TY - JOUR A1 - Müller, Anja A1 - Sparnacci, K. A1 - Unger, Wolfgang A1 - Tougaard, S. T1 - Determining nonuniformities of core-shell nanoparticle coatings by analysis of the inelastic background of X-ray photoelectron spectroscopy survey spectra N2 - Most real core-shell nanoparticle (CSNP) samples deviate from an ideal core-shell structure potentially having significant impact on the particle properties. An ideal structure displays a spherical core fully encapsulated by a shell of homogeneous thickness, and all particles in the sample exhibit the same shell thickness. Therefore, analytical techniques are required that can identify and characterize such deviations. This study demonstrates that by analysis of the inelastic background in X-ray photoelectron spectroscopy (XPS) survey spectra, the following types of deviations can be identified and quantified: the nonuniformity of the shell thickness within a nanoparticle sample and the incomplete encapsulation of the cores by the shell material. Furthermore, CSNP shell thicknesses and relative coverages can be obtained. These results allow for a quick and straightforward comparison between several batches of a specific CSNP, different coating approaches, and so forth. The presented XPS methodology requires a submonolayer distribution of CSNPs on a substrate. Poly(tetrafluoroethylene)-poly(methyl methacrylate) and poly(tetrafluoroethylene)-polystyrene polymer CSNPs serve as model systems to demonstrate the applicability of the approach. KW - Core-shell KW - Nanoparticles KW - Inelastic background KW - Polymers KW - QUASES KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511315 DO - https://doi.org/10.1002/sia.6865 SN - 0142-2421 SN - 1096-9918 VL - 52 SP - 1 EP - 8 PB - Wiley CY - Chichester AN - OPUS4-51131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - ToF-SIMS at advanced materials - from nano to energy N2 - The basic principles of ToF-SIMS will be explained. Examples of the use of ToF-SIMS for the investigation of titania and core-shell nanoplastic will be given. Furhtermore, 3d reconstruction is explained for nanoparticle research and energy-related materials. T2 - BUA Summer School Mass Spectrometry CY - Berlin, Germany DA - 04.10.2022 KW - ToF-SIMS KW - Nanomaterials KW - Imaging PY - 2022 AN - OPUS4-55897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nickl, Philip A1 - Radnik, Jörg A1 - Azab, W. A1 - Donskyi, Ievgen T1 - Surface characterization of covalently functionalized carbon-based nanomaterials using comprehensive XP and NEXAFS spectroscopies N2 - Reliable and straightforward characterization and analysis of carbon-based nanomaterials on the atomic level is essential to exploring their potential for application. Here we use a combination of highly surface sensitive x-ray photoelectron (XP) spectroscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS) to study and quantify the covalent functionalization of nanographene and single-walled carbon nanotubes with nitrene [2 + 1]-cycloaddition. With this comprehensive analytical approach, we demonstrate that the π-conjugated system of functionalized carbon-based nanomaterials is preserved according to NEXAFS analysis, which is challenging to prove with XP spectroscopy investigation alone. Using this combination of analytical approaches, we show significant similarities after functionalization for various carbon-based nanomaterials. Both analytical methods are strongly suited to study possible post-modification reactions of functionalized carbon-based nanomaterials. KW - Graphene KW - Carbon nanotubes KW - Covalend functionalization PY - 2023 DO - https://doi.org/10.1016/j.apsusc.2022.155953 VL - 613 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-56865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Co0.75Fe2.25O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Co0.75Fe2.25O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Co0.75Fe2.25O4 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7940769 PB - Zenodo CY - Geneva AN - OPUS4-57664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Ce0.75Zr0.25O2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Ce0.75Zr0.25O2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Ce0.75Zr0.25O2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7966133 PB - Zenodo CY - Geneva AN - OPUS4-57673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Ce0.1Zr0.9O2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Ce0.1Zr0.9O2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Ce0.1Zr0.9O2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7965602 PB - Zenodo CY - Geneva AN - OPUS4-57672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Co3O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Co3O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Co3O4 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7941248 PB - Zenodo CY - Geneva AN - OPUS4-57666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized ZrO2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized ZrO2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - ZrO2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7965536 PB - Zenodo CY - Geneva AN - OPUS4-57671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Pfüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Assessing optical and electrical properties of highly active IrOx catalysts for the electrochemical oxygen evolution reaction via spectroscopic ellipsometry N2 - Efficient water electrolysis requires highly active electrodes. The activity of corresponding catalytic coatings strongly depends on material properties such as film thickness, crystallinity, electrical conductivity, and chemical surface speciation. Measuring these properties with high accuracy in vacuum-free and nondestructive methods facilitates the elucidation of structure−activity relationships in realistic environments. Here, we report a novel approach to analyze the optical and electrical properties of highly active oxygen evolution reaction (OER) catalysts via spectroscopic ellipsometry (SE). Using a series of differently calcined, mesoporous, templated iridium oxide films as an example, we assess the film thickness, porosity, electrical resistivity, electron concentration, electron mobility, and interband and intraband transition energies by modeling of the optical spectra. Independently performed analyses using scanning electron microscopy, energy-dispersive X-ray spectroscopy, ellipsometric porosimetry, X-ray reflectometry, and absorption spectroscopy indicate a high accuracy of the deduced material properties. A comparison of the derived analytical data from SE, resonant photoemission spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy with activity measurements of the OER suggests that the intrinsic activity of iridium oxides scales with a shift of the Ir 5d t2g sub-level and an increase of p−d interband transition energies caused by a transition of μ1-OH to μ3-O species. KW - Spectroscopic ellipsometry KW - Electrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive ambient analysis KW - Intrinsic OER activity KW - Complementary methodology and metrology PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516288 DO - https://doi.org/10.1021/acscatal.0c03800 SN - 2155-5435 VL - 10 IS - 23 SP - 14210 EP - 14223 PB - American Chemical Society AN - OPUS4-51628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement N2 - In order to assess new nanomaterials and nanoparticles for potential risks to health and the environment, they need to be well-characterised. The measurement of constituent nanoparticle size, shape, and size distribution are important factors for the risk evaluation process. EMPIR project Improved traceability chain of nanoparticle size measurements (17NRM04, nPSize) is working to assess a range of traceable nanoparticle measurement approaches, including Electron Microscopy (SEM, TEM, STEM-in-SEM), Atomic Force Microscopy and Small Angle X-ray Scattering, and deliver improved calibration methods to users. For the techniques under investigation, physical models of their response to a range of nanoparticle types are developed. Validated reference materials are also used for inter-comparisons of measurement systems, with an evaluation of the associated measurement uncertainty. With project contributions to standards development work, manufacturers will be better placed to assess the human and environmental risks posed by nanomaterials across a whole range of products. T2 - EMPIR nPSize Training Course "Traceable Characterization of Nanoparticles by SAXS" CY - Online meeting DA - 01.02.2021 KW - Nanoparticles KW - Particle size distribution KW - Traceability KW - nPSize KW - SAXS PY - 2021 AN - OPUS4-53883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Revealing surface functionalities of micro- and nanoplastic particles’ surface by means of XPS N2 - Over the last 20 years, many researchers, politicians, and citizens themselves have become increasingly aware of the growing plastic problem of our time. Inadequate recycling concepts, collection points, and careless dumping of plastic products in the environment lead to an accumulation of plastic. External weather influences can cause these to degrade and fractionate, so that today microplastics (1-1000 µm, ISO/TR 21960:2020) [1] of different polymer materials can be detected in all parts of the world. The precautionary principle applies to microplastics. The particles can break down further to form nanoplastics (<1 µm, ISO/TR 21960:2020) [1]. Whether microplastics or nanoplastics pose a toxicological hazard is being investigated in a variety of ways. Valid results are still pending, however, investigations into the frequency, transport, possible sinks and entry paths must be taken into account. This is why monitoring of microplastics is already required in the revision of the Drinking Water Framework Directive [2]. The same is still pending in the final version of the revision of the Waste Water Framework Directive this year, but is expected. Nanoplastics are particularly under discussion for having a toxic effect on humans and animals, as these particles are small enough to be absorbed by cells. For targeted toxicological studies, it is important to have test and reference materials that resemble the particles found in the environment. To mimic environmental samples, these materials should also have an irregular shape and show aging at the surface, which can be detected with XPS or SEM/EDS. BAM in collaboration with the EMPIR project "PlasticTrace" works on a reference material candidate of nano-sized polypropylene (nano-PP) [3]. The nano-PP vials were tested for homogeneity with PTA and further characterized with bulk and surface-sensitive techniques. An SEM image and a corresponding XPS spectrum are presented in Figure 1. Raman measurements as well as XPS indicate an aged surface. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Surface chemistry KW - Micro- and nanoplastics KW - X-ray Photoelectron Spectroscopy KW - MNP production technique PY - 2024 AN - OPUS4-60535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri T1 - Identification of toxicologically relevant functional groups on micro- and nanoplastic particles’ surface by means of X-Ray photoelectron spectroscopy N2 - Microplastic and nanoplastic particles (MNP) are spread all over the world in various types, shapes and sizes making it very challenging to accurately analyse them. Each sampling procedure, sample preparation method and detection technique needs suitable reference materials to validate the method for accurate results. Furthermore, the effects of these MNPs should be evaluated by risk and hazard assessment with test particles close to reality. To better understand MNP behavior and aid in clarification of their interactions with organisms, we produced several MNP materials by top-down procedure and characterized their properties. Since surface properties mostly determine particles’ toxicity, the aim of the present study was to determine which functional groups are present on MNPs and how the surface can be affected by the production process and particle’s environment. T2 - SETAC 34th Meeting CY - Seville, Spain DA - 05.05.2024 KW - Microplastics KW - Nanoplastics KW - Polypropylene KW - XPS KW - SEM PY - 2024 AN - OPUS4-60037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, Heike A1 - Knigge, Xenia A1 - Knapic, D. A1 - Weise, Matthias A1 - Sahre, Mario A1 - Hertwig, Andreas A1 - Sacco, A. A1 - Rossi, A. M. A1 - Radnik, Jörg A1 - Müller, Kai A1 - Wasmuth, Karsten A1 - Krüger, Jörg A1 - Hassel, A. W. A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Picosecond laser processing of hierarchical micro–nanostructures on titanium alloy upon pre- and postanodization: morphological, structural, and chemical effects N2 - Recent publications indicate that the order of electrochemical anodization (before or after the laser processing step) plays an important role for the response of bone-forming osteoblasts—an effect that can be utilized for improving permanent dental or removable bone implants. For exploring these different surface functionalities, multimethod morphological, structural, and chemical characterizations are performed in combination with electrochemical pre- and postanodization for two different characteristic microspikes covered by nanometric laser-induced periodic surface structures on Ti–6Al–4V upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ≈1 ps pulse duration, 67 and 80 kHz pulse repetition frequency) at two distinct sets of laser fluence and beam scanning parameters. This work involves morphological and topographical investigations by scanning electron microscopy and white light interference microscopy, structural material examinations via X-ray diffraction, and micro-Raman spectroscopy, as well as near-surface chemical analyses by X-ray photoelectron spectroscopy and hard X-ray photoelectron spectroscopy. The results allow to qualify the mean laser ablation depth, assess the spike geometry and surface roughness parameters, and provide new detailed insights into the near-surface oxidation that may affect the different cell growth behavior for pre- or postanodized medical implants. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Hierarchical micro-nanostructures KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Ti-6Al-4V alloy KW - X-ray photoelectron spectroscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601962 DO - https://doi.org/10.1002/pssa.202300920 SN - 1862-6319 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-60196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bennet, Francesca T1 - Microprinting and SEM analysis for quantitative evaluation of nanoparticles in solution N2 - Nanoparticle suspensions were microprinted onto TEM grids for subsequent analysis by SEM/TSEM and evaluation of particle numbers using Image J software. Various nanoparticle types, concentrations and printing conditions (temperature, rel. humidity) were evaluated in order to determine the optimal conditions for producing a uniform distribution of particles on the substrate and eliminating the coffee ring effect. T2 - H2020 ACEnano Project Meeting CY - Amsterdam, Netherlands DA - 04.03.2020 KW - Nanoparticle KW - Imaging KW - Microprinting KW - Homogeneous deposition PY - 2020 AN - OPUS4-50584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cant, D. J. H. A1 - Müller, Anja A1 - Clifford, C. A. A1 - Unger, Wolfgang A1 - Shard, A. G. T1 - Summary of ISO/TC 201 Technical Report 23173—Surface chemical analysis—Electron spectroscopies—Measurement of the thickness and composition of nanoparticle coatings N2 - ISO Technical Report 23173 describes methods by which electron spectroscopies, including X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and synchrotron techniques, can be employed to calculate the Coating thicknesses and compositions of nanoparticles. The document has been developed to review and outline the current state-of-the-art for such measurements. Such analyses of core–shell nanoparticles are common within the literature, however the methods employed are varied; the relative advantages and disadvantages of These methods, and the optimal usage of each may not be clear to the general analyst. ISO Technical Report 23173 aims to clarify the methods that are available, describe them in clear terms, exhibit examples of their use, and highlight potential issues users may face. The information provided should allow analysts of electron spectroscopy data to make clear choices regarding the appropriate analysis of electron spectroscopy data from coated nanoparticle systems and provide a basis for understanding and comparing results from different methods and systems. KW - Electron spectroscopy KW - Core-shell KW - Nanoparticles KW - ISO 23173 KW - XPS KW - Thickness KW - Composition PY - 2021 DO - https://doi.org/10.1002/sia.6987 SN - 0142-2421 VL - 53 IS - 10 SP - 893 EP - 899 PB - John Wiley & Sons Ltd AN - OPUS4-52976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Characterization of nanoparticles - Measurement processes for nanoparticles N2 - Characterization of Nanoparticles: Measurement Processes for Nanoparticles surveys this fast growing field, including established methods for the physical and chemical characterization of nanoparticles. The book focuses on sample preparation issues (including potential pitfalls), with measurement procedures described in detail. In addition, the book explores data reduction, including the quantitative evaluation of the final result and its uncertainty of measurement. The results of published inter-laboratory comparisons are referred to, along with the availability of reference materials necessary for instrument calibration and method validation. The application of these methods are illustrated with practical examples on what is routine and what remains a challenge. In addition, this book summarizes promising methods still under development and analyzes the need for complementary methods to enhance the quality of nanoparticle characterization with solutions already in operation. KW - Nanoparticles KW - Characterization method KW - Sample preparation KW - Inter-laboratory comparison KW - Standardisation KW - Measurement uncertainty KW - Case studies PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/C2017-0-00312-9 SP - 1 EP - 566 PB - Elsevier CY - Amsterdam AN - OPUS4-50284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, P. M. A1 - Kjærvik, Marit A1 - Willneff, E. A. A1 - Unger, Wolfgang T1 - In-depth analysis of iodine in artificial biofilm model layers by variable excitation energy XPS and argon gas cluster ion sputtering XPS N2 - Here, we present a study on agarose thin-film samples that represent a model system for the exopolysaccharide matrix of biofilms. Povidone-iodide (PVP-I) was selected as an antibacterial agent to evaluate our x-ray photoelectron spectroscopy (XPS)-based methodology to trace specific marker elements, here iodine, commonly found in organic matrices of antibiotics. The in-depth distribution of iodine was determined by XPS analyses with variable excitation energies and in combination with argon gas cluster ion beam sputter cycles. On mixed agarose/PVP-I nanometer-thin films, both methods were found to solve the analytical task and deliver independently comparable results. In the mixed agarose/PVP-I thin film, we found the outermost surface layer depleted in iodine, whereas the iodine is homogeneously distributed in the depth region between this outermost surface layer and the interface between the thin film and the substrate. Depletion of iodine from the uppermost surface in the thin-film samples is assumed to be caused by ultrahigh vacuum exposure resulting in a loss of molecular iodine (I2) as reported earlier for other iodine-doped polymers. KW - Biofilm KW - XPS KW - Argon gas cluster ion sputtering KW - Variable excitation KW - Iodine PY - 2022 DO - https://doi.org/10.1116/6.0001812 SN - 1934-8630 VL - 17 IS - 3 SP - 1 EP - 8 PB - AVS AN - OPUS4-54973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Comparative chemical analysis of Ni-Fe oxide nanoparticles N2 - Ni-Fe oxide nanoparticles have gained a lot of interest because of their high activity in the oxygen evolution reaction (OER) which is crucial for water splitting. [1] Although there have been great efforts in the last years, the understanding of the synergistic effect between Fe and Ni is still under discussion. Therefore, we prepared different Ni-Fe oxide nanoparticles with different compositions from pure iron oxide to pure nickel oxide adapting a known procedure. [2,3] Size and morphology of the nanoparticles depend on the composition which was shown with Transmission Electron Microscopy (TEM). The compositions of the nanoparticles were measured with a comparative approach using X-ray Photoelectron Spectroscopy (XPS), Hard X-ray Photoelectron Spectroscopy (HAXPES), and Energy Dispersive X-Ray Spectroscopy (EDS) coupled with the TEM providing detailed chemical information of the nanoparticles in different sample regions. EDS reveals that the different sample regions are dominated by one of the components, Fe or Ni, but a slight mixing between the components can be found (see Figure 1), which was confirmed with X-ray Diffraction (XRD). XPS indicates the enrichment of Fe at the sample surface, while HAXPES and EDS data agree on the stoichiometry of the bulk. High-resolution XPS and HAXPES exhibit some differences in the valence states of Fe and Ni, whereas Ni seems to be easier to reduce than Fe. Further investigations combining these different techniques and additionally Secondary Ion Mass Spectrometry (ToF-SIMS) are ongoing by using in situ approaches and coupling cyclic voltammetry to the analytical techniques. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Oxygen evolution reaction KW - Transmission Electron Microscopy KW - (Hard) X-ray Photoelectron Spectroscopy KW - Synergistic effects PY - 2024 AN - OPUS4-60534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mezera, Marek T1 - Influence of the pulse repetition rate on the chemical and morphological properties of laser generated surface structures N2 - Inter-pulse accumulation of heat could affect the chemical and morphological properties of the laser processed material surface. Hence, the laser pulse repetition rate may restrict the processing parameters for specific laser-induced surface structures. In this study, the evolution of various types of laser-induced micro- and nanostructures at various laser fluence levels, effective number of pulses and at different pulse repetition rates (1 – 400 kHz) are studied for common metals/alloys (e.g. steel or titanium alloy) irradiated by near-infrared ultrashort laser pulses (925 fs, 1030 nm) in air environment. The processed surfaces were characterized by optical and scanning electron microscopy (OM, SEM), energy dispersive X-ray spectroscopy (EDX) as well as time of flight secondary ion mass spectrometry (TOF-SIMS). The results show that not only the surface morphology could change at different laser pulse repetition rates and comparable laser fluence levels and effective number of pulses, but also the surface chemistry is altered. Consequences for medical applications are outlined. T2 - European Materials Research Society Spring 2021 Meeting CY - Online meeting DA - 31.05.2021 KW - Laser-induced pariodic surface structures KW - LIPSS PY - 2021 AN - OPUS4-52778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, F. A1 - Sordello, F. A1 - Mino, L. A1 - Prozzi, M. A1 - Mansfeld, Ulrich A1 - Hodoroaba, Vasile-Dan A1 - Minero, C. T1 - Polyethylene Glycol as Shape and Size Controller for the Hydrothermal Synthesis of SrTiO3 Cubes and Polyhedra N2 - Understanding the correlation between the morphological and functional properties of particulate materials is crucial across all fields of physical and natural sciences. This manuscript reports on the investigation of the effect of polyethylene glycol (PEG) employed as a capping Agent in the synthesis of SrTiO3 crystals. The crucial influence of PEG on both the shape and size of the strontium titanate particles is revealed, highlighting the effect on the photocurrents measured under UV–Vis irradiation. KW - Polyethylene glycol KW - Strontium titanate KW - Controlled morphology KW - Photoelectrochemistry KW - Electron microscopy KW - EDS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512892 DO - https://doi.org/10.3390/nano10091892 VL - 10 IS - 9 SP - 1892 PB - MDPI CY - Basel, CH AN - OPUS4-51289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Standardized Chemical Composition Analysis of Graphene Oxide Flakes with SEM/EDS and XPS Works Reliably N2 - Reliable quantification of the chemical composition of graphene-related 2D materials (GR2M) as powders and liquid suspensions is a challenging task. Analytical methods such as XPS, ICP-MS, TGA and FTIR are recommended in projects at standardization bodies. The parameters to be measured are also defined, e.g. the oxygen-to-carbon (O/C) concentration ratio, the trace metal impurities, or the functional groups present. In this contribution, for the first time, the capability of SEM/EDS to reliably quantify the O/C ratio in a well-characterized graphene oxide (GO) material is evaluated. The robustness of the SEM/EDS results under various measurement conditions is tested by comparison to the established XPS analysis. A crucial step is the sample preparation from liquid suspension with GO flakes onto a substrate for analysis with both EDS and XPS. It is demonstrated that if a closed and enough thick drop-cast spot is deposited on a substrate, both surface-sensitive XPS analysis and bulk-characterizing EDS result in very similar elemental composition of oxygen and carbon. Hence, the theoretical, expected O/C atomic ratio values for pure GO of ~0.5 are achieved with both methods. Further, the effect of untight deposited material causing co-analysis of the silicon substrate, is evaluated for both methods, XPS and EDS. Note that all the EDS results in this study have been quantified standardless. The standard measurement procedure including the GO material considered here as a candidate reference material will make a significant contribution to analyse reliably the chemical composition of GR2M with SEM/EDS as one of the most widely used methods in analytical laboratories. T2 - Graphene Week 2025 CY - Vicenza, Italy DA - 22.09.2025 KW - EDX KW - Graphene-related 2D materials KW - O/C ratio KW - Standardisation KW - Samle preparation KW - XPS PY - 2025 AN - OPUS4-64261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Sahre, Mario A1 - Corrao, Elena A1 - Pellegrino, Francesco A1 - Hodoroaba, Vasile-Dan T1 - Wire-Print as a Sample Preparation Procedure Suitable for Accurate Morphological Characterization of Constituent Particles for Graphene-Related 2D-Materials N2 - In this study we have systematically tested the efficacy of a new deposition procedure for graphene-related 2D materials (GR2M’s) from liquid suspension onto a substrate for quantitative analysis of their size and shape distribution with electron microscopy. The technique is an extension of the conventional drop-casting method, and we have designated it “wire-print” deposition. It consists of two steps, first one being usual drop-casting on a copper substrate and second one involving a thin copper wire with a sub-mm diameter being dipped into the deposited droplet and retracted with a corresponding half-spherical droplet attached on its tip and final deposition of this entire nL-amount of suspension onto e.g. a silicon wafer for microscopical, detailed analysis. 11 series of such a wire-print deposition for a graphene-based ink have been considered, whereby various conditions (treatment of the starting suspension) have been experimented with a repetition of up to 10 times per condition, all together 86 spots on a silicon wafer of 10 mm x 10 mm. The evaluation of one series of 8 repeated wire-print depositions reveal that the deposited spots are visualized with SEM. The weak presence of coffee-rings, irregular spot shape, and presence of agglomerates should be noticed. Both the mean value of the 8 ECD distributions and the total number of flakes deposited in each spot show a variance in the range of 17% and 22%, respectively. In the context of accurate analysis of such challenging complex materials these numbers can be considered as excellent and demonstrate the high benefit of the wire-print deposition for accurate morphological measurements on GR2M’s. KW - Sample preparation KW - Imaging KW - 2D materials KW - Morphology KW - Size distribution PY - 2025 DO - https://doi.org/10.1093/mam/ozaf048.219 VL - 31 IS - 7 SP - 436 EP - 437 PB - Oxford Academic AN - OPUS4-63821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marcoulaki, E. T1 - Blueprint for a sustainable new European Centre to support safe innovation for nanotechnology N2 - This paper presents the blueprint for the operation of a sustainable and permanent European Centre of collaborating reference laboratories and research centres, to establish a one-stop shop for a wide variety of nanosafety related services, and to provide a central contact point for questions about nanosafety in Europe. The Centre aims to harmonise service provision, and bring novel risk assessment and management approaches closer to practice. T2 - NANOSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - EC4SafeNano KW - European Centre KW - Nanomaterials KW - Nanosafety KW - Catalogue of Services (CoS) PY - 2020 UR - https://www.nanosafe.org/cea-tech/pns/nanosafe/en AN - OPUS4-51694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Habibimarkani, Heydar A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - John, Elisabeth T1 - Probing Surface Changes in Fe–Ni Oxide Nanocatalysts with a ToF-SIMS-Coupled Electrochemistry Setup and Principal Component Analysis N2 - Understanding catalyst surface dynamics under operating conditions is essential for improving electrocatalytic performance. Here, we present a novel approach combining electrochemical treatment with contamination-free transfer to Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), followed by principal component analysis (PCA), to probe surface and interfacial changes in Ni–Fe oxide nanoparticles stabilized by polyvinylpyrrolidone (PVP) during the oxygen evolution reaction (OER). The surface analysis at three distinct treatment stages revealed distinct chemical fingerprints across pristine nanoparticles, after exposure to 1 M KOH electrolyte, and after cyclic voltammetry treatment. The results highlight a progressive transition from ligand-rich to ligand-depleted interfaces, with PVP-related fragments dominant in the early stages and metal- and electrolyte-derived species emerging after activation. Complementary ToF-SIMS analysis of electrolyte deposited on Si wafers after each treatment step confirms the concurrent leaching of PVP and Fe–Ni-based fragments during OER. These findings underscore the dynamic nature of catalyst–electrolyte interfaces and demonstrate a robust strategy for monitoring surface-sensitive chemical changes associated with the nanoparticles, especially during the initial cycles of the OER. KW - Fe-Ni oxide KW - Nanocatalysts KW - ToF-SIMS KW - Electrochemistry KW - PCA (principal component analysis) KW - OER PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652667 DO - https://doi.org/10.1021/acs.analchem.5c03894 SN - 0003-2700 SP - 1 EP - 8 PB - American Chemical Society (ACS) AN - OPUS4-65266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mirabella, Francesca T1 - ToF-SIMS as a new tool for nano-scale investigation of ps-laser-generated surface structures on titanium substrates N2 - In recent years, the fabrication of laser-generated surface structures on metals such as titanium surfaces have gained remarkable interests, being technologically relevant for applications in optics, medicine, fluid transport, tribology, and wetting of surfaces. The morphology of these structures, and so their chemistry, is influenced by the different laser processing parameters such as the laser fluence, wavelength, pulse repetition rate, laser light polarization type and direction, angle of incidence, and the effective number of laser pulses per beam spot area. However, the characterization of the different surface structures can be difficult because of constraints regarding the analytical information from both depth and the topographic artifacts which may limit the lateral and depth resolution of elemental distributions as well as their proper quantification. A promising technique to investigate these structures even at the nano-scale is Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), a very surface sensitive technique that at the same time allows to perform depth-profiling, imaging and 3D-reconstruction of selected ion-sputter fragment distributions on the surface. In this study we combine chemical analyses such as Energy Dispersive X-ray spectroscopy (EDX) and high-resolution scanning electron microscopy (SEM) analyses with ToF-SIMS to fully characterize the evolution of various types of laser-generated micro- and nanostructures formed on Ti and Ti alloys at different laser fluence levels, effective number of pulses and at different pulse repetition rates (1 – 400 kHz), following irradiation by near-infrared ultrashort laser pulses (925 fs, 1030 nm) in air environment or under argon gas flow. We show how this combined surface analytical approach allows to evaluate alteration in the surface chemistry of the laser-generated surface structures depending on the laser processing parameters and the ambient environment. T2 - European Materials Research Society (EMRS) Fall Meeting 2021 CY - Online meeting DA - 20.09.2021 KW - ToF SIMS KW - Nano characterization PY - 2021 AN - OPUS4-53366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Morphological and Chemical Nanoscale Analysis of Mesoporous Mixed IrO x TiO y Thin Films as Electrode Materials N2 - Porous films play an important role particularly in energy applications like photovoltaics, electrolysis or batteries. Thin film properties such as thickness, chemical composition, crystallinity of the framework, and porosity define the activity of the porous films. The accurate morpho-chemical characterisation of mesoporous thin films is a challenging analytical task which requires the consideration of new analytical approaches based on the combination of data of different methods able to address the structure and chemical composition at the nanoscale. In this contribution we characterise thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with Energy-Dispersive X-ray Spectroscopy (EDS) at an SEM applied in a dedicated “thin film analysis” approach (1). Thus, the film mass deposition, film thickness and the film density can be determined. Further, by dividing the measured film density to an assumed (theoretical) metal oxide framework (skeletal) density, the thin film porosity can be extracted, too. In order to assess the homogeneity of the thin film properties like the chemical composition, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Auger Electron Spectrometry are applied in the depth profiling mode, so that possible in-depth gradients are detected. Lateral inhomogeneities in the chemical composition and structure of the thin mesoporous films are also identified by applying the same methods in the line-scan or mapping mode, which can be further combined with in-depth sputtering for 3D information. The role of the spatial resolution of the analytical methods considered, which can go down well below 100 nm, will be highlighted. T2 - Microscopy and Microanalysis 2024 CY - Cleveland, OH, USA DA - 28.07.2024 KW - Auger electron spectroscopy KW - Iridium oxide KW - Mesoporous thin films KW - SIMS KW - Titanium oxide KW - Porosity PY - 2024 AN - OPUS4-60805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Harald A1 - Hodoroaba, Vasile-Dan A1 - Schmidt, Alexandra A1 - Rasmussen, K. A1 - Rauscher, H. T1 - Counting Small Particles in Electron Microscopy Images — Proposal for Rules and Their Application in Practice N2 - Electron microscopy (EM) is the gold standard for the characterisation of the morphology (size and shape) of nanoparticles. Visual observation of objects under examination is always a necessary first step in the characterisation process. Several questions arise when undertaking to identify and count particles to measure their size and shape distribution. In addition to challenges with the dispersion and identification of the particles, more than one protocol for counting particles is in use. This paper focuses on precise rules for the counting of particles in EM micrographs, as this influences the measurement accuracy of the number of particles, thus implicitly affecting the size values of the counted particles. We review and compare four different, commonly used methods for counting, which we then apply in case studies. The impact of the selected counting rule on the obtained final particle size distribution is highlighted. One main aim of this analysis is to support the application of a specific, well-defined counting approach in accordance with regulatory requirements to contribute to achieving more reliable and reproducible results. It is also useful for the new harmonised measurement procedures for determining the particle size and particle size distribution of nanomaterials. KW - Nano KW - Particle size distribution KW - Nanoparticle KW - Nanomaterial KW - OECD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551891 DO - https://doi.org/10.3390/nano12132238 SN - 2079-4991 VL - 12 IS - 13 SP - 2238 PB - MDPI CY - Basel AN - OPUS4-55189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Nano and Advanced Materials - Competences at BAM and perspectives N2 - This presentation gives an overview about the competencies and the characterization possibilities of nanoparticles at BAT, based on this the development of the OECD TG 125 at BAM. It further describes research activities at BAM concerning the characterization of nanoparticles and the way to the digital representation of these characterization possibilities. It concludes with the challenges of a digital product passport (DPP) for nanomaterial based products and the need of a digital materials passport (DMP). Finally, the activities of BAM are presented which address the former mentioned challenges from ESRP and DPP. T2 - Austausch Helmholtz Hereon / Digipass & BAM CY - Berlin, Germany DA - 07.07.2025 KW - Nanomaterials KW - ESPR KW - DPP KW - Nano KW - Advanced Materials PY - 2025 AN - OPUS4-64974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Dao, R. A1 - Komarow, P. A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Dataset accompanying the publication "Towards 3D determination of the surface roughness of core-shell microparticles as a routine quality control procedure by scanning electron microscopy" N2 - This dataset accompanies the following publication: Hülagü, D., Tobias, C., Dao, R., Komarov, P., Rurack, K., Hodoroaba, V.-D., Towards 3D determination of the surface roughness of core-shell microparticles as a routine quality control procedure by scanning electron microscopy. Sci.Rep, 14, 17936 (2024), https://doi.org/10.1038/s41598-024-68797-7. It contains SEM and AFM-in-SEM images of polystyrene (PS) core particles, polystyrene-iron oxide (PS/Fe3O4) core-shell particles, and polystyrene-iron oxide-silica (PS/Fe3O4/SiO2) core-shell-shell particles. Please refer to the publication and its supporting information for more details on the acquisition and contents of the dataset, as well as the GitHub repository at https://github.Com/denizhulagu/roughness-analysis-by-electron-microscopy. The investigated particles were produced at BAM laboratories as previously described in: Hülagü, D. et al. Generalized analysis approach of the profile roughness by electron microscopy with the example of hierarchically grown polystyrene–iron oxide–silica core–shell–shell particles. Adv. Eng. Mater. 24, 2101344, https://doi.org/10.1002/adem.202101344 (2022). Tobias, C., Climent, E., Gawlitza, K. & Rurack, K. Polystyrene microparticles with convergently grown mesoporous silica shells as a promising tool for multiplexed bioanalytical assays. ACS Appl. Mater. Interfaces 13, 207, https://dx.doi.org/10.1021/acsami.0c17940 (2020). KW - Core–shell particles KW - Image analysis KW - Roughness KW - Scanning electron microscopy KW - Atomic force microscopy KW - Tilting KW - Batch analysis PY - 2024 UR - https://zenodo.org/records/11108726 DO - https://doi.org/10.5281/zenodo.11108725 PB - Zenodo CY - Geneva AN - OPUS4-60760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Boehm, S. A1 - Kim, K. J. T1 - Analysis of elemental composition of Fe1-xNix and Si1-xGex alloy thin films by electron probe microanalysis and micro-focus X-ray fluorescence N2 - The present study reports on results of analysis of the elemental composition of thin films by electron probe microanalysis with energy dispersive (ED-EPMA) X-ray spectrometry in conjunction with the dedicated thin-film analysis software package Stratagem and by X-ray fluorescence in its version with a micro-focus X-ray fluorescence (μ-XRF) source attached to a scanning electron microscope (SEM). Two thin-film systems have been analyzed: Fe1-xNix on silicon wafer and Si1-xGex on Al2O3 substrate, in both cases the layers being grown to a thickness of about 200 nm by ion beam sputter deposition. Samples of five different atomic fractions have been produced and analyzed for each thin-film system. Moreover, reference samples with certified elemental composition and thickness have been also available. This study is part of an interlaboratory comparison organized in the frame of standardization technical committee ISO/TC 201 “Surface chemical analysis.” Two laboratories have been analyzed by ED-EPMA (one laboratory standardless and one laboratory using both standardless and with standards variants) and one laboratory by μ-XRF (standardless and with standards). All the elemental compositions obtained with different methods are in very good agreement for the complete two sets of five samples each. KW - Thin films KW - Elemental composition KW - FeNi KW - SiGe KW - Electron probe microanalysis KW - X-ray Fluorescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509262 DO - https://doi.org/10.1002/sia.6834 SN - 0142-2421 VL - 52 IS - 12 SP - 929 EP - 932 PB - John Wiley & Sons Ltd AN - OPUS4-50926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Ce0.25Zr0.75O2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Ce0.25Zr0.75O2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Ce0.25Zr0.75O2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7966165 PB - Zenodo CY - Geneva AN - OPUS4-57674 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Co1.5Fe1.5O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Co1.5Fe1.5O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Co1.5Fe1.5O4 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7940271 PB - Zenodo CY - Geneva AN - OPUS4-57662 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized TiO2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized TiO2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - TiO2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7941566 PB - Zenodo CY - Geneva AN - OPUS4-57668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized TiO2 PVP nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized TiO2 PVP nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Nanoparticles KW - TiO2 PVP PY - 2023 DO - https://doi.org/10.5281/zenodo.7966354 PB - Zenodo CY - Geneva AN - OPUS4-57761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterile ZnO nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of ZnO nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Nanoparticles KW - ZnO PY - 2023 DO - https://doi.org/10.5281/zenodo.7990213 PB - Zenodo CY - Geneva AN - OPUS4-57762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of Ce0.9Zr0.1O2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of Ce0.9Zr0.1O2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Ce0.9Zr0.1O2 KW - Nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7986672 PB - Zenodo CY - Geneva AN - OPUS4-57758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterile citrated stabilized Au nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of Au nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Au Nanoparticles KW - NanoSolveIT PY - 2023 DO - https://doi.org/10.5281/zenodo.7990250 PB - Zenodo CY - Geneva AN - OPUS4-57763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Embedding and cross-sectioning as a sample preparation procedure for accurate and representative size and shape measurement of nanopowders N2 - Reliable measurement of the size of polydisperse, complex-shaped commercial nanopowders is a difficult but necessary task, e.g., for regulatory requirements and toxicity risk assessment. Suitable methods exist for the accurate characterization of the size of non-aggregated, stabilized, spherical and monodisperse nanoparticles. In contrast, industrial nanoscale powders usually require dedicated sample preparation procedures developed for the analysis method of choice. These nano-powders tend to agglomerate and/or aggregate, a behavior which in combination with an innate broad particle size distribution and irregular shape often significantly alters the achievable accuracy of the measured size parameters. The present study systematically tests two commercially available nanoscale powders using different sample preparation methods for correlative analysis by scanning electron microscopy, dynamic light scattering, Brunauer–Emmet–Teller method and differential mobility analysis. One focus was set on the sample preparation by embedding nanoparticles in carbon-based hot-mounting resin. Literature on this topic is scarce and the accuracy of the data extracted from cross sections of these particles is unclearly stated. In this paper systematic simulations on the deviation of the size parameters of well-defined series of nanoparticles with different shapes from the nominal value were carried out and the contributing factors are discussed. KW - Nanopowder KW - Electron microscopy KW - Sample preparation KW - Cross-sectioning KW - Cerium oxide KW - Zinc oxide PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593289 DO - https://doi.org/10.1038/s41598-023-51094-0 SN - 2045-2322 VL - 14 SP - 1 EP - 10 PB - Springer Nature CY - London AN - OPUS4-59328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - López de Ipina, J.-M. A1 - Arevalillo, A. A1 - Martín, A. A1 - Caillard, B. A1 - Marcoulaki, E. A1 - Aguerre- Charol, O. A1 - van Duuren-Stuurman, B. A1 - Hodoroaba, Vasile-Dan A1 - Viitanen, A.-K. A1 - Witters, H. A1 - Vercauteren, S. A1 - Persson, K. A1 - Bard, D. A1 - Evans, G. A1 - Jensen, K.A. A1 - Himly, M. A1 - Scalbi, S. A1 - Papin, A. A1 - Le Bihan, O. A1 - Kanerva, T. A1 - Tirez, K. A1 - Frijns, E. A1 - Niga, P. A1 - Eleftheriadis, K. A1 - Travlos, A. A1 - Geppert, M. A1 - Himly, M. A1 - Radnik, Jörg A1 - Kuchenbecker, Petra A1 - Resch-Genger, Ute A1 - Fraboulet, I. A1 - Bressot, C. A1 - Rissler, J. A1 - Gaucher, R. A1 - Binotto, G. A1 - Krietsch, Arne A1 - Braun, A. A1 - Abenet, S. A1 - Catalan, J. A1 - Verstraelen, S. A1 - Manier, N. A1 - Manzo, S. A1 - Fransman, S. A1 - Queron, J. A1 - Charpentier, D. A1 - Taxell, D. A1 - Säämänen, A. A1 - Brignon, J.-M. A1 - Jovanovic, A. A1 - Bisson, M A1 - Neofytou, P. T1 - EC4Safenano - Catalogue of Services N2 - The publicly available document encapsulates the first version of the Catalogue of Services of the future EC4Safenano Centre (CoS 2019). The CoS 2019 is structured in 12 Service Categories and 27 Service Topics, for each of the 12 categories considered. This architecture configures a 12 x 27 matrix that allows ordering the potential EC4Safenano offer in 324 types of services/groups of services. Each type of service/group of services is described, in a simple and friendly way, by means of a specific service sheet: the EC4Safenano - Service Data Sheet (EC4-SDS). These EC4-SDSs allow structuring and summarizing the information of each service, providing the customer with a concise view of characteristics of the service and also the contact details with the service provider. The CoS 2019 deploys a map of services consisting of a set of 100 EC4-SDSs, covering 7 of the 12 Service Categories and 17 of the 27 Service Topics. The harmonization of services is visualized as a future necessary step in EC4Safenano, in order to strengthen the offer and provide added value to customers with a growing offer of harmonized services in future versions of the CoS. The information contained in this document is structured in 3 main sections, as follows: • Catalogue structure. This section describes in short the main characteristics of the CoS 2019. • Catalogue content. This section represents the core part of the document and encapsulates the set of 100 SDSs displaying the offer proposed by the CoS 2019. • Online Catalogue. This section describes the resources implemented by EC4Safenano to facilitate the on-line consultation of the CoS 2019 by customers and other interested parties. KW - Nano-safety KW - Analytical services KW - Nanomaterials KW - Catalogue of services KW - EC4SafeNano KW - European Centre PY - 2021 UR - https://ec4safenano.eu-vri.eu/Public/Guidance SP - 1 EP - 72 PB - EU-VRi – European Virtual Institute for Integrated Risk Management CY - Stuttgart, Germany AN - OPUS4-52943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, F. A1 - Isopescu, R. A1 - Pellutiè, L. A1 - Sordello, F. A1 - Rossi, A. M. A1 - Ortel, Erik A1 - Martra, G. A1 - Hodoroaba, Vasile-Dan A1 - Maurino, V. T1 - Machine learning approach for elucidating and predicting the role of synthesis parameters on the shape and size of TiO2 nanoparticles N2 - In the present work a series of design rules are developed in order to tune the morphology of TiO2 nanoparticles through hydrothermal process. Through a careful experimental design, the influence of relevant process parameters on the synthesis outcome are studied, reaching to the develop predictive models by using Machine Learning methods. The models, after the validation and training, are able to predict with high accuracy the synthesis outcome in terms of nanoparticle size, polydispersity and aspect ratio. Furthermore, they are implemented by reverse engineering approach to do the inverse process, i.e. obtain the optimal synthesis parameters given a specific product characteristic. For the first time, it is presented a synthesis method that allows continuous and precise control of NPs morphology with the possibility to tune the aspect ratio over a large range from 1.4 (perfect truncated bipyramids) to 6 (elongated nanoparticles) and the length from 20 to 140 nm. KW - Machine learning KW - Nanoparticles KW - Titanium dioxide KW - Size KW - Shape KW - Synthesis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515084 DO - https://doi.org/10.1038/s41598-020-75967-w VL - 10 IS - 1 SP - 18910 PB - Springer Nature AN - OPUS4-51508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmed, R. A1 - Vaishampayan, A. A1 - Cuellar-Camacho, J. L. A1 - Wight, D. J. A1 - Donskyi, Ievgen A1 - Unger, Wolfgang A1 - Grohmann, E. A1 - Haag, R. A1 - Wagner, O. T1 - Multivalent Bacteria Binding by Flexible Polycationic Microsheets Matching Their Surface Charge Density N2 - Aiming at the overall negative surface charge of bacteria, a new strategy of antibacterial agents based on large polymer-modified graphene oxide (GO) sheets is assessed. The presented flexible, polycationic Sheets match the size and charge density of the Escherichia coli surface charge density (2 × 1014 cm−2). These matching parameters create an unspecific but very strong bacteria adsorber by multivalent, electrostatic attraction. Their interaction with bacteria is visualized via atomic force and confocal microscopy and shows that they effectively bind and wrap around E. coli cells, and thereby immobilize them. The incubation of Gram-negative and -positive bacteria (E. coli and methicillin-resistant Staphylococcus aureus, MRSA) with these polycationic sheets leads to the inhibition of proliferation and a reduction of the colony forming bacteria over time. This new type of antibacterial agent acts in a different mode of Action than classical biocides and could potentially be employed in medicinal, technical, or agriculture applications. The presented microsheets and their unspecific binding of cell interfaces could further be employed as adsorber material for bacterial filtration or immobilization for imaging, analysis, or sensor technologies. KW - Surface charge KW - Bacteria KW - Graphene oxide KW - Escherichia coli KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509651 DO - https://doi.org/10.1002/admi.201902066 VL - 7 IS - 15 SP - 1902066 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - MinimUm Information Requirements for Electron Microscopy and Surface analysis Data For Risk Assessment of Nanoforms N2 - The European legislation has responded to the wide use of nanomaterials in our daily life and defined the term “nanoform” in the Annexes to the REACH (Registration, Evaluation, Authorization of Chemicals) Regulation. Now specific information of the nanomaterials is required from the companies when registering the appropriate materials in a dossier. In the context of REACH eleven physicochemical properties were considered as relevant, of which the following six are essential for registration of nanoforms (priority properties): chemical composition, crystallinity, particle size, particle shape, chemical nature of the surface (“surface chemistry”), and specific surface area (SSA). A key role is the reliable, reproduceable and traceable character of the data of these priority properties. In this context, we want to discuss which ‘analytical’ information is exactly required to fulfill these conditions. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS) were chosen as the most popular surface analytical methods. Both methods allow a detailed understanding of the surface chemistry with an information depth below ten nanometers. As a rather bulk method for the analysis of nanoforms, Electron Probe Microanalysis (EPMA) in the version with energy dispersive X-ray spectroscopy (EDS) is considered for the quick identification of the main chemical elements present in the sample. Furthermore, Scanning Electron Microscopy (SEM) results are discussed which provide results on particle size and shape. Thus, four of the six priority properties can be obtained with these methods. T2 - Nanosafe 2020 CY - Online meeting DA - 17.11.2020 KW - Risk assessment KW - Nanomaterials KW - Standardization KW - Regulation PY - 2020 AN - OPUS4-51612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sordello, F. A1 - Prozzi, M. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Pellegrino, F. T1 - Increasing the HER efficiency of photodeposited metal nanoparticles over TiO2 using controlled periodic illumination N2 - Although the use of noble metal catalysts can increase the efficiency of hydrogen evolution reaction, the process is still limited by the characteristics of the metal-hydrogen (M−H) bond, which can be too strong or too weak, depending on the metal employed. Studies revealed that the hydrogen affinity for the metal surface (i.e. H absorption/desorption) is regulated also by the potential at the metal nanoparticles. Through controlled periodic illumination (CPI) of a series of metal/TiO2 suspensions, here we demonstrated that an increase of the HER efficiency is possible for those photodeposited metals which have a Tafel slope below 125 mV. Two possible explanations are here reported, in both of them the M−H interaction and the metal covering level play a prominent role, which also depend on the prevailing HER mechanism (Volmer-Heyrovsky or Volmer-Tafel). KW - Controlled periodic illumination KW - Hydrogen evolution reaction KW - Titanium dioxide KW - Photoreforming KW - Volcano plot KW - Sabatier KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589875 DO - https://doi.org/10.1016/j.jcat.2023.115215 VL - 429 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-58987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faghani, A. A1 - Gholami, M. F. A1 - Trunk, M. A1 - Müller, J. A1 - Pachfule, P. A1 - Vogl, S. A1 - Donskyi, Ievgen A1 - Li, M. A1 - Nickl, Philip A1 - Shao, J. A1 - Huang, M. R. S. A1 - Unger, Wolfgang A1 - Arenal, R. A1 - Koch, C. T. A1 - Paulus, B. A1 - Rabe, J. P. A1 - Thomas, A. A1 - Haag, R. A1 - Adeli, M. T1 - Metal-Assisted and Solvent-Mediated Synthesis of Two-Dimensional Triazine Structures on Gram Scale N2 - Covalent triazine frameworks are an emerging material class that have shown promising performance for a range of applications. In this work, we report on a metal-assisted and solvent-mediated reaction between calcium carbide and cyanuric chloride, as cheap and commercially available precursors, to synthesize two-dimensional triazine structures (2DTSs). The reaction between the solvent, dimethylformamide, and cyanuric chloride was promoted by calcium carbide and resulted in dimethylamino-s-triazine intermediates, which in turn undergo nucleophilic substitutions. This reaction was directed into two dimensions by calcium ions derived from calcium carbide and induced the formation of 2DTSs. The role of calcium ions to direct the two-dimensionality of the final structure was simulated using DFT and further proven by synthesizing molecular intermediates. The water content of the reaction medium was found to be a crucial factor that affected the structure of the products dramatically. While 2DTSs were obtained under anhydrous conditions, a mixture of graphitic material/2DTSs or only graphitic material (GM) was obtained in aqueous solutions. Due to the straightforward and gram-scale synthesis of 2DTSs, as well as their photothermal and photodynamic properties, they are promising materials for a wide range of future applications, including bacteria and virus incapacitation. KW - XPS KW - Triazine KW - 2D PY - 2020 DO - https://doi.org/10.1021/jacs.0c02399 VL - 142 IS - 30 SP - 12976 EP - 12986 PB - ACS American Chemical Society AN - OPUS4-51203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Terborg, R. A1 - Hodoroaba, Vasile-Dan T1 - Determination of Thin Film Thickness and Composition using Energy Dispersive EPMA N2 - Electron Probe Microanalysis (EPMA) provides a non-destructive approach in the dedicated thin film analysis mode with the commercial StrataGem software. Recently, the open-source programme BadgerFilm by Moy and Fournelle became available. Similarly to StrataGem, it is based on the algorithm of Pouchou and Pichoir and needs intensity ratios of the unknown sample and standards (k-values). We have evaluated the k-values measured for the FeNi and SiGe film systems using the BadgerFilm software package and compared the thickness and composition with the results obtained with the established StrataGem software and other reference methods. The thicknesses of the SiGe films obtained by the BadgerFilm software agree within 20% with the StrataGem and TEM results; the elemental compositions BadgerFilm-StrataGEM agree within 2% with one exception (9%). T2 - Microscopy and Microanalysis 2022 CY - Portland, OR, USA DA - 31.07.2022 KW - Thin films KW - Thickness KW - Elemental composition KW - FeNi KW - SiGe KW - BadgerFilm KW - Electron Probe Microanalysis (EPMA) PY - 2022 AN - OPUS4-55522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Morphological Characterization and Chemical Identification of TiO2 Nanoparticles Doped with Ultrafine Metal Particles for Enhanced Photocatalytical Activity N2 - Water splitting using semiconductor photo-catalysts is considered a sustainable method to produce clean hydrogen fuel. Nevertheless, H2 photo-production efficiency remains still low, although extensive research works to understand better the mechanisms of the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) are being carried out. In this respect, TiO2 is a key photoactive material, usually employed with a co-catalyst deposited onto the surface to enhance charge carriers’ separation and catalyze surface charge transfer reactions. The deposition of a co-catalyst on the TiO2 nanoparticle surface represents one successful way to enhance the activity of the photocatalyst through a modification of its surface and redox properties. In this context, high-resolution scanning electron microscopy (SEM) coupled with elemental analysis by energy-dispersive X-ray spectroscopy (EDS) is fundamental for studying and understanding the effect of the nanoparticle morphology on the functional properties of shape-controlled TiO2 crystals (bipyramides, platelets, and elongated particles). Different types of metal-semiconductor combinations, TiO2 shapes and dopant metals (Ag, Pt, Au, Rh, Pd) and metal concentrations are discussed. T2 - Microscopy and Microanalysis 2022 CY - Portland, OR, USA DA - 31.07.2022 KW - Nanoparticles KW - Me-TiO2 KW - Photocatalysis KW - Morpho-chemical characterization KW - Shape KW - SEM/EDS PY - 2022 AN - OPUS4-55541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drobne, D. A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Bohmer, N. A1 - Novak, S. A1 - Kranjc, E. A1 - Kononenko, V. A1 - Reuther, R. T1 - Knowledge, Information, and Data Readiness Levels (KaRLs) for Risk Assessment, Communication, and Governance of Nano-, New, and Other Advanced Materials N2 - The obvious benefits derived from the increasing use of engineered nano-, new, and advanced materials and associated products have to be weighed out by a governance process against their possible risks. Differences in risk perception (beliefs about potential harm) among stakeholders, in particular nonscientists, and low transparency of the underlying decision processes can lead to a lack of support and acceptance of nano-, new, and other advanced material enabled products. To integrate scientific outcomes with stakeholders needs, this work develops a new approach comprising a nine-level, stepwise categorization and guidance system entitled “Knowledge, Information, and Data Readiness Levels” (KaRLs), analogous to the NASA Technology Readiness Levels. The KaRL system assesses the type, extent, and usability of the available data, information, and knowledge and integrates the participation of relevant and interested stakeholders in a cocreation/codesign process to improve current risk assessment, communication, and governance. The novelty of the new system is to communicate and share all available and relevant elements on material related risks in a user/stakeholder-friendly, transparent, flexible, and holistic way and so stimulate reflection, awareness, communication, and a deeper understanding that ultimately enables the discursive process that is needed for the sustainable risk governance of new materials. KW - Risk asessment KW - Advanced materials KW - TRL KW - Governance KW - Data readiness level PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575344 DO - https://doi.org/10.1002/gch2.202200211 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-57534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Towards Automated Electron Microscopy Image Segmentation for Nanoparticles of Complex Shape by Convolutional Neural Networks N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. KW - Nanoparticles KW - Convolutional neural networks KW - Image segmentation KW - Electron microscopy KW - Automatisation PY - 2020 DO - https://doi.org/10.1017/S1431927620017262 VL - 26 IS - S2 SP - 1188 EP - 1189 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Burr, L. A1 - Schmid, D. A1 - Hodoroaba, Vasile-Dan T1 - Towards a method for quantitative evaluation of nanoparticle from suspensions via microarray printing and SEM analysis N2 - As part of the development of a library of accurate and efficient methods for measurement of nanoparticle properties, we develop and optimize a method for the efficient analysis of nanoparticle size distribution from suspensions via microprinting and digital analysis of electron microscopy (SEM and TEM) images, with the ultimate aim of automated quantitative concentration analysis (calculated from drop volume). A series of different nanoparticle suspensions (gold, latex, and SiO2 in varying sizes and concentrations) were printed onto TEM grids in a 4 x 4 array in the concentration range 7x10^8 to 1x10^11 nanoparticles/mL and imaged with SEM. Concentrations and printing conditions (temperature, relative humidity) were varied in order to minimize the coffee-ring effect. KW - Nanoparticles KW - Particle size distribution KW - Electron microscopy KW - Microarray printing KW - Sample preparation KW - Nanoparticle concentration PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528455 DO - https://doi.org/10.1088/1742-6596/1953/1/012002 VL - 1953 SP - 012002 PB - IOP Publishing AN - OPUS4-52845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -