TY - CONF A1 - Osipova, Viktoriia A1 - Tavernaro, Isabella A1 - Resch-Genger, Ute T1 - Incorporation of near-infrared light emitting chromium (III) complexes into silica nanoparticles and spectroscopic characterization N2 - In recent years, chromium (III) complexes have received a lot of attention as novel near-infrared (NIR) emitters triggered by the report on the first molecular ruby Cr(ddpd)2(BF4)3 with a high photoluminescence quantum yield of 13.7% of its near infrared (NIR) emission band and a long luminescence lifetime of 1.122 ms at room temperature.[1] However, in an oxygen-containing environment, the photoluminescence quantum yields and luminescence lifetimes of these chromium(III) complexes show only very small values. This hampers their application as NIR luminescence labels. This application, that cannot be tackled by conventional deoxygenating approaches, requires suitable strategies to protect the luminescence of the chromium(III) complexes from oxygen quenching. An elegant approach to reduce the undesired luminescence quenching by triplet oxygen explored by us presents the incorporation of these chromium(III) complexes into different types of amorphous, non-porous silica nanoparticles, that can be simply surface functionalized, e.g., with targeting ligands and/or other sensor molecules. In this work, as first proof-of-concept experiments, a set of chromium (III) complexes constituting of different ligands and counter anions, were embedded into the core of silica nanoparticles. Subsequently, the optical properties of the resulting luminescent silica nanoparticles were spectroscopically assessed by steady state and time-resolved luminescence spectroscopy. First results of time-resolved luminescence measurements confirm our design concept of nanoscale NIR emissive Cr(III) complex-based reporters T2 - Projekttreffen Nile-Chrome 2.0 CY - Mainz, Germany DA - 11.12.2023 KW - Cr(III) complex KW - NIR KW - Luminescence KW - Nano KW - Silica KW - Lifetime KW - Quantum Yields KW - Particle Synthesis KW - Sensors KW - Probe KW - Surface Group Analysis PY - 2023 AN - OPUS4-59149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - Behind the Paper - Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies N2 - In this contribution we highlight the importance of comparison for scientific research while developing a new, functional pH sensor system, and the valuable insights this can provide. KW - Dye KW - Optical Spectroscopy KW - pH probe KW - Silica and Polystyrene Particles KW - Nano KW - Surface groups KW - Safe-by-Design KW - Cell studies KW - Sensors KW - Particle Synthesis KW - Fluorescence PY - 2023 UR - https://communities.springernature.com/posts/dual-color-ph-probes-made-from-silica-and-polystyrene-nanoparticles-and-their-performance-in-cell-studies SP - 1 EP - 2 PB - Springer Nature CY - London AN - OPUS4-59150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Osipova, Viktoriia A1 - Srivastava, Priyanka A1 - Huang, Zixuan A1 - Merei, Rabih A1 - Resch-Genger, Ute T1 - Design of Fluorescent, Amorphous Silica-NPs and their Versatile Use in Sensing Applications N2 - Surface functionalized silica nanoparticles (SiO2-NP) gained great interest in the life and material sciences, as they can be used e.g. as drug carriers, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications. They are highly stable, are easily produced and modified on a large scale at low cost and can be labeled or stained with a multitude of sensor dyes. These dye modified particle conjugates have several advantages as compared to conventional molecular probes like enhanced brightness, ease of designing ratiometric systems by combining analyte-sensitive and inert reference dyes, and increased photostability. Moreover, stained nanoparticles can enable the use of hydrophobic dyes in aqueous environments. Here we present our work on multicolored sensors for the measurement of pH, oxygen and saccharides utilizing amorphous SiO2 NPs. T2 - Focus Area Day Analytical Sciences 2023 CY - Berlin, Germany DA - 20.04.2023 KW - Amorphous silica particles KW - Particle Synthesis KW - Nano KW - Ratiometric Sensors KW - Fluorescence KW - pH probe KW - Dye PY - 2023 AN - OPUS4-59151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Favres, Georges A1 - O'Connor, Daniel A1 - Balsamo, Alessandro A1 - Evans, Alexander A1 - Castro, Fernando A1 - Przyklenk, Anita A1 - Bosse, Harald T1 - European Metrology Network (EMN) for Advanced Manufacturing N2 - The European Commission has identified Advanced Manufacturing and Advanced Materials as two of six Key Enabling Technologies (KETs). By fully utilizing these KETs, advanced and sustainable economies will be created. It is considered that Metrology is a key enabler for the advancement of these KETs. EURAMET, the association of metrology institutes in Europe, has strengthened the role of Metrology for these KETs by enabling the creation of a European Metrology Network for Advanced Manufacturing. The EMN is made up of National Metrology Institutes (NMIs) and Designated Institutes (DIs) from across Europe and was formally established in October 2021. The EMN aims to provide a high-level coordination of European metrology activities for the Advanced Materials and Advanced Manufacturing community. The EMN itself is organized in three sections representing the major stages of the manufacturing chain: 1) Advanced Materials, 2) Smart Manufacturing Systems, and 3) Manufactured Components & Products. The EMN for Advanced Manufacturing is engaging with stakeholders in the field of Advanced Manufacturing and Advanced Materials (Large companies & SMEs, industry organisations, existing networks, and academia), as well as the wider metrology community (including TCs) to provide input for the preparation of a Strategic Research Agenda (SRA) for Metrology for Advanced Manufacturing. This presentation will describe the progress in the development of the SRA by the EMN for Advanced Manufacturing. The metrology challenges identified across the various key industrial sectors, which utilise Advanced Materials and Advanced Manufacturing will be presented. The EMN for Advanced Manufacturing is supported by the project JNP 19NET01 AdvManuNet. T2 - 21st International Metrology Congress, CIM 2023 CY - Lyon (Chassieu), France DA - 07.03.2023 KW - Advanced Materials KW - EMN KW - European Metrology Network for Advanced Manufacturing, Strategic Research Agenda KW - SRA PY - 2023 AN - OPUS4-59208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - SEM/EDS as THE Versatile and Powerful Tool for Micro and Nano Analysis N2 - The basic principles of generation of electrons and X-rays and the operation of SEM/EDS instruments are presented. Examples, recent successes and challenges in the analysis of nano-structures are given. Multi-method analytical approaches with the focus on imaging the nanoscale are highlighted. Details on the sample preparation and persepective on the automated analysis (sample preparation, measurement, data analyis and storage) are given. Metrological aspects, standardisation, and reference materials are also emphasized by examples. T2 - Training Course Metrological Determination of Micro and Nano Contaminants in Food CY - Berne, Switzerland DA - 05.09.2023 KW - SEM KW - EDS KW - Microanalysis KW - Nanoanalysis KW - Imaging PY - 2023 UR - https://www.sem.admin.ch/metas/en/home/dl/kurs_uebersicht/micro_nano_contaminants_in_food.html AN - OPUS4-58188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Gawlitza, Kornelia A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Polymerizable BODIPY probe crosslinker for the molecularly imprinted polymer-based detection of organic carboxylates via fluorescence N2 - This contribution reports the development of a polymerizable BODIPY-type fluorescent probe targeting small-molecule carboxylates for incorporation into molecularly imprinted polymers (MIPs). The design of the probe crosslinker includes a urea recognition site p-conjugated to the 3-position of the BODIPY core and two methacrylate moieties. Titration experiments with a carboxylate-expressing antibiotic, levofloxacin (LEVO), showed a blue shift of the absorption band as well as a broadening and decrease in emission, attributed to hydrogen bonding between the probe’s urea group and the carboxylate group of the antibiotic. Using this probe crosslinker, core–shell particles with a silica core and a thin MIP shell were prepared for the detection of LEVO. The MIP exhibited highly selective recognition of LEVO, with an imprinting factor of 18.1 compared to the non-imprinted polymer. Transmission electron microscopy confirmed the core–shell structure and spectroscopic studies revealed that the receptor’s positioning leads to a unique perturbation of the polymethinic character of the BODIPY chromophore, entailing the favourable responses. These features are fully preserved in the MIP, whereas no such response was observed for competitors such as ampicillin. The sensory particles allowed to detect LEVO down to submicromolar concentrations in dioxane. We have developed here for the first time a BODIPY probe for organic carboxylates and incorporated it into polymers using the imprinting technique, paving the way for BODIPY-type fluorescent MIP sensors. KW - Fluorescence KW - BODIPY probe KW - Molecularly Imprinted Polymers KW - Sensor Materials KW - Dyes KW - Water analysis KW - Advanced materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598629 DO - https://doi.org/10.1039/D3MA00476G SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Probenpräparation für AFM-basierte Untersuchungsverfahren N2 - Adapted and advanced sample preparation of semiconductor layer systems with the focused ion beam for AFM-based test methods N2 - Der vorliegende Vortrag gibt einen Überblick über Probenpräparationen mit der Focused Ion Beam (FIB) für AFM-basierte Untersuchungsverfahren. Anhand zweier Beispiele wird gezeigt, wie ionenstrahlpolierte Lamellen aus Halbleiter-Schichtsystemen elektrisch leitfähig auf Substrate platziert werden, so dass in-situ und in-operando Messungen mit Scanning Microwave Microscope (SMM) bzw. Spectroscopic infrared scanning near-field optical microscope (IR-SNOM) durchgeführt werden können. T2 - 15. Berlin-Brandenburger Präparatorentreffen CY - Potsdam/Golm, Germany DA - 11.04.2019 KW - Focused Ion Beam KW - AFM based test methods KW - Sample preparation KW - Semiconductor materials KW - Layer system PY - 2019 AN - OPUS4-47784 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Altmann, Korinna A1 - Hodoroaba, Vasile-Dan T1 - Getting reliable data on microplastic detection methods by means of ILC N2 - There is an urgent demand for reliable data on microplastic analysis, particularly on its physico-chemical properties as well as validated methodology to obtain such data. Through interlaboratory comparisons (ILCs) it becomes possible to assess accuracy and precision of methods by involving many laboratories around the world. At BAM, my tasks focused around organisation of an ILC on physico-chemical characterisation of microplastic detection methods under the international pre-standardisation platform VAMAS (www.vamas.org/twa45/) as Project 2 “Development of standardized methodologies for characterisation of microplastics with microscopy and spectroscopy methods” under the Technical Working Area TWA 45 “Micro and Nano Plastics in the Environment”. With a proud number of 84 participants this ILC is able to provide superior statistical results. Thermoanalytical (Py-GC/MS and TED-GC/MS) and vibrational (µ-IR and µ-Raman) methods were asked for identification and quantification of microplastic test samples according to mass or particle number. Preliminary results indicate which methods show a higher accuracy and precision and reveal some sample preparation ideas which work best for microplastics characterisation. At the end of the ILC an overall plausibility of the results will be assessed. T2 - CUSP Early Career Researchers Meeting CY - Online meeting DA - 21.11.2023 KW - Micro- and Nanoplastics KW - Interlaboratory comparison KW - Microplastic reference materials PY - 2023 AN - OPUS4-59056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - López-Iglesias, C. A1 - Markovina, A. A1 - Nirmalananthan-Budau, N. A1 - Resch-Genger, Ute A1 - Klinger, D. T1 - Optically monitoring the microenvironment of a hydrophobic cargo in amphiphilic nanogels: influence of network composition on loading and release N2 - Amphiphilic nanogels (ANGs) are promising carriers for hydrophobic cargos such as drugs, dyes, and catalysts. Loading content and release kinetics of these compounds are controlled by type and number of hydrophobic groups in the amphiphilic copolymer network. Thus, understanding the interactions between cargo and colloidal carrier is mandatory for a tailor-made and cargo-specific ANG design. To systematically explore the influence of the network composition on these interactions, we prepared a set of ANGs of different amphiphilicity and loaded these ANGs with varying concentrations of the solvatochromic dye Nile Red (NR). Here, NR acts as a hydrophobic model cargo to optically probe the polarity of its microenvironment. Analysis of the NR emission spectra as well as measurements of the fluorescence quantum yields and decay kinetics revealed a decrease in the polarity of the NR microenvironment with increasing hydrophobicity of the hydrophobic groups in the ANG network and dye–dye interactions at higher loading concentrations. At low NR concentrations, the hydrophobic cargo NR is encapsulated in the hydrophobic domains. Increasing NR concentrations resulted in probe molecules located in a more hydrophilic environment, i.e., at the nanodomain border, and favored dye–dye interactions and NR aggregation. These results correlate well with release experiments, indicating first NR release from more hydrophilic network locations. Overall, our findings demonstrate the importance to understand carrier–drug interactions for efficient loading and controlled release profiles in amphiphilic nanogels. KW - Particle KW - Energy transfer KW - Limit of detection KW - Polymer KW - Luminescence KW - Quantitative spectroscopy KW - Nano KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Dye KW - Probe KW - Sensor KW - Nile Red PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601603 DO - https://doi.org/10.1039/d4nr00051j SN - 2040-3364 IS - 16 SP - 9525 EP - 9535 PB - The Royal Society of Chemistry AN - OPUS4-60160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Salzmann, Christoph A1 - Heilmann, Maria T1 - Ongoing VAMAS interlaboratory comparisons on nanoparticles size and shape as pre standardisation projects for harmonized measurements N2 - Traceable morphological and chemical characterization of nanomaterials with respect to the various possible sizes, size distributions, shapes, and concentrations of real-world nanoparticles (NPs) is a challenging task. Particularly for the nonspherical, non-monodisperse nanoparticles – as typically for most of the commercial particles, including their strong tendency to agglomerate, there is a lack of standard operation procedures providing accurate nanoparticle characterisation. In the framework of the pre-standardisation framework of VAMAS (Versailles Project on Advanced Materials and Standards, www.vamas.org) two interlaboratory comparison (ILC) studies are being carried out under the Technical Working Area (TWA) 34 “Nanoparticle Populations”:i) Project #15 addresses the analysis of the size and shape distribution of TiO2 bipyramidal NPs by traceable imaging methods such as TEM, SEM, STEM-in-SEM, AFM as well as with SAXS as an ensemble method. This ILC is thought as the next level development of the case studies exemplified in the published ISO standards ISO 21363 and ISO 19749. It was agreed to complete the first ILC with the NPs already prepared according to the same procedure on a TEM grid, and, at a later stage, to carry out second ILCs with the same NPs distributed to the participants as liquid suspensions together with protocols for the uniform NP deposition on suited substrates - as developed and optimized within the European project nPSize. Once having good deposition protocols available, the door for automated image analysis gets opened. Corresponding image analysis protocols and reporting templates have been distributed to the ILC participants, too. ii) Project #16: two spherical SiO2 NP samples with bi-modal size distributions in two nominal relative number concentrations were prepared and distributed also as liquid suspensions accompanied by sample preparation, measurement, and image analysis protocols and reporting templates. Here, the NP concentration is the primary parameter to be measured. For the imaging methods it is targeted to measure the relative nanoparticle concentrations (relative populations of the two modes). The results of all the participating laboratories, in both ILCs, compiled in comparative representations will be shown and discussed for the first time. The reduction of the measurement uncertainties associated to the size, shape and number-concentration results induced by the significant improvement of the sample preparation on substrates (as single particles with a high-density coverage), combined with welldefined image analysis procedures will be highlighted. T2 - 2024 Spring Meeting of the European Materials Research Society (E-MRS) CY - Strasbourg, France DA - 27.05.2024 KW - VAMAS KW - Interlaboratory comparison KW - Electron microscopy KW - Particle size distribution KW - Article concentration PY - 2024 AN - OPUS4-60184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Ines Leana A1 - Olonade, K. A. A1 - Mbugua, R. A1 - Kühne, Hans-Carsten T1 - Plant based chemical admixtures – potentials and effects on the performance of cementitious materials N2 - While today, engineers can choose from a wide range of rheology modifying admixtures, in some parts of the world, these are difficult to access, due to their complex processing. However, alternatives can be bio‐based polymers such as polysaccharides from various sources. These are easily accessible all over the world, do not demand for complicated processing, and typically they are more sustainable than many established materials, which are crude oil‐based. The paper presents the effects of acacia gum, cassava starch and the gum of triumfetta pendrata A. Rich on the rheological performance of cementitious systems. It is shown that acacia gum can be as efficient as polycarboxylate based superplasticisers, cassava starch can reduce the yield stress slightly with little effect on the plastic viscosity, and the gum of triumfet ta pendrata A. Rich increases the thixotropy of cement pastes with plasticizing polymers significantly. KW - Polysaccharides KW - Rheology KW - Cement KW - Chemical admixtures KW - Bio-based concrete PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476748 DO - https://doi.org/10.21809/rilemtechlett.2018.83 VL - 3 SP - 124 EP - 128 PB - RILEM S.A.R.L. CY - Paris AN - OPUS4-47674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mech, A. A1 - Wohlleben, W. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Weigel, S. A1 - Babick, F. A1 - Brüngel, R. A1 - Friedrich, C. M. A1 - Rasmussen, K. A1 - Rauscher, H. T1 - Nano or Not Nano? A Structured Approach for Identifying Nanomaterials According to the European Commission’s Definition N2 - Identifying nanomaterials (NMs) according to European Union Legislation is challenging, as there is an enormous variety of materials, with different physico-chemical properties. The NanoDefiner Framework and its Decision Support Flow Scheme (DSFS) allow choosing the optimal method to measure the particle size distribution by matching the material properties and the performance of the particular measurement techniques. The DSFS leads to a reliable and economic decision whether a material is an NM or not based on scientific criteria and respecting regulatory requirements. The DSFS starts beyond regulatory requirements by identifying non-NMs by a proxy Approach based on their volume-specific surface area. In a second step, it identifies NMs. The DSFS is tested on real-world materials and is implemented in an e-tool. The DSFS is compared with a decision flowchart of the European Commission’s (EC) Joint Research Centre (JRC), which rigorously follows the explicit criteria of the EC NM definition with the focus on identifying NMs, and non-NMs are identified by exclusion. The two approaches build on the same scientific basis and measurement methods, but start from opposite ends: the JRC Flowchart starts by identifying NMs, whereas the NanoDefiner Framework first identifies non-NMs. KW - Classification KW - Definition KW - Identification KW - Nanomaterials KW - Particle size KW - Regulation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510917 DO - https://doi.org/10.1002/smll.202002228 SN - 1613-6829 SP - 2002228-1 EP - 2002228-16 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Hörenz, Christoph A1 - Durande, B. A1 - Taché, O. A1 - Bartczak, D. A1 - Cuello-Nuñez, S. A1 - Ábad-Alvaro, I. A1 - Goenaga-Infante, H. T1 - Analysis of Particle Size Distribution for Bimodal Model Nanoparticles by Scanning Electron Microscopy N2 - The present study addresses the capability of measurement of relative particle number concentration by scanning electron microscopy for model bimodal silica and gold samples prepared in the frame of the European research project “nPSize - Improved traceability chain of nanoparticle size measurements” as candidate reference nanoparticles. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Silica KW - Gold KW - Electron microscopy KW - Particle size distribution PY - 2020 AN - OPUS4-51112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Cios, G. A1 - Tokarski, T. A1 - Mansfeld, Ulrich A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Pellegrino, F. A1 - Maurino, V. T1 - Towards 3D understanding of non spherical nanoparticles by Transmission Kikuchi Diffraction (TKD) for improved particle size distribution by electron microscopy N2 - In this paper one refined approach is applied to determine the exact orientation of bipyramidal TiO2 nanoparticles prepared with good dispersion as almost isolated particles on a carbon TEM grid. The advantages of the recently developed high-throughput Transmission Kikuchi Diffraction (TKD) are used to identify quickly and reliably the geometrical orientation of the crystalline TiO2 nanoparticle bipyramids (anatase) on a statistically relevant number of particles. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - TiO2 KW - 3D KW - Electron microscopy PY - 2020 AN - OPUS4-51113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rühle, Bastian T1 - Towards automated electron microscopy image segmentation for nanoparticles of complex shape by convolutional neural networks N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Automatisation KW - Image segmentation KW - Convolutional neural networks KW - Electron microscopy PY - 2020 AN - OPUS4-51114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph T1 - Preparation of Nanoparticulate Samples for Electron Microscopy N2 - This presentation addresses the importance of proper sample preparation to obtain suitable samples for electron microscopic measurements. The objective as well as the requirements are discussed. Further, different sample deposition methods for various types of nanoparticulate samples are shown. T2 - nPSize Web Conference CY - Online meeting DA - 23.07.2020 KW - Nanoparticles KW - Electron microscopy KW - Sample preparation KW - Particle size distribution KW - Particle number concentration PY - 2020 AN - OPUS4-51047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Besselink, R. A1 - Chatzipanagis, K. A1 - Hövelmann, J. A1 - Benning, L. G. A1 - Van Driessche, E. S. T1 - Nucleation Pathway of Calcium Sulfate Hemihydrate (Bassanite) from Solution: Implications for Calcium Sulfates on Mars N2 - CaSO4 minerals (i.e., gypsum, anhydrite, and bassanite) are widespread in natural and industrial environments. During the last several years, a number of studies have revealed that nucleation in the CaSO4–H2O system is nonclassical, where the formation of crystalline phases involves several steps. Based on these recent insights, we have formulated a tentative general model for calcium sulfate precipitation from solution. This model involves primary species that are formed through the assembly of multiple Ca2+ and SO42– ions into nanoclusters. These nanoclusters assemble into poorly ordered (i.e., amorphous) hydrated aggregates, which in turn undergo ordering into coherent crystalline units. The thermodynamic (meta)stability of any of the three CaSO4 phases is regulated by temperature, pressure, and ionic strength, with gypsum being the stable form at low temperatures and low-to-medium ionic strengths and anhydrite being the stable phase at high temperatures and at lower temperature for high salinities. Bassanite is metastable across the entire phase diagram but readily forms as the primary phase at high ionic strengths across a wide range of temperatures and can persist up to several months. Although the physicochemical conditions leading to bassanite formation in aqueous systems are relatively well established, nanoscale insights into the nucleation mechanisms and pathways are still lacking. To fill this gap and to further improve our general model for calcium sulfate precipitation, we conducted in situ scattering measurements at small-angle X-ray scattering and wide-angle X-ray scattering and complemented these with in situ Raman spectroscopic characterization. Based on these experiments, we show that the process of formation of bassanite from aqueous solutions is very similar to the formation of gypsum: it involves the aggregation of small primary species into larger disordered aggregates, only from which the crystalline phase develops. These data thus confirm our general model of CaSO4 nucleation and provide clues to explain the abundant occurrence of bassanite on the surface of Mars (and not on the surface of Earth). KW - Gypsum' SAXS KW - Calcium sulfate KW - Bassanite KW - Nucleation PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.0c01041 VL - 124 IS - 15 SP - 8411 EP - 8422 PB - American Chemical Society AN - OPUS4-50849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sattari, S. A1 - Beyranvand, S. A1 - Soleimani, K. A1 - Rassoli, K. A1 - Salahi, P. A1 - Donskyi, Ievgen A1 - Shams, A. A1 - Unger, Wolfgang A1 - Yari, A. A1 - Farjanikish, G. A1 - Nayebzadeh, H. A1 - Adeli, M. T1 - Boronic Acid-Functionalized Two-Dimensional MoS2 at Biointerfaces N2 - While noncovalent interactions at two-dimensional nanobiointerfaces are extensively investigated, less knowledge about covalent interactions at this interface is available. In this work, boronic acid-functionalized 2D MoS2 was synthesized and its covalent multivalent interactions with bacteria and nematodes were investigated. Polymerization of glycidol by freshly exfoliated MoS2 and condensation of 2,5-thiophenediylbisboronic acid on the produced platform resulted in boronic acid-functionalized 2D MoS2. The destructive interactions between 2D MoS2 and bacteria as well as nematodes were significantly amplified by boronic acid functional groups. Because of the high antibacterial and antinematodal activities of boronic acid-functionalized 2D MoS2, its therapeutic efficacy for diabetic wound healing was investigated. The infected diabetic wounds were completely healed 10 days after treatment with boronic acid-functionalized 2D MoS2, and a normal structure for recovered tissues including different layers of skin, collagen, and blood vessels was detected. KW - XPS KW - Boronic acid-functionalized 2D MoS2 KW - Covalent interactions KW - Bacteria KW - Nanobiointerfaces PY - 2020 DO - https://doi.org/10.1021/acs.langmuir.0c00776 VL - 36 IS - 24 SP - 6706 EP - 6715 PB - ACS American Chemical Society AN - OPUS4-51024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Borghetti, P. A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Garcia, S. A1 - Gómez, E. A1 - Blanco, M. A1 - Alberto, G. A1 - Martra, G. T1 - Organic surface modification and analysis of titania nanoparticles for self‐assembly in multiple layers N2 - The characteristics of TiO2 coatings can greatly influence their final performance in large‐scale applications. In the present study, self‐assembly of TiO2 nanoparticles (NPs) in multiple layers was selected as a deposition procedure on various substrates. For this, the main prerequisite constitutes the surface modification of both NPs and substrate with, for example, silane coupling agents. A set of functionalized TiO2 NPs has been produced by reaction with either (3‐aminopropyl)triethoxysilane (APTES) or (3‐aminopropyl)phosphonic acid (APPA) to functionalize the NP surface with free amino‐groups. Then, the complementary functionalized NP set can be obtained from an aliquot of the first one, through the conversion of free surface amino groups to aldehydes by reaction with glutaraldehyde (GA). Several types of TiO2 NPs differing in size, shape, and specific surface area have been functionalized. Fourier‐transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), SEM/ energy‐dispersive X‐ray spectroscopy (EDS), XPS, Auger electron spectroscopy (AES), and Time‐of‐Flight (ToF)‐SIMS analyses have been carried out to evaluate the degree of functionalization, all the analytical methods employed demonstrating successful functionalization of TiO2 NP surface with APTES or APPA and GA. KW - TiO2 KW - Nanoparticles KW - Surface functionalization KW - Layer-by-layer deposition KW - Surface chemical analysis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508601 DO - https://doi.org/10.1002/sia.6842 SN - 1096-9918 VL - 52 IS - 12 SP - 829 EP - 834 PB - John Wiley & Sons Ltd AN - OPUS4-50860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, Daniel A1 - Eisentraut, Paul A1 - Goedecke, Caroline A1 - Wiesner, Yosri A1 - Jekel, M A1 - Ruhl, A S A1 - Braun, Ulrike T1 - Specific adsorption sites and conditions derived by thermal decomposition of activated carbons and adsorbed carbamazepine N2 - The adsorption of organic micropollutants onto activated carbon is a favourable solution for the treatment of drinking water and wastewater. However, these adsorption processes are not sufficiently understood to allow for the appropriate prediction of removal processes. In this study, thermogravimetric analysis, alongside evolved gas analysis, is proposed for the characterisation of micropollutants adsorbed on activated carbon. Varying amounts of carbamazepine were adsorbed onto three different activated carbons, which were subsequently dried, and their thermal decomposition mechanisms examined. The discovery of 55 different pyrolysis products allowed differentiations to be made between specific adsorption sites and conditions. However, the same adsorption mechanisms were found for all samples, which were enhanced by inorganic constituents and oxygen containing surface groups. Furthermore, increasing the loadings led to the evolution of more hydrated decomposition products, whilst parts of the carbamazepine molecules were also integrated into the carbon structure. It was also found that the chemical composition, especially the degree of dehydration of the activated carbon, plays an important role in the adsorption of carbamazepine. Hence, it is thought that the adsorption sites may have a higher adsorption energy for specific adsorbates, when the activated carbon can then potentially increase its degree of graphitisation. KW - Aktivkohle KW - TED-GC/MS KW - Adsorption KW - Thermoanalytik PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506946 DO - https://doi.org/10.1038/s41598-020-63481-y VL - 10 IS - 1 SP - 6695 PB - Nature Publishing Group AN - OPUS4-50694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kanerva, M. A1 - Matrenichev, V. A1 - Layer, R. A1 - Takala, T. M. A1 - Laurikainen, P. A1 - Sarlin, E. A1 - Elert, Anna Maria A1 - Yuding, V. A1 - Seitsonen, J. A1 - Ruokolainen, J. A1 - Saris, P. T1 - Comparison of Rosin and Propolis Antimicrobials in Cellulose Acetate Fibers Against Staphylococcus aureus N2 - The quantitative difference in the antibacterial response was measured for pine rosin and propolis against Staphylococcus aureus ATCC 12598. The activity was studied for fibrous networks that form entirely bio-based cellulose-acetate (CA) materials. The analysis considers the effects of bacterial input, additive dosage, solvent type, variation in preparation, as well as the effect of storage time. Based on the results, the electrospun network structure is dependent on the solvent and the concentration of rosin and propolis. Both rosin and propolis improved the cellulose acetate solution processability, yet they formed beads at high concentrations. Rosin and propolis created strong antibacterial properties when these material systems were immersed in the liquid for 24 h at room temperature. The response remained visible for a minimum of two months. The electrospun networks of water and DMAc solvent systems with 1 to 5 wt% rosin content were clearly more efficient (i.e., decrease of 4 to 6 logs in colony forming units per mL) than the propolis networks, even after two months. This efficiency is likely due to the high content of abietic acids present in the rosin, which is based on the Fourier transform infrared spectra. The results of the additional analysis and cell cultivation with dermal fibroblast cells indicated an impairing effect on skin tissue by the rosin at a 1 wt% concentration compared to the pure CA fibers. KW - Electrospinning KW - Rosin KW - Propolis KW - Antibacterial KW - Cellulose acetate PY - 2020 SN - 1930-2126 VL - 15 IS - 2 SP - 3756 EP - 3773 AN - OPUS4-50635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gibson, N. A1 - Kuchenbecker, Petra A1 - Rasmussen, K. A1 - Hodoroaba, Vasile-Dan A1 - Rauscher, H. ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A.G. T1 - Volume-specific surface area by gas adsorption analysis with the BET method N2 - This chapter first gives an introduction to the concepts of SSA and volume-specific surface area (VSSA) and an outline of the BET method. It continues with a discussion of the relationship between particle size, shape, and the VSSA, followed by an overview of instrumentation, experimental methods, and standards. Finally, sections on the use of the VSSA as a tool to identify nanomaterials and non-nanomaterials and its role in a regulatory context provide some insight on the importance of VSSA in the current Regulation of nanomaterials. KW - Nanomaterials KW - Volume specific surface area PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00017-1 SP - 265 EP - 293 PB - Elsevier CY - Amsterdam AN - OPUS4-49572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - AI/ML starts with data, …a practical example N2 - A brief introduction to the efforts we have done in our lab towards AI/ML analysis of SAXS data. For this, we need to extend the data with an extensive, structured hierarchy of metadata and associated data. A practical look into the information stored in our files, and the organization of the files in a data catalog is presented. T2 - Benchmarking for AI for Science at the Exascale A2 Workshop for Materials Science CY - Online meeting DA - 23.11.2020 KW - Small angle scattering KW - Machine learning KW - Data organization KW - Data curation KW - Metadata structuring PY - 2020 AN - OPUS4-51660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Taché, O. A1 - Bartczak, D. A1 - Cuello Nuñez, S. A1 - Abad Álvaro, I. A1 - Goenaga Infante, H. A1 - Hodoroaba, Vasile-Dan T1 - Improved Sample Preparation for the Analysis of Nanoparticles by Electron Microscopy N2 - In this work, we present various promising sample preparation procedures aiming to avoid drying artifacts and guarantee homogeneously distributed NP samples for imaging techniques like TEM, SEM or AFM. This involves retarded drying in an environment of high relative humidity as well as spin coating or freeze drying of the sample on the substrate. Depending on the type of the NPs, different techniques are successful in obtaining homogenous sample deposition. Simple drying at ambient conditions often results in heavily agglomerated NPs densely packed in coffee ring traces. Retardation of the drying speed in an environment of high relative humidity, however, yields homogeneous NP deposition in the case of bimodal SiO2 and bimodal gold NP’s. In contrast, a sample of bipyramidal TiO2, heavily agglomerated when commonly dried, is successfully dispersed by spin coating the suspension on the substrate. The analysis of the particle size distribution of the bimodal silica and gold samples yielded number ratios resembling the nominal number ratios. The reliable measurement of the NP concentration of polydisperse samples by electron microscopy, even if relative, is new and of special relevance because up to now only the size of the particles, i.e. the abscissa of the PSD, can be measured reliably. T2 - NANOSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - Nanoparticles KW - Particle size distribution KW - Electron microscopy KW - Bimodal KW - SiO2 KW - Gold PY - 2020 AN - OPUS4-51714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph T1 - Improved Sample Preparation for the Analysis of Nanoparticles by Electron Microscopy N2 - Various promising sample preparation procedures aiming to avoid drying artifacts and guarantee homogeneously distributed NP samples for imaging techniques like TEM, SEM or AFM are presented. This involves retarded drying in an environment of high relative humidity as well as spin coating or freeze drying of the sample on the substrate. Depending on the type of the NPs, different techniques are successful in obtaining homogenous sample deposition. Simple drying at ambient conditions often results in heavily agglomerated NPs densely packed in coffee ring traces. Retardation of the drying speed in an environment of high relative humidity, however, yields homogeneous NP deposition in the case of bimodal SiO2 and bimodal gold NP’s. In contrast, a sample of bipyramidal TiO2, heavily agglomerated when commonly dried, is successfully dispersed by spin coating the suspension on the substrate. The analysis of the particle size distribution of the bimodal silica and gold samples yielded number ratios resembling the nominal number ratios. The reliable measurement of the NP concentration of polydisperse samples by electron microscopy, even if relative, is new and of special relevance because up to now only the size of the particles, i.e. the abscissa of the PSD, can be measured reliably. T2 - EMPIR nPSize Training Course "Metrology for Measurement of Nanoparticle Size by Electron Microscopy and Atomic Force Microscopy" CY - Online meeting DA - 27.10.2020 KW - Nanoparticles KW - Particle size distribution KW - Sample peparation KW - Electron microscopy PY - 2020 AN - OPUS4-51716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kulow, Anicó A1 - Kabelitz, Anke A1 - Grunewald, C. A1 - Seidel, R. A1 - Chapartegui-Arias, Ander A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Beyer, S. T1 - Observation of early ZIF-8 crystallization stages with X-ray absorption spectroscopy N2 - The present study investigates early stages of ZIF-8 crystallization up to 5 minutes post mixing of precursor solutions. Dispersive X-ray Absorption Spectroscopy (DXAS) provides a refined understanding of the evolution of the coordination environment during ZIF-8 crystallization. Linear Combination Fiting (LCF) suggests tetrakis(1-methylimidazole)zinc2+ to be a suitable and stable mononuclear structure analogue for some early stage ZIF-8 intermediates. Our results pave the way for more detailed studies on physico-chemical aspects of ZIF-8 crystallization to better control tailoring ZIF-8 materials for specific applications. KW - In-situ KW - XANES KW - ZIF-8 KW - Crystallization PY - 2020 DO - https://doi.org/10.1039/D0SM01356K SN - 1744-6848 VL - 17 IS - 2 SP - 331 EP - 334 PB - Royal Scociety of Chemistry AN - OPUS4-51723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Kuchenbecker, Petra A1 - Würth, Christian A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - Fine iron oxide nanoparticles as a candidate reference material for reliable measurement of particle size N2 - Background, Motivation and Objective Nanomaterials are at the core of some of the 21st century’s most promising technologies. In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important. Furthermore, the European Commission has taken measures via the REACH Regulations to control the classification of nanomaterials. REACH Annexes which entered into force in January 2020 require manufacturers to register nanomaterials that are traded in larger quantities (at least 1 ton). Every powder or dispersion where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as a nanomaterial. This creates a need for both industrial manufacturers and research and analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is working on developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution, but also targeting other key parameters such as shape, structure (including porosity) and functional properties. Thus, candidate materials are considered to complement the already available spherical and monodisperse silica, Au and polystyrene reference nanoparticles, e.g. iron oxide and titanium oxide, with an average atomic number between those of silica and gold. Particularly for the imaging by electron microscopies, new nanoparticles of well-defined size in the range of 10 nm are decisive for the accurate particle segmentation by setting precise thresholds. Statement of Contribution/Methods Synthesis: Highly monodisperse iron oxide nanoparticles can be synthesized in large quantities by thermal decomposition of iron oleate or iron acetylacetonate precursors in high boiling solvents such as octadecene or dioctyl ether in the presence of oleic acid and oleylamine as capping agents. Scanning Electron Microscope: An SEM of type Supra 40 from Zeiss has been used including the dedicated measurement mode transmission in SEM (STEM-in-SEM) with a superior material contrast for the nanoparticle analysis. The software package ImageJ has been used for the analysis of the STEM-in-SEM images and to determine the particle size distribution. Dynamic Light scattering (DLS): Particles in suspension were measured in comparison by means of Zetasizer Nano (Malvern Panalytical; cumulants analysis) and NanoFlex (Microtrac; frequency power spectrum). Results/Discussion In this study iron oxide nanoparticles synthesized at BAM and pre-characterized by DLS, SEM (including the transmission mode STEM-in-SEM) are presented. The particles are spherical and highly monodisperse with sizes slightly larger than 10 nm. T2 - Nanosafe 2020 CY - Online meeting DA - 16.11.2020 KW - Reference nanomaterials KW - Imaging techniques KW - Size and size distribution KW - Reliable characterization KW - Iron oxide nanoparticles PY - 2020 AN - OPUS4-51767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörenz, Christoph A1 - Tache, O. A1 - Bartczak, D. A1 - Nunez, S. A1 - Abad Alvaro, I. A1 - Goenaga-Infante, H. A1 - Hodoroaba, Vasile-Dan T1 - A Study on the Analysis of Particle Size Distribution for Bimodal Model Nanoparticles by Electron Microscopy N2 - The present study addresses the capability of measurement of relative particle number concentration by scanning electron microscopy for model bimodal silica and gold samples prepared in the frame of the European research project “nPSize - Improved traceability chain of nanoparticle size measurements” as candidate reference nanoparticles. KW - Nanoparticles KW - Particle size distribution KW - Bimodal size distribution KW - Traceability PY - 2020 DO - https://doi.org/10.1017/S1431927620021054 VL - 26 IS - S2 SP - 2282 EP - 2283 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Cios, G. A1 - Tokarski, T. A1 - Mansfeld, Ulrich A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Pellegrino, F. A1 - Maurino, V. T1 - Towards 3D Understanding of Non-spherical Nanoparticles by Transmission Kikuchi Diffraction (TKD) for Improved Particle Size Distribution by Electron Microscopy N2 - In this paper one refined approach is applied to determine the exact orientation of bipyramidal TiO2 nanoparticles prepared with good dispersion as almost isolated particles on a carbon TEM grid. The advantages of the recently developed high-throughput Transmission Kikuchi Diffraction (TKD) are used to identify quickly and reliably the geometrical orientation of the crystalline TiO2 nanoparticle bipyramids (anatase) on a statistically relevant number of particles. KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - Electron microscopy KW - TiO2 KW - 3D PY - 2020 DO - https://doi.org/10.1017/S1431927620013999 VL - 26 IS - S2 SP - 260 EP - 261 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Towards Automated Electron Microscopy Image Segmentation for Nanoparticles of Complex Shape by Convolutional Neural Networks N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. KW - Nanoparticles KW - Convolutional neural networks KW - Image segmentation KW - Electron microscopy KW - Automatisation PY - 2020 DO - https://doi.org/10.1017/S1431927620017262 VL - 26 IS - S2 SP - 1188 EP - 1189 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Minimum Requirements for Nanomaterial Data - Examples with Electron Microscopy and Energy-Dispersive X-Ray Spectroscopy N2 - In dem Vortrag werden, anhand ausgewählten Beispielen aus der Elektronenmikroskopie und EDX-Elementanalyse, die minimalen Anforderungen an Referenzdaten für zuverlässige und reproduzierbare Ergebnisse (z.B. Partikelgrößenverteilung, Elementzusammensetzung) bei der Charakterisierung von Nanomaterialien vorgestellt und diskutiert. N2 - Based on practical examples of analysis with Electron Microscopy and Energy-Dispersive X-ray Spectroscopy, the minimum information requirements for reliable and reproducible nanomaterial characterization data such as particle size and shape distribution and elemental analysis are presented and discussed. T2 - nano@BAM-Workshop Digitalisierung in der Nanosicherheit CY - Online meeting DA - 04.12.2020 KW - Nanoparticles KW - Electron microscopy KW - EDX KW - Reference data KW - Reproducibility KW - Standardisation PY - 2020 AN - OPUS4-51775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Praktische Erfahrungen zur Granulometrie von Pulvern im Submikron- und Nanobereich N2 - Der Vortrag beleuchtet insbesondere die Herausforderungen die sich bei der Dispergierung der Nanopulver aufgrund der hohen Adhäsivkräfte ergeben. Die Bewertung der Probenpräparation ist nur indirekt zugänglich, aber essentiell für die Zuverlässigkeit der Messergebnisse. Anhand von Beispielen werden Lösungsvorschläge aufgezeigt. Der Vortrag schließt mit einem Vorschlag zur Strategie der Herangehensweise bei der Partikelgrößenbestimmung von Nanopulvern. T2 - Sitzung des Fachausschusses "Material- und Prozessdiagnostik" der Deutschen Keramischen Gesellschaft: Zuverlässige granulometrische Charakterisierung von Mikro- und Nanopulvern – Voraussetzung für optimierte Keramikwerkstoffe in der Energietechnik CY - Online meeting DA - 19.11.2020 KW - Nano-powder KW - particle size determination KW - dispersion KW - sample preparation PY - 2020 AN - OPUS4-51665 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - You Ask – ACEnano Replies N2 - The workshop starts with introductory information about the workshop and the H2020 project ACEnano, followed by two expert round tables, focussing on how the project could address regulator and industry needs, respectively. This is be followed by parallel sessions on tools (based on preferences expressed by those registered to attend, see “Questions”) and finally a question-and-answer session with the attendees. The experts invited in Round Table 1 have been prepared to answer to questions related to obstacles and advantages for stakeholders such as SMEs to use the ACEnano approaches/tools. Standardisation needs are discussed. T2 - nanoSafety Cluster Training (NSC) Day @ NanoSAFE 2020: ACEnano users’ workshop “You Ask – ACEnano Replies” CY - Online meeting DA - 23.11.2020 KW - ACEnano KW - Standardisation KW - Nanomaterials KW - Nano-characterisation PY - 2020 UR - https://www.nanosafetycluster.eu/ SP - 1 EP - 2 AN - OPUS4-51693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marcoulaki, E. A1 - M López de Ipiña, J. A1 - Vercauteren, S. A1 - Witters, H. A1 - Lynch, I. A1 - van Duuren-Stuurman, B. A1 - Shandilya, N. A1 - Kunz, Valentin A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Bard, D. A1 - Evans, G. A1 - Viitanen, A.-K. A1 - Pilou, M. A1 - Bochon, A. A1 - Duschl, A. A1 - Himly, M. A1 - Geppert, M. A1 - Persson, K. A1 - Cotgreave, I. A1 - Niga, P. A1 - Scalbi, S. A1 - Caillard, B. A1 - Arevalillo, A. A1 - Jensen, K. A. A1 - Frejafon, E. A1 - Bouillard, J. A1 - Aguerre-Chariol, O. A1 - Dulio, V. T1 - Blueprint for a sustainable new European Centre to support safe innovation for nanotechnology N2 - This paper presents the blueprint for the operation of a sustainable and permanent European Centre of collaborating reference laboratories and research centres, to establish a one-stop shop for a wide variety of nanosafety related services, and to provide a central contact point for questions about nanosafety in Europe. The Centre aims to harmonise service provision, and bring novel risk assessment and management approaches closer to practice. T2 - NANOSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - EC4SafeNano KW - European Centre KW - Nanomaterials KW - Nanosafety KW - Catalogue of Services (CoS) PY - 2020 UR - https://www.nanosafe.org/cea-tech/pns/nanosafe/en AN - OPUS4-51694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bennet, Francesca A1 - Burr, L. A1 - Schmid, D. A1 - Hodoroaba, Vasile-Dan T1 - Towards a method for quantitative evaluation of nanoparticles in suspension via Microprinting and SEM analysis N2 - A series of different nanoparticle suspensions (Gold, Latex, and SiO2 in varying concentrations) were microprinted onto TEM grids in a 4 x 4 array in the concentration range 7x10^8 to 1x10^11 NP/mL and imaged with SEM and TSEM. Concentrations and printing conditions (temperature, relative humidity) were varied in order to minimize the coffee ring effect. T2 - nanoSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - Nanoparticles KW - Microprinting KW - Image analysis PY - 2020 AN - OPUS4-51699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Kranjc, E. A1 - Bohmer, N. A1 - Drobne, D. A1 - Hodoroaba, Vasile-Dan T1 - Testing the quality of nanomaterial properties data for nano-risk assessment – towards guidance for all types of users N2 - Data quality is a vast term, which comprises the completeness, relevance (adequacy), and reliability of data. So far, many attempts to assure data quality have been pursued, and evaluation criteria for data quality have been established. One relatively novel but already well-known aspect of data quality refers to the concept of data FAIRness, which states that data should be: findable, accessible, interoperable and re-usable. In order to find, use, and access data, a user has to be guided properly. Such guidelines already exist for regulators and the scientific community. However, a ‘simple’ non-academic user from general society is very unlikely to be able to access or understand such data. Our objective in the H2020 project NANORIGO is to help and guide all types of users (i.e., scientists, regulators, industry workers, citizens, etc.) to access and make use of high-quality data and information from available and suitable data repositories in order to increase the transparency of and trust in nanotechnology. T2 - nanoSAFE 2020 CY - Online Meeting DA - 16.11.2020 KW - Nano-related data KW - Nanomaterial properties KW - Nano-risk assessment PY - 2020 AN - OPUS4-51701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rühle, Bastian A1 - Nirmalananthan-Budau, Nithiya A1 - Roloff, Alexander A1 - Resch-Genger, Ute T1 - Surface Functional Group Quantification on Micro- and Nanoparticles N2 - Organic and inorganic micro- and nanoparticles are increasingly used as drug carriers, fluorescent sensors, and multimodal labels in the life and material sciences. Typically, these applications require further functionalization of the particles with, e.g., antifouling ligands, targeting bioligands, stimuli-responjsive caps, or sensor molecules. Besides serving as an anchor point for subsequent functionalization, the surface chemistry of these particles also fundamentally influences their interaction with the surrounding medium and can have a significant effect on colloidal stability, particle uptake, biodistribution, and particle toxicity in biological systems. Moreover, functional groups enable size control and tuning of the surface during the synthesis of particle systems. For these reasons, a precise knowledge of the chemical nature, the total number of surface groups, and the number of groups on the particle surface that are accessible for further functionalization is highly important. In this contribution, we will will discuss the advantages and limitiations of different approaches to quantify the amount of commonly used surface functional groups such as amino,[1,2] carboxy,[1,2] and aldehyde groups.[3] Preferably, the quantification is carried out using sensitive and fast photometric or fluorometric assays, which can be read out with simple, inexpensive instrumentation and can be validated by complimentary analytic techniques such as ICP-OES and quantitative NMR. T2 - NANAX Hamburg CY - Hamburg, Germany DA - 16.09.2019 KW - Microparticles KW - Nanoparticles KW - Quantitative Analysis KW - Surface KW - Funtional Groups PY - 2019 AN - OPUS4-49616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rühle, Bastian A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan A1 - Radnick, Jörg T1 - Perspektive der BAM auf neuartige Materialien N2 - Neuartige Materialien, die bekannte (Werk-)Stoffe mit neuen Funktionalitäten ausstatten, spielen eine zunehmend wichtige Rolle im Bereich der Materialforschung und -prüfung. Das Spektrum neuartiger Materialien reicht von der gezielten Oberflächenfunktionalisierung und -strukturierung makroskopischer Materialien, dünnen Beschichtungen bis hin zu mikro- und nanoskaligen Kompositmaterialien und funktionalen Materialien an der Schnittstelle zur Biologie, Biotechnologie, nachhaltige Energiespeicherung und Sensorik. Dabei bieten neuartige Materialien die Chance, Werkstoffe und Produkte mit erweiterter oder verbesserter Funktionalität zu erhalten und Sicherheit bereits im Designprozess zu berücksichtigen. Durch dieses breite Anwendungsspektrum und die Herausforderungen, die solche Materialien für die Sicherheit in Chemie und Technik mit sich bringen, sind diese in allen Themenfeldern der BAM repräsentiert (Material, Analytical Sciences, Energie, Infrastruktur und Umwelt). Die Aufgaben der BAM erstrecken sich dabei von der Herstellung von Referenzmaterialien für Industrie, Forschung und Regulation, über die Erstellung von standardisierten Referenzverfahren für nachhaltige Messungen im Umwelt- und Lebenswissenschaftsbereich bis hin zur Bereitstellung von belastbaren und zitierbaren Referenzdaten. Durch die genaue Charakterisierung neuartiger Materialien können potentiell problematische Substanzen identifiziert und deren Risiken besser abgeschätzt werden. In diesem Beitrag werden einige aktuelle Beispiele aus diesen Bereichen vorgestellt. T2 - NanoDialog der Bundesregierung - Chancen und Risiken von Neuartigen Materialien CY - Berlin, Germany DA - 22.05.2019 KW - Advanced Materials KW - Nanomaterialien KW - Neuartige Materialien PY - 2019 AN - OPUS4-49594 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Würth, Christian A1 - Radunz, Sebastian A1 - Frenzel, Florian A1 - Resch-Genger, Ute T1 - Understanding Nucleation and Optical Properties of Upconverting Nanoparticles N2 - Non-linear optical emitters are promising materials for energy applications and biotechnologies. Solid-state multi-band emitters like lanthanide doped up-conversion nanoparticles (UCNPs) show excellent photostability, are excitable in the near infrared (NIR), and show emission bands from the UV to SWIR spectral regions. The optical properties of these materials strongly depend on the excitation power density, i.e., the number of photons absorbed per time interval. The upconversion (ΦUC) and downshifting quantum efficiencies (ΦDS) of these materials, the excitation power dependent population, and the deactivation dynamics are influenced by nanoparticle architecture, doping concentration, and the microenvironment. We studied the fundamental changes of the luminescence properties of ß-NaYF4 UCNPs doped with Yb3+ and Er3+ depending on size, different surroundings such as aqueous and organic media, and different surface chemistries. We obtained further insights into shelling procedures, FRET optimization, influence of doping concentration, and advantages of different sensitizer ions. T2 - NaNaX CY - Hamburg, Germany DA - 16.09.2019 KW - UpConversion KW - Optical properties KW - Nanoparticle KW - Nanomaterial PY - 2019 AN - OPUS4-49700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn A1 - Wichmann, K. A1 - Lauer, F. A1 - Tremel, W. A1 - Vanhaecke, F. A1 - von der Au, M. A1 - Schwinn, M. A1 - Borovinskaya, O. A1 - Büchel, C. A1 - Kuhlmeier, K. T1 - Neue ICP-MS basierte Methoden zur Analyse von Nano- und Mikropartikeln in der Umwelt N2 - In den vergangen Jahren hat das Umweltbewusstsein in der Bevölkerung stark zugenommen und somit auch das Interesse an der Vermeidung von anthropogenen (Schad-)Stoffen in der Umwelt. Eine (neue) Substanzklasse, deren Umweltauswirkungen noch nicht vollständig untersucht sind und die in den vergangenen Jahren immer mehr an Bedeutung gewonnen hat, sind (metallbasierte) Nanomaterialien. Im Gegensatz zu bspw. Elementspezies weisen Nanomaterialien eine Vielzahl von Eigenschaften auf und lassen sich nicht über nur ein Merkmal beschreiben - dies stellt eine große analytische Herausforderung dar. Hier haben sich vor allem die Feld-Fluss-Fraktionierung (AF4) und die single-particle-ICP-MS als leistungsstarke analytische Methoden herausgestellt. In (aquatischen) Umweltmatrizes (z.B. Oberflächengewässern) liegen neben artifiziellen auch natürliche Partikel vor, was eine weitere große Herausforderung für den Nachweis von Nanomaterialien darstellt. Neben dem Nachweis von anthropogenen Stoffen in der Umwelt ist zudem deren ökotoxikologische Bewertung wichtig. In der aquatischen Ökotoxikologie werden hierzu Testorganismen mit den jeweiligen Substanzen über die Wasserphase exponiert. Effektkonzentrationen (EC50) werden dabei auf Basis der Konzentrationen in der Wasserphase abgeleitet - tatsächlich bioakkumulierte Mengen werden hierbei jedoch meist nicht ermittelt; eine weitere große Herausforderung besteht zudem in der Bewertung von Mischungstoxizitäten. Gängige Testorganismen sind u.a. Kieselalgen (Diatomeen). Diatomeen stehen am Anfang der Nahrungskette - toxikologisch relevante Metalle/Nanomaterialien können sich hierüber im Nahrungsnetz der Oberflächengewässer anreichern und ggf. nachhaltig auswirken. Im ersten Teil des Vortrages werden zunächst neue elementanalytische Methoden zum Nachweis von metallbasierten Nanopartikeln in Umweltmatrizes auf Basis der AF4/ICP-SFMS sowie stabilen Isotopenlabeln am Beispiel von Eisennanopartikeln vorgestellt. Im zweiten Teil wird eine neue elementanalytische Methode als komplementäre Technik zur ökotoxikologischen Bewertung von (Schad-)Stoffen vorgestellt. Die neue Methode basiert auf der on-line Kopplung von HPLC mit der single-cell-ICP-(ToF)-MS (sc-ICP-(ToF)-MS) [1, 3-5]. Hierüber konnten wir erfolgreich die automatisierte Multielementanalytik einzelner Diatomeen realisieren und zur Analyse von mit Metallen inkubierten Diatomeen (cyclotella meneghiniana) einsetzen. Wir konnten zeigen, dass die sc-ICP-ToF-MS zukünftig eine leistungsstarke, komplementäre Technik in der aquatischen Ökotoxikologie zum z.B. Test von Metallen und Nanomaterialien darstellt. T2 - GDCh Wissenschaftsforum Chemie CY - Aachen, Germany DA - 17.09.2019 KW - ICP-MS KW - Nanomaterialien KW - Single particle-ICP-ToF-MS KW - Single cell-ICP-ToF-MS PY - 2019 AN - OPUS4-49743 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn A1 - Faßbender, Sebastian A1 - Rodiouchkina, K. A1 - Vanhaecke, F. A1 - Ley, P. A1 - Metzger, M. A1 - Von der Au, M. A1 - Sturm, M. A1 - Langhammer, N. A1 - Borovinskaya, O. A1 - Büchel, C. A1 - Wichmann, K. A1 - Tremel, W. T1 - New icp-(Tof)-MS based Methods for Material- and Environmental Analysis N2 - Entwicklung von ICP-(ToF)-MS basierten Methoden für die Spezies und Einzelorganismen und -Partikelanalytik an der Schnittstelle Material-Umwelt T2 - Analytisch Chemisches Kolloquium Uni Duisburg-Essen CY - Essen, Germany DA - 04.11.2019 KW - CE-ICP-MS KW - single cell-ICP-ToF-MS KW - single particle-ICP-ToF-MS KW - Speciation analysis PY - 2019 AN - OPUS4-49747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Haase, M. A1 - Homann, C. T1 - Progress report NaYF4:Yb,Er upconversion nanoparticles: determination of energy loss processes for the systematic enhancement of the luminescence efficiency N2 - A report on the progress of the PhD work on upconversion nanoparticles is given, showing lifetimes and quantum yields of single- and co-doped Yb,Er nanocrystals with and without inert shell. T2 - Arbeitsgruppenseminar Prof. Oliver Benson CY - Berlin, Germany DA - 23.10.2019 KW - Upconversion KW - Spectroscopy KW - Nanoparticles KW - Lifetime PY - 2019 AN - OPUS4-49754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Resch-Genger, Ute T1 - Spectral and Lifetime Encoding of Polymer Particles with Cd-free Ternary Semiconductor Nanocrystals for Flow Cytometry with Time Resolved Fluorescence Detection N2 - Multiplexed encoding schemes of nano- and micrometer sized particles with fluorescent dyes or quantum dots (QDs) and their optical detection, are of increasing interest for applications in the life sciences, for example in flow cytometry. Almost all strategies utilizing fluorescence focus on spectrally distinguishable emission bands or colors and different intensity levels as fluorescence codes. The fluorescence parameter lifetime has been, however, barely exploited. In this work the goal is to perform multiplexing with encoding fluorophores with different fluorescence lifetimes (LTs). In comparison to the spectral multiplexing strategies this has the advantage, that the different fluorescence LT codes can be measured with the excitation and emission wavelength, thus reducing instrument costs. Moreover, LTs should not depend on emitter concentration. Unlike organic dyes, the LTs of which are typically < 10 ns, the fluorescence LTs of ternary semiconductor QDs that represent a “green” alternative to conventional Cd-containing QDs are in the range of several hundred ns, independent of oxygen concentration, and can be tuned to a certain extent by chemical composition and surface chemistry. This present a time region that can be barely covered by other emitters that have either much shorter or longer lifetimes. In this project, different encoding strategies will be assessed and the encoded particles will be then used for fluorescence assays for the analysis of several targets in parallel. Therefor the encoded particles will be functionalized with different target-specific bioligands and read out with a specifically designed flow cytometer enabling time-resolved fluorescence detection. With this instrument, the particles will be discriminated by their fluorescence LTs In one detection channel while the analytes will be quantified by fluorescence labels in a second channel in the intensity domain. T2 - Bad Honnef Physics School Exciting nanostructures: Characterizing advanced confined systems CY - Bad Honnef, Germany DA - 21.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Roloff, Alexander A1 - Rühle, Bastian A1 - Borcherding, H. A1 - Thiele, T. A1 - Schedler, U. T1 - Cleavable probes and catch and release assays for surface group quantification on 2D- and 3D-supports N2 - Surface functionalization of 2D- and 3D-supports and nanomaterials are nowadays at the core of many applications of functional materials in the life and material sciences. Examples range from membranes and microarrays over bead-based assays, immunoseparation, and next generation sequencing to nanometer-sized optical reporters, nanosensors, and magnetic and optical contrast agents. Typically performed functionalization procedures include silanization and grafting reactions with reactive monomers to introduce functional groups like amino or carboxylic acid groups and the attachment of ligands like polyethylene glycol (PEG) molecules and biomolecules such as peptides, proteins, and DNA.[1-3] We present here a versatile concept to quantify the number of bioanalytically relevant functional groups like carboxyl, amino, and aldehyde moieties through the specific binding and subsequent release of small reporter molecules such as fluorescent dyes and non-fluorescent chromophores utilizing cleavable linkers or the formation of cleavable bonds as a reversible covalent labeling strategy. This is representatively demonstrated for different types of nano- and microparticles with different labeling densities of carboxyl, amino, and aldehyde groups. This strategy enables to separate the signal-generating molecule from the bead surface, thereby circumventing uncertainties associated with light scattering, binding-induced changes in reporter fluorescence, and fluorescence quenching dye-dye interactions on crowded material surfaces.[1-3] Moreover, the reporters are chosen to be detectable with different analytical methods as prerequisite for straightforward validation via method compari-sons and mass balances. Applications of these assays and multimodal cleavable probes range from a quantitative comparison of bead batches and process control to a qualitative prediction of the coupling efficiencies in bioconjugation reactions. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Nanoparticle KW - Surface group KW - Surface analysis KW - Cleavable probe KW - Optical assay KW - Quality assurance KW - Conductometry KW - Dye labeling KW - Methos comparision PY - 2019 AN - OPUS4-47628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Luminescence measurements, calibration strategies and photoluminescence quantum yields N2 - Different types of optical spectroscopies are introduced with special emphasis on method-inherent limitations and reliable instrument calibration and performance validation. In addition, procedures for the determination of spectroscopic key parameters like the photoluminescence quantum yield are presented including required instrument calibrations and material-specific effects related to certain emitters. T2 - Fakultät der University of Ottawa CY - Ottawa, Canada DA - 11.12.2018 KW - Quality assurcance KW - Optical spectroscopy KW - Method comparison KW - Photoluminescence KW - Calibration KW - Performance validation KW - Dye KW - Nanoparticle KW - Quantum dots KW - Quantum yields KW - Uncertainty KW - Method validation PY - 2019 AN - OPUS4-47630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Optical spectroscopy – Techniques, instrumentation, and typical molecular and nanoscale reporters N2 - Different types of optical spectroscopies are introduced with special emphasis on method-inherent limitations and reliable instrument calibration and performance validation. In addition, different classes of molecular and nanocrystalline emitters are presented and the underlying photophysical processes are briefly described. T2 - Fakultät der University of Ottawa CY - Ottawa, Canada DA - 11.12.2018 KW - quality assurcance KW - Optical spectroscopy KW - Method comparison KW - Photoluminescence KW - Calibration KW - Performance validation KW - Dye KW - Nanoparticle KW - Quantum dots KW - Quantum yields KW - Uncertainty KW - Method validation PY - 2018 AN - OPUS4-47631 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gramse, G. A1 - Schönhals, Andreas A1 - Kienberger, F. T1 - Nanoscale dipole dynamics of protein membranes studied by broadband dielectric microscopy N2 - We investigate the nearfield dipole mobility of protein membranes in a wide frequency range from 3 kHz to 10 GHz. The results of our nanoscale dielectric images and spectra of bacteriorhodopsin (bR) reveal Debye relaxations with time constants of τ ∼ 2 ns and τ ∼ 100 ns being characteristic of the Dipole moments of the bR retinal and α-helices, respectively. However, the dipole mobility and therefore the protein biophysical function depend critically on the amount of surface water surrounding the protein, and the characteristic mobility in the secondary structure is only observed for humidity levels <30%. Our results have been achieved by adding the frequency as a second fundamental dimension to quantitative dielectric microscopy. The key elements for the success of this advanced technique are the employed heterodyne detection scheme, the broadband electrical signal source, a high frequency optimized cabling, development of calibration procedures and precise finite element modelling. Our study demonstrates the exciting possibilities of broadband dielectric microscopy for the investigation of dynamic processes in cell bioelectricity at the individual molecular level. Furthermore, the technique may shed light on local dynamic processes in related materials science applications like semiconductor Research or nano-electronics. KW - Broadband dielectric microscopy PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475230 DO - https://doi.org/10.1039/c8nr05880f SN - 2040-3372 VL - 11 IS - 10 SP - 4303 EP - 4309 PB - RSC AN - OPUS4-47523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Busch, R. T1 - Surface Initiated Microstructure Formation in Glass -Ceramics N2 - Übersicht zur Oberflächeninitiierten Mikrostrukturbildung in Glasoberflächen. Dabei wird auf die Kristallvorzugsorientierung senkrecht zur Oberfläche der sich unter Temperatureinfluss behandelten Glasproben eingegangen. Zudem werden die ersten Experimente zur Eingrenzung des Ursprungs dieser Orientierung vorgestellt. N2 - Overview about the surface initiated microstructure formation in glass surfaces. Samples which are exposed to a temperature treatment, can develop a crystalline microstructure above Tg at the surface. These separated crystals can be preferably oriented towards the surface of the sample. First experiments about the origin of these orientation phenomenon as well as the potentially causing mechanisms are presented and discussed within the presentation. T2 - AK Glasig-kristalline Multifunktionswerkstoffe 2019 CY - TU Clausthal, Germany DA - 21.02.2019 KW - Orientation KW - Glass KW - Crystallization KW - Diopside PY - 2019 AN - OPUS4-47537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Grauel, Bettina A1 - Weigert, Florian A1 - Pauli, Jutta A1 - Martynenko, Irina A1 - Güttler, Arne T1 - Measuring photoluminescence quantum yields of molecular and nanocrystal emitters N2 - Mandatory for the comparison of different emitter classes and the rational design of the next generation of molecular and nanoscale reporters are reliable and quantitative photoluminescence measurements. This is of special relevance for all fluorescence applications in the life and material sciences. In the following, procedures for the determination of this spectroscopic key parameter are presented including pitfalls and achievable uncertainties and material-specific effects related to certain emitter classes are addressed. T2 - National Research Council Canada (NRC) CY - Ottawa, Canada DA - 11.12.2018 KW - Photoluminescence KW - Quantum yield KW - Instrument calibration KW - Quality assurance KW - Measurement uncertainty KW - Dye KW - Nanocrystal KW - Integrating sphere spectroscopy KW - Absolute measurement PY - 2018 AN - OPUS4-47550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Biophotonics at BAM – From photophysics of fluorescent nanocrystals to surface group analysis with optical methods N2 - Optical spectroscopic studies of the influence of size, particle architecture, and surface chemistry of different types of photoluminescent nanocrystals with emission in the vis/NIR will be presented including semiconductor quantum dots and lanthanide-based upconversion nanoparticles. This will include the photophysics of these materials assessed with steady state and time-resolved fluorometry on the ensemble and single particle level and concepts for the quantification of surface groups at nanomaterials with optical methods using cleavable probes and catch-and-release assays. T2 - Fakultät der University of Ottawa CY - Ottawa, Canada DA - 10.12.18 KW - Photoluminescence KW - Quantum yield KW - Nanocrystal KW - Semiconductor quantum dot KW - Upconversion nanoparticle KW - Integrating sphere spectroscopy KW - Cleavable probe KW - Surface analysis KW - Ligand quantification PY - 2018 AN - OPUS4-47551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -