TY - CONF A1 - Mirabella, Francesca T1 - ToF-SIMS as a new tool for nano-scale investigation of ps-laser-generated surface structures on titanium substrates N2 - In recent years, the fabrication of laser-generated surface structures on metals such as titanium surfaces have gained remarkable interests, being technologically relevant for applications in optics, medicine, fluid transport, tribology, and wetting of surfaces. The morphology of these structures, and so their chemistry, is influenced by the different laser processing parameters such as the laser fluence, wavelength, pulse repetition rate, laser light polarization type and direction, angle of incidence, and the effective number of laser pulses per beam spot area. However, the characterization of the different surface structures can be difficult because of constraints regarding the analytical information from both depth and the topographic artifacts which may limit the lateral and depth resolution of elemental distributions as well as their proper quantification. A promising technique to investigate these structures even at the nano-scale is Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), a very surface sensitive technique that at the same time allows to perform depth-profiling, imaging and 3D-reconstruction of selected ion-sputter fragment distributions on the surface. In this study we combine chemical analyses such as Energy Dispersive X-ray spectroscopy (EDX) and high-resolution scanning electron microscopy (SEM) analyses with ToF-SIMS to fully characterize the evolution of various types of laser-generated micro- and nanostructures formed on Ti and Ti alloys at different laser fluence levels, effective number of pulses and at different pulse repetition rates (1 – 400 kHz), following irradiation by near-infrared ultrashort laser pulses (925 fs, 1030 nm) in air environment or under argon gas flow. We show how this combined surface analytical approach allows to evaluate alteration in the surface chemistry of the laser-generated surface structures depending on the laser processing parameters and the ambient environment. T2 - European Materials Research Society (EMRS) Fall Meeting 2021 CY - Online meeting DA - 20.09.2021 KW - ToF SIMS KW - Nano characterization PY - 2021 AN - OPUS4-53366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Morphological and Chemical Nanoscale Analysis of Mesoporous Mixed IrO x TiO y Thin Films as Electrode Materials N2 - Porous films play an important role particularly in energy applications like photovoltaics, electrolysis or batteries. Thin film properties such as thickness, chemical composition, crystallinity of the framework, and porosity define the activity of the porous films. The accurate morpho-chemical characterisation of mesoporous thin films is a challenging analytical task which requires the consideration of new analytical approaches based on the combination of data of different methods able to address the structure and chemical composition at the nanoscale. In this contribution we characterise thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with Energy-Dispersive X-ray Spectroscopy (EDS) at an SEM applied in a dedicated “thin film analysis” approach (1). Thus, the film mass deposition, film thickness and the film density can be determined. Further, by dividing the measured film density to an assumed (theoretical) metal oxide framework (skeletal) density, the thin film porosity can be extracted, too. In order to assess the homogeneity of the thin film properties like the chemical composition, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Auger Electron Spectrometry are applied in the depth profiling mode, so that possible in-depth gradients are detected. Lateral inhomogeneities in the chemical composition and structure of the thin mesoporous films are also identified by applying the same methods in the line-scan or mapping mode, which can be further combined with in-depth sputtering for 3D information. The role of the spatial resolution of the analytical methods considered, which can go down well below 100 nm, will be highlighted. T2 - Microscopy and Microanalysis 2024 CY - Cleveland, OH, USA DA - 28.07.2024 KW - Auger electron spectroscopy KW - Iridium oxide KW - Mesoporous thin films KW - SIMS KW - Titanium oxide KW - Porosity PY - 2024 AN - OPUS4-60805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Nano and Advanced Materials - Competences at BAM and perspectives N2 - This presentation gives an overview about the competencies and the characterization possibilities of nanoparticles at BAT, based on this the development of the OECD TG 125 at BAM. It further describes research activities at BAM concerning the characterization of nanoparticles and the way to the digital representation of these characterization possibilities. It concludes with the challenges of a digital product passport (DPP) for nanomaterial based products and the need of a digital materials passport (DMP). Finally, the activities of BAM are presented which address the former mentioned challenges from ESRP and DPP. T2 - Austausch Helmholtz Hereon / Digipass & BAM CY - Berlin, Germany DA - 07.07.2025 KW - Nanomaterials KW - ESPR KW - DPP KW - Nano KW - Advanced Materials PY - 2025 AN - OPUS4-64974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - MinimUm Information Requirements for Electron Microscopy and Surface analysis Data For Risk Assessment of Nanoforms N2 - The European legislation has responded to the wide use of nanomaterials in our daily life and defined the term “nanoform” in the Annexes to the REACH (Registration, Evaluation, Authorization of Chemicals) Regulation. Now specific information of the nanomaterials is required from the companies when registering the appropriate materials in a dossier. In the context of REACH eleven physicochemical properties were considered as relevant, of which the following six are essential for registration of nanoforms (priority properties): chemical composition, crystallinity, particle size, particle shape, chemical nature of the surface (“surface chemistry”), and specific surface area (SSA). A key role is the reliable, reproduceable and traceable character of the data of these priority properties. In this context, we want to discuss which ‘analytical’ information is exactly required to fulfill these conditions. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS) were chosen as the most popular surface analytical methods. Both methods allow a detailed understanding of the surface chemistry with an information depth below ten nanometers. As a rather bulk method for the analysis of nanoforms, Electron Probe Microanalysis (EPMA) in the version with energy dispersive X-ray spectroscopy (EDS) is considered for the quick identification of the main chemical elements present in the sample. Furthermore, Scanning Electron Microscopy (SEM) results are discussed which provide results on particle size and shape. Thus, four of the six priority properties can be obtained with these methods. T2 - Nanosafe 2020 CY - Online meeting DA - 17.11.2020 KW - Risk assessment KW - Nanomaterials KW - Standardization KW - Regulation PY - 2020 AN - OPUS4-51612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri T1 - Data quality for Nanorisk Governance N2 - Nanomaterials bring various benefits and have become a part of our daily lives. However, the risks emerging from nanotechnology need to be minimized and controlled at the regulatory level and therefore, there is a need for nanorisk governance. One of the prerequisites for successful nanorisk governance is the availability of high-quality data on nanomaterials and their impact with the human body and the environment. In recent decades, a countless number of publications and studies on nanomaterials and their properties have been produced due to the fast development of nanotechnology. Despite such a vast amount of data and information, there are certain knowledge gaps hindering an efficient nanorisk governance process. Knowing the state of the available data and information is an important requirement for any decision maker in dealing with risks. In the specific case of nanotechnology, where most of the risks are complex, ambiguous, and uncertain in nature, it is essential to obtain complete data and metadata, to fill knowledge gaps, and to transform the available knowledge into functional knowledge. This can become possible using a novel approach developed within the NANORIGO project (Grant agreement No. 814530) – the Knowledge Readiness Level (KaRL). In analogy to NASA’s Technology Readiness Levels (TRLs), we define KaRLs as a categorization system of data, information, and knowledge which enables transformation of data and information into functional knowledge for nanorisk governance. Our approach goes beyond the technical curation of data and metadata and involves quality and completeness filters, regulatory compliance requirements, nanorisk-related tools, and most importantly, human input (inclusion of all stakeholder groups). With the KaRL approach we also address key issues in nanotechnology such as societal and ethical concerns, circular economies and sustainability, the Green Deal, and the traceability of data, knowledge, and decisions. The KaRL approach could be used for nanorisk governance by a nanorisk governance council (NRGC), which is currently under development by three EU projects (NANORIGO, GOV4NANO, and RISKGONE). T2 - Nanosafety Training School: From Basic Science To Risk Governance CY - Online meeting DA - 20.06.2021 KW - Data KW - Knowledge KW - Risk Governance KW - Knowledge Readiness Level PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529255 AN - OPUS4-52925 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri T1 - Knowledge Readiness for Nanorisk Governance N2 - Nanomaterials bring various benefits and have become a part of our daily lives. However, the risks emerging from nanotechnology need to be minimized and controlled at the regulatory level and therefore, there is a need for nanorisk governance. One of the prerequisites for successful nanorisk governance is the availability of high-quality data on nanomaterials and their impact with the human body and the environment. In recent decades, a countless number of publications and studies on nanomaterials and their properties have been produced due to the fast development of nanotechnology. Despite such a vast amount of data and information, there are certain knowledge gaps hindering an efficient nanorisk governance process. Knowing the state of the available data and information is an important requirement for any decision maker in dealing with risks. In the specific case of nanotechnology, where most of the risks are complex, ambiguous, and uncertain in nature, it is essential to obtain complete data and metadata, to fill knowledge gaps, and to transform the available knowledge into functional knowledge. This can become possible using a novel approach developed within the NANORIGO project (Grant agreement No. 814530) – the Knowledge Readiness Level (KaRL). In analogy to NASA’s Technology Readiness Levels (TRLs), we define KaRLs as a categorization system of data, information, and knowledge which enables transformation of data and information into functional knowledge for nanorisk governance. Our approach goes beyond the technical curation of data and metadata and involves quality and completeness filters, regulatory compliance requirements, nanorisk-related tools, and most importantly, human input (inclusion of all stakeholder groups). With the KaRL approach we also address key issues in nanotechnology such as societal and ethical concerns, circular economies and sustainability, the Green Deal, and the traceability of data, knowledge, and decisions. The KaRL approach could be used for nanorisk governance by a nanorisk governance council (NRGC), which is currently under development by three EU projects (NANORIGO, GOV4NANO, and RISKGONE). T2 - Gov4Nano: data management core group CY - Online meeting DA - 05.07.2021 KW - Data Management KW - Knowledge Readiness Level KW - Nanorisk Governance KW - Participatory Approach KW - Sustainability PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529264 AN - OPUS4-52926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative Microstructural Analysis - VAMAS TWA 37 & Liaison with ISO/TC 202 Microbeam Analysis N2 - The progress in activities on Microbeam Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 is presented and discussed with respect to the identification and launching corresponding VAMAS projects. The ongoing project "FIB sample processing for TEM" is presented in detail. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 48th Steering Committee Meeting CY - New Delhi, India DA - 9.10.2023 KW - TEM KW - FIB KW - EBSD KW - Sample preparation KW - VAMAS KW - Standardisation KW - Interlaboratory comparisons PY - 2023 UR - https://www.nplindia.org/index.php/amcsnzt_2023/ AN - OPUS4-58538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Comprehensive characterization of Al-coated titania nanoparticles with electron microscopy and surface chemical analytics N2 - The wide use of nanoforms with at least one dimension below 100 nm in our daily life requires a detailed knowledge of their physicochemical properties which are needed for risk assessment or quality control. Therefore, a comprehensive characterization of these properties was considered as relevant including: chemical composition, crystallinity, particle size, particle shape, surface chemistry, and specific surface area (SSA). We want to discuss, how Scanning Electron Microscopy (SEM), Electron Probe Microanalysis (EPMA) in the version with energy dispersive X-ray spectroscopy (EDS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS) can contribute to gain comprehensive insights into the nature of the nanoparticles. SEM results provide the particle size and shape (distribution). A quick identification of the main chemical elements present in the sample can be obtained with EDS, whereas XPS allows a more detailed chemical identification of the small nanoparticles below 20 nm or of the near-surface region of larger particles. ToF-SIMS is even much more surface-sensitive and leads to a deeper understanding of the surface chemistry of the nanoparticles. As exemplary samples, two Al-coated TiO2 samples in nanopowder form were chosen from the JRC repository, capped either with a hydrophilic or a hydrophobic organic shell. A focus of our case study was to show, how reliable, reproducible and traceable data can be obtained. Therefore, each step in the workflow of sample investigation must be described in detail. For the most of these steps, well-established standards are available. Usually, the conditions of the particular measurements with each analysis method are saved as meta-data in the common file formats. But other factors like sample preparation and data reduction approaches may influence the result of the investigations in a significant manner and must be described often in a separate file (as a protocol) together with the data file. For sensitive materials like nanoobjects, the preparation of the sample influences the results crucially, e.g. measured as suspension or as powders. Furthermore, data reduction like selection of relevant peaks in spectra or particles in images, background subtraction, peak deconvolution, models for the quantification of the spectra must be considered in the interpretation of the results ideally with associated individual measurement uncertainties. Only a detailed description of all these factors allows to obtain a comprehensive characterization with reliable, reproduceable and traceable data. Examples of standardized procedures of measurement or on data reduction will be highlighted. We thank for the funding from the European Unions’s Horizon 2020 for the project NanoSolveIt (grant agreement No. 814572) and for the project NANORIGO (grant agreement No. 814530). T2 - E-MRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Scanning Electron Microscopy KW - Energy dispersive X-ray spectroscopy KW - Time-of-Flight Secondary Ion Mass Spectrometry KW - X-ray Photoelectron Spectroscopy KW - Titania nanoparticles PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527486 AN - OPUS4-52748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Characterization of functionalized graphene particles with comparative XPS/HAXPES investigations N2 - The different chmemistry of graphitic nanoplatelets between the outermost surface and the bulk of the samples was investigated with comparative XPS/HAXPES measurements. T2 - PHI User Meeting CY - Grenoble, France DA - 18.04.2023 KW - X-ray photoelectron spectroscopy KW - Hard-energy X-ray photoelectron spectroscopy KW - graphene related 2D materials PY - 2023 AN - OPUS4-57649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni T1 - Measurement of the morphology of graphene related 2D materials as flakes N2 - The presentation shows the results of the mini-interlaboratory comparison focused on the measurement of the morphology of graphene oxide flakes using scanning electron microscopy. In this work, a route for the sample preparation, SEM measurement and image analysis is proposed. The results of the image analysis, performed on 200+ flakes per sample, are presented by comparing the distributions of the size and shape descriptors calculated according to two different approaches. The influences of a different SEM measurement operator, analysis approach and analysis operator on the final size and shape distributions are highlighted. T2 - EMRS Fall 2023 CY - Warsaw, Poland DA - 18.09.2023 KW - Graphene oxide KW - SEM KW - 2D flakes KW - Image analysis PY - 2023 AN - OPUS4-58752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -