TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Elert, Anna Maria A1 - Hodoroaba, Vasile-Dan A1 - Agudo Jácome, Leonardo A1 - Altmann, Korinna A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Short- and long-range mechanical and chemical interphases caused by interaction of Boehmite (γ-AlOOH) with anhydride-cured epoxy resins N2 - Understanding the interaction between boehmite and epoxy and the formation of their interphases with different mechanical and chemical structures is crucial to predict and optimize the properties of epoxy-boehmite nanocomposites. Probing the interfacial properties with atomic force microscopy (AFM)-based methods, especially particle-matrix long-range interactions, is challenging. This is due to size limitations of various analytical methods in resolving nanoparticles and their interphases, the overlap of interphases, and the effect of buried particles that prevent the accurate interphase property measurement. Here, we develop a layered model system in which the epoxy is cured in contact with a thin layer of hydrothermally synthesized boehmite. Different microscopy methods are employed to evaluate the interfacial properties. With intermodulation atomic force microscopy (ImAFM) and amplitude dependence force spectroscopy (ADFS), which contain information about stiffness, electrostatic, and van der Waals forces, a soft interphase was detected between the epoxy and boehmite. Surface potential maps obtained by scanning Kelvin probe microscopy (SKPM) revealed another interphase about one order of magnitude larger than the mechanical interphase. The AFM-infrared spectroscopy (AFM-IR) technique reveals that the soft interphase consists of unreacted curing agent. The long-range electrical interphase is attributed to the chemical alteration of the bulk epoxy and the formation of new absorption bands. KW - Nanocomposites KW - Interphase KW - Intermodulation AFM KW - Electron microscopy KW - Infrared nano AFM PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483672 UR - https://www.mdpi.com/2079-4991/9/6/853/htm DO - https://doi.org/10.3390/nano9060853 SN - 2079-4991 VL - 9 IS - 6 SP - 853, 1 EP - 20 PB - MDPI AN - OPUS4-48367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nickl, Philip A1 - Hilal, T. A1 - Olal, D. A1 - Donskyi, Ievgen A1 - Radnik, Jörg A1 - Ludwig, K. A1 - Haag, R. T1 - A New Support Film for Cryo Electron Microscopy Protein Structure Analysis Based on Covalently Functionalized Graphene N2 - Protein adsorption at the air–water interface is a serious problem in cryogenic electron microscopy (cryoEM) as it restricts particle orientations in the vitrified ice-film and promotes protein denaturation. To address this issue, the preparation of a graphene-based modified support film for coverage of conventional holey carbon transmission electron microscopy (TEM) grids is presented. The chemical modification of graphene sheets enables the universal covalent anchoring of unmodified proteins via inherent surface-exposed lysine or cysteine residues in a one-step reaction. Langmuir–Blodgett (LB) trough approach is applied for deposition of functionalized graphene sheets onto commercially available holey carbon TEM grids. The application of the modified TEM grids in single particle analysis (SPA) shows high protein binding to the surface of the graphene-based support film. Suitability for high resolution structure determination is confirmed by SPA of apoferritin. Prevention of protein denaturation at the air–water interface and improvement of particle orientations is shown using human 20S proteasome, demonstrating the potential of the support film for structural biology. KW - Functionalized graphene KW - Transmission electron microsocpy KW - Protein structure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566443 DO - https://doi.org/10.1002/smll.202205932 SN - 1613-6810 SP - 2205932 PB - Wiley VCH AN - OPUS4-56644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Zarinwall, A. A1 - Silbernagl, Dorothee A1 - Garnweitner, G. A1 - Sturm, Heinz T1 - Mechanical coupling of matrix and nanoparticles depending on particle surface modification N2 - Boehmite nanoparticles has been successfully functionalized with APTES. After APTES functionalization further modification with tailored molecules e.g. via carboxylic acids is possible. The tailored surface functionalization is strongly enhanced by improved coupling protocols. Arbitrary variation of the functionalization degree is possible. Thereby the temperature stable APTES functionalization enables a wide range of functional groups. By TGA-MS analysis strong evidence for the bonding situation of the APTES on the boehmite surface has been found. Additionally first experiments has been performed to predict the polymer-particle compatibility enhancement via reverse wetting angle measurements with AFM. T2 - Workshop Acting Principles of Nano-Scaled Matrix Additives for Composite Structures CY - BAM, Berlin, Germany DA - 11.10.2019 KW - Surface modification KW - Nanocomposites KW - Boehmite KW - Silane KW - Thermogravimetry KW - Mass spectrometry PY - 2019 AN - OPUS4-49435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulka, M.W. A1 - Nie, C. A1 - Nickl, P. A1 - Kerkhoff, Y. A1 - Garg, A. A1 - Salz, D. A1 - Radnik, Jörg A1 - Grunwald, I. A1 - Haag, R. T1 - Surface-Initiated Grafting of Dendritic Polyglycerol from Mussel-Inspired Adhesion-Layers for the Creation of Cell-Repelling Coatings N2 - Biofouling is a major challenge in the application of textiles, biosensors, and biomedical implants. In the current work, a straightforward method for the solvent-free polymerization of antifouling dendritic polyglycerol (dPG) from mussel-inspired dendritic polyglycerol (MI-dPG) coatings on hydrophilic titanium dioxide (TiO2) and hydrophobic polydimethylsiloxane (PDMS) is reported. Surface characterization is performed by static water contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Significant lower CA values are obtained after dPG grafting from MI-dPG-coated TiO2 and MI-dPG coated PDMS. Furthermore, XPS shows a time-dependent increase of the CO bond content upon dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. Analysis of the surface morphology by SEM shows a clear time-dependent increase in the surface roughness upon dPG grafting from MI-dPG-coated TiO2 and MIdPG-coated PDMS. When the viability of two adhesive cell types is studied via LIVE/DEAD staining, a strong reduction in the cell density is observed after the dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS (a decrease of >95% in all cases). The combined results show that biocompatible but highly cell-repelling surfaces are efficiently constructed via the grafting of dPG from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. KW - Repelling surface coatings KW - Dendritic polyglycerol KW - Mussel-inspired adhesives KW - Surface-initated grafting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516590 DO - https://doi.org/10.1002/admi.202000931 SN - 2196-7350 VL - 7 IS - 24 SP - 931 PB - Wiley VCH AN - OPUS4-51659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Knigge, Xenia A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Cant, D.J.H. A1 - Shard, A.G. A1 - Clifford, C.A. T1 - Composition, thickness, and homogeneity of the coating of core–shell nanoparticles—possibilities, limits, and challenges of X-ray photoelectron spectroscopy N2 - Core–shell nanoparticles have attracted much attention in recent years due to their unique properties and their increasing importance in many technological and consumer products. However, the chemistry of nanoparticles is still rarely investigated in comparison to their size and morphology. In this review, the possibilities, limits, and challenges of X-ray photoelectron spectroscopy (XPS) for obtaining more insights into the composition, thickness, and homogeneity of nanoparticle coatings are discussed with four examples: CdSe/CdS quantum dots with a thick coating and a small core; NaYF4-based upconverting nanoparticles with a large Yb-doped core and a thin Er-doped coating; and two types of polymer nanoparticles with a poly(tetrafluoroethylene) core with either a poly(methyl methacrylate) or polystyrene coating. Different approaches for calculating the thickness of the coating are presented, like a simple numerical modelling or a more complex simulation of the photoelectron peaks. Additionally, modelling of the XPS background for the investigation of coating is discussed. Furthermore, the new possibilities to measure with varying excitation energies or with hard-energy X-ray sources (hard-energy X-ray photoelectron spectroscopy) are described. A discussion about the sources of uncertainty for the determination of the thickness of the coating completes this review. KW - X-ray spectroscopy KW - Nanoparticles KW - Spectroscopy / Instrumentation KW - Spectroscopy / Theory PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548305 DO - https://doi.org/10.1007/s00216-022-04057-9 VL - 414 IS - 15 SP - 4331 EP - 4345 PB - SpringerNature AN - OPUS4-54830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Braun, Ulrike T1 - Kunststoffe und deren Recycling – Materialwissenschaftliche Erkenntnisse, um mehr Recyclat einzusetzen N2 - Nach einer Übersicht zu den immer schneller aktualisierenden Rahmenbedingungen von Politik und Gesellschaft folgt eine Übersicht zu materialwissenschaftlichen Problemen des Recyclings von Kunststoffen. Lösungsansätze aus der Forschung reichen von einfacher Optimierung bis hin zur radikalen Neukonstruktion der polymeren Werkstoffe. Aus dem bereits möglichen Ansatz "performance-by-design" wird ein neuer Weg des "recycling-by-design" adressiert. Dies inkludiert methodisch eine skalenübergreifende Modellierung und die Depolarisation bis zum Monomer. T2 - Gefahrgut-Technik-Tage CY - Berlin, Germany DA - 07.11.2019 KW - Recycling KW - Kunststoff KW - Additiv KW - Polymer KW - Normung KW - Plastikstrategie KW - Grenzfläche als Material KW - Recycling-by-design PY - 2019 AN - OPUS4-49561 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin T1 - Accessing radiation damage to biomolecules on the nanoscale by particle-scattering simulations N2 - Radiation damage to DNA plays a central role in radiation therapy to cure cancer. The physico-chemical and biological processes involved encompass huge time and spatial scales. To obtain a comprehensive understanding on the nano and the macro scale is a very challenging tasks for experimental techniques alone. Therefore particle-scattering simulations are often applied to complement measurements and aide their interpretation, to help in the planning of experiments, to predict their outcome and to test damage models. In the last years, powerful multipurpose particle-scattering framework based on the Monte-Carlo simulation (MCS) method, such as Geant4 and Geant4-DNA, were extended by user friendly interfaces such as TOPAS and TOPAS-nBio. This shifts their applicability from the realm of dedicated specialists to a broader range of scientists. In the present review we aim to give an overview over MCS based approaches to understand radiation interaction on a broad scale, ranging from cancerous tissue, cells and their organelles including the nucleus, mitochondria and membranes, over radiosensitizer such as metallic nanoparticles, and water with additional radical scavenger, down to isolated biomolecules in the form of DNA, RNA, proteins and DNA-protein complexes. Hereby the degradation of biomolecules by direct damage from inelastic scattering processes during the physical stage, and the indirect damage caused by radicals during the chemical stage as well as some parts of the early biological response is covered. Due to their high abundance the action of hydroxyl radicals (•OH) and secondary low energy electrons (LEE) as well as prehydrated electrons are covered in additional detail. Applications in the prediction of DNA damage, DNA repair processes, cell survival and apoptosis, influence of radiosensitizer on the dose distribution within cells and their organelles, the study of linear energy transfer (LET), the relative biological effectiveness (RBE), ion beam cancer therapy, microbeam radiation therapy (MRT), the FLASH effect, and the radiation induced bystander effect are reviewed. KW - DNA KW - Protein KW - G5P KW - OH KW - Au KW - AuNP KW - Radiation KW - SSB KW - DSB KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Particle scattering KW - Penelope model KW - Proteins KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Radiotherapy KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - Base damage KW - Base loss KW - DNA radiation damage KW - Direct damage KW - Dissociative electron attachment (DEA) KW - Dissociative electron transfer (DET) KW - Double-strand break (DSB) KW - ESCA KW - Hydrated DNA KW - Hydrated electron KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Ionization KW - Ionisation KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - Prehydrated electron KW - Presolvated electron KW - Quasi-direct damage KW - ROS KW - Radical KW - Reactive oxygen species KW - Single-strand break (SSB) KW - XPS KW - Xray KW - Xray photo electron spectrocopy KW - Cosolute KW - Ectoin KW - Ectoine KW - GVP KW - Gene five protein KW - Hydroxyectoine KW - Ionizing radiation damage KW - OH radical scavenger KW - Monte-Carlo simulations KW - Nanodosimetry KW - Osmolyte KW - Particle scattering simulations KW - Protein unfolding KW - Radical Scavenge KW - Radical scavenger KW - Single-stranded DNA-binding proteins KW - SAXS KW - Bio-SAXS KW - X-ray scattering KW - ssDNA KW - dsDNA KW - FLASH effect KW - Bystander effect KW - Ion beam therapy KW - Bragg peak KW - LET KW - MCNP KW - Photons KW - Electrons KW - Carbon ions KW - MRT KW - RNA KW - RBE KW - base loss KW - abasic side KW - DMSO KW - Cells PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573240 DO - https://doi.org/10.1088/2399-6528/accb3f SN - 2399-6528 VL - 7 IS - 4 SP - 042001 PB - Institute of Physics (IOP) Publishing CY - London AN - OPUS4-57324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakenecker, A. A1 - Topolniak, Ievgeniia A1 - Lüdtke-Buzug, K. A1 - Pauw, Brian Richard A1 - Buzug, T. T1 - Additive manufacturing of superparamagnetic micro-devices for magnetic actuation N2 - 3D microstructures with sub-micron resolution can be manufactured in additive manner applying multi-photon laser structuring technique. This paper is focused on the incorporation of superparamagnetic iron oxide nanoparticles into the photoresist in order to manufacture micrometer-sized devices featuring a magnetic moment. The aim of the project is to achieve untethered actuation of the presented objects through externally applied magnetic fields. Future medical application scenarios such as drug delivery and tissue engineering are targeted by this research. T2 - Additive Manufacturing Meets Medicine 2019 CY - Lübeck, Germany DA - 12.09.2019 KW - MPI KW - Two-Photon Polymerization KW - Magnetic swimmers KW - MPLS PY - 2019 UR - www.journals.infinite-science.de/ammm DO - https://doi.org/10.18416/AMMM.2019.1909S09T06 SP - 153 EP - 154 PB - Infinite Science Publishing AN - OPUS4-49114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hachenberger, Y. U. A1 - Rosenkranz, Daniel A1 - Kromer, C. A1 - Krause, B. C. A1 - Dreiack, N. A1 - Kriegel, F. L. A1 - Kozmenko, E. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Bierkandt, F. S. A1 - Laux, P. A1 - Panne, Ulrich A1 - Luch, A. T1 - Nanomaterial Characterization in Complex Media - Guidance and Application N2 - A broad range of inorganic nanoparticles (NPs) and their dissolved ions possess a possible toxicological risk for human health and the environment. Reliable and robust measurements of dissolution effects may be influenced by the sample matrix, which challenges the analytical method of choice. In this study, CuO NPs were investigated in several dissolution experiments. Two analytical techniques (dynamic light scattering (DLS) and inductively-coupled plasma mass spectrometry (ICP-MS)) were used to characterize NPs (size distribution curves) time-dependently in different complex matrices (e.g., artificial lung lining fluids and cell culture media). The advantages and challenges of each analytical approach are evaluated and discussed. Additionally, a direct-injection single particle (DI sp)ICP-MS technique for assessing the size distribution curve of the dissolved particles was developed and evaluated. The DI technique provides a sensitive response even at low concentrations without any dilution of the complex sample matrix. These experiments were further enhanced with an automated data evaluation procedure to objectively distinguish between ionic and NP events. With this approach, a fast and reproducible determination of inorganic NPs and ionic backgrounds can be achieved. This study can serve as guidance when choosing the optimal analytical method for NP characterization and for the determination of the origin of an adverse effect in NP toxicity. KW - Nanon KW - Characterization KW - SpICP-MS KW - Matrix KW - Dissolution PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572138 DO - https://doi.org/10.3390/nano13050922 VL - 13 IS - 5 SP - 1 EP - 19 AN - OPUS4-57213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia T1 - Micropatterning of mussel-inspired materials - Empower selective functionality N2 - Surface-modification platforms that are universally applicable are vital for the development of new materials, surfaces, and nanoparticles. Mussel-inspired materials (MIMs) are widely used in various fields because of their strong adhesive properties and post-functionalization reactivity. However, conventional MIM coating techniques have limited deposition selectivity and lack structural control, which has limited their use in microdevices that require full control over deposition. To overcome these limitations, we developed a micropatterning technique for MIMs using multiphoton lithography, which does not require photomasks, stamps, or multistep procedures. This method enables the creation of MIM patterns with micrometer resolution and full design freedom and paves the way for innovative applications of MIMs in various multifunctional systems and microdevices, such as microsensors, MEMS, and microfluidics. T2 - BioCHIP Berlin - International Forum on Biochips and Microfabrication CY - Berlin, Germany DA - 28.05.2024 KW - Mussel inspired materials KW - Multiphoton lithography KW - Two photon polymerisation PY - 2024 AN - OPUS4-60254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fortini, Renata A1 - Sturm, Heinz A1 - Meyer-Plath, A. A1 - Kehren, D. T1 - Development of a method for measuring the flexural rigidity of nanofibres N2 - Toxicological studies have shown that some types of carbon nanotubes may provoke asbestos-like effects including chronic inflammation and lung cancer. Inhaled carbon nanotubes may reach the deep lung tissue. Alveolar macrophages are responsible to remove such foreign objects from the alveoli in a process called phagocytosis. If a macrophage fails to uptake a nanotube completely, cell lesions may give rise to inflammation. It is currently assumed that short, flexible and long as well as granularly agglomerated (tangled) nanofibres are clearable by macrophages, whereas biodurable long and rigid nanotubes may persist in lung tissue. The flexural rigidity of nanofibres is therefore believed to be an important material property that governs fibre toxicity and needs to be investigated. The present work aims at determining the rigidity of nanofibres by detecting their resonance frequencies using a Dynamic Scanning Electron Microscope (DySEM) setup. By depositing and fixing a nanofibre to an oscillating support, it can be excited to vibrations and treated as a cantilevered beam. This way, its elastic modulus can be determined via Euler-Bernoulli’s beam theory. Multi-walled carbon nanotubes (MWCNTs) were deposited on high frequency piezoelectric quartz crystals mounted on a scanning electron microscope (SEM) holder. When introduced into the SEM chamber and connected to a frequency-sweeping waveform generator, the quartz crystal actuates the deposited fibre. A lock-in amplified processes the secondary electron detector signal resulting from the electron beam modulated by the vibrating nanofibre. Whenever a fibre resonance is detected, the SEM image of the fibre is stored to identify the fibre oscillation mode. The found resonance frequencies and modes allow determining the elastic modulus accordingly. Since the frequency spacing of resonances is predicted by Euler-Bernoulli, the mode number can be identified and elastic modulus values be averaged. A significant number of individual MWCNTs were classified according to their level of rigidity. The applicability and reliability of the method will be discussed. T2 - Microscopy Conference CY - Berlin, Germany DA - 01.09.2019 KW - Carbon nanotubes KW - Rigidity KW - Resonance frequency KW - Nanofibers KW - Bending modulus PY - 2019 AN - OPUS4-49198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fortini, Renata A1 - Sturm, Heinz A1 - Meyer-Plath, Asmus A1 - Kehren, Dominic T1 - Development of a method for measuring the flexural rigidity of nanofibres N2 - Toxicological studies have shown that some types of carbon nanotubes may provoke asbestos-like effects including chronic inflammation and lung cancer. Inhaled carbon nanotubes may reach the deep lung tissue. Alveolar macrophages are responsible to remove such foreign objects from the alveoli in a process called phagocytosis. If a macrophage fails to uptake a nanotube completely, cell lesions may give rise to inflammation. It is currently assumed that short, flexible and long as well as granularly agglomerated (tangled) nanofibres are clearable by macrophages, whereas biodurable long and rigid nanotubes may persist in lung tissue. The flexural rigidity of nanofibres is therefore believed to be an important material property that governs fibre toxicity and needs to be investigated. The present work aims at determining the rigidity of nanofibres by detecting their resonance frequencies using a Dynamic Scanning Electron Microscope (DySEM) setup. By depositing and fixing a nanofibre to an oscillating support, it can be excited to vibrations and treated as a cantilevered beam. This way, its elastic modulus can be determined via Euler-Bernoulli’s beam theory. Multi-walled carbon nanotubes (MWCNTs) were deposited on high frequency piezoelectric quartz crystals mounted on a scanning electron microscope (SEM) holder. When introduced into the SEM chamber and connected to a frequency-sweeping waveform generator, the quartz crystal actuates the deposited fibre. A lock-in amplified processes the secondary electron detector signal resulting from the electron beam modulated by the vibrating nanofibre. Whenever a fibre resonance is detected, the SEM image of the fibre is stored to identify the fibre oscillation mode. The found resonance frequencies and modes allow determining the elastic modulus accordingly. Since the frequency spacing of resonances is predicted by Euler-Bernoulli, the mode number can be identified and elastic modulus values be averaged. A significant number of individual MWCNTs were classified according to their level of rigidity. The applicability and reliability of the method will be discussed. T2 - EUROMAT CY - Stockholm, Sweden DA - 01.09.2019 KW - Carbon nanotubes KW - Rigidity KW - Resonance frequency KW - Nanofibers KW - Bending modulus PY - 2019 AN - OPUS4-49197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fortini, Renata A1 - Sturm, Heinz A1 - Meyer-Plath, Asmus A1 - Kehren, Dominic T1 - Development of a method for measuring the flexural rigidity of nanofibers N2 - Toxicological studies have shown that some types of carbon nanotubes may provoke asbestos-like effects including chronic inflammation and lung cancer. Inhaled carbon nanotubes may reach the deep lung tissue. Alveolar macrophages are responsible to remove such foreign objects from the alveoli in a process called phagocytosis. If a macrophage fails to uptake a nanotube completely, cell lesions give rise to inflammation. It is currently assumed that short, long and flexible, and granularly agglomerated (tangled) nanofibres are clearable by macrophages, whereas biodurable long and rigid nanotubes persist in the lung tissue. The flexural rigidity of nanofibres is therefore believed to an important material property that governs fibre toxicity and needs to be investigated. The present work aims at determining the rigidity of nanofibres by detecting their resonance frequencies using a Dynamic Scanning Electron Microscope (DySEM) setup. By depositing and fixing a nanofibre to an oscillating support, it can be excited to vibrations and treated as a cantilevered beam. This way, its elastic modulus can be determined via Euler-Bernoulli’s beam theory. Multi-walled carbon nanotubes (MWCNTs) were deposited on high frequency piezoelectric quartz crystals mounted on a scanning electron microscope (SEM) holder. When introduced into the SEM chamber and connected to a frequency-sweeping waveform generator, the quartz crystal actuates the deposited fibre. A lock-in amplified processes the secondary electron detector signal resulting from the electron beam modulated by the vibrating nanofibre. Whenever a fibre resonance is detected, the SEM image of the fibre is stored to identify the fibre oscillation mode. The found resonance frequencies and modes allow determining the elastic modulus according. Since the frequency spacing of resonances is predicted by Euler-Bernoulli, the mode number can be checked and elastic modulus values be averaged. A significant number of MWCNTs have been classified according to their level of rigidity. The applicability and reliability of the method will be discussed. T2 - International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Carbon nanotubes KW - Rigidity KW - Resonance KW - Nanofibers KW - Bending modulus PY - 2019 AN - OPUS4-49196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Surface Analysis and Context of the New HAXPES@BAM N2 - The Competence Centre nano@BAM is presenting a new X-ray Photoelectron Spectrometer – the HAXPES (XPS at hard energy) – for researching advanced materials at the nanoscale. With HAXPES detailed chemical information can now be gained not only from the first outermost nanometres of the sample surface, but also from deeper regions. Top international experts will share their knowledge and key findings on how to utilise HAXPES for exploring the surface of various advanced materials. Following the lectures, we will show you a short demo of the new instrument and answer your questions. T2 - Inauguration of the HAXPES@BAM - A new Hard-X-Ray Photoelectron Spectrometer CY - Online meeting DA - 25.01.2022 KW - XPS KW - HAXPES KW - Nano@BAM KW - Surface Analysis PY - 2022 UR - https://www.bam.de/Content/EN/Events/2022/2022-01-25-hapex.html AN - OPUS4-54377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Towards Reproducible Analysis Workflows for Reliable Structural and Chemical Composition of Industrial Graphene N2 - The scientific and technological interest in graphene has been growing more and more in the late years due to its outstanding properties and diverse promising applications. However, graphene implementation into the industrial market is still limited and many challenges are yet to be addressed before this material can become suitable for the large-scale production. One of the most crucial challenge to overcome is to develop reliable and reproducible ways to characterize the material properties which can heavily affect the product performance. In our study the chemical composition of nine different samples of industrial graphene, graphene oxide and functionalized graphene were investigated. The samples were analysed both in form of powder and pellets. A comparative characterisation of the chemical composition was performed through X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDX). XPS depth resolution is in the order of 10 nm, while for EDX the analysis was performed at two different energy levels, i.e. 5 keV and 15 keV, and thus varying the analysis depth from 200 nm to 2000 nm. The XPS measurement area is 300x700 µm² while the EDX measurement was performed by analysing a grid of 25 locations (5x5) of 150 x 150 ?m2 area, covering the whole pellet surface of 5 mm diameter and then calculating the mean of the elemental concentration. The results of the elemental concentration values from XPS and EDX analyses show a good agreement for all the elements presents in the samples, despite the different spatial resolutions of the two techniques. Therefore, the samples appear homogeneous both in the lateral and vertical directions. The results relative to powder and pellets samples do not differ in a significant way except for a slight increase in the carbon content regarding the pellet samples, probably due to a minor contamination effect introduced through pressing. Nevertheless, pellets samples appear to be quite representative for the material while being much more convenient in terms of handling and safety compared to nano-powders and providing a regular flat surface for EDX analysis. Finally, this approach correlating XPS and EDS represents a simple, fast and reliable way for characterizing the chemical composition and the homogeneity of industrial graphene. This study is part of the project Standardisation of structural and chemical properties of graphene (ISO-G-SCoPe) which has received funding from the EMPIR programme co-financed by the Participating States and from the European Union?s Horizon 2020 research and innovation programme under Grant agreement No. 19NRM04. T2 - SALSA Make and Measure... and Machines CY - Online meeting DA - 16.09.2021 KW - Graphene KW - XPS KW - EDX KW - Graphene functionalisation PY - 2021 UR - https://fakultaeten.hu-berlin.de/en/mnf/forschung_internationales/grs/salsa/SALSA_MM AN - OPUS4-53463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - VAMAS-Enabling international standardisation for increasing the take up of Emerging Materials N2 - VAMAS (Versailles Project on Advanced Materials and Standards) supports world trade in products dependent on advanced materials technologies by providing technical basis for harmonized measurements, testing, specification, reference materials and standards. The major tools for fulfilling this task are interlaboratory comparisons (ILC). The organisation structure of VAMAS is presented. It is discussed, how a new technical activity can initiate. T2 - DIN NA062-08-16 Oberflächenanalytik Frühjahrstreffen CY - Berlin, Germany DA - 11.05.2022 KW - Advanced Materials KW - Standards KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-54831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Correlative analysis through XPS and EDX measurements for accurate chemical composition of industrial Graphene N2 - The scientific and technological interest in graphene has been growing more and more in the late years due to its outstanding properties and diverse promising applications. However, graphene implementation into the industrial market is still limited and many challenges are yet to be addressed before this material can become suitable for the large-scale production. One of the most crucial challenge to overcome is to develop reliable and reproducible ways to characterize the material properties which can heavily affect the product performance. In our study the chemical composition of nine different samples of industrial graphene, graphene oxide and functionalized graphene were investigated. The samples were analysed both in form of powder and pellets. A comparative characterisation of the chemical composition was performed through X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDX). XPS depth resolution is in the order of 10 nm, while for EDX the analysis was performed at two different energy levels, i.e. 5 keV and 15 keV, and thus varying the analysis depth from 200 nm to 2000 nm. The XPS measurement area is 300x700 µm² while the EDX measurement was performed by analysing a grid of 25 locations (5x5) of 150 x 150 ?m2 area, covering the whole pellet surface of 5 mm diameter and then calculating the mean of the elemental concentration. The results of the elemental concentration values from XPS and EDX analyses show a good agreement for all the elements presents in the samples, despite the different spatial resolutions of the two techniques. Therefore, the samples appear homogeneous both in the lateral and vertical directions. The results relative to powder and pellets samples do not differ in a significant way except for a slight increase in the carbon content regarding the pellet samples, probably due to a minor contamination effect introduced through pressing. Nevertheless, pellets samples appear to be quite representative for the material while being much more convenient in terms of handling and safety compared to nano-powders and providing a regular flat surface for EDX analysis. Finally, this approach correlating XPS and EDS represents a simple, fast and reliable way for characterizing the chemical composition and the homogeneity of industrial graphene. This study is part of the project ?Standardisation of structural and chemical properties of graphene? (ISO-G-SCoPe) which has received funding from the EMPIR programme co-financed by the Participating States and from the European Union?s Horizon 2020 research and innovation programme under Grant agreement No. 19NRM04. T2 - 2021 Fall Meeting of the European Materials Research Society (E-MRS) CY - Online meeting DA - 20.9.2021 KW - Graphene KW - XPS KW - EDS KW - Standardisation KW - Graphene functionalization PY - 2021 UR - https://www.european-mrs.com/meetings/2021-fall-meeting AN - OPUS4-53462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Knigge, Xenia T1 - First Experiences with the new HAXPES@BAM N2 - This talk was part of the inauguration event for the new x-ray photoelectron spectrometer with the possibility to measure HAXPES (hard energy x-ray photoelectron spectroscopy). With HAXPES detailed chemical information can now be gained not only from the first outermost nanometres of the sample surface, but also from deeper regions. In this talk first results and experiences handling the spectrometer are shown. T2 - Inauguration of the HAXPES@BAM - A new Hard-X-Ray Photoelectron Spectrometer CY - Online meeting DA - 25.01.2022 KW - HAXPES KW - Nano@BAM KW - Surface Analysis KW - XPS PY - 2022 UR - https://www.bam.de/Content/EN/Events/2022/2022-01-25-hapex.html AN - OPUS4-54434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nickl, Philip A1 - Radnik, Jörg A1 - Azab, W. A1 - Donskyi, Ievgen T1 - Surface characterization of covalently functionalized carbon-based nanomaterials using comprehensive XP and NEXAFS spectroscopies N2 - Reliable and straightforward characterization and analysis of carbon-based nanomaterials on the atomic level is essential to exploring their potential for application. Here we use a combination of highly surface sensitive x-ray photoelectron (XP) spectroscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS) to study and quantify the covalent functionalization of nanographene and single-walled carbon nanotubes with nitrene [2 + 1]-cycloaddition. With this comprehensive analytical approach, we demonstrate that the π-conjugated system of functionalized carbon-based nanomaterials is preserved according to NEXAFS analysis, which is challenging to prove with XP spectroscopy investigation alone. Using this combination of analytical approaches, we show significant similarities after functionalization for various carbon-based nanomaterials. Both analytical methods are strongly suited to study possible post-modification reactions of functionalized carbon-based nanomaterials. KW - Graphene KW - Carbon nanotubes KW - Covalend functionalization PY - 2023 DO - https://doi.org/10.1016/j.apsusc.2022.155953 VL - 613 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-56865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Characterization of Graphene using HAXPES N2 - Since its discovery, graphene has got growing attention in the industrial and application research due to its unique properties . However, graphene has not been yet implemented into the industrial market, in particularly due to the difficulty of properly characterizing this challenging material. As most of other nanomaterials, graphene’s properties are closely linked to its chemical and structural properties, such as number of layers, flake thickness, degree of functionalisation and C/O ratio. For the commercialization, suitable procedures for the measurement and characterization of the ultrathin flakes, of lateral dimensions in the range from µm to tens of µm, are essential.Surface chemical methods, especially XPS, have an outstanding role of providing chemical information on the composition. Thereby, one well-known problem for surface analytical methods is the influence of contamination on the composition as in the case of adventitious carbon. The differentiation between carbon originated from the contamination or from the graphene sample itself is often not obvious, which can lead to altered results in the determination of the composition. To overcome this problem, Hard Energy X-ray Photoelectron Spectroscopy (HAXPES) offers new possibilities due to its higher information depth. Therefore, XPS measurement obtained with Al Kα radiation (E = 1486. 6 eV) were compared with analyses performed with a Cr Kα (E = 5414. 8 eV) excitation on functionalized graphene samples. Differences are discussed in terms of potential carbon contamination, but also of oxygen on the composition of the samples. Measurements are performed on O-, N- and F-functionalized graphene. Different preparation procedures (powder, pellet, drop cast from liquid suspension) will be also discussed, correlation of the results with the flakes morphology as well as their validation with other independent methods are in progress. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Graphene KW - Functionalized graphene KW - Depth profiling PY - 2022 AN - OPUS4-56814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. T1 - BP150: Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement by Monte-Carlo based particle scattering Simulations N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined. Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. We apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. T2 - DPG Frühjahrstagung CY - Dresden, Germany DA - 26.03.2023 KW - AuNP KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Penelope model KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Radiotherapy KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - Beta particle KW - Particle scattering KW - Protein KW - Proteins PY - 2023 AN - OPUS4-57253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement by Monte-Carlo based particle scattering Simulations N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined.[1] Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. [2] These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for ongoing experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au. T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - AuNP KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Penelope model KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radiotherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - beta particle KW - particle scattering PY - 2023 AN - OPUS4-57060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - Exchange interaction KW - Ferromagnetism KW - LLG KW - Landau Lifshitz equation KW - Magnetic moment KW - Magnetic nanoparticles KW - Micromagnetism KW - OOMMF KW - Object oriented micromagnetic framework KW - Stochastic Landau Lifshitz Gilbert equation KW - Temperature scaling PY - 2023 AN - OPUS4-57062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, G. J. A1 - Pauw, Brian Richard T1 - DACHS/MOFs/AutoMOFs_1/Synthesis N2 - The DACHS (Database for Automation, Characterization and Holistic Synthesis) project aims to create completely traceable experimental data, covering syntheses, measurements, analyses, and interpretations. DACHS_MOFs focuses on the synthesis and characterisation of metal-organic frameworks, across multiple, automation-assisted experimental series (AutoMOFs), with the overall goal of producing reproducible MOF samples through tracking of the synthesis parameters. DACHS_MOFs is simultaneously used to test the DACHS principles. This upload contain synthesis data from AutoMOFs_1 in HDF5 format (.h5). Each .h5 file contains detailed information on the chemical, experimenal, and synthesis parameters used during the synthesis of a single AutoMOF sample. KW - Synthesis KW - Automation KW - Traceability KW - Procedure PY - 2024 DO - https://doi.org/10.5281/zenodo.11236031 PB - Zenodo CY - Geneva AN - OPUS4-60243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Ermilova, Elena A1 - Hülagü, Deniz T1 - Determining Material Properties with Spectroscopic Ellipsometry N2 - In this lecture, an introduction will be given on Spectroscopic Ellipsometry, what quantities can be obtained with it, and how we use it in ELENA and other projects to determine functional parameters of thin layers at the nanoscale. T2 - Summer school ELENAM : metrology at the nanoscale CY - Fréjus, France DA - 02.06.2024 KW - Thin Layers KW - Ellipsometry KW - Nanotechnology KW - Electrical Paramters PY - 2024 AN - OPUS4-60247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Eckert, J. G. A1 - Graf, Rebecca T. A1 - Kunst, A. A1 - Wegner, Karl David A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Correlating semiconductor nanoparticle architecture and applicability for the controlled encoding of luminescent polymer microparticles N2 - Luminophore stained micro- and nanobeads made from organic polymers like polystyrene (PS) are broadly used in the life and material sciences as luminescent reporters, for bead-based assays, sensor arrays, printable barcodes, security inks, and the calibration of fluorescence microscopes and flow cytometers. Initially mostly prepared with organic dyes, meanwhile luminescent core/shell nanoparticles (NPs) like spherical semiconductor quantum dots (QDs) are increasingly employed for bead encoding. This is related to their narrower emission spectra, tuneability of emission color, broad wavelength excitability, and better photostability. However, correlations between particle architecture, morphology, and photoluminescence (PL) of the luminescent nanocrystals used for encoding and the optical properties of the NP-stained beads have been rarely explored. This encouraged us to perform a screening study on the incorporation of different types of luminescent core/shell semiconductor nanocrystals into polymer microparticles (PMPs) by a radical-induced polymerization reaction. Nanocrystals explored include CdSe/CdS QDs of varying CdS shell thickness, a CdSe/ZnS core/shell QD, CdSe/CdS quantum rods (QRs), and CdSe/CdS nanoplatelets (NPLs). Thereby, we focused on the applicability of these NPs for the polymerization synthesis approach used and quantified the preservation of the initial NP luminescence. The spectroscopic characterization of the resulting PMPs revealed the successful staining of the PMPs with luminescent CdSe/CdS QDs and CdSe/CdS NPLs. In contrast, usage of CdSe/CdS QRs and CdSe QDs with a ZnS shell did not yield luminescent PMPs. The results of this study provide new insights into structure–property relationships between NP stained PMPs and the initial luminescent NPs applied for staining and underline the importance of such studies for the performance optimization of NP-stained beads. KW - Quantitative spectroscopy KW - Energy transfer KW - Synthesis KW - Surface chemistry KW - Semiconductor quantum dot KW - Luminescence KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Polymer particle KW - Quantum rod KW - Nanoplatelet PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602206 DO - https://doi.org/10.1038/s41598-024-62591-1 VL - 14 SP - 1 EP - 16 AN - OPUS4-60220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reiber, T. A1 - Hübner, Oskar A1 - Dose, C. A1 - Yushchenko, D. A. A1 - Resch-Genger, Ute T1 - Fluorophore multimerization on a PEG backbone as a concept for signal amplification and lifetime modulation N2 - Fluorescent labels have strongly contributed to many advancements in bioanalysis, molecular biology, molecular imaging, and medical diagnostics. Despite a large toolbox of molecular and nanoscale fluorophores to choose from, there is still a need for brighter labels, e.g., for flow cytometry and fluorescence microscopy, that are preferably of molecular nature. This requires versatile concepts for fluorophore multimerization, which involves the shielding of dyes from other chromophores and possible quenchers in their neighborhood. In addition, to increase the number of readout parameters for fluorescence microscopy and eventually also flow cytometry, control and tuning of the labels’ fluorescence lifetimes is desired. Searching for bright multi-chromophoric or multimeric labels, we developed PEGylated dyes bearing functional groups for their bioconjugation and explored their spectroscopic properties and photostability in comparison to those of the respective monomeric dyes for two exemplarily chosen fluorophores excitable at 488 nm. Subsequently, these dyes were conjugated with anti-CD4 and anti-CD8 immunoglobulins to obtain fluorescent conjugates suitable for the labeling of cells and beads. Finally, the suitability of these novel labels for fluorescence lifetime imaging and target discrimination based upon lifetime measurements was assessed. Based upon the results of our spectroscopic studies including measurements of fluorescence quantum yields (QY) and fluorescence decay kinetics we could demonstrate the absence of significant dye-dye interactions and self-quenching in these multimeric labels. Moreover, in a first fluorescence lifetime imaging (FLIM) study, we could show the future potential of this multimerization concept for lifetime discrimination and multiplexing. KW - Imaging KW - Quantum yield KW - Quality assurance KW - Antibody KW - Conjugate KW - Cell KW - FLIM KW - PEG KW - Flow cytometry KW - Lifetime KW - Energy transfer KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Fluorescence KW - Dye KW - Amplification KW - Microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602197 DO - https://doi.org/10.1038/s41598-024-62548-4 VL - 14 IS - 1 SP - 1 EP - 11 AN - OPUS4-60219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Ponader, Marco A1 - Raab, Christopher A1 - Weider, Prisca S. A1 - Hartfiel, Reni A1 - Kaufmann, Jan Ole A1 - Völzke, Jule L. A1 - Bosc-Bierne, Gaby A1 - Prinz, Carsten A1 - Schwaar, T. A1 - Andrle, Paul A1 - Bäßler, Henriette A1 - Nguyen, Khoa A1 - Zhu, Y. A1 - Mey, A. S. J. S. A1 - Mostafa, A. A1 - Bald, I. A1 - Weller, Michael G. T1 - Efficient Purification of Cowpea Chlorotic Mottle Virus by a Novel Peptide Aptamer N2 - The cowpea chlorotic mottle virus (CCMV) is a plant virus explored as a nanotechnological platform. The robust self-assembly mechanism of its capsid protein allows for drug encapsulation and targeted delivery. Additionally, the capsid nanoparticle can be used as a programmable platform to display different molecular moieties. In view of future applications, efficient production and purification of plant viruses are key steps. In established protocols, the need for ultracentrifugation is a significant limitation due to cost, difficult scalability, and safety issues. In addition, the purity of the final virus isolate often remains unclear. Here, an advanced protocol for the purification of the CCMV from infected plant tissue was developed, focusing on efficiency, economy, and final purity. The protocol involves precipitation with PEG 8000, followed by affinity extraction using a novel peptide aptamer. The efficiency of the protocol was validated using size exclusion chromatography, MALDI-TOF mass spectrometry, reversed-phase HPLC, and sandwich immunoassay. Furthermore, it was demonstrated that the final eluate of the affinity column is of exceptional purity (98.4%) determined by HPLC and detection at 220 nm. The scale-up of our proposed method seems to be straightforward, which opens the way to the large-scale production of such nanomaterials. This highly improved protocol may facilitate the use and implementation of plant viruses as nanotechnological platforms for in vitro and in vivo applications. N2 - Das Cowpea Chlorotic Mottle Virus (CCMV) ist ein Pflanzenvirus, das als nanotechnologische Plattform erforscht wird. Der robuste Selbstorganisationsmechanismus seines Kapsidproteins ermöglicht die Verkapselung und gezielte Abgabe von Medikamenten. Darüber hinaus kann das Kapsid-Nanopartikel als programmierbare Plattform für die Präsentation verschiedener molekularer Komponenten verwendet werden. Im Hinblick auf künftige Anwendungen ist eine effiziente Produktion und Reinigung von Pflanzenviren von entscheidender Bedeutung. In etablierten Protokollen stellt die notwendige Ultrazentrifugation aufgrund von Kosten, schwieriger Skalierbarkeit und Sicherheitsaspekten eine erhebliche Einschränkung dar. Darüber hinaus bleibt die Reinheit des endgültigen Virusisolats oft unklar. Hier wurde ein fortschrittliches Protokoll für die Reinigung von CCMV aus infiziertem Pflanzengewebe entwickelt, wobei der Schwerpunkt auf Effizienz, Wirtschaftlichkeit und Reinheit lag. Das Protokoll beinhaltet eine Fällung mit Polyethylenglycol (PEG 8000), gefolgt von einer Affinitätsextraktion mit einem neuartigen Peptid-Aptamer. Die Effizienz des Protokolls wurde mithilfe von Größenausschluss-Chromatographie (SEC), MALDI-TOF-Massenspektrometrie, Umkehrphasen-HPLC und Sandwich-Immunoassay validiert. Darüber hinaus wurde nachgewiesen, dass das endgültige Eluat der Affinitätssäule eine außergewöhnliche Reinheit (98,4 %) aufweist, die durch HPLC und Detektion bei 220 nm bestimmt wurde. Die Skalierung der von uns vorgeschlagenen Methode scheint einfach zu sein, was den Weg für eine größer angelegte Produktion solcher Nanomaterialien ebnet. Dieses stark verbesserte Protokoll könnte die Verwendung und Umsetzung von Pflanzenviren als nanotechnologische Plattformen für In-vitro- und In-vivo-Anwendungen erleichtern. KW - Affinity chromatography KW - Nanoparticles KW - Nanoscience KW - Carrier protein KW - Encapsulation KW - Combinatorial peptide library KW - Peptide binder KW - Vigna unguiculata KW - Augenbohne KW - Schlangenbohne KW - Pflanzenvirus KW - Plant virus KW - Upscaling KW - Commercialization KW - Reference material KW - Nanocarrier PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572645 DO - https://doi.org/10.3390/v15030697 VL - 15 IS - 3 SP - 1 EP - 24 PB - MDPI CY - Basel, Schweiz AN - OPUS4-57264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa, Elena A1 - Climent Terol, Estela A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Optimization of analytical assay performance of antibody-gated indicator-releasing mesoporous silica particles N2 - Antibody-gated indicator delivery (gAID) systems based on mesoporous silica nano- and microparticle scaffolds are a promising class of materials for the sensitive chemical detection of small-molecule analytes in simple test formats such as lateral flow assays (LFAs) or microfluidic chips. Their architecture is reminiscent of drug delivery systems, only that reporter molecules instead of drugs are stored in the voids of a porous host particle. In addition, the pores are closed with macromolecular “caps” through a tailored “gatekeeping” recognition chemistry so that the caps are opened when an analyte has reacted with a “gatekeeper”. The subsequent uncapping leads to a release of a large number of indicator molecules, endowing the system with signal amplification features. Particular benefits of such systems are their modularity and adaptability. With the example of the immunochemical detection of type-I pyrethroids by fluorescent dye-releasing gAID systems, the influence of several tuning modes on the optimisation of such hybrid sensory materials is introduced here. In particular, different mesoporous silica supports (from nano- and microparticles to platelets and short fibres), different functionalisation routes and different loading sequences were assessed. The materials’ performances were evaluated by studying their temporal response behaviour and detection sensitivity, including the tightness of pore closure (through the amount of blank release in the absence of analyte) and the release kinetics. Our results indicate that the better the paratope-accommodating Fab region of the antibody “cap” fits into the host material's pore opening, the better the closing/opening mechanism can be controlled. Because such materials are well-suited for LFAs, performance assessment included a test-strip format besides conventional assays in suspension. In combination with dyes as indicators and smartphones for read-out, simple analytical tests for use by untrained personnel directly at a point-of-need such as an aeroplane cabin can be devised, allowing for sensitivities down to the μg kg−1 range in <5 min with case-required selectivities. KW - Antibody-gated indicator delivery KW - Lateral flow assay KW - SBA-15 KW - SBA-16 KW - Type-I pyrethroids KW - Phenothrin KW - Permethrin KW - Etofenprox KW - Amplification KW - Biosensors KW - Immunoassays KW - Mesoporous particles KW - Optical detection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517053 DO - https://doi.org/10.1039/d0tb00371a VL - 8 IS - 22 SP - 4950 EP - 4961 PB - Royal Society of Chemistry AN - OPUS4-51705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David A1 - Häusler, I. A1 - Knigge, Xenia A1 - Hodoroaba, Vasile-Dan A1 - Emmerling, Franziska A1 - Reiss, P. A1 - Resch-Genger, Ute T1 - One-Pot Heat-Up Synthesis of ZnSe Magic-Sized Clusters Using Thiol Ligands N2 - The unique optoelectronic properties of semiconductor nanocrystals, also termed quantum dots (QDs), have led to many advances in optoelectronic devices, bioimaging, and biosensing. This strong potential in a wide range of applications sparked the interest for a better understanding of the QD formation mechanisms. Recent studies have shown that atomically defined, zero-dimensional magic-size clusters (MSCs) play a crucial role during the nucleation and growth of QDs. Thereby MSCs consist of discrete numbers of ions leading to narrow size distributions and thus narrow absorption peaks, which evolve in discrete steps from one stable size to the next. The formation of MSCs was found in the synthesis of II-VI and III-V QDs but only limited synthesis approaches are available for the synthesis of MSCs in single-ensemble form without coexistence of other-size QDs. These MSCs can further self-assemble into two- and three-dimensional hybrid structures using organic ligands like diamines, leading to enhanced photoluminescence properties and catalytic activities. In this contribution, we present a synthesis strategy for the preparation of single-sized ZnSe MSCs. With a band gap of 2.7 eV and being an earth-abundant material, ZnSe QDs are interesting for light-emitting devices, blue-green lasers, photocatalysis, and fluorescence probes. In contrast to other studies, our approach is based on a one-pot heat-up synthesis and uses less toxic and dangerous zinc precursors (e.g. zinc stearate). Knowing that thiol-based ligands can alter the formation process of ZnSe QDs, we investigated the influence of 1-dodecanethiol on the ZnSe MSC formation using absorption spectroscopy, TEM, XPS, and XRD. By variation of the thiol ligand concentration and reaction temperature, we were able to synthesize two new ZnSe MSC sizes, the largest so far, by using easy-to-handle precursors. T2 - NANOHYBRID - Hamburg Conference on Complex Nanostructures CY - Hamburg, Germany DA - 04.10.2022 KW - ZnSe KW - Magic-sized cluster KW - Nanoparticle KW - Synthesis KW - Nanomaterial PY - 2022 AN - OPUS4-56193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Luch, A. A1 - Sogne, V. A1 - Maier, F. A1 - Burr, L. A1 - Schmid, D. A1 - Yoon, T.-H. A1 - Petters, R. A1 - Briffa, S.M. A1 - Valsami-Jones, E. T1 - Automation and Standardization—A Coupled Approach Towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis N2 - Whereas the characterization of nanomaterials using different analytical techniques is often highly automated and standardized, the sample preparation that precedes it causes a bottleneck in nanomaterial analysis as it is performed manually. Usually, this pretreatment depends on the skills and experience of the analysts. Furthermore, adequate reporting of the sample preparation is often missing. In this overview, some solutions for techniques widely used in nano-analytics to overcome this problem are discussed. Two examples of sample preparation optimization by au-tomation are presented, which demonstrate that this approach is leading to increased analytical confidence. Our first example is motivated by the need to exclude human bias and focuses on the development of automation in sample introduction. To this end, a robotic system has been de-veloped, which can prepare stable and homogeneous nanomaterial suspensions amenable to a variety of well-established analytical methods, such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), field-flow fractionation (FFF) or single-particle inductively coupled mass spectrometry (sp-ICP-MS). Our second example addresses biological samples, such as cells exposed to nanomaterials, which are still challenging for reliable analysis. An air–liquid interface has been developed for the exposure of biological samples to nanomaterial-containing aerosols. The system exposes transmission electron microscopy (TEM) grids under reproducible conditions, whilst also allowing characterization of aerosol composition with mass spectrometry. Such an approach enables correlative measurements combining biological with physicochemical analysis. These case studies demonstrate that standardization and automation of sample preparation setups, combined with appropriate measurement processes and data reduction are crucial steps towards more reliable and reproducible data. KW - Sample preparation KW - Automation KW - Nanomaterial analysis KW - Standardization PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543988 DO - https://doi.org/10.3390/molecules27030985 VL - 27 IS - 3 SP - 1 EP - 22 PB - MDPI AN - OPUS4-54398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Emamverdi, Farnaz A1 - Cacua, K. A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Carrier Fibers for the Safe Dosage of Nanoparticles in Nanocomposites: Nanomechanical and Thermomechanical Study on Polycarbonate/Boehmite Electrospun Fibers Embedded in Epoxy Resin N2 - The reinforcing effect of boehmite nanoparticles (BNP) in epoxy resins for fiber composite lightweight construction is related to the formation of a soft but bound interphase between filler and polymer. The interphase is able to dissipate crack propagation energy and consequently increases the fracture toughness of the epoxy resin. Usually, the nanoparticles are dispersed in the resin and then mixed with the hardener to form an applicable mixture to impregnate the fibers. If one wishes to locally increase the fracture toughness at particularly stressed positions of the fiber-reinforced polymer composites (FRPC), this could be done by spraying nanoparticles from a suspension. However, this would entail high costs for removing the nanoparticles from the ambient air. We propose that a fiber fleece containing bound nanoparticles be inserted at exposed locations. For the present proof-of-concept study, an electrospun polycarbonate nonwoven and taurine modified BNP are proposed. After fabrication of suitable PC/EP/BNP composites, the thermomechanical properties were tested by dynamic mechanical analysis (DMA). Comparatively, the local nanomechanical properties such as stiffness and elastic modulus were determined by atomic force microscopy (AFM). An additional investigation of the distribution of the nanoparticles in the epoxy matrix, which is a prerequisite for an effective nanocomposite, is carried out by scanning electron microscopy in transmission mode (TSEM). From the results it can be concluded that the concept of carrier fibers for nanoparticles is viable. KW - Advanced materials KW - Electrospun nanocomposite fiber KW - Nanomechanical charecteisation KW - Nanosafety KW - Epoxy nanocomposites PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528265 DO - https://doi.org/10.3390/nano11061591 VL - 11 IS - 6 SP - 1591 PB - MDPI CY - CH - 4020 Basel, Switzerland AN - OPUS4-52826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Raw and processed X-ray scattering datasets for: "Entering a new dimension in powder processing for advanced ceramics shaping" N2 - This dataset is a complete set of raw, processed and analyzed data, associated with the manuscript mentioned in the title. All associated metadata and processing history has been added. Particle size distribution analyses using McSAS are included as well. The samples consisted of a 4.2 mass% dispersion of yttria-stabilized zirconia nanoparticles in a cross-linked matrix. The measurements show a good dispersion with minimal agglomeration. The wide-angle region shows diffraction information consistent with zirconia. KW - X-ray scattering KW - Nanocomposite KW - Ceramic microprinting KW - Yttria-stabilized zirconia KW - SAXS KW - Nanomaterials KW - Two-photon polymerization KW - Transparency KW - Mechanical testing PY - 2023 DO - https://doi.org/10.5281/zenodo.7498647 PB - Zenodo CY - Geneva AN - OPUS4-56766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Co0.75Fe2.25O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Co0.75Fe2.25O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Co0.75Fe2.25O4 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7940769 PB - Zenodo CY - Geneva AN - OPUS4-57664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Co2.25Fe0.75O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Co2.25Fe0.75O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Co2.25Fe0.75O4 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7940538 PB - Zenodo CY - Geneva AN - OPUS4-57663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dietmar A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Boehmite Nanofillers in Epoxy Oligosiloxane Resins: Influencing the Curing Process by Complex Physical and Chemical Interactions N2 - In this work, a novel boehmite (BA)-embedded organic/inorganic nanocomposite coating based on cycloaliphatic epoxy oligosiloxane (CEOS) resin was fabricated applying UV-induced cationic polymerization. The main changes of the material behavior caused by the nanofiller were investigated with regard to its photocuring kinetics, thermal stability, and glass transition. The role of the particle surface was of particular interest, thus, unmodified nanoparticles (HP14) and particles modified with p-toluenesulfonic acid (OS1) were incorporated into a CEOS matrix in the concentration range of 1–10 wt.%. Resulting nanocomposites exhibited improved thermal properties, with the glass transition temperature (Tg) being shifted from 30 °C for unfilled CEOS to 54 °C (2 wt.% HP14) and 73 °C (2 wt.% OS1) for filled CEOS. Additionally, TGA analysis showed increased thermal stability of samples filled with nanoparticles. An attractive interaction between boehmite and CEOS matrix influenced the curing. Real-time infrared spectroscopy (RT-IR) experiments demonstrated that the epoxide conversion rate of nanocomposites was slightly increased compared to neat resin. The beneficial role of the BA can be explained by the participation of hydroxyl groups at the particle surface in photopolymerization processes and by the complementary contribution of p-toluenesulfonic acid surface modifier and water molecules introduced into the system with nanoparticles. KW - Real-time infrared spectroscopy KW - Boehmite KW - Nanocomposite KW - Cationic photocuring KW - Cycloaliphatic epoxy oligosiloxane KW - Epoxy conversion degree PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479628 DO - https://doi.org/10.3390/ma12091513 VL - 12 IS - 9 SP - 1513 PB - MDPI AN - OPUS4-47962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - 1,3-Dimethyl-imidazolium dimethyl phosphate ([MMIM]+[DMP]−) analyzed by XPS and HAXPES N2 - The ionic liquid 1,3-dimethyl-imidazolium-dimethylphosphate ([MMIM]+[DMP]−) was analyzed using (hard) x-ray photoelectron spectroscopy. Here, XPS and HAXPES spectra are shown in comparison. For the acquisition of the XPS spectra, monochromatic Al Kα radiation at 1486.6 eV was used, while for the acquisition of the HAXPES spectra, monochromatic Cr Kα radiation at 5414.8 eV was applied. Here, survey scans and high-resolution spectra of P 2p, P 2s, C 1s, O 1s, and N 1s for both methods and P 1s, P KL2,3L2,3, and P KL1L2,3 for HAXPES are shown. KW - C7H15N2O4P KW - [MMIM]+[DMP]− KW - Lonic liquid KW - Hard x-ray photoelectron spectroscopy KW - HAXPES KW - XPS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571604 DO - https://doi.org/10.1116/6.0002297 VL - 30 IS - 1 SP - 1 EP - 20 PB - AIP Publishing AN - OPUS4-57160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Radnik, Jörg A1 - Ermilova, Elena A1 - Hodoroaba, Vasile-Dan T1 - Accuracy on all scales: Hybrid metrology for micro- and nanomanufacturing N2 - In this presentation, we discuss hybrid metrology and correlative imaging. These techniques are used to improve the design and quality monitoring of nanomaterials used in energy technology and for referencing the properties of nanoparticles. T2 - EMN for Advanced Manufacturing workshop CY - Berlin, Germany DA - 22.05.2024 KW - Nanotechnology KW - Nanoanalytics KW - Correlative Spectroscopy KW - Correlative Imaging PY - 2024 AN - OPUS4-60240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Chemello, Giovanni A1 - Radnik, Jörg T1 - Morphology Analysis of Graphene Oxide Flakes with SEM - Preparation of an Inter-Laboratory Comparison @VAMAS N2 - Experience gained at BAM within the European project ISGScope on the accurate measureemnt of graphene oxide flakes by electron microscopy is presented. Particularly, factors such as the type of solvent, substrate temperature, but also proper, gentle measurement parameters and image analysis conditions towards automation are highlighted. The measurement procedures in develeopment are being prepared to launch an inter-laboratory comparison under VAMAS (TWA41) as preparatory guidance for future standardisation at ISO. T2 - ISO/TC 229 Nanotechnologies Plenary Meeting - Graphene Standardisation CY - Teddington, UK DA - 14.11.2022 KW - Graphene oxide flakes KW - SEM KW - Morphology KW - VAMAS KW - Standardisation KW - Sample preparation KW - ISOGScope PY - 2022 AN - OPUS4-56300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Characterization of industrial graphene using HAXPES N2 - A comparative analysis is performed by XPS, HAXPES and SEM of industrial functionalised graphene powder of different morphology. The chemical analysis carried out by XPS, which probing depth is around 10nm, and HAXPES, which can reach up to 30nm probing depth. By combining these two techniques is possible to get a rough, non-destructive depth profiling of the sample's surface. The results show a higher concentration of the functionlisation elements on the surface of the sample and the influence of the morphology on the functionalisation process and the C/O ratio. T2 - SALSA Make and Measure 2022 CY - Berlin, Germany DA - 15.09.2022 KW - Graphene KW - XPS KW - HAXPES KW - SEM KW - Graphene funcionalisation PY - 2022 AN - OPUS4-55971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Hahn, Marc Benjamin A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Nanomechanical study of polycarbonate/boehmite nanoparticles/epoxy ternary composite and their interphases N2 - Thermoplastic modified thermosets are of great interest especially due to their improved fracture toughness. Comparable enhancements have been achieved by adding different nanofillers including inorganic particles such as nanosized boehmite. Here, we present a nanomechanical study of two composite systems, the first comprising a polycarbonate (PC) layer in contact with epoxy resin (EP) and the second consisting of a PC layer containing boehmite nanoparticles (BNP) which is also in contact with an EP layer. The interaction between PC and EP monomer is tested by in situ Fourier transformed infrared (FT-IR) analysis, from which a reaction induced phase separation of the PC phase is inferred. Both systems are explored by atomic force microscopy (AFM) force spectroscopy. AFM force-distance curves (FDC) show no alteration of the mechanical properties of EP at the interface to PC. However, when a PC phase loaded with BNP is put in contact with an epoxy system during curing, a considerable mechanical improvement exceeding the rule of mixture was detected. The trend of BNP to agglomerate preferentially around EP dominated regions and the stiffening effect of BNP on EP shown by spatial resolved measurements of Young's modulus, suggest the effective presence of BNP within the EP phase. KW - Composites KW - Mechanical properties KW - Nanoparticles KW - Thermoplastics KW - Thermosets PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515965 DO - https://doi.org/10.1002/app.50231 SN - 0021-8995 SN - 1097-4628 VL - 138 IS - 12 SP - 1 EP - 11 PB - Wiley CY - New York, NY AN - OPUS4-51596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Keller, Lisa-Marie A1 - Scholz, Lena A1 - Weigert, Florian A1 - Radnik, Jörg A1 - Rühle, Bastian A1 - Bresch, Harald T1 - Nanocarriers – Challenges Imposed by Material Characterization N2 - A brief perspective of BAM on nanocarriers is presented including examples with special emphasis on the characterization of such materials and underlying challenges. In this respect, also ongoing activities at BAM on different types of core/shell nanomaterials and related systems are briefly summarized. T2 - Kolloquium BfR CY - Online meeting DA - 18.03.2021 KW - Nanomaterial KW - Nanocarrier KW - Size KW - Surface chemistry KW - Release kinetics KW - Chemical composition KW - Core/shell nanoparticle KW - Quantum dot KW - Spectroscopy KW - Fluorescence PY - 2021 AN - OPUS4-52412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elert, Anna Maria A1 - Chen, Yong-Cin A1 - Smales, Glen J. A1 - Topolniak, Ievgeniia A1 - Sturm, Heinz A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Effects of the charge density of nanopapers based on carboxymethylated cellulose nanofibrils investigated by complementary techniques N2 - Cellulose nanofibrils (CNFs) with different charge densities were prepared and investigated by a combination of different complementary techniques sensitive to the structure and molecular dynamics of the system. The morphology of the materials was investigated by scanning electron microscopy (SEM) and X-ray scattering (SAXS/WAXS). The latter measurements were quantitatively analyzed yielding to molecular parameters in dependence of the charge density like the diameter of the fibrils, the distance between the fibrils, and the dimension of bundles of nanofibrils, including pores. The influence of water on the properties and the charge density is studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and broadband dielectric spectroscopy. The TGA measurements reveal two mass loss processes. The one at lower temperatures was related to the loss of water, and the second process at higher temperatures was related to the chemical decomposition. The resulting char yield could be correlated to the distance between the microfibrils. The DSC investigation for hydrated CNFs revealed three glass transitions due to the cellulose segments surrounded by water molecules in different states. In the second heating scan, only one broad glass transition is observed. The dielectric spectra reveal two relaxation processes. At low temperatures or higher frequencies, the β-relaxation is observed, which is assigned to localized fluctuation of the glycosidic linkage. At higher temperatures and lower frequencies, the α-relaxation takes places. This relaxation is due to cooperative fluctuations in the cellulose segments. Both processes were quantitatively analyzed. The obtained parameters such as the relaxation rates were related to both the morphological data, the charge density, and the content of water for the first time. KW - Cellulose nanofibrils PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600528 DO - https://doi.org/https://doi.org/10.1021/acsomega.4c00255 SN - 2470-1343 VL - 9 SP - 20152 EP - 20166 PB - ACS AN - OPUS4-60052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Dietrich, Paul M. A1 - Radnik, Jörg T1 - The change of DNA AND PROTEIN radiation damage upon hydration: In-situ observations by near-ambient-pressure XPS N2 - X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. Our results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. T2 - Dyson Conference 2023 CY - Prague, Czech Republic DA - 24.04.2023 KW - Base damage KW - Base loss KW - Cancer treatment KW - DNA KW - DNA radiation damage KW - Direct damage KW - Dissociative electron attachment (DEA) KW - Dissociative electron transfer (DET) KW - Dosimetry KW - Double-strand break (DSB) KW - ESCA KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Hydrated DNA KW - Hydrated electron KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Ionization KW - Ionisation KW - LEE KW - Low energy electrons KW - MCS KW - Microdosimetry KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - OH radical KW - PES KW - Particle scattering KW - Prehydrated electron KW - Presolvated electron KW - Quasi-direct damage KW - ROS KW - Radiation damage KW - Radiation therapy KW - Radical KW - Radiolysis KW - Radiotherapy KW - Reactive oxygen species KW - Simulation KW - Single-strand break (SSB) KW - TOPAS KW - TOPAS-nbio KW - XPS KW - Xray KW - Xray photo electron spectrocopy KW - G5P KW - Protein KW - Single-stranded DNA-binding proteins PY - 2023 AN - OPUS4-57406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan T1 - VAMAS ILC of functionalized Graphene by XPS and Graphene Oxide by SEM N2 - The ideas of the planned VAMAS interlaboratory comparisons of functionalized graphene and graphene oxide are presented. T2 - Stakeholder Advisory Board ISO-G-Scope CY - Online meeting DA - 12.01.2022 KW - Graphene KW - XPS KW - SEM PY - 2022 AN - OPUS4-54375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized CeO2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized CeO2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - CeO2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7941461 PB - Zenodo CY - Geneva AN - OPUS4-57667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Hahn, Marc Benjamin T1 - Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine N2 - Small-angle X-ray scattering (SAXS) can be used for structural determination of biological macromolecules and polymers in their native states (e.g. liquid phase). This means that the structural changes of (bio-)polymers, such as proteins and DNA, can be monitored in situ to understand their sensitivity to changes in chemical environments. In an attempt to improve the reliability of such experiments, the reduction of radiation damage occurring from exposure to X-rays is required. One such method, is to use scavenger molecules to protect macromolecules against radicals produced during radiation exposure, such as reactive oxygen species (ROS). In this study we investigate the feasibility of applying the compatible solute, osmolyte and radiation protector Ectoine (THP(B)), as a scavenger molecule during SAXS measurements of the single-stranded DNA-binding protein Gene-V Protein (G5P/GVP). In this case, we monitor the radiation induced changes of G5P during bio-SAXS measurments and the resulting microscopic energy-damage relation was determined from microdosimetric calculations by Monte-Carlo based particle scattering simulations with TOPAS/Geant4 and a custom target-model. This resulted in a median-lethal energy deposit of pure G5P at 4 mg mL−1 of E1/2 = 7 ± 5 eV, whereas a threefold increase of energy-deposit was needed under the presence of Ectoine to reach the same level of damage. This indicates that Ectoine increases the possible exposure time before radiation-damage to G5P is observed. Furthermore, the dominant type of damage shifted from aggregation in pure solutions towards a fragmentation for solutions containing Ectoine as a cosolute. These results are interpreted in terms of indirect radiation damage by reactive secondary species, as well as post-irradiation effects, related to preferential-exclusion of the cosolute from the protein surface. Hence, Ectoine is shown to provide a non-disturbing way to improve structure-determination of proteins via bio-SAXS in future studies. KW - BioSAXS KW - Bio-SAXS KW - Cosolute KW - Ectoine KW - G5P KW - GVP KW - Radiation damage KW - Radical Scavenger KW - Single-stranded DNA-binding proteins KW - X-ray scattering KW - DNA KW - ssDNA KW - Protein KW - SAXS KW - Small-angle xray scattering KW - McSAS3 KW - Dosimetry KW - Microdosimetry KW - Geant4 KW - Geant4-DNA KW - Topas KW - Topas-MC KW - Monte-Carlo simulations KW - Particle scattering simulations KW - Topas-nBio KW - OH Radical KW - OH radical scavenger KW - LEE KW - Ionizing radiation damage KW - Protein unfolding KW - Ectoin PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568909 DO - https://doi.org/10.1039/d2cp05053f SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 7 SP - 5372 EP - 5382 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavasolyzadeh, Zeynab A1 - Tang, Peng A1 - Hahn, Marc Benjamin A1 - Hweidi, Gada A1 - Nordholt, Niclas A1 - Haag, Rainer A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - 2D and 3D Micropatterning of Mussel‐Inspired Functional Materials by Direct Laser Writing N2 - AbstractThis work addresses the critical need for multifunctional materials and substrate‐independent high‐precision surface modification techniques that are essential for advancing microdevices and sensing elements. To overcome existing limitations, the versatility of mussel‐inspired materials (MIMs) is combined with state‐of‐the‐art multiphoton direct laser writing (DLW) microfabrication. In this way, 2D and 3D MIM microstructures of complex designs are demonstrated with sub‐micron to micron resolution and extensive post‐functionalization capabilities. This study includes polydopamine (PDA), mussel‐inspired linear, and dendritic polyglycerols (MI‐lPG and MI‐dPG), allowing their direct microstructure on the substrate of choice with the option to tailor the patterned topography and morphology in a controllable manner. The functionality potential of MIMs is demonstrated by successfully immobilizing and detecting single‐stranded DNA on MIM micropattern and nanoarray surfaces. In addition, easy modification of MIM microstructure with silver nanoparticles without the need of any reducing agent is shown. The methodology developed here enables the integration of MIMs in advanced applications where precise surface functionalization is essential. KW - Direct laser writing KW - Mussel-inspired materials KW - Polyglycerol KW - Polydopamine KW - Micropatterning PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588778 DO - https://doi.org/10.1002/smll.202309394 SN - 1613-6829 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-58877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Krahl, T. A1 - Radnik, Jörg A1 - Wagner, Andreas A1 - Werner, W. S. M. A1 - Ritter, B. A1 - Kemnitz, E. A1 - Unger, Wolfgang T1 - Chemical in-depth analysis of (Ca/Sr)F2 core–shell like nanoparticles by X-ray photoelectron spectroscopy with tunable excitation energy N2 - The fluorolytic sol–gel synthesis is applied with the intention to obtain two different types of core–shell nanoparticles, namely, SrF2–CaF2 and CaF2–SrF2. In two separate fluorination steps for core and shell formation, the corresponding metal lactates are reacted with anhydrous HF in ethylene glycol. Scanning transmission electron microscopy (STEM) and dynamic light scattering (DLS) confirm the formation of particles with mean dimensions between 6.4 and 11.5 nm. The overall chemical composition of the particles during the different reaction steps is monitored by quantitative Al Kα excitation X-ray photoelectron spectroscopy (XPS). Here, the formation of stoichiometric metal fluorides (MF2) is confirmed, both for the core and the final core–shell particles. Furthermore, an in-depth analysis by synchrotron radiation XPS (SR-XPS) with tunable excitation energy is performed to confirm the core–Shell character of the nanoparticles. Additionally, Ca2p/Sr3d XPS intensity ratio in-Depth profiles are simulated using the software Simulation of Electron Spectra for Surface Analysis (SESSA). In principle, core–shell like particle morphologies are formed but without a sharp interface between calcium and strontium containing phases. Surprisingly, the in-depth chemical distribution of the two types of nanoparticles is equal within the error of the experiment. Both comprise a SrF2-rich core domain and CaF2-rich shell domain with an intermixing zone between them. Consequently, the internal morphology of the final nanoparticles seems to be independent from the synthesis chronology. KW - Metal fluorides KW - Sol-gel synthesis KW - Synchrotron radiation KW - X-ray photoelectron spectroscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522284 DO - https://doi.org/10.1002/sia.6937 SN - 0142-2421 VL - 53 IS - 5 SP - 494 EP - 508 PB - Wiley VCH AN - OPUS4-52228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Broichert, C. A1 - Klingenhof, M. A1 - Frisch, M. A1 - Dresp, S. A1 - Kubo, N.M. A1 - Artz, J. A1 - Radnik, Jörg A1 - Palkovits, S. A1 - Beine, A.K. A1 - Strasser, P. A1 - Palkovits, R. T1 - Particle size-controlled synthesis of highperformance MnCo-based materials for alkaline OER at fluctuating potentials N2 - For the large-scale generation of hydrogen via water electrolysis the design of long term stable and active catalysts for the oxygen evolution reaction (OER) remains a key challenge. Most catalysts suffer from severe structural corrosion that becomes even more pronounced at fluctuating potentials. Herein, MnCo based cubic particles were prepared via a hydrothermal approach, in which the edge length of the micron-sized particles can be controlled by changing the pH value of the precursor solution. The cubes are composed of varying amounts of MnCo2O4, CoCO3 and a mixed (Mn/Co)CO3 phase. Structure–activity relationships were deduced revealing a volcano-type behavior for the intrinsic OER activity and fraction of spinel oxide phase. A low overpotential of 0.37 V at 10 mA cm−2 and a stability of more than 25 h was achieved in 1.0 M KOH using a rotating disc electrode (RDE) setup. The best performing catalyst material was successfully tested under dynamic process conditions for 9.5 h and shows a superior catalytic activity as anode for the Overall water splitting in an electrolyser setup in 1.0 M KOH at 333 K compared to a reference NiCo-spinel catalyst. KW - Water electrolysis KW - Oxygen evolution reaction KW - Structure activity relationships PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536050 DO - https://doi.org/10.1039/d1cy00905b SN - 2044-4753 VL - 11 IS - 12 SP - 7278 EP - 7286 PB - Royal Society of Chemistry AN - OPUS4-53605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -