TY - JOUR A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Structuring of thin films by ultrashort laser pulses JF - Applied physics A N2 - Modern life and global communication would not be possible without technologically tailored thin films; they are omnipresent in daily life applications. In most cases, the films are deposited entirely at the carrying substrates in a specific processing step of the device or sample. In some cases, however, removal or modification must be performed locally, i.e., site-controlled and material selective through an additional laser processing step. For that ultrashort laser pulses with durations in the femtosecond and picosecond range can provide unique advantages and capabilities in industrially scalable schemes. This article reviews the current state of the research and corresponding industrial transfer related to the structuring of thin films by ultrashort pulsed lasers. It focuses on the pertinent historic developments, reveals the relevant physical and chemical effects, explores the ultimate limits, and discusses selected industrial and scientific applications. KW - Thin films KW - Laser processing KW - Ultrashort lasers KW - Laser damage KW - Femtosecond laser ablation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565732 DO - https://doi.org/10.1007/s00339-022-06229-x SN - 0947-8396 SN - 1432-0630 VL - 129 IS - 1 SP - 1 EP - 38 PB - Springer CY - Berlin AN - OPUS4-56573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nickl, Philip A1 - Radnik, Jörg A1 - Azab, W. A1 - Donskyi, Ievgen T1 - Surface characterization of covalently functionalized carbon-based nanomaterials using comprehensive XP and NEXAFS spectroscopies JF - Applied Surface Science N2 - Reliable and straightforward characterization and analysis of carbon-based nanomaterials on the atomic level is essential to exploring their potential for application. Here we use a combination of highly surface sensitive x-ray photoelectron (XP) spectroscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS) to study and quantify the covalent functionalization of nanographene and single-walled carbon nanotubes with nitrene [2 + 1]-cycloaddition. With this comprehensive analytical approach, we demonstrate that the π-conjugated system of functionalized carbon-based nanomaterials is preserved according to NEXAFS analysis, which is challenging to prove with XP spectroscopy investigation alone. Using this combination of analytical approaches, we show significant similarities after functionalization for various carbon-based nanomaterials. Both analytical methods are strongly suited to study possible post-modification reactions of functionalized carbon-based nanomaterials. KW - Graphene KW - Carbon nanotubes KW - Covalend functionalization PY - 2023 DO - https://doi.org/10.1016/j.apsusc.2022.155953 VL - 613 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-56865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Page, T.M. A1 - Nie, C. A1 - Neander, L. A1 - Povolotsky, T.L. A1 - Sahoo, A.K. A1 - Nickl, Philip A1 - Adler, J.M. A1 - Bawadkji, O. A1 - Radnik, Jörg A1 - Achazi, K. A1 - Ludwig, K. A1 - Lauster, D. A1 - Netz, R.R. A1 - Trimpert, J. A1 - Kaufer, B. A1 - Haag, R. A1 - Donskyi, Ievgen T1 - Functionalized Fullerene for Inhibition of SARS-CoV-2 Variants JF - small N2 - As virus outbreaks continue to pose a challenge, a nonspecific viral inhibitor can provide significant benefits, especially against respiratory viruses. Polyglycerol sulfates recently emerge as promising agents that mediate interactions between cells and viruses through electrostatics, leading to virus inhibition. Similarly, hydrophobic C60 fullerene can prevent virus infection via interactions with hydrophobic cavities of surface proteins. Here, two strategies are combined to inhibit infection of SARS-CoV-2 variants in vitro. Effective inhibitory concentrations in the millimolar range highlight the significance of bare fullerene’s hydrophobic moiety and electrostatic interactions of polysulfates with surface proteins of SARS-CoV-2. Furthermore, microscale thermophoresis measurements support that fullerene linear polyglycerol sulfates interact with the SARS-CoV-2 virus via its spike protein, and highlight importance of electrostatic interactions within it. All-atom molecular dynamics simulations reveal that the fullerene binding site is situated close to the receptor binding domain, within 4 nm of polyglycerol sulfate binding sites, feasibly allowing both portions of the material to interact simultaneously. KW - Covalent functionalization KW - Fullerene KW - SARS-CoV 2 KW - Sulfated materials KW - Virus inhibition PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568672 DO - https://doi.org/10.1002/smll.202206154 SN - 1613-6810 SP - 1 EP - 8 PB - Wiley VCH AN - OPUS4-56867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Liu, Y. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, J. T1 - NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ Upconversion Nanoparticles for Optical Temperature Monitoring and Self-Heating in Photothermal Therapy JF - Applied nano materials N2 - The core−shell NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ upconversion nanoparticles were successfully prepared by a solvothermal method, and a layer of mesoporous silica (mSiO2) was successfully coated on the periphery of the core−shell nanoparticles to transform their surface from lipophilic to hydrophilic, further expanding their applications in biological tissues. The physical phase, morphology, structure, and fluorescence properties were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (TEM), Fourier infrared spectroscopy (FT-IR), ζ potential analysis, and fluorescence spectroscopy. It was found that the material has a hexagonal structure with good hydrophilicity and emits intense fluorescence under 980 nm pump laser excitation. The non-contact temperature sensing performance of nanoparticles was evaluated by analyzing the upconversion fluorescence of Tm3+ (1G4 → 3F4 and 3F3 → 3H6) in the temperature range of 284−344 K. The absolute and relative sensitivities were found to be 0.0067 K−1 and 1.08 % K−1, respectively, with high-temperature measurement reliability and good temperature cycling performance. More importantly, its temperature measurement in phosphate-buffered saline (PBS) solution is accurate. In addition, the temperature of the cells can be increased by adjusting the laser power density and laser irradiation time. Therefore, an optical temperature sensing platform was built to realize the application of real-time monitoring of cancer cell temperature and the dual function of photothermal therapy. KW - Sensor KW - Temperature KW - Lanthanide KW - Tag KW - Fluorescence KW - Nanoparticles KW - Synthesis KW - Environment KW - Monitoring KW - Sensing KW - Nano KW - Life sciences KW - Upconversion PY - 2023 DO - https://doi.org/10.1021/acsanm.2c05110 VL - 6 IS - 1 SP - 759 EP - 771 PB - ACS Publications AN - OPUS4-57081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Li, Z. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, Jun T1 - Preparation of NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles and application of their fluorescence temperature sensing properties JF - Optical Materials N2 - The NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles were successfully prepared by the solvothermal method, and the samples were pure hexagonal phase with good crystallinity and homogeneous size, asevidenced by XRD and TEM analysis. The FT-IR analysis shows that β-CD is successfully encapsulated on the surface of NaYF4: Yb3+/Tm3+@NaYF4 nanoparticles. The fluorescence intensity 3and lifetime were significantly increased after coating the inert layer on the surface of core nanoparticles. After further surface modification of β-CD, the fluorescence intensity and fluorescence lifetime were reduced, but the overall fluorescence was stronger. Temperature measurements using the fluorescence intensity ratio technique were found to have relatively low reliability and absolute sensitivity for temperature measurements using thermally coupled energy levels. However, the reliability of temperature measurements using non-thermally coupled energy levels is significantly higher and the absolute sensitivity is much higher than for measurements at thermally coupled levels. Since the maximum absolute sensitivity, maximum relative sensitivity and minimum temperature resolution are determined to be 0.1179 K-1, 2.19 %K􀀀 1 and 0.00019 K, respectively, NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles are expected to be widely used in the biomedical field due to their feasibility, reliability, non-toxicity and harmlessness. KW - Upconversion KW - Surface modification KW - Fluorescence intensity ratio KW - Thermally coupled levels KW - Non-thermally coupled levels PY - 2023 DO - https://doi.org/10.1016/j.optmat.2022.113389 SN - 0925-3467 VL - 136 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-57105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cheng, Z. A1 - Meng, M. A1 - Qiao, X. A1 - Liu, Y. A1 - Resch-Genger, Ute A1 - Ou, J. T1 - The synthesis of Er3+/Yb3+/K+ triple-doped NaYF4 phosphors and its high sensitivity optical thermometers at low power JF - Journal of Alloys and Compounds N2 - Optical Thermometry is popular among researchers because of its non-contact, high sensitivity, and fast measurement properties. In the present experiment, Er3+/Yb3+/K+ co-doped NaYF4 nanoparticles with different K+ concentrations were synthesized by solvothermal method, and the samples showed bright upconversion green emission under the excitation of a 980 nm laser. The powder X-ray diffractometer and transmission electron microscope were used to characterize the crystal structure and its surface morphology, respectively. The spectral characteristics of nanoparticles with K+ doping concentration from 10% to 30% (Molar ratio) were investigated by fluorescence spectroscopy, and it was observed that the fluorescence intensity reached the maximum at the K+ concentration of 20%, after which the intensity weakened when the K+ content continued to increase. According to the dependence between the luminescence intensity of the sample and the laser power density and fluorescence lifetime, the intrinsic mechanism was carefully investigated. Temperature-dependent spectra of the samples were recorded in the temperature range of 315–495 K, and the maximum values of absolute sensitivity (Sa) and relative sensitivity (Sr) were measured at 0.0041 K−1 (455 K) and 0.9220%K−1 (315 K). The experimental results show that K+/Er3+/Yb3+ triple-doped NaYF4 green fluorescent nanoparticles (GFNs) have good prospects for applications in display devices, temperature sensing, and other fields. KW - K+ doped KW - Upconversion luminescence KW - Optical temperature sensing KW - Thermal coupling energy level PY - 2023 DO - https://doi.org/10.1016/j.jallcom.2022.168299 VL - 937 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-57106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - 1,3-Dimethyl-imidazolium dimethyl phosphate ([MMIM]+[DMP]−) analyzed by XPS and HAXPES JF - Surface Science Spectra N2 - The ionic liquid 1,3-dimethyl-imidazolium-dimethylphosphate ([MMIM]+[DMP]−) was analyzed using (hard) x-ray photoelectron spectroscopy. Here, XPS and HAXPES spectra are shown in comparison. For the acquisition of the XPS spectra, monochromatic Al Kα radiation at 1486.6 eV was used, while for the acquisition of the HAXPES spectra, monochromatic Cr Kα radiation at 5414.8 eV was applied. Here, survey scans and high-resolution spectra of P 2p, P 2s, C 1s, O 1s, and N 1s for both methods and P 1s, P KL2,3L2,3, and P KL1L2,3 for HAXPES are shown. KW - C7H15N2O4P KW - [MMIM]+[DMP]− KW - Lonic liquid KW - Hard x-ray photoelectron spectroscopy KW - HAXPES KW - XPS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571604 DO - https://doi.org/10.1116/6.0002297 VL - 30 IS - 1 SP - 1 EP - 20 PB - AIP Publishing AN - OPUS4-57160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brüngel, R. A1 - Rückert, J. A1 - Müller, P. A1 - Babick, F. A1 - Friedrich, C. M. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Mech, A. A1 - Weigel, S. A1 - Wohlleben, W. A1 - Rauscher, H. T1 - NanoDefiner Framework and e-Tool Revisited According to the European Commission’s Nanomaterial Definition 2022/C 229/01 JF - Nanomaterials N2 - The new recommended definition of a nanomaterial, 2022/C 229/01, adopted by the European Commission in 2022, will have a considerable impact on European Union legislation addressing chemicals, and therefore tools to implement this new definition are urgently needed. The updated NanoDefiner framework and its e-tool implementation presented here are such instruments, which help stakeholders to find out in a straightforward way whether a material is a nanomaterial or not. They are two major outcomes of the NanoDefine project, which is explicitly referred to in the new definition. This work revisits the framework and e-tool, and elaborates necessary adjustments to make these outcomes applicable for the updated recommendation. A broad set of case studies on representative materials confirms the validity of these adjustments. To further foster the sustainability and applicability of the framework and e-tool, measures for the FAIRification of expert knowledge within the e-tool’s knowledge base are elaborated as well. The updated framework and e-tool are now ready to be used in line with the updated recommendation. The presented approach may serve as an example for reviewing existing guidance and tools developed for the previous definition 2011/696/EU, particularly those adopting NanoDefine project outcomes. KW - Nanomaterial definition KW - Nanomaterial categorisation KW - Nanomaterial regulation KW - Nanomaterial legislation KW - Decision support KW - FAIRification PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571618 DO - https://doi.org/10.3390/nano13060990 SN - 2079-4991 VL - 13 IS - 6 - Special Issue "Identification and Quantification of Nanomaterials" SP - 1 EP - 16 PB - MDPI CY - Basel, CH AN - OPUS4-57161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shanmugam, Sankaran A1 - Peterlechner, Martin A1 - Iskandar, Mohamad Riza A1 - Saikia, Ujjal A1 - Kulitckii, Vladislav A1 - Lipińska-Chwałek, Marta A1 - Mayer, Joachim A1 - Rösner, Harald A1 - Hickel, Tilmann A1 - Divinski, Sergiy V. A1 - Wilde, Gerhard T1 - Coherent twin-oriented Al3Sc-based precipitates in Al matrix JF - Scripta Materialia N2 - Al3(Sc,Zr,Ti) nanoparticles with an ideal twin-type orientation relationship to Al host matrix were found in cold-rolled and subsequently annealed Al-based alloy. Atomic-scale investigations using high-resolution scanning transmission electron microscopy identified particles that form prominent coherent (111) twin-type interfaces along their longer facets and semi-coherent twin interfaces on their shorter facets. Ab-initio calculations showed that a coherent Al/Al3Sc twin-like phase boundary corresponds to a local energy minimum. A model is proposed explaining the formation of the twin orientation relationship of an Al3Sc nanoparticle with the Al host matrix. KW - Al-based alloy KW - Precipitation KW - Twin orientation relationship KW - Ab initio calculations KW - Transition electron microscopy PY - 2023 DO - https://doi.org/10.1016/j.scriptamat.2023.115351 SN - 1359-6462 VL - 229 SP - 1 EP - 6 PB - Elsevier BV AN - OPUS4-58789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Hahn, Marc Benjamin T1 - Inside back cover for the article "Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine" JF - Physical chemistry chemical physics (PCCP) N2 - Showcasing research from the Federal Institute for Material Research and Testing Berlin and Fraunhofer Institute for Celltherapy and Immunology Branch Bioanalytics and Bioprocesses Potsdam. Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine. We aimed to increase the possible undisturbed exposure time during bio-SAXS measurements of single-stranded DNA-binding proteins. Therefore small angle X-ray scattering was performed on Gene-V Protein (G5P/GVP), which is involved in DNA repair processes. To achieve this, irradiations were performed in presence and absence of the hydroxyl-radical scavenger and osmolyte Ectoine, which showed efficient radiation protection and prevented protein aggregation, thus allows for a non-disturbing way to improve structure-determination of biomolecules. KW - Bio-SAXS KW - BioSAXS KW - Cosolute KW - DNA KW - Dosimetry KW - Ectoin KW - Ectoine KW - G5P KW - GVP KW - Geant4 KW - Geant4-DNA KW - Ionizing radiation damage KW - LEE KW - McSAS3 KW - Microdosimetry KW - Monte-Carlo simulations KW - OH Radical KW - OH radical scavenger KW - Protein KW - Protein unfolding KW - Radiation damage KW - Radical Scavenger KW - SAXS KW - Single-stranded DNA-binding proteins KW - Small-angle xray scattering KW - Topas-MC KW - Topas-nBio KW - TopasMC KW - X-ray scattering KW - Particle scatterin simulations KW - ssDNA PY - 2023 DO - https://doi.org/10.1039/D3CP90056H SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 7 SP - 5889 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-57006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -