TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Monodisperse iron oxide nanoparticles as reference material candidate for particle size measurements N2 - In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important, especially with respect to the assessment of their environmental or biological impact. Furthermore, the European Commission’s REACH Regulations require the registration of nanomaterials traded in quantities of at least 1 ton. Powders or dispersions where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as nanomaterials. This creates a need for industrial manufacturers and research or analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution and will also target other key parameters like shape, structure, porosity or functional properties. In this respect, materials like iron oxide or titanium dioxide are considered as candidates to complement the already available silica, Au, Ag, and polystyrene reference nanoparticles. The thermal decomposition of iron oleate precursors in high boiling organic solvents can provide large quantities of iron oxide nanoparticles that can be varied in size and shape.[1, 2] The presence of oleic acid or other hydrophobic ligands as capping agents ensures stable dispersion in nonpolar solvents. Such monodisperse, spherical particles were synthesized at BAM and pre-characterized by electron microscopy (TEM, SEM including the transmission mode STEM-in-SEM) and dynamic light scattering comparing cumulants analysis and frequency power spectrum. 1. REACH regulations and nanosafety concerns create a strong need for nano reference materials with diverse properties. 2. Iron oxide nanoparticles are under development as new candidate reference material at BAM. 3. Narrow particle size distribution confirmed by light scattering and electron microscopy. T2 - Nanosafety 2020 CY - Online meeting DA - 05.10.2020 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Electron microscopy KW - Nanoplattform PY - 2020 AN - OPUS4-52774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Thünemann, Andreas A1 - Radnik, Jörg A1 - Häusler, I. A1 - Bresch, Harald A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Iron Oxide Nanocubes as a New Certified Reference Material for Nanoparticle Size Measurements JF - Analytical chemistry N2 - The rational design and increasing industrial use of nanomaterials require a reliable characterization of their physicochemical key properties like size, size distribution, shape, and surface chemistry. This calls for nanoscale reference materials (nanoRMs) for the validation and standardization of commonly used characterization methods closely matching real-world nonspherical nano-objects. This encouraged us to develop a nonspherical nanoRM of very small size consisting of 8 nm iron oxide nanocubes (BAM-N012) to complement spherical gold, silica, and polymer nanoRMs. In the following, the development and production of this nanoRM are highlighted including the characterization by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) as complementary methods for size and shape parameters, homogeneity and stability studies, and calculation of a complete uncertainty budget of the size features. The determination of the nanocubes’ edge length by TEM and SAXS allows a method comparison. In addition, SAXS measurements can also provide the mean particle number density and the mass concentration. The certified size parameters, area equivalent circular diameter and square edge length, determined by TEM with a relative expanded uncertainty below 9%, are metrologically traceable to a natural constant for length, the very precisely known (111) lattice spacing of silicon. Cubic BAM-N012 qualifies as a certified nanoRM for estimating the precision and trueness, validation, and quality assurance of particle size and shape measurements with electron microscopy and SAXS as well as other sizing methods suitable for nanomaterials. The production of this new iron oxide nanocube RM presents an important achievement for the nanomaterial community, nanomaterial manufacturers, and regulators. KW - Certification KW - SAXS KW - Homogeneity KW - Nano KW - Particle KW - Iron oxide KW - Quality assurance KW - Reference material KW - Size KW - Electron microscopy KW - Stability KW - Shape PY - 2023 DO - https://doi.org/10.1021/acs.analchem.3c00749 SN - 0003-2700 VL - 95 IS - 33 SP - 12223 EP - 12231 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-58176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bartczak, D. A1 - Hodoroaba, Vasile-Dan T1 - Report on the development and validation of the reference material candidates with non-spherical shape, non-monodisperse size distributions and accurate nanoparticle concentrations T2 - Community EMPIR Project 17NRM04 nPSize (Improved traceability chain of nanoparticle size measurements) N2 - One aim of the EMPIR nPSize project 17NRM04 was to develop and validate three classes of candidate reference (test) materials (RTMs), with i) well-defined non-spherical shape, ii) relatively high polydispersity index, and iii) accurate particle concentrations. To fulfil the requirements of the project, 11 different types of materials were prepared. Following the initial assessment of the materials suitability, nPSize5_PT_UNITO, nPSize6_AC_UNITO and nPSize7_GN_CEA materials were found unsuitable for the project, due to various reasons. PT material was deemed unsuitable due to its predominantly agglomerated nature. AC material contained relatively high amount of impurities (other particle forms). GN material was found too heterogeneous in both the length and width for the purpose of the project. The remaining 8 candidate RTMs were assessed for their homogeneity and stability and used for successful delivery of the associated activities within the nPSize project. KW - Nanoparticles KW - Particle size distribution KW - Reference materials KW - Non-spherical shape KW - EMPIR nPSize KW - Electron microscopy KW - AFM KW - SAXS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556015 DO - https://doi.org/10.5281/zenodo.7016466 SP - 1 EP - 22 PB - Zenodo CY - Geneva AN - OPUS4-55601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Burr, L. A1 - Schmid, D. A1 - Hodoroaba, Vasile-Dan T1 - Towards a method for quantitative evaluation of nanoparticle from suspensions via microarray printing and SEM analysis JF - Journal of Physics: Conference Series N2 - As part of the development of a library of accurate and efficient methods for measurement of nanoparticle properties, we develop and optimize a method for the efficient analysis of nanoparticle size distribution from suspensions via microprinting and digital analysis of electron microscopy (SEM and TEM) images, with the ultimate aim of automated quantitative concentration analysis (calculated from drop volume). A series of different nanoparticle suspensions (gold, latex, and SiO2 in varying sizes and concentrations) were printed onto TEM grids in a 4 x 4 array in the concentration range 7x10^8 to 1x10^11 nanoparticles/mL and imaged with SEM. Concentrations and printing conditions (temperature, relative humidity) were varied in order to minimize the coffee-ring effect. KW - Nanoparticles KW - Particle size distribution KW - Electron microscopy KW - Microarray printing KW - Sample preparation KW - Nanoparticle concentration PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528455 DO - https://doi.org/10.1088/1742-6596/1953/1/012002 VL - 1953 SP - 012002 PB - IOP Publishing AN - OPUS4-52845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cios, Grzegorz A1 - Hodoroaba, Vasile-Dan A1 - Tokarski, T. A1 - Bala, P. T1 - High throughput nanoparticle analysis using transmission Kikuchi diffraction N2 - In the present paper we show an approach of measuring large numbers of nanoparticles in a single scan TKD. TiO2 anatase nanoparticles (NP) of bipyramidal shape were deposited on standard carbon grid used for TEM. The procedure used promoted formation of NP ‘monolayer’ islands with uniform distribution of NPs on the carbon surface which allowed mapping of large number of nanoparticles in the single island. Collection of whole map covering ~2800 nanoparticles took nearly 20 minutes. Inverse pole figure color coded map indicates that the NPs are either lying on a {101} facet (within 10° range around perfect {101} parallel to the carbon surface orientation) on the carbon film or are lying on a {100} facet (within 10° range around the perfect {100} parallel to the carbon surface orientation). Very unlikely was the NP orientation standing on a {001} face. The NPs size distribution described as equivalent circle diameter (ECD) has been also evaluated and the mean NP ECD was 59 nm with standard deviation of 15 nm, i.e. in good agreement with electron microscopy or AFM results. This study shows high potential of the technique for crystalline NPs analysis with respect to geometrical orientation of the particles on the substrate. With known orientation, the 3D dimensional characterisation of such non-spherical NPs becomes possible from 2D projection electron micrographs. Moreover, the NP size distribution can be easily extracted. Superior accuracies down to 1-2 nm are achievable. The approach is applicable also on thin lamellae extracted from particulate (or mesoporous) layers. T2 - EMAS 2023 - 17th European Workshop on Modern Developmennts and Applications in Microbeam Analysis CY - Krakow, Poland DA - 07.05.2023 KW - Nanoparticles KW - TKD KW - Electron microscopy KW - TiO2 KW - Orientation PY - 2023 UR - https://www.microbeamanalysis.eu/events/event/60-emas-2023-17th-european-workshop-on-modern-developments-and-applications-in-microbeam-analysis AN - OPUS4-57519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Crouzier, L. A1 - Feltin, N. A1 - Delvallée, A. A1 - Pellegrino, Francesco A1 - Maurino, V. A1 - Cios, Grzegorz A1 - Tokarski, T. A1 - Salzmann, Christoph A1 - Deumer, J. A1 - Gollwitzer, C. A1 - Hodoroaba, Vasile-Dan T1 - Correlative analysis of the dimensional properties of bipyramidal titania nanoparticles by complementing electron microscopy with other methods JF - Nanomaterials N2 - In this paper, the accurate determination of the size and size distribution of bipyramidal anatase nanoparticles (NPs) after deposition as single particles on a silicon substrate by correlative Scanning Electron Microscopy (SEM) with Atomic Force Microscopy (AFM) analysis is described as a new measurement procedure for metrological purposes. The knowledge of the exact orientation of the NPs is a crucial step in extracting the real 3D dimensions of the particles. Two approaches are proposed to determine the geometrical orientation of individual nano‐bipyramides: (i) AFM profiling along the long bipyramid axis and (ii) stage tilting followed by SEM imaging. Furthermore, a recently developed method, Transmission Kikuchi Diffraction (TKD), which needs preparation of the crystalline NPs on electron‐transparent substrates such as TEM grids, has been tested with respect to its capability of identifying the geometrical orientation of the individual NPs. With the NPs prepared homogeneously on a TEM grid, the transmission mode in a SEM, i.e., STEM‐in‐SEM (or T‐SEM), can be also applied to extract accurate projection dimensions of the nanoparticles from the same sample area as that analysed by SEM, TKD and possibly AFM. Finally, Small Angle X‐ray Scattering (SAXS) can be used as an ensemble technique able to measure the NPs in liquid suspension and, with ab‐initio knowledge of the NP shape from the descriptive imaging techniques, to provide traceable NP size distribution and particle concentration. KW - Nanoparticles KW - Complex-shape KW - Bipyramid KW - Electron microscopy KW - AFM KW - Size measurements KW - TKD KW - STEM-in-SEM KW - SAXS KW - Nanoparticle concentration KW - Correlative analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539888 DO - https://doi.org/10.3390/nano11123359 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-53988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feltin, N. A1 - Crouzier, L. A1 - Delvallée, A. A1 - Pellegrino, F A1 - Maurino, V. A1 - Bartczak, D. A1 - Goenaga-Infante, H. A1 - Taché, O. A1 - Marguet, S. A1 - Testard, F. A1 - Artous, S. A1 - Saint-Antonin, F. A1 - Salzmann, Christoph A1 - Deumer, J. A1 - Gollwitzer, C. A1 - Koops, R. A1 - Sebaïhi, N. A1 - Fontanges, R. A1 - Neuwirth, M. A1 - Bergmann, D. A1 - Hüser, D. A1 - Klein, T. A1 - Hodoroaba, Vasile-Dan T1 - Metrological Protocols for Reaching Reliable and SI-Traceable Size Results for Multi-Modal and Complexly Shaped Reference Nanoparticles JF - Nanomaterials N2 - The study described in this paper was conducted in the framework of the European nPSize project (EMPIR program) with the main objective of proposing new reference certified nanomaterials for the market in order to improve the reliability and traceability of nanoparticle size measurements. For this purpose, bimodal populations as well as complexly shaped nanoparticles (bipyramids, cubes, and rods) were synthesized. An inter-laboratory comparison was organized for comparing the size measurements of the selected nanoparticle samples performed with electron microscopy (TEM, SEM, and TSEM), scanning probe microscopy (AFM), or small-angle X-ray scattering (SAXS). The results demonstrate good consistency of the measured size by the different techniques in cases where special care was taken for sample preparation, instrument calibration, and the clear definition of the measurand. For each characterization method, the calibration process is described and a semi-quantitative table grouping the main error sources is proposed for estimating the uncertainties associated with the measurements. Regarding microscopy-based techniques applied to complexly shaped nanoparticles, data dispersion can be observed when the size measurements are affected by the orientation of the nanoparticles on the substrate. For the most complex materials, hybrid approaches combining several complementary techniques were tested, with the outcome being that the reliability of the size results was improved. KW - Certified reference nanomaterials KW - Traceable nanoparticle size measurements; KW - Hybrid metrology KW - Scanning probe microscopy KW - Small-angle X-ray scattering KW - Electron microscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571902 DO - https://doi.org/10.3390/nano13060993 SN - 2079-4991 VL - 13 IS - 6 - Special Issue "Identification and Quantification of Nanomaterials" SP - 1 EP - 25 PB - MDPI CY - Basel, CH AN - OPUS4-57190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Elert, Anna Maria A1 - Hodoroaba, Vasile-Dan A1 - Agudo Jácome, Leonardo A1 - Altmann, Korinna A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Short- and long-range mechanical and chemical interphases caused by interaction of Boehmite (γ-AlOOH) with anhydride-cured epoxy resins JF - Nanomaterials N2 - Understanding the interaction between boehmite and epoxy and the formation of their interphases with different mechanical and chemical structures is crucial to predict and optimize the properties of epoxy-boehmite nanocomposites. Probing the interfacial properties with atomic force microscopy (AFM)-based methods, especially particle-matrix long-range interactions, is challenging. This is due to size limitations of various analytical methods in resolving nanoparticles and their interphases, the overlap of interphases, and the effect of buried particles that prevent the accurate interphase property measurement. Here, we develop a layered model system in which the epoxy is cured in contact with a thin layer of hydrothermally synthesized boehmite. Different microscopy methods are employed to evaluate the interfacial properties. With intermodulation atomic force microscopy (ImAFM) and amplitude dependence force spectroscopy (ADFS), which contain information about stiffness, electrostatic, and van der Waals forces, a soft interphase was detected between the epoxy and boehmite. Surface potential maps obtained by scanning Kelvin probe microscopy (SKPM) revealed another interphase about one order of magnitude larger than the mechanical interphase. The AFM-infrared spectroscopy (AFM-IR) technique reveals that the soft interphase consists of unreacted curing agent. The long-range electrical interphase is attributed to the chemical alteration of the bulk epoxy and the formation of new absorption bands. KW - Nanocomposites KW - Interphase KW - Intermodulation AFM KW - Electron microscopy KW - Infrared nano AFM PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483672 UR - https://www.mdpi.com/2079-4991/9/6/853/htm DO - https://doi.org/10.3390/nano9060853 SN - 2079-4991 VL - 9 IS - 6 SP - 853, 1 EP - 20 PB - MDPI AN - OPUS4-48367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Hodoroaba, Vasile-Dan T1 - Project 15 Measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension N2 - The progress in the VAMAS Project #15" Measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension" within TWA 34 Nanoparticle Populations is presented with highlight of the following points: - Determine and compare particle size and shape distribution by means of: • electron microscopy (SEM, TEM, STEM-in-SEM) • atomic force microscopy (AFM) • small angle X-ray scattering (SAXS) - Determine uncertainty induced by deposition protocol from liquid suspension with comparison to known values from a prior ILC with already deposited nanoparticles on TEM grids. - Provide comparative validation of protocols for the techniques other than TEM. T2 - VAMAS Regional Workshop 2023 CY - Online meeting DA - 24.01.2023 KW - Nanoparticles KW - VAMAS KW - Electron microscopy KW - AFM KW - SAXS KW - TiO2 PY - 2023 UR - https://www.bam.de/Content/EN/Events/2023/2023-01-24-vamas-regional-workshop.html AN - OPUS4-57220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Hodoroaba, Vasile-Dan T1 - Project 16 Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension N2 - The progress of the VAMAS Project 16 "Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension" in TWA 34 Nanoparticle Populations is presented. Follwowing points are discusssed: - Validate the performance of imaging methods to measure the relative number concentration • electron microscopy (SEM, TEM) and atomic force microscopy (AFM) • two modes of bimodal (30 and 60 nm) silica nanoparticles - Validate the performance of small angle X-ray scattering (SAXS) for the traceable measurement of the number concentration of the two modes. T2 - VAMAS Regional Workshop 2023 - What can pre-normative research do for industry? CY - Online meeting DA - 24.01.2023 KW - Nanoparticles KW - VAMAS KW - Inter-laboratory comparison KW - SiO2 KW - Electron microscopy KW - AFM PY - 2023 UR - https://www.bam.de/Content/EN/Events/2023/2023-01-24-vamas-regional-workshop.html AN - OPUS4-57221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement - What nPSize can offer to ISO/TC 229? N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities, e.g. reference materials, sample preparation protocols, measurement procedures, and data analysis, to be standardized and implemented in accredited analytical laboratories is discussed. Complementation and/or filling gaps of published and ongoing standardisation projects on size, shape and number concentration measurements under ISO/TC 229/JWG 2 are offered. The two VAMAS inter-laboratory comparisons resulted from the nSPize project and just started under TWA 34 Nanoparticle Populations (Projects #15 and #16) of bipyramidal TiO2 anatase and bimodal SiO2 nanoparticles are presented in detail. T2 - Interim Meeting of ISO/TC 229 Nanotechnologies - Strategy and Metrology Group CY - Online meeting DA - 09.05.2022 KW - Nanoparticles KW - Particle size distribution KW - Inter-laboratory comparison KW - Electron microscopy KW - AFM KW - SAXS KW - ISO/TC229 PY - 2022 AN - OPUS4-54819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Liaison report from VAMAS with ISO/TC 202 Microbeam Analysis N2 - The progress in the activities on Microbeam Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 is presented and discussed with respect to the possibility of identifying and launching related VAMAS projects/inter-laboratory comparisons. The recently started project FIB sample processing for TEM is presented. Next projects in the pipeline involving EBSD and TKD are shortly announced. The need of more promotion for the engagement of more experts from industry and academia at national, European and international level is highlighted. Also, the competition with the other technical working areas (on 'nano' or materials-related) is critically discussed. T2 - 29th Annual Meeting of ISO/TC 202 Microbeam Analysis CY - Online meeting DA - 28.11.2022 KW - VAMAS KW - ISO/TC 202 KW - Microbeam Analysis KW - EBSD KW - Electron microscopy KW - Thin films PY - 2022 AN - OPUS4-56424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Durande, B. A1 - Taché, O. T1 - Nanoparticle size, shape, and concentration measurement at once – two VAMAS pre-standardization projects ready to start N2 - A case study on the TEM analysis of the size and shape distribution of TiO2 bipyramidal nanoparticles prepared on TEM grids was included in the recently published ISO standard ISO 21363. It was agreed to organize at a later stage a second inter-lab comparison with the nanoparticles distributed to the participants as a liquid suspension. Protocols for uniform nanoparticle deposition on suited supports developed and optimized within the EMPIR nPSize project are also prepared to be distributed. For this, we have chosen the VAMAS platform (www.vamas.org) which offers an excellent international infrastructure of laboratories with high competence in nanoparticle measurement. The VAMAS technical working area dedicated to nanoparticle measurement is TWA 34 ‘Nanoparticle populations’. For this type of nanoparticles, the size and shape distributions are the primary parameters to be reported. Due to the good deposition protocols developed, an automated image analysis is enabled (in contrast to the manual analysis of irregular TiO2 nanoparticles. In parallel with the TiO2 nanoparticle exercise, two spherical SiO2 nanoparticle samples with bi-modal size distributions (nominal relative number concentrations of 1:1 and 10:1) are prepared for a second VAMAS inter-lab comparison. Here, the nanoparticle concentration is the primary parameter to be measured. For the imaging methods it is targeted to measure the relative nanoparticle concentrations of the two modes. For the absolute nanoparticle concentration to be measured by imaging methods it is necessary to control the volume of the liquid suspension deposited on the substrate and to obtain such a homogeneous nanoparticle deposition on the substrate which allows to count (or extrapolate) all the deposited particles. T2 - Microscopy and Microanalysis 2021 CY - Online meeting DA - 01.08.2021 KW - Nanoparticles KW - Electron microscopy KW - VAMAS KW - Inter-laboratory comparison KW - TiO2 KW - SiO2 PY - 2021 AN - OPUS4-53065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Feltin, N. A1 - Crouzier, L. A1 - Cios, G. A1 - Tokarski, T. T1 - Correlative imaging analysis of non-spherical nanoparticles N2 - It sounds like being a simple analytical task, it is definitely not. The way toward accurate measurement of the size distribution of nanoparticles (NPs) with complex shape, having a broad size polydispersity, with inhomogeneous chemistry, and with a high degree of agglomeration/aggregation is very challenging for all available analytical methods. Particularly for the NPs with complex shape, the access to the smallest dimension (as e.g. required for regulatory purposes) can be enabled only by using imaging techniques with spatial resolution at the nanoscale. Moreover, the full 3D-chacterisation of the NP shape can be provided either by advanced characterization techniques like 3D-TEM tomography or by correlative analysis, i. e. synergetic/complementary measurement of the same field-of-view of the sample with different probes. Examples of the latter type of analysis are: i) electron microscopy for the lateral dimensions and AFM for the height of the NPs, ii) SEM with STEM-in-SEM (also called T-SEM), iii) Electron Microscopy with TKD (Transmission Kikuchi Diffraction) for determination of the geometrical orientation of crystalline NPs, iv) Raman and SEM for e.g. thickness of graphen flakes, or v) Electron Microscopy for descriptive NP shape and SAXS for the NP concentration, the latter as a NP property able to be measured with higher and higher accuracy. For all these types of measurement, reference NPs are necessary for the validation of the measured size. Particularly non-spherical reference NPs are still missing. Examples of such new reference NPs as characterized by the correlative analyses enumerated above will be presented in detail in the contribution. T2 - 2021 Fall Meeting of the European Materials Research Society (E-MRS) CY - Online meeting DA - 20.9.2021 KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - Correlative imaging KW - Electron microscopy KW - AFM KW - TiO2 KW - VAMAS PY - 2021 UR - https://www.european-mrs.com/meetings/2021-fall-meeting AN - OPUS4-53367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - Gold nanocubes with monodispersed size distribution (SEM SE) T2 - Microscopy Today N2 - Gold nanocubes with a monodispersed size distribution (edge = 55 nm) deposited on a silicon wafer. These tiny uniform cubes were produced as reference nanoparticles in the frame of the European project nPSize - Improved traceability chain of nanoparticle size measurements. SEM Image acquired at 10 kV with an in-lens secondary electron detector. Image colored in ImageJ using LUT “Orange hot.” Published in Microscopy and Microanalysis 25(S2) (2019) 2328. KW - Nanoparticles KW - Nanocubes KW - Electron microscopy KW - Reference materials PY - 2020 DO - https://doi.org/10.1017/S1551929520001157 VL - 28 IS - 4 SP - 12 EP - 12 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - 2020 Microscopy Today Micrograph Awards T2 - Microscopy Today N2 - Gold nanocubes with a monodispersed size distribution (edge = 55 nm) deposited on a silicon wafer. These tiny uniform cubes were produced as reference nanoparticles within the EMPIR project nPSize - Improved traceability chain of nanoparticle size measurements. SEM image acquired at 10 kV with an in-lens secondary electron detector. Image colored in ImageJ using LUT “Orange hot.” Published in Microscopy and Microanalysis 25(S2) (2019) 2328. KW - Nanoparticles KW - Au-nanocubes KW - Reference materials KW - Electron microscopy PY - 2020 DO - https://doi.org/10.1017/S1551929520001339 VL - 28 IS - 5 SP - 14 EP - 15 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Hörenz, Christoph A1 - Durande, B. A1 - Taché, O. A1 - Bartczak, D. A1 - Cuello-Nuñez, S. A1 - Ábad-Alvaro, I. A1 - Goenaga-Infante, H. T1 - Analysis of Particle Size Distribution for Bimodal Model Nanoparticles by Scanning Electron Microscopy N2 - The present study addresses the capability of measurement of relative particle number concentration by scanning electron microscopy for model bimodal silica and gold samples prepared in the frame of the European research project “nPSize - Improved traceability chain of nanoparticle size measurements” as candidate reference nanoparticles. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Silica KW - Gold KW - Electron microscopy KW - Particle size distribution PY - 2020 AN - OPUS4-51112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Cios, G. A1 - Tokarski, T. A1 - Mansfeld, Ulrich A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Pellegrino, F. A1 - Maurino, V. T1 - Towards 3D understanding of non spherical nanoparticles by Transmission Kikuchi Diffraction (TKD) for improved particle size distribution by electron microscopy N2 - In this paper one refined approach is applied to determine the exact orientation of bipyramidal TiO2 nanoparticles prepared with good dispersion as almost isolated particles on a carbon TEM grid. The advantages of the recently developed high-throughput Transmission Kikuchi Diffraction (TKD) are used to identify quickly and reliably the geometrical orientation of the crystalline TiO2 nanoparticle bipyramids (anatase) on a statistically relevant number of particles. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - TiO2 KW - 3D KW - Electron microscopy PY - 2020 AN - OPUS4-51113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rühle, Bastian T1 - Towards automated electron microscopy image segmentation for nanoparticles of complex shape by convolutional neural networks N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Automatisation KW - Image segmentation KW - Convolutional neural networks KW - Electron microscopy PY - 2020 AN - OPUS4-51114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartzcak, D. T1 - New reference material candidates for traceable size measurement of nonspherical nanoparticles N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs. T2 - European Conference on Applications of Surface and Interface Analysis ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Nanoparticles KW - Size distribution KW - Electron microscopy KW - Certified reference materials KW - Traceability PY - 2019 AN - OPUS4-49227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. A1 - Goenaga-Infante, H. T1 - Challenges in Traceable Size Measurement of Non-Spherical, Non-Monodisperse Nanoparticles - nPSize N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs.zeige mehr T2 - Nanoparticle Reference Materials - Production and Cerification Training Course CY - London, UK DA - 10.12.2019 KW - Nanoparticles KW - Traceability KW - Particle size distribution KW - Electron microscopy KW - Reference materials KW - Non-spherical shape PY - 2019 AN - OPUS4-50040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - High-Quality Experimental Data in Electron Microscopy and Microanalysis – What can, and should we jointly do? N2 - There are different ways how to prove the quality of the results obtained by electron microscopy and related microanalysis techniques, e.g. use of validated standard operation procedures, participation in proficiency testing exercises, use of certified reference materials, etc. International standards are able to provide requirements, specifications, guidelines or characteristics of methods, instruments or samples with the final goal that these can be used consistently in accredited laboratories. In the field of electron microscopy and microbeam analysis standardization and metrology are terms which are encountered rather seldom at major conferences and scientific publications. Nevertheless, spectra formats like EMSA/MSA for spectral-data exchange or tagged image file format (TIFF) for SEM, guidelines for performing quality assurance procedures or for the specification of X-ray spectrometers as well as of certified reference materials (CRMs) in EPMA, or measurement of average grain size by electron backscatter diffraction (EBSD), or guidelines for calibrating image magnification in SEM or TEM are ISO standards already published and used successfully by a large part of the electron microscopy and microbeam analysis community. A main and continuous task of ISO/TC 202 and its subcommittees is to identify and evaluate feasible projects/proposals needed to be developed into new international standards, particularly in respect to recent but established technology, such the silicon drift detector (SDD) EDS one. Another international platform in the frame of which pre-standardization work can be organized is VAMAS (Versailles Project on Advanced Materials and Standards). International collaborative projects involving aim at providing the technical basis for harmonized measurements, testing, specifications, and standards to be further developed at ISO level. One key point of VAMAS activities is constituted by inter-laboratory comparisons for high-quality data. In the field of microbeam analysis, the technical working area (TWA) 37 Quantitative Microstructural Analysis deals with corresponding projects. Good ideas, e.g. on analysis of low-Z materials/elements and at low energies are particularly encouraged by directly contacting the author. Support and already available guidance will be supplied. T2 - Microscopy & Microanalysis 2019 CY - Portland, OR, USA DA - 03.08.2019 KW - Pre-standardisation KW - Inter-laboratory comparison KW - VAMAS KW - ISO KW - Electron microscopy KW - Microanalysis PY - 2019 AN - OPUS4-48672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Minimum Requirements for Nanomaterial Data - Examples with Electron Microscopy and Energy-Dispersive X-Ray Spectroscopy N2 - In dem Vortrag werden, anhand ausgewählten Beispielen aus der Elektronenmikroskopie und EDX-Elementanalyse, die minimalen Anforderungen an Referenzdaten für zuverlässige und reproduzierbare Ergebnisse (z.B. Partikelgrößenverteilung, Elementzusammensetzung) bei der Charakterisierung von Nanomaterialien vorgestellt und diskutiert. N2 - Based on practical examples of analysis with Electron Microscopy and Energy-Dispersive X-ray Spectroscopy, the minimum information requirements for reliable and reproducible nanomaterial characterization data such as particle size and shape distribution and elemental analysis are presented and discussed. T2 - nano@BAM-Workshop Digitalisierung in der Nanosicherheit CY - Online meeting DA - 04.12.2020 KW - Nanoparticles KW - Electron microscopy KW - EDX KW - Reference data KW - Reproducibility KW - Standardisation PY - 2020 AN - OPUS4-51775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Schmitt, M. T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement; What nPSize can offer to CEN/TC 352? N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities (e.g. reference materials, measurement procedures, inter-laboratory comparisons) as pertinent contributions to normative projects within CEN/TC 352 Nanotechnologies are discussed. E.g. the first technical report of nPSize on full algorithm sequences for nanoparticle detection and size measurement as developed on both a physical basis (SEM, TSEM, AFM and SAXS) and by machine learning is put at disposal. T2 - 29th Meeting of CEN/TC 352 Nanotechnologies CY - Online meeting DA - 25.03.2021 KW - Nanoparticles KW - Electron microscopy KW - CEN/TC 352 Nanotechnologies KW - Particle size distribution KW - Modelling KW - Machine learning PY - 2021 AN - OPUS4-52464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Ongoing VAMAS ILC s on Nanoparticles and Graphene Oxide N2 - This contributions shows the first results of the ongoing interlaboratory comparisons under VAMAS/TWA 34 Nanoparticle populations related on the determination of pasrticle size distribution and relative concentration of nanoparticles and an example of an ILC running under VAMAS/TWA 41 Graphene and Related 2D Materials on the determination of the lateral diemsnions of graphene oxide flakes by Scanning Electron Microscopy. The link to related standardisation projects at ISO/TC Nanotechnologies are explained. T2 - Webinar Building the Foundation: Interlaboratory Comparisons and Reference Products for Advanced Materials CY - Berlin, Germany DA - 16.05.2024 KW - Nanoparticles KW - VAMAS KW - Interlaboratory comparison KW - Standardisation KW - Electron microscopy KW - AFM KW - SAXS PY - 2024 AN - OPUS4-60097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Correlative Morphological-Chemical Imaging of Nanostructured Materials N2 - Newly developed methodical approaches with an emphasis on correlative imaging analysis of morphology and chemistry of nanomaterials will be presented. Correlative imaging by high-resolution SEM with STEM-in-SEM as well as with EDS, and further with AFM, or with the new technique TKD (Transmission Kikuchi Diffraction) will be explained on various examples of nanostructures, both as starting materials and as embedded/functionalized nanoparticles in products. The unique analytical benefits of the Auger electron probe as a veritable nano-tool for the local surface chemistry will be highlighted. Examples of hybrid analysis of the bulk of nanomaterials by X-ray Spectroscopy and the highest surface-sensitive methods XPS and ToF-SIMS as advanced surface characterization methods available in the Competence Centre nano@BAM will be showed. Particularly for the spatially resolved analysis of the chemistry of nanostructures, such in-depth and lateral gradients of chemistry within mesoporous thin layers, or the completeness of the shells of core-shell nanoparticles, the latter methods are inherent. Other dedicated developments like approaches for the quantitative determination of the porosity of thin mesoporous layers by electron probe microanalysis (EPMA) with SEM or the quantitative determination of the roughness of particle surface by high-resolution imaging with electron microscopy will be also presented. T2 - Conference on Applied Surface and Solid Material Analysis AOFKA 2023 CY - Zurich, Switzerland DA - 11.09.2023 KW - Correlative imaging KW - Electron microscopy KW - X-ray spectroscopy KW - Nanostructures PY - 2023 UR - https://aofka23.scg.ch/ AN - OPUS4-58338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Liaison of ISO/TC 202 Microbeam Analysis with VAMAS/TWA 37 Quantitative Microstructural Analysis N2 - The progress in activities on Microbeam Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 is presented and discussed with respect to the identification and launching corresponding VAMAS projects. The ongoing project "FIB sample processing for TEM" is presented in detail. T2 - 30th Meeting of ISO/TC 202 Microbeam Analysis CY - Berlin, Germany DA - 22.11.2023 KW - VAMAS KW - ISO/TC 202 KW - Microbeam Analysis KW - Standardisation KW - Electron microscopy KW - FIB PY - 2023 AN - OPUS4-58984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - (Pre)Standardisation and Metrology in Microbeam Analysis – Ongoing Activities and Opportunities N2 - The presentation addresses the current ongoing projects as well as the gaps and opportunities in microbeam analysis within ISO/TC 202 Microbeam Analysis standardisation body and in-liaison Technical Working Areas (TWAs) at the pre-standardization platform of VAMAS (Versailles Project on Advanced Materials and Standards). T2 - EMAS 2023 - 17th European Workshop on Modern Developmennts and Applications in Microbeam Analysis - General Assembly CY - Krakow, Poland DA - 07.05.2023 KW - Microbeam analysis KW - EDS KW - Electron microscopy KW - Inter-laboratory comparison KW - EBSD KW - Standardisation PY - 2023 AN - OPUS4-57483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Salzmann, Christoph A1 - Heilmann, Maria T1 - Ongoing VAMAS interlaboratory comparisons on nanoparticles size and shape as pre standardisation projects for harmonized measurements N2 - Traceable morphological and chemical characterization of nanomaterials with respect to the various possible sizes, size distributions, shapes, and concentrations of real-world nanoparticles (NPs) is a challenging task. Particularly for the nonspherical, non-monodisperse nanoparticles – as typically for most of the commercial particles, including their strong tendency to agglomerate, there is a lack of standard operation procedures providing accurate nanoparticle characterisation. In the framework of the pre-standardisation framework of VAMAS (Versailles Project on Advanced Materials and Standards, www.vamas.org) two interlaboratory comparison (ILC) studies are being carried out under the Technical Working Area (TWA) 34 “Nanoparticle Populations”:i) Project #15 addresses the analysis of the size and shape distribution of TiO2 bipyramidal NPs by traceable imaging methods such as TEM, SEM, STEM-in-SEM, AFM as well as with SAXS as an ensemble method. This ILC is thought as the next level development of the case studies exemplified in the published ISO standards ISO 21363 and ISO 19749. It was agreed to complete the first ILC with the NPs already prepared according to the same procedure on a TEM grid, and, at a later stage, to carry out second ILCs with the same NPs distributed to the participants as liquid suspensions together with protocols for the uniform NP deposition on suited substrates - as developed and optimized within the European project nPSize. Once having good deposition protocols available, the door for automated image analysis gets opened. Corresponding image analysis protocols and reporting templates have been distributed to the ILC participants, too. ii) Project #16: two spherical SiO2 NP samples with bi-modal size distributions in two nominal relative number concentrations were prepared and distributed also as liquid suspensions accompanied by sample preparation, measurement, and image analysis protocols and reporting templates. Here, the NP concentration is the primary parameter to be measured. For the imaging methods it is targeted to measure the relative nanoparticle concentrations (relative populations of the two modes). The results of all the participating laboratories, in both ILCs, compiled in comparative representations will be shown and discussed for the first time. The reduction of the measurement uncertainties associated to the size, shape and number-concentration results induced by the significant improvement of the sample preparation on substrates (as single particles with a high-density coverage), combined with welldefined image analysis procedures will be highlighted. T2 - 2024 Spring Meeting of the European Materials Research Society (E-MRS) CY - Strasbourg, France DA - 27.05.2024 KW - VAMAS KW - Interlaboratory comparison KW - Electron microscopy KW - Particle size distribution KW - Article concentration PY - 2024 AN - OPUS4-60184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Cios, G. A1 - Tokarski, T. A1 - Mansfeld, Ulrich A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Pellegrino, F. A1 - Maurino, V. T1 - Towards 3D Understanding of Non-spherical Nanoparticles by Transmission Kikuchi Diffraction (TKD) for Improved Particle Size Distribution by Electron Microscopy JF - Microscopy and Microanalysis N2 - In this paper one refined approach is applied to determine the exact orientation of bipyramidal TiO2 nanoparticles prepared with good dispersion as almost isolated particles on a carbon TEM grid. The advantages of the recently developed high-throughput Transmission Kikuchi Diffraction (TKD) are used to identify quickly and reliably the geometrical orientation of the crystalline TiO2 nanoparticle bipyramids (anatase) on a statistically relevant number of particles. KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - Electron microscopy KW - TiO2 KW - 3D PY - 2020 DO - https://doi.org/10.1017/S1431927620013999 VL - 26 IS - S2 SP - 260 EP - 261 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan A1 - Hörenz, Christoph T1 - Improving nanoparticle size measurement accuracy for safety assessment T2 - EURAMET News N2 - Nanomaterials and nanoparticles are finding applications across a wide range of technology sectors, from medicine and food to transportation and construction. In order to assess these new materials for potential risks to health and the environment, they need to be well-characterised. The measurement of constituent nanoparticle size, shape, and size distribution are important factors for the risk evaluation process. EMPIR project Improved traceability chain of nanoparticle size measurements (17NRM04, nPSize) is working to assess a range of traceable nanoparticle measurement approaches, including Scanning Electron Microscopy (also in Transmission Mode), Atomic Force Microscopy and Small Angle X-ray Scattering, and deliver improved calibration methods to users. For the techniques under investigation, physical models of their response to a range of nanoparticle types are developed. Validated reference materials will also be used for an inter-comparison of measurement systems, with an evaluation of the associated measurement uncertainty. With project contributions to standards development work, manufacturers will be better placed to assess the human and environmental risks posed by nanomaterials across a whole range of products. KW - Nanoparticles KW - Particle size distribution KW - Traceability KW - Electron microscopy KW - AFM KW - SAXS PY - 2021 UR - https://www.euramet.org/?L=0&news=40%3A1159 SP - 1 PB - EURAMET e.V. CY - Braunschweig AN - OPUS4-52129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Durand, B. A1 - Taché, O. T1 - Nanoparticle size, shape, and concentration measurement at once – two VAMAS pre-standardization projects ready to start JF - Microscopy and Microanalysis N2 - A case study on the TEM analysis of the size and shape distribution of TiO2 bipyramidal nanoparticles prepared on TEM grids was included in the recently published ISO standard ISO 21363. It was agreed to organize at a later stage a second inter-lab comparison with the nanoparticles distributed to the participants as a liquid suspension. Protocols for uniform nanoparticle deposition on suited supports developed and optimized within the EMPIR nPSize project are also prepared to be distributed. For this, we have chosen the VAMAS platform (www.vamas.org) which offers an excellent international infrastructure of laboratories with high competence in nanoparticle measurement. The VAMAS technical working area dedicated to nanoparticle measurement is TWA 34 ‘Nanoparticle populations’. For this type of nanoparticles, the size and shape distributions are the primary parameters to be reported. Due to the good deposition protocols developed, an automated image analysis is enabled (in contrast to the manual analysis of irregular TiO2 nanoparticles. In parallel with the TiO2 nanoparticle exercise, two spherical SiO2 nanoparticle samples with bi-modal size distributions (nominal relative number concentrations of 1:1 and 10:1) are prepared for a second VAMAS inter-lab comparison. Here, the nanoparticle concentration is the primary parameter to be measured. For the imaging methods it is targeted to measure the relative nanoparticle concentrations of the two modes. For the absolute nanoparticle concentration to be measured by imaging methods it is necessary to control the volume of the liquid suspension deposited on the substrate and to obtain such a homogeneous nanoparticle deposition on the substrate which allows to count (or extrapolate) all the deposited particles. KW - Electron microscopy KW - Inter-laboratory comparison KW - Nanoparticles KW - SiO2 KW - TiO2 KW - VAMAS PY - 2021 DO - https://doi.org/10.1017/S1431927621008126 VL - 27 IS - Suppl. 1 SP - 2250 EP - 2251 PB - Cambridge University Press AN - OPUS4-53124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. A1 - Maurino, V. ED - Bosse, H. ED - Buhr, E. ED - Dziomba, T. ED - Hodoroaba, Vasile-Dan ED - Klein, T. ED - Krumrey, M. T1 - Shape controlled TiO2 nanoparticles as candidates for nano-CRM’s – an ISO case study T2 - PTB-Bericht F-61 - NanoWorkshop 2018: Workshop on Reference Nanomaterials N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with Errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal, has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. In the TEM micrograph the particles tracked manually according to the measurement protocol. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - Titanium dioxide KW - Nanoparticles KW - Shape-controlled KW - Electron microscopy PY - 2019 SN - 978-3-95606-440-1 DO - https://doi.org/https://doi.org/10.7795/110.20190412 SN - 0179-0609 VL - F-61 SP - 245 EP - 255 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph T1 - Preparation of Nanoparticulate Samples for Electron Microscopy N2 - This presentation addresses the importance of proper sample preparation to obtain suitable samples for electron microscopic measurements. The objective as well as the requirements are discussed. Further, different sample deposition methods for various types of nanoparticulate samples are shown. T2 - nPSize Web Conference CY - Online meeting DA - 23.07.2020 KW - Nanoparticles KW - Electron microscopy KW - Sample preparation KW - Particle size distribution KW - Particle number concentration PY - 2020 AN - OPUS4-51047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Taché, O. A1 - Bartczak, D. A1 - Cuello Nuñez, S. A1 - Abad Álvaro, I. A1 - Goenaga Infante, H. A1 - Hodoroaba, Vasile-Dan T1 - Improved Sample Preparation for the Analysis of Nanoparticles by Electron Microscopy N2 - In this work, we present various promising sample preparation procedures aiming to avoid drying artifacts and guarantee homogeneously distributed NP samples for imaging techniques like TEM, SEM or AFM. This involves retarded drying in an environment of high relative humidity as well as spin coating or freeze drying of the sample on the substrate. Depending on the type of the NPs, different techniques are successful in obtaining homogenous sample deposition. Simple drying at ambient conditions often results in heavily agglomerated NPs densely packed in coffee ring traces. Retardation of the drying speed in an environment of high relative humidity, however, yields homogeneous NP deposition in the case of bimodal SiO2 and bimodal gold NP’s. In contrast, a sample of bipyramidal TiO2, heavily agglomerated when commonly dried, is successfully dispersed by spin coating the suspension on the substrate. The analysis of the particle size distribution of the bimodal silica and gold samples yielded number ratios resembling the nominal number ratios. The reliable measurement of the NP concentration of polydisperse samples by electron microscopy, even if relative, is new and of special relevance because up to now only the size of the particles, i.e. the abscissa of the PSD, can be measured reliably. T2 - NANOSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - Nanoparticles KW - Particle size distribution KW - Electron microscopy KW - Bimodal KW - SiO2 KW - Gold PY - 2020 AN - OPUS4-51714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph T1 - Improved Sample Preparation for the Analysis of Nanoparticles by Electron Microscopy N2 - Various promising sample preparation procedures aiming to avoid drying artifacts and guarantee homogeneously distributed NP samples for imaging techniques like TEM, SEM or AFM are presented. This involves retarded drying in an environment of high relative humidity as well as spin coating or freeze drying of the sample on the substrate. Depending on the type of the NPs, different techniques are successful in obtaining homogenous sample deposition. Simple drying at ambient conditions often results in heavily agglomerated NPs densely packed in coffee ring traces. Retardation of the drying speed in an environment of high relative humidity, however, yields homogeneous NP deposition in the case of bimodal SiO2 and bimodal gold NP’s. In contrast, a sample of bipyramidal TiO2, heavily agglomerated when commonly dried, is successfully dispersed by spin coating the suspension on the substrate. The analysis of the particle size distribution of the bimodal silica and gold samples yielded number ratios resembling the nominal number ratios. The reliable measurement of the NP concentration of polydisperse samples by electron microscopy, even if relative, is new and of special relevance because up to now only the size of the particles, i.e. the abscissa of the PSD, can be measured reliably. T2 - EMPIR nPSize Training Course "Metrology for Measurement of Nanoparticle Size by Electron Microscopy and Atomic Force Microscopy" CY - Online meeting DA - 27.10.2020 KW - Nanoparticles KW - Particle size distribution KW - Sample peparation KW - Electron microscopy PY - 2020 AN - OPUS4-51716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as Certified Reference Material for Size and Shape JF - Microscopy and Microanalysis N2 - BAM is currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance to the material and life sciences. As a first candidate of this series, we present cubic iron oxide nanoparticles with a nominal edge length of 8 nm. These particles were synthesized by thermal decomposition of iron oleate in high boiling organic solvents adapting well-known literature procedures. After dilution to a concentration suitable for electron microscopy (TEM and SEM) as well as for small-angle X-ray scattering (SAXS) measurements, the candidate nanoRM was bottled and assessed for homogeneity and stability by both methods following the guidelines of ISO 17034 and ISO Guide 35. The particle sizes obtained by both STEM-in-SEM and TEM are in excellent agreement with a minimum Feret of 8.3 nm ± 0.7 nm. The aspect ratio (AR) of the iron oxide cubes were extracted from the images as the ratio of minimum Feret to Feret resulting in an AR of 1.18 for TEM to 1.25 for SEM. Alternatively, a rectangular bounding box was fitted originating from the minimum Feret and the longest distance through the particle in perpendicular direction. This led to AR values of 1.05 for TEM and 1.12 for SEM, respectively. The results confirm the almost ideal cubic shape. KW - Reference nanoparticles KW - Iron oxide KW - Cubical shape KW - Electron microscopy KW - SAXS KW - Nano CRM KW - Size PY - 2022 DO - https://doi.org/10.1017/S1431927622003610 SN - 1435-8115 VL - 28 IS - Suppl. 1 SP - 802 EP - 805 PB - Cambridge University Press AN - OPUS4-55599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Embedding and cross-sectioning as a sample preparation procedure for accurate and representative size and shape measurement of nanopowders JF - Scientific Reports N2 - Reliable measurement of the size of polydisperse, complex-shaped commercial nanopowders is a difficult but necessary task, e.g., for regulatory requirements and toxicity risk assessment. Suitable methods exist for the accurate characterization of the size of non-aggregated, stabilized, spherical and monodisperse nanoparticles. In contrast, industrial nanoscale powders usually require dedicated sample preparation procedures developed for the analysis method of choice. These nano-powders tend to agglomerate and/or aggregate, a behavior which in combination with an innate broad particle size distribution and irregular shape often significantly alters the achievable accuracy of the measured size parameters. The present study systematically tests two commercially available nanoscale powders using different sample preparation methods for correlative analysis by scanning electron microscopy, dynamic light scattering, Brunauer–Emmet–Teller method and differential mobility analysis. One focus was set on the sample preparation by embedding nanoparticles in carbon-based hot-mounting resin. Literature on this topic is scarce and the accuracy of the data extracted from cross sections of these particles is unclearly stated. In this paper systematic simulations on the deviation of the size parameters of well-defined series of nanoparticles with different shapes from the nominal value were carried out and the contributing factors are discussed. KW - Nanopowder KW - Electron microscopy KW - Sample preparation KW - Cross-sectioning KW - Cerium oxide KW - Zinc oxide PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593289 DO - https://doi.org/10.1038/s41598-023-51094-0 SN - 2045-2322 VL - 14 SP - 1 EP - 10 PB - Springer Nature CY - London AN - OPUS4-59328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, F. A1 - Sordello, F. A1 - Mino, L. A1 - Prozzi, M. A1 - Mansfeld, Ulrich A1 - Hodoroaba, Vasile-Dan A1 - Minero, C. T1 - Polyethylene Glycol as Shape and Size Controller for the Hydrothermal Synthesis of SrTiO3 Cubes and Polyhedra JF - Nanomaterials N2 - Understanding the correlation between the morphological and functional properties of particulate materials is crucial across all fields of physical and natural sciences. This manuscript reports on the investigation of the effect of polyethylene glycol (PEG) employed as a capping Agent in the synthesis of SrTiO3 crystals. The crucial influence of PEG on both the shape and size of the strontium titanate particles is revealed, highlighting the effect on the photocurrents measured under UV–Vis irradiation. KW - Polyethylene glycol KW - Strontium titanate KW - Controlled morphology KW - Photoelectrochemistry KW - Electron microscopy KW - EDS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512892 DO - https://doi.org/10.3390/nano10091892 VL - 10 IS - 9 SP - 1892 PB - MDPI CY - Basel, CH AN - OPUS4-51289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, Francesco A1 - Maurino, V. A1 - Hodoroaba, Vasile-Dan T1 - Morphological Characterization and Chemical Identification of TiO2 Nanoparticles Doped with Ultrafine Metal Particles for Enhanced Photocatalytical Activity JF - Microscopy and Microanalysis N2 - The conversion of solar energy into electricity and solar fuels is of crucial importance for a green and sustainable future. Water splitting using semiconductor photo-catalysts is considered a sustainable method to produce clean hydrogen (H2) fuel. Nevertheless, H2 photo-production efficiency remains still low, although extensive research works to understand better the mechanisms of the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) are being carried out. In this respect, TiO2 is a key photoactive material, usually employed with a co-catalyst deposited onto the surface to enhance charge carriers’ separation and catalyze surface charge transfer reactions. The deposition of a co-catalyst on the TiO2 nanoparticle surface represents one successful way to enhance the activity of the photocatalyst through a modification of its surface and redox properties. In this context, high-resolution scanning electron microscopy coupled with elemental analysis by energy-dispersive X-ray spectroscopy (EDS) is fundamental for studying and understanding the effect of the nanoparticle morphology on the functional properties of shape-controlled TiO2 crystals (bipyramides, platelets, and elongated particles). Different types of metal-semiconductor combinations, TiO2 shapes and dopant metals (Ag, Pt, etc) and metal concentrations will be discussed. KW - Nanoparticles KW - Photocatalysis KW - Electron microscopy KW - EDS KW - Metal-semiconductor PY - 2022 DO - https://doi.org/10.1017/S1431927622010078 VL - 28 IS - Suppl. 1 SP - 2658 EP - 2660 PB - Cambridge University Press AN - OPUS4-55436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Porta-Velilla, L. A1 - Turan, N. A1 - Cubero, Á. A1 - Shao, W. A1 - Li, H. A1 - de la Fuente, G.F. A1 - Martínez, E. A1 - Larrea, Á. A1 - Castro, M. A1 - Koralay, H. A1 - Çavdar, Ş. A1 - Bonse, Jörn A1 - Angurel, L.A. T1 - Highly Regular Hexagonally-Arranged Nanostructures on Ni-W Alloy Tapes upon Irradiation with Ultrashort UV Laser Pulses JF - Nanomaterials N2 - Nickel tungsten alloy tapes (Ni—5 at% W, 10 mm wide, 80 µm thick, biaxially textured) used in second-generation high temperature superconductor (2G-HTS) technology were laser-processed in air with ultraviolet ps-laser pulses (355 nm wavelength, 300 ps pulse duration, 250–800 kHz pulse repetition frequency). By employing optimized surface scan-processing strategies, various laser-generated periodic surface structures were generated on the tapes. Particularly, distinct surface microstructures and nanostructures were formed. These included sub-wavelength-sized highly-regular hexagonally-arranged nano-protrusions, wavelength-sized line-grating-like laser-induced periodic surface structures (LIPSS, ripples), and larger irregular pyramidal microstructures. The induced surface morphology was characterized in depth by electron-based techniques, including scanning electron microscopy (SEM), electron back scatter diffraction (EBSD), cross-sectional transmission electron microscopy (STEM/TEM) and energy dispersive X-ray spectrometry (EDS). The in-depth EBSD crystallographic analyses indicated a significant impact of the material initial grain orientation on the type of surface nanostructure and microstructure formed upon laser irradiation. Special emphasis was laid on high-resolution material analysis of the hexagonally-arranged nano-protrusions. Their formation mechanism is discussed on the basis of the interplay between electromagnetic scattering effects followed by hydrodynamic matter re-organization after the laser exposure. The temperature stability of the hexagonally-arranged nano-protrusion was explored in post-irradiation thermal annealing experiments, in order to qualify their suitability in 2G-HTS fabrication technology with initial steps deposition temperatures in the range of 773–873 K. KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser processing KW - Hexagonally-arranged nano-protrusions KW - Second-generation high temperature superconductor technology KW - Electron microscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552551 DO - https://doi.org/10.3390/nano12142380 SN - 2079-4991 VL - 12 IS - 14 SP - 1 EP - 23 PB - MDPI CY - Basel, Switzerland AN - OPUS4-55255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Kersting, R. A1 - Hagenhoff, B. A1 - Bennet, Francesca A1 - Ciornii, Dmitri A1 - Nymark, P. A1 - Grafström, R. A1 - Hodoroaba, Vasile-Dan T1 - Reliable Surface Analysis Data of Nanomaterials in Support of Risk Assessment Based on Minimum Information Requirements JF - nanomaterials N2 - The minimum information requirements needed to guarantee high-quality surface Analysis data of nanomaterials are described with the aim to provide reliable and traceable Information about size, shape, elemental composition and surface chemistry for risk assessment approaches. The widespread surface analysis methods electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) were considered. The complete analysis sequence from sample preparation, over measurements, to data analysis and data format for reporting and archiving is outlined. All selected methods are used in surface analysis since many years so that many aspects of the analysis (including (meta)data formats) are already standardized. As a practical analysis use case, two coated TiO2 reference nanoparticulate samples, which are available on the Joint Research Centre (JRC) repository, were selected. The added value of the complementary analysis is highlighted based on the minimum information requirements, which are well-defined for the analysis methods selected. The present paper is supposed to serve primarily as a source of understanding of the high standardization level already available for the high-quality data in surface analysis of nanomaterials as reliable input for the nanosafety community. KW - Electron microscopy KW - X-ray photoelectron spectroscopy KW - Secondary ion mass spectrometry KW - Energy dispersive X-ray spectroscopy KW - Standardization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522683 DO - https://doi.org/10.3390/nano11030639 VL - 11 IS - 3 SP - 639 PB - MDPI AN - OPUS4-52268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Towards Automated Electron Microscopy Image Segmentation for Nanoparticles of Complex Shape by Convolutional Neural Networks JF - Microscopy and Microanalysis N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. KW - Nanoparticles KW - Convolutional neural networks KW - Image segmentation KW - Electron microscopy KW - Automatisation PY - 2020 DO - https://doi.org/10.1017/S1431927620017262 VL - 26 IS - S2 SP - 1188 EP - 1189 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Krumrey, Julian Frederic A1 - Hodoroaba, Vasile-Dan T1 - Workflow towards automated segmentation of agglomerated, non‑spherical particles from electron microscopy images using artificial neural networks JF - Scientific reports N2 - We present a workflow for obtaining fully trained artificial neural networks that can perform automatic particle segmentations of agglomerated, non-spherical nanoparticles from scanning electron microscopy images “from scratch”, without the need for large training data sets of manually annotated images. The whole process only requires about 15 minutes of hands-on time by a user and can typically be finished within less than 12 hours when training on a single graphics card (GPU). After training, SEM image analysis can be carried out by the artificial neural network within seconds. This is achieved by using unsupervised learning for most of the training dataset generation, making heavy use of generative adversarial networks and especially unpaired image-to-image translation via cycle-consistent adversarial networks. We compare the segmentation masks obtained with our suggested workflow qualitatively and quantitatively to state-of-the-art methods using various metrics. Finally, we used the segmentation masks for automatically extracting particle size distributions from the SEM images of TiO2 particles, which were in excellent agreement with particle size distributions obtained manually but could be obtained in a fraction of the time. KW - Electron microscopy KW - Neural networks KW - Artificial intelligence KW - Image segmentation KW - Automated image analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522454 DO - https://doi.org/10.1038/s41598-021-84287-6 VL - 11 IS - 1 SP - 4942 PB - Springer Nature AN - OPUS4-52245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rühle, Bastian A1 - Krumrey, Julian Frederic A1 - Hodoroaba, Vasile-Dan T1 - Dataset accompanying the publication "Workflow towards automated segmentation of agglomerated, non-spherical particles from electron microscopy images using artificial neural networks" N2 - This dataset accompanies the following publication, first published in Scientific Reports (www.nature.com/articles/s41598-021-84287-6): B. Ruehle, J. Krumrey, V.-D. Hodoroaba, Scientific Reports, Workflow towards Automated Segmentation of Agglomerated, Non-Spherical Particles from Electron Microscopy Images using Artificial Neural Networks, DOI: 10.1038/s41598-021-84287-6 It contains electron microscopy micrographs of TiO2 particles, the corresponding segmentation masks, and their classifications into different categories depending on their visibility/occlusion. Please refer to the publication and its supporting information for more details on the acquisition and contents of the dataset, as well as the GitHub repository at https://github.com/BAMresearch/automatic-sem-image-segmentation KW - Electron microscopy KW - Neural networks KW - Image segmentation KW - Automated image analysis PY - 2021 DO - https://doi.org/10.5281/zenodo.4563942 PB - Zenodo CY - Geneva AN - OPUS4-52246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Moor, Maëlle A1 - Kraehnert, Ralph A1 - Hodoroaba, Vasile-Dan A1 - Hertwig, Andreas T1 - Ellipsometry-based approach for the characterization of mesoporous thin films for H2 technologies JF - Advanced Engineering Materials N2 - Porous thin layer materials are gaining importance in different fields of technology and pose a challenge to the accurate determination of materials properties important for their function. In this work, we demonstrate a hybrid measurement technique using ellipsometry together with other independent methods for validation. Ellipsometry provides information about the porosity of different mesoporous films (PtRuNP/OMC = 45%; IrOx = 46%) as well as about the pore size (pore radius of ca. 5 nm for PtRuNP/OMC). In addition, the electronic structure of a material, such as intraband transitions of a mesoporous IrOx film, can be identified, which can be used to better understand the mechanisms of chemical processes. In addition, we show that ellipsometry can be used as a scalable imaging and visualization method for quality assurance in production. These require accurate and traceable measurements, with reference materials playing an important role that include porosity and other related properties. We show that our novel analytical methods are useful for improving analytical work in this entire field. KW - Porous materials KW - Electrolysis KW - Spectroscopic ellipsometry KW - Hybrid metrology measurement KW - Electron microscopy PY - 2021 DO - https://doi.org/10.1002/adem.202101320 SP - 1 EP - 17 PB - Wiley-VCH AN - OPUS4-53960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Vladár, A. E. A1 - Hodoroaba, Vasile-Dan ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Characterization of nanoparticles by scanning electron microscopy T2 - Characterization of nanoparticles - Measurement processes for nanoparticles N2 - In this chapter sample preparation, image acquisition, and nanoparticle size and shape characterization methods using the scanning electron microscope (SEM) in reflective and transmitted working modes are described. These help in obtaining reliable, highly repeatable results. The best solutions vary case-by-case and depend on the raw (powdered or suspension) nanoparticle material, the required measurement uncertainty and on the performance of the SEM. KW - Nanoparticles KW - Sample preparation KW - Electron microscopy KW - SEM KW - Size measurement KW - Shape KW - Threshold PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00002-X SP - 7 EP - 27 PB - Elsevier CY - Amsterdam AN - OPUS4-50120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -