TY - JOUR A1 - Dhamo, Lorena A1 - Wegner, Karl David A1 - Würth, Christian A1 - Häusler, I. A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Assessing the influence of microwave-assisted synthesis parameters and stabilizing ligands on the optical properties of AIS/ZnS quantum dots N2 - Luminescent semiconductor quantum dots (QDs) are frequently used in the life and material sciences as reporter for bioimaging studies and as active components in devices such as displays, light-emitting diodes, solar cells, and sensors. Increasing concerns regarding the use of toxic elements like cadmium and lead, and hazardous organic solvents during QD synthesis have meanwhile triggered the search for heavy-metal free QDs using green chemistry syntheses methods. Interesting candidates are ternary AgInS2 (AIS) QDs that exhibit broad photoluminescence (PL) bands, large effective Stokes shifts, high PL quantum yields (PL QYs), and long PL lifetimes, which are particularly beneficial for applications such as bioimaging, white light-emitting diodes, and solar concentrators. In addition, these nanomaterials can be prepared in high quality with a microwave-assisted (MW) synthesis in aqueous solution. The homogeneous heat diffusion and instant temperature rise of the MW synthesis enables a better control of QD nucleation and growth and thus increases the batch-to-batch reproducibility. In this study, we systematically explored the MW synthesis of AIS/ZnS QDs by varying parameters such as the order of reagent addition, precursor concentration, and type of stabilizing thiol ligand, and assessed their influence on the optical properties of the resulting AIS/ZnS QDs. Under optimized synthesis conditions, water-soluble AIS/ZnS QDs with a PL QY of 65% and excellent colloidal and long-term stability could be reproducible prepared. KW - Quantum dots KW - Microwave-assisted synthesis KW - AgInS KW - Aqueous synthesis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567091 DO - https://doi.org/10.1038/s41598-022-25498-3 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 11 PB - Nature Publishing Group CY - London AN - OPUS4-56709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Kersting, R. A1 - Hagenhoff, B. A1 - Bennet, Francesca A1 - Ciornii, Dmitri A1 - Nymark, P. A1 - Grafström, R. A1 - Hodoroaba, Vasile-Dan T1 - Reliable Surface Analysis Data of Nanomaterials in Support of Risk Assessment Based on Minimum Information Requirements N2 - The minimum information requirements needed to guarantee high-quality surface Analysis data of nanomaterials are described with the aim to provide reliable and traceable Information about size, shape, elemental composition and surface chemistry for risk assessment approaches. The widespread surface analysis methods electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) were considered. The complete analysis sequence from sample preparation, over measurements, to data analysis and data format for reporting and archiving is outlined. All selected methods are used in surface analysis since many years so that many aspects of the analysis (including (meta)data formats) are already standardized. As a practical analysis use case, two coated TiO2 reference nanoparticulate samples, which are available on the Joint Research Centre (JRC) repository, were selected. The added value of the complementary analysis is highlighted based on the minimum information requirements, which are well-defined for the analysis methods selected. The present paper is supposed to serve primarily as a source of understanding of the high standardization level already available for the high-quality data in surface analysis of nanomaterials as reliable input for the nanosafety community. KW - Electron microscopy KW - X-ray photoelectron spectroscopy KW - Secondary ion mass spectrometry KW - Energy dispersive X-ray spectroscopy KW - Standardization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522683 DO - https://doi.org/10.3390/nano11030639 VL - 11 IS - 3 SP - 639 PB - MDPI AN - OPUS4-52268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sattari, S. A1 - Beyranvand, S. A1 - Soleimani, K. A1 - Rassoli, K. A1 - Salahi, P. A1 - Donskyi, Ievgen A1 - Shams, A. A1 - Unger, Wolfgang A1 - Yari, A. A1 - Farjanikish, G. A1 - Nayebzadeh, H. A1 - Adeli, M. T1 - Boronic Acid-Functionalized Two-Dimensional MoS2 at Biointerfaces N2 - While noncovalent interactions at two-dimensional nanobiointerfaces are extensively investigated, less knowledge about covalent interactions at this interface is available. In this work, boronic acid-functionalized 2D MoS2 was synthesized and its covalent multivalent interactions with bacteria and nematodes were investigated. Polymerization of glycidol by freshly exfoliated MoS2 and condensation of 2,5-thiophenediylbisboronic acid on the produced platform resulted in boronic acid-functionalized 2D MoS2. The destructive interactions between 2D MoS2 and bacteria as well as nematodes were significantly amplified by boronic acid functional groups. Because of the high antibacterial and antinematodal activities of boronic acid-functionalized 2D MoS2, its therapeutic efficacy for diabetic wound healing was investigated. The infected diabetic wounds were completely healed 10 days after treatment with boronic acid-functionalized 2D MoS2, and a normal structure for recovered tissues including different layers of skin, collagen, and blood vessels was detected. KW - XPS KW - Boronic acid-functionalized 2D MoS2 KW - Covalent interactions KW - Bacteria KW - Nanobiointerfaces PY - 2020 DO - https://doi.org/10.1021/acs.langmuir.0c00776 VL - 36 IS - 24 SP - 6706 EP - 6715 PB - ACS American Chemical Society AN - OPUS4-51024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Waqfi, R. A. A1 - Khan, C. J. A1 - Irving, O. J. A1 - Matthews, Lauren A1 - Albrecht, T. T1 - Crowding Effects during DNA Translocation in Nanopipettes N2 - Quartz nanopipettes are an important emerging class of electric single-molecule sensors for DNA, proteins, their complexes, as well as other biomolecular targets. However, in comparison to other resistive pulse sensors, nanopipettes constitute a highly asymmetric environment and the transport of ions and biopolymers can become strongly directiondependent. For double-stranded DNA, this can include the characteristic translocation time and tertiary structure, but as we show here, nanoconfinement can also unlock capabilities for biophysical and bioanalytical studies at the single-molecule level. To this end, we show how the accumulation of DNA inside the nanochannel leads to crowding effects, and in some cases reversible blocking of DNA entry, and provide a detailed analysis based on a range of different DNA samples and experimental conditions. Moreover, using biotin-functionalized DNA and streptavidinmodified gold nanoparticles as target, we demonstrate in a proof-of-concept study how the crowding effect, and the resulting increased residence time in nanochannel, can be exploited by first injecting the DNA into the nanochannel, followed by incubation with the nanoparticle target and analysis of the complex by reverse translocation. We thereby integrate elements of sample processing and detection into the nanopipette, as an important conceptual advance, and make a case for the wider applicability of this device concept. KW - DNA translocation KW - Transport KW - Resistive-pulse sensing KW - Nanopores KW - Nanopipettes KW - Crowding KW - Confinement PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630448 DO - https://doi.org/10.1021/acsnano.5c01529 SN - 1936-086X VL - 19 IS - 17 SP - 1 EP - 9 PB - ACS Publications AN - OPUS4-63044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rossi, Andrea A1 - Corrao, Elena A1 - Alladio, Eugenio A1 - Drobne, Damjana A1 - Hodoroaba, Vasile-Dan A1 - Jurkschat, Kerstin A1 - Kononenko, Veno A1 - Madbouly, Loay Akmal A1 - Mrkwitschka, Paul A1 - Yasamin, Nakhli A1 - Novak, Sara A1 - Radnik, Jörg A1 - Saje, Špela A1 - Santalucia, Rosangela A1 - Sordello, Fabrizio A1 - Pellegrino, Francesco T1 - Multivariate optimization and characterization of graphene oxide via design of experiments and chemometric analysis N2 - Controlling the structure and properties of graphene oxide (GO) remains a challenge due to the poor reproducibility of conventional synthetic protocols and limited understanding of parameter-property relationships. In this study, we present an integrated analytical framework that combines Design of Experiments (DoE) with chemometric modelling to systematically assess the effects of eight synthesis variables on GO’s physicochemical and functional features. A Plackett–Burman experimental design enabled efficient screening of synthesis conditions, while comprehensive characterization (spanning UV–Vis spectroscopy, XPS, SEM–EDX, TEM–EDX, and XRD) was coupled with multivariate tools (Principal Component Analysis and Multiple Linear Regression) to identify statistically significant correlations between synthetic inputs and material responses. Notably, we demonstrate that UV–Vis spectra can serve as a robust proxy for oxidation state, offering a rapid and accessible alternative to surface-sensitive methods. The approach yields a predictive analytical toolkit for guiding GO synthesis and highlights a generalizable strategy for the rational design of flat nanomaterials. This work supports reproducible, resource-efficient material development aligned with Safe and Sustainable by Design (SSbD) principles. KW - Graphene oxide KW - 2D-materials KW - Design of Experiment KW - Synthesis KW - Chemometric analysis PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652576 DO - https://doi.org/10.1016/j.flatc.2025.100988 SN - 2452-2627 VL - 55 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-65257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madbouly, Loay Akmal A1 - Sturm, Heinz A1 - Doolin, Alexander A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Chemical Analysis of Commercial Functionalized Graphene Nanoplatelets along the Production Process with Raman Spectroscopy and X-ray Photoelectron Spectroscopy N2 - Commercial applications increasingly rely on functionalized graphene nanoplatelets (GNPs) supplied as powders, aqueous suspensions, and printable inks, yet their process−structure−property relationships across the production chain remain to be fully mapped. Here we apply a correlative Raman spectroscopy (Raman) and X-ray photoelectron spectroscopy (XPS) workflow to nine independent industrial graphene batches spanning three surface chemistries, raw (R), fluorinated (F), and nitrogen-functionalized (N), in all three physical forms which are powders, suspensions, and inks. Raman mapping (with a 532 nm excitation laser) showed that I2D/IG is highest for N samples and lowest for R-ink. A 2D-vs-G correlation places all samples on a trajectory parallel to the pure-doping vector, which can correlate to holes in the graphene lattice. The mean point-defect spacing is LD = 8.4−10.0 nm. High-resolution XPS resolves the accompanying chemical changes: F-powder exhibits distinct C−F (289 eV), C−F2 (292 eV), and C−F3 (293 eV) components and loses roughly half its F content upon dispersion in deionized water or ink formulation; inks of all chemistries show a pronounced O−C=O peak near 289−290 eV originated from the ink compounds. N-functionalized samples showed a prominent C−N (285.5 eV) only for the ink formulated N-functionalized sample. This study establishes a process-aware blueprint linking the functionalization route and formulation step to lattice disorder and surface chemistry, offering transferable quality-control metrics for graphene supply chains in industrial products/applications such as coatings, storage devices, and printed electronics. KW - Functionalized graphene KW - Raman Spectroscopy KW - XPS KW - Chemical analysis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652548 DO - https://doi.org/10.1021/acs.jpcc.5c06820 SN - 1932-7447 VL - 129 IS - 50 SP - 22033 EP - 22040 PB - American Chemical Society (ACS) AN - OPUS4-65254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Czuban, M. A1 - Kulka, M. W. A1 - Wang, L. A1 - Koliszak, A. A1 - Achazi, K. A1 - Schlaich, C. A1 - Donskyi, Ievgen A1 - Di Luca, M. A1 - Mejia Oneto, J. M. A1 - Royzen, M. A1 - Haag, R. A1 - Trampuz, A. T1 - Titanium coating with mussel inspired polymer and bio-orthogonal chemistry enhances antimicrobial activity against Staphylococcus aureus N2 - Implant-associated infections present severe and difficult-to-treat complications after surgery, related to implant biofilm colonization. Systemic administration of antibiotics cannot reach sufficient concentrations at the infected site and may be toxic. Here we describe how mussel-inspired dendritic material coated on a titanium surface can locally activate a prodrug of daptomycin (pro-dapto) to treat methicillin-resistant Staphylococcus aureus. The mechanism of the prodrug activation is based on bio-orthogonal click chemistry between a tetrazine (Tz) and trans-cyclooctene (TCO). The former is attached to the dendritic polymer, while the later converts daptomycin into a prodrug. Characterization of the material's properties revealed that it is hydrophobic, non-toxic, and stable for a prolonged period of time. We envision that the titanium coated dendritic material will be able to improve the treatment of implant-associated infections by concentrating systemically administered antibiotic prodrugs, thus converting them into active localized medicines. KW - Bio-orthogonal chemistry KW - Antimicrobial titanium coating KW - Prodrug antibiotic KW - Antibiotic delivery KW - Antibiotic release KW - XPS PY - 2020 DO - https://doi.org/10.1016/j.msec.2020.111109 VL - 116 SP - 111109 PB - Elsevier B.V. AN - OPUS4-51204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chudoba, T. A1 - Schwenk, D. A1 - Reinstädt, P. A1 - Griepentrog, Michael T1 - High-Precision Calibration of Indenter Area Function and Instrument Compliance N2 - The accuracy and comparability of nanoindentation results depend significantly on the calibration of area function and instrument compliance. The area function results should not depend on the reference material used or on the calibration method (direct or indirect). This has been investigated for 18 different Berkovich tips. A novel calibration method is proposed that confirms the material independence of the area function and gives a force-dependent instrument compliance function. An agreement between direct and indirect calibration could only be achieved by considering a radial displacement correction. Further, it is shown that the transition range from a spherical cap to the correct face angle of the pyramid can extend to a depth of more than 250 nm. A better parameter for the indenter than the tip radius is the offset of the contact radius to the radius of an ideal tip at a depth where the correct face angle is reached. KW - Nanoindentation KW - Calibration KW - Indenter area function KW - Instrument compliance PY - 2022 DO - https://doi.org/10.1007/s11837-022-05291-3 SN - 1047-4838 VL - 74 IS - 6 SP - 2179 EP - 2194 PB - Springer AN - OPUS4-55849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyranvand, S. A1 - Pourghobadi, Z. A1 - Sattari, S. A1 - Soleymani, K. A1 - Donskyi, Ievgen A1 - Gharabaghi, M. A1 - Unger, Wolfgang A1 - Farjanikish, G. A1 - Nayebzadeh, H. A1 - Adeli, M. T1 - Boronic acid functionalized graphene platforms for diabetic wound N2 - While noncovalent interactions between graphene derivatives and biosystems are extensively studied, less knowledge about their covalent multivalent interactions at biointerfaces is available. Due to the affinity of boronic acids towards cis-diol bearing biosystems, graphene sheets with this functionality were synthesized and their covalent interactions with the bacteria and nematode were investigated. As expected, graphene platforms with boronic acid functionality were able to wrap bacteria and destroy it in a short time. Surprisingly, body of nematodes was ruptured and their viability decreased to 30% after 24 h incubation with the functionalized graphene sheets. Because of their antibacterial and antiparasitic activities as well as their ability for wound dressing, graphene platforms with the boronic acid functionality were further investigated for diabetic wound healing. In vivo experiments showed that graphene platforms are more efficient than the commercially available drug, phenytoin, and restore both infected and non-infected diabetic wounds in ten days. Taking advantage of their straightforward synthesis, strong interactions with different biosystems as well as their ability to heal diabetic wounds, the boronic Acid functionalized graphene sheets are promising candidates for a broad range of future biomedical applications. KW - Graphene KW - Boronic acid KW - Functionalized graphene KW - XPS PY - 2020 UR - https://www.sciencedirect.com/science/article/abs/pii/S0008622319310954 DO - https://doi.org/doi.org/10.1016/j.carbon.2019.10.077 VL - 158 SP - 327 EP - 336 PB - Elsevier Ltd. AN - OPUS4-50559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang T1 - International standardization and metrology as tools to address the comparability and reproducibility challenges in XPS measurements N2 - The status of standardization related to x-ray photoelectron spectroscopy (XPS, ESCA) at ASTM International (Subcommittee E42.03) and ISO (TC 201) is presented and commented upon in a structured manner. The survey also identifies other active bodies, here VAMAS Technical Working Area 2 and the Surface Analysis Working Group at the International Meter Convention, contributing to prestandardization Research and metrology of XPS and reports their specific activities. It is concluded that existing standardization is delivering good practices in the use of XPS and has a high potential to avoid the recently observed erroneous use, misapplications, and misinterpretation by new and inexperienced users of the method—which seems to be the main reason for the “reproducibility crisis” in the field of XPS applications. A need for a more proactive publicizing of international documentary standards by experienced XPS users, specifically those who are involved in standardization, is identified. Because the existing portfolio of standards addressing the use of XPS is not complete, future standardization projects planned or already ongoing are mentioned. The way the standardization bodies are identifying future needs is shortly explained. KW - Standardisation KW - Comparability KW - Reproducibility KW - XPS KW - VAMAS KW - Metrology PY - 2020 DO - https://doi.org/10.1116/1.5131074 VL - 38 IS - 2 SP - 021201-1 EP - 021201-8 PB - AVS AN - OPUS4-50560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -