheitstechnischen Fragestellungen rund um Sauerstoff und Wasserstoff. In diesem Zusammenhang hat die BAM einen Überblick über ihre verschiedenen Aktivitäten des Kompetenzzentrums H2Safety@BAM vorgestellt, die sich in der gesamten Wasserstoffwertschöpfungskette wiederfinden. Darüber hinaus wurden die Planungen für den Ausbau der Prüfinfrastruktur auf dem Testgelände Technische Sicherheit der BAM vorgestellt. Es wurden auch die Ergebnisse des Projekts DELFIN zur Sicherheit von Druckgasspeichern, den Freisetzungsuntersuchungen von Flüssigwasserstoff sowie die Unterfeuerung entsprechender Kryospeicher und die Planungen zum Projekt ModuH2Pipe@BAM präsentiert. Den Abschluss bildeten die aktuellen Empfehlungen des Forschungsnetzwerkes Wasserstoff. N2 - The Gases Advisory Group is organized regularly by the Prevention Division of the German Employer's Liability Insurance Association for Raw Materials and the Chemical Industry. The event serves as an exchange between science and industry on current safety-related issues concerning oxygen and hydrogen. In this context, BAM presented an overview of its various activities of the competence center H2Safety@BAM, which are reflected in the entire hydrogen value chain. In addition, the plans for the expansion of the test infrastructure at BAM's Technical Safety Test Site were presented. The results of the DELFIN project on the safety of pressurized gas storage tanks, the release tests of liquid hydrogen as well as the underfiring of corresponding cryogenic storage tanks and the plans for the ModuH2Pipe@BAM project were also presented. The presentation concluded with the current recommendations of the Hydrogen Research Network. T2 - BG RCI Beraterkreis Gase CY - Berlin, Germany DA - 25.04.2023 KW - Berufsgenossenschaft KW - Sicherheit von Wasserstofftechnologien KW - H2Safety@BAM KW - modulare Pipelineanlage PY - 2023 AN - OPUS4-57398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holtappels, Kai T1 - Education and Training Activities of the Competence Centre H2Safety@BAM N2 - Green hydrogen is seen as a cornerstone of the energy transition and decarbonization efforts of industry, transportation and the utilities sectors. The binding goal of the EU and Germany to reduce net zero carbon emissions by 2045 will substantially increase the demand for green hydrogen as an important carbon-free substitute for fossil fuels. The World Energy Council expects an annual demand of 60 million tons (equivalent 2.000 TWh) hydrogen and its derivatives (especially ammonia and methanol) in the EU until 2050. lt is estimated that the EU can produce less than half of its needed hydrogen by 2050, and will need to import the rest. African coastal countries therefore have the opportunity to become net exporters of their carbon-free regenerative energy in the form of hydrogen and its derivatives and to enable better economic growth and generate wealth on the African continent. The large-scale production, transport and storage of green hydrogen will require large investments in the development of knowledge and training, logistics and capital goods - for both the EU and African countries. BAM is already facing the lack of skilled workers and hydrogen experts. By bundling its expertise in the field of hydrogen technologies into a competence center H2Safety@BAM to create confidence in the technology The topic of hydrogen has been current at BAM for more than one hundred years and is also currently the focus of numerous research and cooperation activities. In order to transfer its expertise in this field BAM developed a number of education activities. The centre of all activities is the Graduate School “Trustworthy Hydrogen”, established in 2022 together with the BTU Cottbus. In the presentation all activities and especially those of the graduate school and details of the cooperation with the University of Namibia are shown. T2 - German-African Green Hydrogen Forum CY - Bernburg (Saale), Germany DA - 23.05.2023 KW - H2Safety@BAM KW - Graduate School KW - Trustworthy Hydrogen KW - Education KW - Skilled workers PY - 2023 AN - OPUS4-57633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holtappels, Kai T1 - Safety Aspects for Hydrogen Technologies - H2Safety@BAM N2 - Hydrogen is a central component of the energy transition and the European Green Deal for a climate-neutral Europe. To be able to achieve the targets defined by 2045, the EU and the German government have drafted a framework for action and are making long-term investments in research, development and the rapid implementation of innovative hydrogen technologies. The conditions for a successful energy transition and the economic use of green hydrogen as a clean energy carrier are Hydrogen readiness and a rapid market ramp-up, as well as the establishment of the necessary value chains in the national and European framework. Reliable quality and safety standards are the prerequisite for ensuring safety of supply and environmental compatibility and for creating trust in these technologies. BAM has bundled its expertise in the field of hydrogen technologies into a competence center H2Safety@BAM to create confidence in the technology and to support the hydrogen strategies of the German government and the EU. The topic of hydrogen has been current at BAM for more than one hundred years and is also currently the focus of numerous research and cooperation activities. The competence centre H2Safety@BAM and its vision of “We build trust in hydrogen technologies” will be presented with its many safety-related topics, which can be found throughout the entire hydrogen value chain. Two deep dives will present the results on projects dealing with the design-to-cost issue of classical pressurized gas storage containments and the consequences of the release of liquid hydrogen, which will be roughly compared to the release of ammonia. T2 - 25. Kalorimetrietage CY - Braunschweig, Germany DA - 31.05.2023 KW - H2Safety@BAM KW - Safety KW - Hydrogen KW - Gas cylinders KW - DELFIN KW - LH2 KW - Hydrogen release KW - Rapid phase transition KW - Consequences KW - Cyro storage tanks PY - 2023 AN - OPUS4-57629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - John, Sebastian T1 - Delfin - Statusbericht zum 4.HJM N2 - Präsentation über den Fortschritt der BAM zum Vorhaben Delfin, welches sich mit der Entwicklung und Schädigungsneigung von Composite-Wasserstoffbehältern für den Anwendungsfall KFZ beschäftigt T2 - 4. Halbjahresmeeting zum Vorhaben Delfin CY - Online meeting DA - 21.10.2020 KW - Wasserstoff KW - Impact KW - Druckbehälter PY - 2020 AN - OPUS4-51495 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - John, Sebastian T1 - Beitrag zur Analyse des Eigenspannungsverhaltens von Composite-Hochdruckspeichern mit metallischem Liner N2 - Bei der Auslegung von Druckbehältern kommen, auf Grund ihrer hohen spezifischen Festigkeit, vermehrt Faserverbundwerkstoffe zum Einsatz. Durch eine hohe Streuung von Material- und Produktionsparametern sowie unterschiedlichster Belastungsszenarien gestaltet sich jedoch Aussagen über die Lebensdauer sowie eine Festlegung sinnvoller Prüffristen als schwierig. Im Fokus der Untersuchungen steht ein Behälterdesign mit metallischem Liner und einem kohlenstofffaserverstärkten Kunststoffverbund, wobei die Lebensdauer maßgeblich durch den im Metall vorherrschenden Eigenspannungszustand bestimmt wird. Mit Hilfe einer alterungsbegleitenden Eigenspannungsanalyse werden Eigenspannungsveränderungen erfasst und in einem erarbeiteten Betriebsfestigkeitsmodell berücksichtigt. Durch eine Nachstellung verschiedener Belastungsszenarien kann gezeigt werden, dass durch die Berücksichtigung einer veränderlichen Eigenspannung die Anzahl ertragbarer Lastwechsel bis zum Versagen sowie damit verbundene Überlebenswahrscheinlichkeiten mit einer erhöhten Genauigkeit abgeschätzt werden können. KW - Komposit KW - Druckbehälter KW - Pressure vessel KW - Eigenspannung KW - Residual stress KW - Alterung KW - Aging KW - Faserverbund KW - Fibre reinforced plastics KW - Composite PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520269 SN - 978-3-7983-3180-8 SN - 978-3-7983-3179-2 DO - https://doi.org/10.14279/depositonce-10442 SN - 2512-515X SN - 2512-5141 VL - 10 SP - 1 EP - 188 PB - Universitätsverlag der TU Berlin CY - Berlin AN - OPUS4-52026 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -