TY - JOUR A1 - Voss, L. A1 - Hoche, E. A1 - Stock, V. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Sieg, H. T1 - Intestinal and hepatic effects of iron oxide nanoparticles N2 - Iron oxide nanoparticles gain increasing attention due to their broad industrial use. However, safety concerns exist since their effects on human cells are still under investigation. The presence of iron oxide nanoparticles in the food pigment E172 has been shown recently. Here, we studied four iron oxide nanoparticles, one food pigment E172 and the ionic control FeSO4 regarding dissolution in biological media, uptake and transport, and cellular effects in vitro in human intestinal Caco-2 and HepaRG hepatocarcinoma cells. The iron oxide nanoparticles passed the gastrointestinal passage without dissolution and reached the intestine in the form of particles. Minor uptake was seen into Caco-2 cells but almost no transport to the basolateral site was detected for any of the tested particles. HepaRG cells showed higher particle uptake. Caco-2 cells showed no alterations in reactive oxygen species production, apoptosis, or mitochondrial membrane potential, whereas two particles induced apoptosis in HepaRG cells, and one altered mitochondrial membrane potential at non-cytotoxic concentrations. No correlation between physicochemical particle characteristics and cellular effects was observed, thus emphasizing the Need for case-by-case assessment of iron oxide nanoparticles. KW - Nanoparticles PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521651 DO - https://doi.org/10.1007/s00204-020-02960-7 VL - 95 IS - 3 SP - 895 EP - 905 PB - Springer AN - OPUS4-52165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Rybak, Tina A1 - Thünemann, Andreas T1 - Microwave-Assisted Synthesis of ZnO Nanoparticles: Phase Transfer to Water N2 - Herein, a simple one-pot procedure is reported to obtain aqueous zinc oxide (ZnO) nanoparticle dispersions from ZnO nanoparticles dispersed in cyclohexane. In the process, polyoxyethylene (20) sorbitan monooleate (polysorbate 80, Tween 80) functions as a phase transfer agent and colloidal stabilizer. The particles grow in a defined manner during the transfer, presumably via coalescence. The final particle radii are tuneable in the range from 2.3 ± 0.1 nm to 5.7 ± 0.1 nm depending on the incubation time of the dispersion at 90 °C. Small-angle X-ray scattering is employed to determine the particle radius distributions before and after phase transfer. The larger ZnO particle radii are associated with a redshift of the optical bandgap and luminescence emission, as expected for semiconductor nanoparticles. The particles presented here exhibit a relative size distribution width of 20%, rendering them attractive for applications in, e.g., biology or catalysis. The latter application is demonstrated at the photocatalytic degradation of methylene blue dye. KW - SAXS KW - Small-angle X-ray scattering KW - nanoparticle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551502 DO - https://doi.org/10.1002/adem.202101276 VL - 24 IS - 6 SP - 1 EP - 7 PB - Wiley AN - OPUS4-55150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Maxi B. A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Loeschner, Katrin A1 - Givelet, Lucas A1 - Fahrenson, Christoph A1 - Braeuning, Albert A1 - Sieg, Holger T1 - Influence of artificial digestion on characteristics and intestinal cellular effects of micro-, submicro- and nanoplastics N2 - The production of plastics is rising since they have been invented. Micro, submicro- and nanoplastics are produced intentionally or generated by environmental processes, and constitute ubiquitous contaminants which are ingested orally by consumers. Reported health concerns include intestinal translocation, inflammatory response, oxidative stress and cytotoxicity. Every digestive milieu in the gastrointestinal tract does have an influence on the properties of particles and can cause changes in their effect on biological systems. In this study, we subjected plastic particles of different materials (polylactic acid, polymethylmethacrylate, melamine formaldehyde) and sizes (micro- to nano-range) to a complex artificial digestion model consisting of three intestinal fluid simulants (saliva, gastric and intestinal juice). We monitored the impact of the digestion process on the particles by performing Dynamic Light Scattering, Scanning Electron Microscopy and Asymmetric Flow Field-Flow Fractionation. An in vitro model of the intestinal epithelial barrier was used to monitor cellular effects and translocation behavior of (un)digested particles. In conclusion, artificial digestion decreased cellular interaction and slightly increased transport of all particles across the intestinal barrier. The interaction with organic matter resulted in clear differences in the agglomeration behavior. Moreover, we provide evidence for polymer-, size- and surface-dependent cellular effects of the test particles. KW - Toxicology KW - Nanoparticles KW - Dynamic Light Scattering KW - Nanoplastics KW - Microplastics KW - Reference Method KW - Reference Material PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593947 DO - https://doi.org/10.1016/j.fct.2023.114423 SN - 0278-6915 VL - 184 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-59394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, Holger A1 - Schaar, Caroline A1 - Fouquet, Nicole A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Braeuning, Albert T1 - Particulate iron oxide food colorants (E 172) during artificial digestion and their uptake and impact on intestinal cells N2 - Iron oxide of various structures is frequently used as food colorant (E 172). The spectrum of colors ranges from yellow over orange, red, and brown to black, depending on the chemical structure of the material. E 172 is mostly sold as solid powder. Recent studies have demonstrated the presence of nanoscaled particles in E 172 samples, often to a very high extent. This makes it necessary to investigate the fate of these particles after oral uptake. In this study, 7 differently structured commercially available E 172 food colorants (2 x Yellow FeO(OH), 2 x Red Fe2O3, 1 x Orange Fe2O3 + FeO(OH) and 2 x Black Fe3O4) were investigated for particle dissolution, ion release, cellular uptake, crossing of the intestinal barrier and toxicological impact on intestinal cells. Dissolution was analyzed in water, cell culture medium and artificial digestion fluids. Small-angle X-ray scattering (SAXS) was employed for determination of the specific surface area of the colorants in the digestion fluids. Cellular uptake, transport and toxicological effects were studied using human differentiated Caco-2 cells as an in vitro model of the intestinal barrier. For all materials, a strong interaction with the intestinal cells was observed, albeit there was only a limited dissolution, and no toxic in vitro effects on human cells were recorded. KW - Toxicology KW - Nanoparticles KW - Small-angle X-ray scattering KW - SAXS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593935 DO - https://doi.org/10.1016/j.tiv.2024.105772 VL - 96 SP - 1 EP - 12 PB - Elsevier BV AN - OPUS4-59393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Annadurai, V. A1 - Balazs, D. M. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Del Giudice, A. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Garcia, P. R. A. F. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, M. A1 - Hollamby, M. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Rochels, L. A1 - Rosalie, Julian A1 - Saloga, Patrick E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Spiering, G. A. A1 - Stawski, Tomasz M. A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor - Results of a small-angle scattering data analysis round robin N2 - A round-robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5% and half of the population width entries within 40%. Due to the added complexity of the structure factor, far fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 and 86%, respectively. This round-robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round Robin KW - Data analysis KW - Small-angle scattering KW - Nanomaterials KW - Interlaboratory comparability KW - Nanostructure quantification KW - Methodology KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587091 DO - https://doi.org/10.1107/S1600576723008324 SN - 1600-5767 VL - 56 IS - 6 SP - 1618 EP - 1629 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-58709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrandt, Jana A1 - Taubert, Andreas A1 - Thünemann, Andreas T1 - Synthesis and Characterization of Ultra‐Small Gold Nanoparticles in the Ionic Liquid 1‐Ethyl‐3‐methylimidazolium Dicyanamide, [Emim][DCA] N2 - AbstractWe report on gold clusters with around 62 gold atoms and a diameter of 1.15±0.10 nm. Dispersions of the clusters are long‐term stable for two years at ambient conditions. The synthesis was performed by mixing tetrachloroauric acid (HAuCl4 ⋅ 3 H2O) with the ionic liquid 1‐ethyl‐3‐methylimidazolium dicyanamide ([Emim][DCA]) at temperatures of 20 to 80 °C. Characterization was performed with small‐angle X‐ray scattering (SAXS), UV‐Vis spectroscopy, and MALDI‐TOF mass spectrometry. A three‐stage model is proposed for the formation of the clusters, in which cluster growth from gold nuclei takes place according to the Lifshitz‐Slyozov‐Wagner (LSW) model followed by oriented attachment to form colloidal stable clusters. KW - Reference materials KW - SAXS KW - Gold KW - Nanoparticle KW - Small-angle X-ray scattering KW - Ionic liquid PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588203 DO - https://doi.org/10.1002/open.202300106 SN - 2191-1363 VL - 44 SP - 1 EP - 19 PB - Wiley AN - OPUS4-58820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrandt, Jana A1 - Thünemann, Andreas T1 - Aqueous Dispersions of Polypropylene: Toward Reference Materials for Characterizing Nanoplastics N2 - Microplastics and nanoplastics pollute the natural environment all over the world, but the full extent of the hazards posed by this waste is unclear. While research on microplastics is well advanced, little work has been done on nanoplastics. This discrepancy is mainly due to the lacking ability to detect nanoplastics in biologically and environmentally relevant matrices. Nanoplastics reference materials can help the development of suitable methods for identifying and quantifying nanoplastics in nature. The aim is to synthesize nanoplastics made from one of the most commonly used plastics, namely polypropylene. An easy way to produce long-term stable aqueous dispersions of polypropylene nanoparticles (nano polypropylene) is reported. The nanoplastic particles, prepared by mechanical breakdown, show a mean hydrodynamic diameter of D h = 180.5 ± 5.8 nm and a polydispersity index of PDI = 0.084 ± 0.02. No surfactant is needed to obtain dispersion which is stable for more than 6 months. The colloidal stability of the surfactant-free nano polypropylene dispersions is explained by their low zeta potential of 𝜻 = −43 ± 2 mV. KW - Nanoparticles KW - Reference Material KW - Nanoplastics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571799 DO - https://doi.org/10.1002/marc.202200874 SN - 1022-1336 VL - 44 IS - 6 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Balazs, D. M. A1 - Beyer, F. L. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Giudice, A. D. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, Max A1 - Hollamby, M. J. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Ricardo de Abreu Furtado Garcia, P. A1 - Rochels, L. A1 - Rosalie, Julian A1 - Saloga, P. E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Annadurai, V. A1 - Spiering, G. A. A1 - Stawski, Tomasz A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor - Results of a small-angle scattering data analysis round robin N2 - A Round Robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions, and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5 % and half of the population width entries within 40 %, respectively. Due to the added complexity of the structure factor, much fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 % and 86 % respectively. This Round Robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round robin KW - Sall-angle scattering KW - Nanostructure quantification KW - Nanostructure KW - SAXS KW - MOUSE KW - X-ray scattering KW - Size distribution KW - Nanoparticles PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571342 DO - https://doi.org/10.48550/arXiv.2303.03772 SP - 1 EP - 23 PB - Cornell University CY - Ithaca, NY AN - OPUS4-57134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Iannuzzi, Maurizio T1 - Rational design of polyfluorinated peptide-based materials: Self-assembly of an amphiphilic motif N2 - Generation of a pH sensitive amphiphilic block oligopeptide containing the bioactive function RGD and a library of derivatives varying the length of the hydrophobic core and the degree of side chain fluorination. Peptide rational design enables us to obtain desired features (pH sensitivity etc.). The introduction of fluorine alters a wide range of peptide properties such as secondary structure propensity, folding, thermal and metabolic stability and proteolytic resistance. The RGD function is highly effective at promoting the attachment of numerous cell types to a plethora of materials. This small sequence is the principal integrin-binding domain present within ECM proteins such as fiobronectin, vibronectin and fibrinogen. For this reason, RGD containing peptides offer several advantages for biomaterials applications. The use of RGD compared with native ECM proteins, minimized the risk of immune reactivity or pathogen transfer. Herein in this work, we present the peptide motif X6RGD and its fluoro-derivates for prospective receptor-specific drug delivery in cancer theraphy. Overall, our results demonstrate that high degree of fluorination achieved triggers a selective modification of peptide self-assembly dramatically improving the structural properties, the carrier suitability, enzimatic degradation profiles and cytotoxic features of the fluoropeptide conjugate(s). T2 - 37th European Peptide Symposium CY - Florence, Italy DA - 25.08.2024 KW - Small-angle X-ray scattering KW - SAXS KW - Nanostructure PY - 2024 DO - https://doi.org/10.17952/37EPS.2024.P1302 AN - OPUS4-62139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörmann, Anja Franziska T1 - STOP and Scatter N2 - We present first X-ray scattering results for the Horizon Europe project "Surface Transfer of Pathogens" (STOP) and an outlook regarding X-ray scattering methods on thin films, which are under development at the MOUSE. T2 - M17 full project meeting - Surface Transfer of Pathogens (STOP) CY - EMPA, St. Gallen, Switzerland DA - 18.01.2024 KW - X-ray Scattering KW - Grazing incidence PY - 2024 AN - OPUS4-62723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörmann, Anja Franziska T1 - Next Level Grazing Incidence: Let the Standardization Begin N2 - Reproducibility of experiments is something most natural scientists would consider important. However, how do we know experiments are comparable between instruments without explicitly disclosing, tracking and discussing instrument calibration and data processing methods? At SXNS17 we would like to introduce our standardization initiative to the Grazing Incidence Small-Angle Scattering (GISAS) community and gather initial feedback and perhaps contributors before we proceed further. From the point of view of development of a new lab GISAXS setup at BAM (Berlin, Germany), we propose a draft autoalignment and calibration routine. Together with the GISAS community, we would like to further develop this routine into a standard. On that basis, agreed-upon methods for data treatment could be the next step for the future and perhaps an organization like the Open Reflectometry Standards Organisation . We begin with a survey of hardware in use around the world, an area we are not planning to address in terms of standardization but which nonetheless provides the practical background for our efforts. We assume availability of pitch, roll, y and z motions, those may be present in the form of a stack of stages, a hexapod, or even a robot arm. All of these can be used for GISAS, but specifications such as backlash direction and minimum incremental motion need to be considered when it comes to resolution and repeatability of experiments. We ask for your help in gathering information on sample stages and holders and would like to present the results at the International Small-Angle Scattering Conference (SAS2024) in November 2024. We believe this an important step to ensure any developed standard can work for everyone in the end. Inspired by work for Grazing Incidence X-ray Diffraction one of our goals is to estimate and propagate uncertainties from stage motions to scattering vector q (compare for Small-Angle X-ray Scattering). Further ideas for standardization include the use of reflectometry in choosing angles of incidence and, perhaps more importantly, data corrections. T2 - Surface X-ray and Neutron Scattering 17 (SXNS17) CY - EPN, Grenoble, France DA - 15.07.2024 KW - Grazing incidence scattering KW - Sample alignment KW - Community survey KW - Calibration PY - 2024 AN - OPUS4-62724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörmann, Anja Franziska T1 - (Grazing Incidence) Small-angle X-ray Scattering for STOP N2 - We remind project partners of the principles of SAXS, GISAXS and X-ray reflectivity and their applicability to the antimicrobial particles and coatings developed within the STOP project. T2 - M25 project meeting: Surface Transfer of Pathogens (STOP) CY - Bucharest, Romania DA - 19.09.2024 KW - X-ray Scattering KW - Nanomaterial PY - 2024 AN - OPUS4-62774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hewel, M. A1 - Siemann, U. A1 - Smarsly, B. A1 - Stribeck, A. A1 - Thünemann, Andreas T1 - Nachruf auf Wilhelm Ruland N2 - Mit Prof. Dr. Wilhelm Ruland starb am 3. Februar 2021 einer der letzten großen Wissenschaftler, welche die Streutheorie nach dem Zweiten Weltkrieg vorangetrieben haben. Sein zentrales Thema war die Streuung an weicher Materie. Hier lieferte er bis ins hohe Alter grundlegende Beiträge, die den Stellenwert seines Leitspruchs demonstrieren: Nichts ist praktischer als eine gute Theorie. KW - SAXS PY - 2021 VL - 20 IS - 4 SP - 50 EP - 50 PB - Wiley AN - OPUS4-52413 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - SAXS for the development of reference materials: Silver nanoparticles, a case study N2 - Today there are hundreds of products available containing silver in form of nanoparticles, so-called nanosilver. This situation and the foreseeable future growing market of nanosilver will supposedly cause an increased release of silver into the environment. In this way, silver can be also incorporated into the human body and accumulated in different organs, which can be toxic or at least an unknown risk to human health. For these reasons, it is important to constantly study materials containing silver nanoparticles, their production, application in products and technical processes, dissemination of silver nanoparticles in the environment, and effects on humans and nature. The state-of-the-art nanoparticle size and concentration characterization are illustrated in an extensive interlaboratory comparison. To guarantee the traceability of measurements and to secure the comparison of results of different analytical methods, reference materials (RM) and certified reference materials (CRM) are essential. As a case study, the objective of the presented project was to provide an aqueous suspension of silver nanoparticles as a reference material with a nominal diameter below 10 nm for application in the determination of the size and concentration of nanoparticles in an aqueous surrounding. Measurands are the particles’ diameter D, size distribution width σ, number density N, and concentration c. Target uncertainties, defined as one sigma of the measurand values, are 5% for D, 10% for σ, 20% for N, and 20% for c. The certification was carried out based on ISO 17867 and the relevant ISO-Guides to produce reference material. The process of using SAXS as a reliable method for testing homogeneity and short-term and long-term stability of the material is reported. The particle preparation is described in detail so that the user can carry out the steps of synthesis and characterization in his own laboratory if required. Optionally, one can also contact the author for the provision of the silver nanoparticles. Detailed information can be found elsewhere (BAM Certification Reports, BAM-N008 (2022)). T2 - SAXS excites CY - Graz, Austria DA - 04.04.2023 KW - Nanoparticles KW - SAXS KW - Nanosilver KW - Small-angle x-ray scattering PY - 2023 AN - OPUS4-57283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - Structure Analysis of Functional Hydrogels with Small-Angle X-ray Scattering (SAXS) N2 - Hydrogel properties are largely determined by their network structure. Here, we report on the capabilities of SAXS methods for characterizing polymer-network gels. SAXS provides rich insight into different types and levels of nanostructural inhomogeneities in these soft matter materials. The structure analysis of alginate hydrogels, typically utilized in tissue engineering applications, will be discussed in detail. T2 - Polydays 2024 CY - Berlin, Germany DA - 30.09.2024 KW - SAXS KW - Small-angle X-ray scattering KW - Polymer KW - Gel PY - 2024 AN - OPUS4-61184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giannakopoulos, Antonios E. A1 - Zisis, Athanasios A1 - Zervaki, Anna D. A1 - Dimopoulos, Christos D. A1 - Platypodis, Efstathios A1 - Eberwein, Robert T1 - Effective elastic moduli and failure mechanisms of a random assembly of thin walled glass microbubbles N2 - In this work a methodology is presented to estimate the elastic properties and failure mechanisms of an assembly of random, brittle microbubbles. The approach is based on the mechanics of frictionless micro-contact between hollow spherical shells by employing relations from classical shell theory and verified by two dimensional axisymmetric Finite Elements. The estimated values are in agreement with available experimental values. Moreover, a granular type analytical homogenization model provides an isotropic elastic constitutive law to be used for the macroscopic deformation of an assembly of glass micro-bubbles when it is compressed by external loads. In addition, approximate estimates are also proposed for two important micro-failure mechanisms of such assemblies that relate either to the splitting or to the buckling of a brittle spherical shell, prior its complete crushing. The results are novel and are expected to enhance the application of glass microbubbles directly in acute thermal insulation problems such as liquid hydrogen storage. KW - LH2 KW - Cryogenic Vessels KW - Insulation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634354 DO - https://doi.org/10.1016/j.ijsolstr.2025.113528 SN - 0020-7683 VL - 320 SP - 1 EP - 11 PB - Elsevier BV CY - Amsterdam AN - OPUS4-63435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana T1 - Aqueous Dispersions of polypropylene as possible reference material for nanoplastics N2 - Plastic debris in micron and nanometer scale pollutes the nature all over the world. The potential dangers of these pollutants remain unpredictable. While risk assessment studies on microplastics are already popular, nanoplastic has not yet reached the same focus of investigation. The reason for this difference is simple: There is a "methodological gap" in the analytics of plastic particles with a diameter smaller than 1 µm. Submicron and nanoplastic particles are currently not detectable in environmental matrices. Therefore, it is important for researchers to have a well-characterized nanoplastic material, that serves as a reference for nanoplastics found in nature. Our aim was to synthesize nanoplastics made from the most common used plastics such as polypropylene (PP). We found an easy way to form nanoparticles consisting of PP (nano-PP), adapting and improving the method presented for polystyrene (PS). Nano-PP was formed via a top-down method where the polymer was dispersed to acetone and then transferred to water. No additional surfactant is needed to obtain a dispersion which is stable for more than 35 weeks. The success of forming nanoplastics and their size was detected via scattering methods, predominantly dynamic light scattering (DLS). The chemical analysis of the nanoplastics was performed via Fourier Transform Infrared spectroscopy. To examine the good stability of the nanoparticles, zeta potential measurements were performed, which revealed zeta potentials of -30 to -40 mV. T2 - European Polymer Congress 2022 CY - Prag, Czechia DA - 26.06.2022 KW - Nanoplastic PY - 2022 AN - OPUS4-55960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Klusmann, L. A1 - Ellermann, A. L. A1 - Böhmert, L. A1 - Thünemann, Andreas A1 - Braeuning, A. T1 - Counterions determine uptake and effects of aluminum in human intestinal and liver cells N2 - Aluminum (Al) is highly abundant in the biosphere and can occur in different physico-chemical states. It is present in human food and undergoes transitions between dissolved and particulate species during the passage of the gastrointestinal tract. Moreover, in a complex matrix such as food different inorganic and organic counterions can affect the chemical behavior of Al following oral uptake. In this work, the effects of different counterions, namely chloride, citrate, sulfate, lactate and acetylacetonate, on Al uptake and toxicity in the human intestine are studied. The respective Al salts showed different dissolution behavior in biological media and formed nanoscaled particles correlating in reverse with the amount of their dissolved fraction. The passage through the intestinal barrier was studied using a Caco-2 Transwell® system, showing counterion-dependent variance in cellular uptake and transport. In addition, Al toxicity was investigated using Al species (Al3+, metallic Al0 and oxidic γAl2O3 nanoparticles) and counterions individually or in mixtures on Caco-2 and HepG2 cells. The strongest toxicity was observed using a combination of Al species, depending on solubility, and the lipophilic counterion acetylacetonate. Notably, only the combination of both led to toxicity, while both substances individually did not show toxic effects. A toxification of previously non-toxic Al-species by the presence of acetylacetonate is shown here for the first time. The dependency on the concentration of free Al ions was demonstrated using sodium hydrogen phosphate, which was able to counteract the toxic effects by complexing free Al ions. These findings, using Al salts as an example for a common food contaminant, underline the importance of a consideration of the chemical properties of human nutrition, especially dissolution and hydrophobicity, which can significantly influence the cellular uptake and effects of xenobiotic substances. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2022 DO - https://doi.org/10.1016/j.tiv.2021.105295 VL - 79 SP - 1 EP - 7 PB - Elsevier AN - OPUS4-54110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörmann, Anja Franziska T1 - Next Level Grazing Incidence, Part I: Standardization of Calibration and Alignment for Grazing Incidence Small-Angle (X-ray) Scattering N2 - We present initial results of our survey on grazing incidence methods which focuses on hardware, software, sample alignment and instrument calibration. We illustrate both sample alignment and sample-to-detector distance calibration with data recorded at the MOUSE and conclude with promising results from our Bayesian beam optimization procedure based on Gaussian Process regression. T2 - XIX edition of the International Small-Angle Scattering Conference (SAS2024) CY - Taipei, Taiwan DA - 04.11.2024 KW - Standardisation KW - Grazing incidence KW - Sample alignment KW - Instrument calibration PY - 2024 AN - OPUS4-62775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ihlenburg, R. B. J. A1 - Mai, T. A1 - Thünemann, Andreas A1 - Baerenwald, R. A1 - Saalwächter, K. A1 - Koetz, J. A1 - Taubert, A. T1 - Sulfobetaine Hydrogels with a Complex Multilength-Scale Hierarchical Structure N2 - Hydrogels with a hierarchical structure were prepared from a new highly water-soluble crosslinker N,N,N′,N′-tetramethyl-N,N′-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and from the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The free radical polymerization of the two compounds is rapid and yields near-transparent hydrogels with sizes up to 5 cm in diameter. Rheology shows a clear correlation between the monomer-to-crosslinker ratio and the storage and loss moduli of the hydrogels. Cryo-scanning electron microscopy, low-field nuclear magnetic resonance (NMR) spectroscopy, and small-angle X-ray scattering show that the gels have a hierarchical structure with features spanning the nanometer to the sub-millimeter scale. The NMR study is challenged by the marked inhomogeneity of the gels and the complex chemical structure of the sulfobetaine monomer. NMR spectroscopy shows how these complications can be addressed via a novel fitting approach that considers the mobility gradient along the side chain of methacrylate-based monomers. KW - Small-angle X-ray scattering KW - SAXS KW - Gel PY - 2021 DO - https://doi.org/10.1021/acs.jpcb.0c10601 SN - 1520-6106 VL - 125 IS - 13 SP - 3398 EP - 3408 PB - American Chemical Society AN - OPUS4-52403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana T1 - PP Nanoplastics Dispersed In Water As Reference Materials N2 - Plastic debris in micron and nanometer scale pollutes the nature all over the world. The potential dangers of these pollutants remain unpredictable. While risk assessment studies on microplastic are already popular, nanoplastic has not yet reached the same focus of investigation. The reason for this difference is simple: There is a “methodological gap” in the analytics of plastic particles with a diameter smaller than 1 µm. Submicron and nano plastic particles are currently not detectable in environmental matrices. Therefore, it is important for researchers to have a well-characterized nanoplastic material, that serves as a reference for nanoplastic found in nature. Our aim was to synthesize nanoplastics made from the most common used plastics, starting with polypropylene (PP). We found an easy way to form nanoparticles consisting of PP (nano-PP), adapting and improving the method presented for polystyrene (PS). PP was dispersed to acetone and then transferred to water. No additional surfactant is needed to obtain a dispersion which is stable for more than 35 weeks. The The success of forming nanoplastics and their size was detected via scattering methods, predominantly dynamic light scattering (DLS). To examine the good stability of the nanoparticles, zeta potential measurements were performed, which revealed zeta potentials of -30 to -40 mV. This method is repeatable and well suited to produce reference material, as which we propose our prepared particles, based on a homogeneity study, that we performed, following the ISO Guide 35 for reference materials. T2 - Prague Meeting on Macromolecules 2022 CY - Prag, Czechia DA - 24.07.2022 KW - Nanoplastic KW - Reference material PY - 2022 AN - OPUS4-55961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana T1 - Aqueous dispersions of polypropylene: towards referencematerials for nanoplastics characterization N2 - Plastic pollution in the environment is a rising concern for the health of our planet. The plastic litter that pollutes our environment leads to microplastic particles. They can be found (nearly) everywhere. The processes that lead to microplastic can also form nanoplastic particles, which have a size below 1 µm. Because of the small size they can penetrate tissue more easily. Only few risk assessment studies of nanoplastics were carried out so far. Using polystyrene (PS) nanoparticles to test effects on organisms is easy because it is commercially available. However, this falls a little short, as the polyolefins i.e., polypropylene (PP) and polyethylene (PE), are produced in a larger proportion than PS. Moreover, these plastics are mainly used for disposable products, which means that they also account for a large proportion of plastic waste. Therefore, the percentage of polyolefins in environmental nanoplastic is presumably high. It is important to test the toxicological effects also with nanoplastics made of PP and PE to have more realistic results. Herein, we present an easy and repeatable method to prepare an aqueous dispersion of polypropylene nanoplastics (nano-PP). They are stabilized electrostatically, resulting in a strongly negative zeta potential of -43 mV (± 2 mV) and making no surfactant necessary to keep the dispersion stable. The size and the size distribution were determined via Dynamic Light Scattering (DLS) and gives a hydrodynamic diameter of 180.5 nm (± 5.8 nm) and a PDI of 0.084 (± 0.023). Finally, ca. 480 bottles of the dispersion with a volume of 10 mL each were prepared to serve as a potential reference material for further testing of detection methods or risk assessments. T2 - International Conference on Microplastic Pollution in the Mediterranean Sea CY - Neapel, Italy DA - 25.09.2022 KW - Nanoplastic PY - 2022 AN - OPUS4-55963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana T1 - Polypropylene and polyethylene nanoplastics in water N2 - Considering the huge amount of plastics, that is produced and thrown away all over the world every day, an increasing part of the society became aware of microplastic and its possible impact on the environment. Polymer particles smaller than 1 µm are called nanoplastic. Due to their small size they form a special group within particulate waste. Their high specific surface makes it easier for them to penetrate tissue and pose potential harm. On the other hand, the size and the chemical structure make it difficult to detect and analyze nanoplastics in nature. Furthermore, the concentrations in environmental samples are very low. Therefore, there is a need for a well-characterized nanoplastic material, that serves as a reference for nanoplastic found in nature. T2 - Tag der Chemie 2021 Uni Potsdam CY - Online meeting DA - 06.07.2021 KW - Nanoplastic PY - 2021 AN - OPUS4-53775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kulow, Anicó A1 - Kabelitz, Anke A1 - Grunewald, C. A1 - Seidel, R. A1 - Chapartegui-Arias, Ander A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Beyer, S. T1 - Observation of early ZIF-8 crystallization stages with X-ray absorption spectroscopy N2 - The present study investigates early stages of ZIF-8 crystallization up to 5 minutes post mixing of precursor solutions. Dispersive X-ray Absorption Spectroscopy (DXAS) provides a refined understanding of the evolution of the coordination environment during ZIF-8 crystallization. Linear Combination Fiting (LCF) suggests tetrakis(1-methylimidazole)zinc2+ to be a suitable and stable mononuclear structure analogue for some early stage ZIF-8 intermediates. Our results pave the way for more detailed studies on physico-chemical aspects of ZIF-8 crystallization to better control tailoring ZIF-8 materials for specific applications. KW - In-situ KW - XANES KW - ZIF-8 KW - Crystallization PY - 2020 DO - https://doi.org/10.1039/D0SM01356K SN - 1744-6848 VL - 17 IS - 2 SP - 331 EP - 334 PB - Royal Scociety of Chemistry AN - OPUS4-51723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Kneiske, Sönke A1 - de Oliveira Guilherme Buzanich, Ana A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - A fluorolytic sol-gel route to access an amorphous Zr fluoride catalyst: A useful tool for C-F bond activation N2 - A route to a ZrF4 catalyst active in room temperature Friedel–Crafts and dehydrofluorination reactions was developed via a fluorolytic sol–gel route, which was followed by a postfluorination step using a stream of CHClF2. The behaviour of different Zr(IV) precursors in a sol–gel reaction with anhydrous isopropanol/HF solution was investigated. The subsequent post-fluorination step was optimised in its temperature ramp and confirmed the necessity of a fluorination of the generated xerogels to obtain catalytic activity. The process is discussed in the context of the analysis of the materials using Brunauer–Emmett–Teller analysis (BET), powder X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The local structure of the amorphous catalyst was elucidated by extended X-ray absorption fine structure spectroscopy (EXAFS). KW - Catalysis KW - Heterogeneous catalysis KW - C-F bond activation KW - Postfluorination PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593433 DO - https://doi.org/10.1039/D3CY01439H SN - 2044-4761 SP - 1 EP - 8 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shasmal, Nilanjana T1 - Effects of Direct femtosecond laser writing on chloroborosilicate glasses doped with Eu3+/Eu2+ and CdS quantum dots N2 - Femtosecond (fs) direct laser writing (DLW) is a promising technique for developing nano-inhomogeneous materials with advanced optical properties and for fabricating novel photonic devices such as integrated waveguides, ultrafast optical switches, phase plates, and 3D optical memory. In this study, DLW was applied to chloroborosilicate glasses that were singly and co-doped with Eu and CdS quantum dots (QDs). The glasses were laser-treated within a very narrow range of experimental conditions, resulting in laser-inscribed sites exhibiting enhanced emission, similar to the glass-ceramics crystallized from the as-prepared glass. In the regions crystalized by DLW a significant reduction of Eu3+ to Eu2+ was verified by photoluminescence spectroscopy. However, the characteristics of the emission bands of Eu2+ changed markedly in the laser-treated sites as compared to the emission spectra of the same glass crystallized by heat treatment. A considerable redshift and splitting of the emission band were observed, attributed to changes in the surrounding environment of the rare earth (RE) ions which was, in turn, attributed to an alteration in the coordination number of Ba2 + and/or Eu2+ as a result of the high-power laser treatment. Although there was an issue with homogeneity of the glass in the micro-level, which restricts some of the aspects of the DLW, these findings suggest the potential for structural modifications through laser treatment, which could be harnessed to create new functionalities for advanced optical applications. T2 - ICG 2025 (27th International Congress on Glass) CY - Kolkata, India DA - 20.01.2025 KW - Femtosecond direct laser writing KW - DLW KW - CdS quantum dots KW - Eu/CdS co-doped glass PY - 2025 AN - OPUS4-65285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fortes Martin, R. A1 - Thünemann, Andreas A1 - Stockmann, Jörg Manfred A1 - Radnik, Jörg A1 - Koetz, J. T1 - From Nanoparticle Heteroclusters to Filament Networks by Self-Assembly at the Water–Oil Interface of Reverse Microemulsions N2 - Surface self-assembly of spherical nanoparticles of sizes below 10 nm into hierarchical heterostructures is under arising development despite the inherent difficulties of obtaining complex ordering patterns on a larger scale. Due to template-mediated interactions between oil-dispersible superparamagnetic nanoparticles (MNPs) and polyethylenimine-stabilized gold nanoparticles (Au(PEI)NPs) at the water–oil interface of microemulsions, complex nanostructured films can be formed. Characterization of the reverse microemulsion phase by UV–vis absorption revealed the formation of heteroclusters from Winsor type II phases (WPII) using Aerosol-OT (AOT) as the surfactant. SAXS measurements verify the mechanism of initial nanoparticle clustering in defined dimensions. XPS suggested an influence of AOT at the MNP surface. Further, cryo-SEM and TEM visualization demonstrated the elongation of the reverse microemulsions into cylindrical, wormlike structures, which subsequently build up larger nanoparticle superstructure arrangements. Such WPII phases are thus proven to be a new form of soft template, mediating the self-assembly of different nanoparticles in hierarchical network-like filaments over a substrate during solvent evaporation. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Nano structure PY - 2021 DO - https://doi.org/10.1021/acs.langmuir.1c01348 VL - 37 IS - 29 SP - 8876 EP - 8885 PB - American Chemical Society AN - OPUS4-53034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tu, Z. A1 - Donskyi, Ievgen A1 - Qiao, H. A1 - Zhu, Z. A1 - Unger, Wolfgang A1 - Hackenberger, C. P. R. A1 - Chen, W. A1 - Adeli, M. A1 - Haag, R. T1 - Graphene Oxide-Cyclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multiple-Drug Resistance N2 - Multidrug resistance resulting from a variety of defensive pathways in Cancer has become a global concern with a considerable impact on the mortality associated with the failure of traditional chemotherapy. Therefore, further research and new therapies are required to overcome this challenge. In this work, a cyclic R10 peptide (cR10) is conjugated to polyglycerol-covered nanographene oxide to engineer a nanoplatform for the surmounting of multidrug resistance. The nuclear translocation of the nanoplatform, facilitated by cR10 peptide, and subsequently, a laser-triggered release of the loaded doxorubicin result in efficient anticancer activity confirmed by both in vitro and in vivo experiments. The synthesized nanoplatform with a combination of different features, including active nucleus-targeting, highloading capacity, controlled release of cargo, and photothermal property, provides a new strategy for circumventing multidrug resistant cancers. KW - Graphen Oxide KW - Nanoplatform KW - Cancer PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510061 DO - https://doi.org/10.1002/adfm.202000933 VL - 30 IS - 35 SP - 2000933 PB - Wiley VCH AN - OPUS4-51006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulka, M.W. A1 - Nie, C. A1 - Nickl, P. A1 - Kerkhoff, Y. A1 - Garg, A. A1 - Salz, D. A1 - Radnik, Jörg A1 - Grunwald, I. A1 - Haag, R. T1 - Surface-Initiated Grafting of Dendritic Polyglycerol from Mussel-Inspired Adhesion-Layers for the Creation of Cell-Repelling Coatings N2 - Biofouling is a major challenge in the application of textiles, biosensors, and biomedical implants. In the current work, a straightforward method for the solvent-free polymerization of antifouling dendritic polyglycerol (dPG) from mussel-inspired dendritic polyglycerol (MI-dPG) coatings on hydrophilic titanium dioxide (TiO2) and hydrophobic polydimethylsiloxane (PDMS) is reported. Surface characterization is performed by static water contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Significant lower CA values are obtained after dPG grafting from MI-dPG-coated TiO2 and MI-dPG coated PDMS. Furthermore, XPS shows a time-dependent increase of the CO bond content upon dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. Analysis of the surface morphology by SEM shows a clear time-dependent increase in the surface roughness upon dPG grafting from MI-dPG-coated TiO2 and MIdPG-coated PDMS. When the viability of two adhesive cell types is studied via LIVE/DEAD staining, a strong reduction in the cell density is observed after the dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS (a decrease of >95% in all cases). The combined results show that biocompatible but highly cell-repelling surfaces are efficiently constructed via the grafting of dPG from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. KW - Repelling surface coatings KW - Dendritic polyglycerol KW - Mussel-inspired adhesives KW - Surface-initated grafting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516590 DO - https://doi.org/10.1002/admi.202000931 SN - 2196-7350 VL - 7 IS - 24 SP - 931 PB - Wiley VCH AN - OPUS4-51659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigert, Florian A1 - Müller, A. A1 - Häusler, I. A1 - Geißler, Daniel A1 - Skroblin, D. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Combining HR‑TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots N2 - Controlling thickness and tightness of surface passivation shells is crucial for many applications of core–shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the applicationrelevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties. KW - Photoluminescence KW - Single particle KW - Microscopy KW - Particle architecture KW - Thickness KW - SAXS KW - Shell KW - XPS KW - TEM KW - Semiconductor KW - Quantum dot KW - Photophysics KW - Quantum yield PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517911 DO - https://doi.org/10.1038/s41598-020-77530-z VL - 10 IS - 1 SP - 20712 PB - Springer Nature AN - OPUS4-51791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Krahl, T. A1 - Radnik, Jörg A1 - Wagner, Andreas A1 - Werner, W. S. M. A1 - Ritter, B. A1 - Kemnitz, E. A1 - Unger, Wolfgang T1 - Chemical in-depth analysis of (Ca/Sr)F2 core–shell like nanoparticles by X-ray photoelectron spectroscopy with tunable excitation energy N2 - The fluorolytic sol–gel synthesis is applied with the intention to obtain two different types of core–shell nanoparticles, namely, SrF2–CaF2 and CaF2–SrF2. In two separate fluorination steps for core and shell formation, the corresponding metal lactates are reacted with anhydrous HF in ethylene glycol. Scanning transmission electron microscopy (STEM) and dynamic light scattering (DLS) confirm the formation of particles with mean dimensions between 6.4 and 11.5 nm. The overall chemical composition of the particles during the different reaction steps is monitored by quantitative Al Kα excitation X-ray photoelectron spectroscopy (XPS). Here, the formation of stoichiometric metal fluorides (MF2) is confirmed, both for the core and the final core–shell particles. Furthermore, an in-depth analysis by synchrotron radiation XPS (SR-XPS) with tunable excitation energy is performed to confirm the core–Shell character of the nanoparticles. Additionally, Ca2p/Sr3d XPS intensity ratio in-Depth profiles are simulated using the software Simulation of Electron Spectra for Surface Analysis (SESSA). In principle, core–shell like particle morphologies are formed but without a sharp interface between calcium and strontium containing phases. Surprisingly, the in-depth chemical distribution of the two types of nanoparticles is equal within the error of the experiment. Both comprise a SrF2-rich core domain and CaF2-rich shell domain with an intermixing zone between them. Consequently, the internal morphology of the final nanoparticles seems to be independent from the synthesis chronology. KW - Metal fluorides KW - Sol-gel synthesis KW - Synchrotron radiation KW - X-ray photoelectron spectroscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522284 DO - https://doi.org/10.1002/sia.6937 SN - 0142-2421 VL - 53 IS - 5 SP - 494 EP - 508 PB - Wiley VCH AN - OPUS4-52228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Müller, Anja A1 - Radnik, Jörg A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Laue, P. A1 - Luch, A. A1 - Tentschert, J. T1 - Preparation of Nanoparticles for ToF-SIMS and XPS Analysis N2 - Nanoparticles have gained increasing attention in recent years due to their potential and application in different fields including medicine, cosmetics, chemistry, and their potential to enable advanced materials. To effectively understand and regulate the physico-chemical properties and potential adverse effects of nanoparticles, validated measurement procedures for the various properties of nanoparticles need to be developed. While procedures for measuring nanoparticle size and size Distribution are already established, standardized methods for analysis of their surface chemistry are not yet in place, although the influence of the surface chemistry on nanoparticle properties is undisputed. In particular, storage and preparation of nanoparticles for surface analysis strongly influences the analytical results from various methods, and in order to obtain consistent results, sample preparation must be both optimized and standardized. In this contribution, we present, in detail, some standard procedures for preparing nanoparticles for surface analytics. In principle, nanoparticles can be deposited on a suitable substrate from suspension or as a powder. Silicon (Si) Wafers are commonly used as substrate, however, their cleaning is critical to the process. For sample preparation from suspension, we will discuss drop-casting and spin-coating, where not only the cleanliness of the substrate and purity of the suspension but also its concentration play important roles for the success of the preparation methodology. For nanoparticles with sensitive ligand shells or coatings, deposition as powders is more suitable, although this method requires particular care in fixing the sample. KW - Titania nanoparticles KW - X-ray photoelectron spectroscopy KW - Secondary ion mass spectrometry KW - Surface chemisttry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520103 UR - https://www.jove.com/video/61758 DO - https://doi.org/10.3791/61758 VL - 163 SP - e61758 AN - OPUS4-52010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donskyi, Ievgen A1 - Nie, C. A1 - Ludwig, K. A1 - Trimpert, J. A1 - Ahmed, R. A1 - Quaas, E. A1 - Achazi, K. A1 - Radnik, Jörg A1 - Adeli, M. A1 - Haag, R. A1 - Osterrieder, K. T1 - Graphene Sheets with Defined Dual Functionalities for the Strong SARS-CoV-2 Interactions N2 - Search of new strategies for the inhibition of respiratory viruses is one of the urgent health challenges worldwide, as most of the current therapeutic agents and treatments are inefficient. Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) has caused a pandemic and has taken lives of approximately two Million people to date. Even though various vaccines are currently under development, virus, and especially its spike glycoprotein can mutate, which highlights a Need for a broad-spectrum inhibitor. In this work, inhibition of SARS-CoV-2 by graphene platforms with precise dual sulfate/alkyl functionalities is investigated. A series of graphene derivatives with different lengths of aliphatic chains is synthesized and is investigated for their ability to inhibit SARS-CoV-2 and feline coronavirus. Graphene derivatives with long alkyl chains (>C9) inhibit coronavirus replication by virtue of disrupting viral envelope. The ability of these graphene platforms to rupture viruses is visualized by atomic force microscopy and cryogenic electron microscopy. A large concentration window (10 to 100-fold) where graphene platforms display strongly antiviral activity against native SARS-CoV-2 without significant toxicity against human cells is found. In this concentration range, the synthesized graphene platforms inhibit the infection of enveloped viruses efficiently, opening new therapeutic and metaphylactic avenues against SARS-CoV-2. KW - Graphene KW - Graphene-based polyglycerol sulfates KW - SARS-CoV2 inhibitor KW - Virucidality PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520858 DO - https://doi.org/10.1002/smll.202007091 VL - 17 IS - 11 SP - 7091 PB - Wiley VCH AN - OPUS4-52085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Knigge, Xenia A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Cant, D.J.H. A1 - Shard, A.G. A1 - Clifford, C.A. T1 - Composition, thickness, and homogeneity of the coating of core–shell nanoparticles—possibilities, limits, and challenges of X-ray photoelectron spectroscopy N2 - Core–shell nanoparticles have attracted much attention in recent years due to their unique properties and their increasing importance in many technological and consumer products. However, the chemistry of nanoparticles is still rarely investigated in comparison to their size and morphology. In this review, the possibilities, limits, and challenges of X-ray photoelectron spectroscopy (XPS) for obtaining more insights into the composition, thickness, and homogeneity of nanoparticle coatings are discussed with four examples: CdSe/CdS quantum dots with a thick coating and a small core; NaYF4-based upconverting nanoparticles with a large Yb-doped core and a thin Er-doped coating; and two types of polymer nanoparticles with a poly(tetrafluoroethylene) core with either a poly(methyl methacrylate) or polystyrene coating. Different approaches for calculating the thickness of the coating are presented, like a simple numerical modelling or a more complex simulation of the photoelectron peaks. Additionally, modelling of the XPS background for the investigation of coating is discussed. Furthermore, the new possibilities to measure with varying excitation energies or with hard-energy X-ray sources (hard-energy X-ray photoelectron spectroscopy) are described. A discussion about the sources of uncertainty for the determination of the thickness of the coating completes this review. KW - X-ray spectroscopy KW - Nanoparticles KW - Spectroscopy / Instrumentation KW - Spectroscopy / Theory PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548305 DO - https://doi.org/10.1007/s00216-022-04057-9 VL - 414 IS - 15 SP - 4331 EP - 4345 PB - SpringerNature AN - OPUS4-54830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ruehle, Bastian T1 - A Self-Driving Lab for Nano and Advanced Materials Synthesis N2 - Nano- and advanced materials have been recognized as a key enabling technology of the 21st century, due to their high potential of driving innovations in new clean energy technologies, sustainable manufacturing by substitution of critical raw materials and replacement of hazardous substances, breakthroughs in energy conversion and storage, improvement of the environmental performance of products and processes, and facilitation of circularity. Consequently, new tools that enhance the development and optimization cycle of nano- and advanced materials are crucial. In this contribution, we present our Self-Driving Lab (SDL) for Nano and Advanced Materials [1], that integrates robotics for batched autonomous synthesis – from molecular precursors to fully purified nanomaterials – with automated characterization and data analysis, for a complete and reliable nanomaterial synthesis workflow. By fully automating the processing steps for seven different materials from five representative, completely different classes of nano- and advanced materials (metal, metal oxide, silica, metal organic framework, and core–shell particles) that follow different reaction mechanisms, we demonstrate the great versatility and flexibility of the platform. The system also exhibits high modularity and adaptability in terms of reaction scales and incorporates in-line characterization measurement of hydrodynamic diameter, zeta potential, and optical properties (absorbance, fluorescence). We discuss the excellent reproducibility of the various materials synthesized on the platform in terms of particle size and size distribution, and the adaptability and modularity that allows access to a diverse set of nanomaterial classes. We also present several key aspects of the central backend that orchestrates the (parallelized) syntheses workflows. One key feature is the resource management or “traffic control” for scheduling and executing parallel reactions in a multi-threaded environment. Another is the interface with data analysis algorithms from in-line, at-line, and off-line measurements. Here, we will give examples of how automatic image segmentation of electron microscopy images with the help of AI [2] can be used for reducing the “data analysis bottleneck” from an off-line measurement. We will also discuss various machine learning (ML) algorithms that are currently implemented in the backend and can be used for ML-guided, closed-loop material optimization in our SDL. Lastly, we will show our recent efforts [3] in making the workflow generation on SDLs more user-friendly by using large language models to generate executable workflows automatically from synthesis procedures given in natural language and user-friendly graphical user interfaces based on node editors that also allow for knowledge graph extraction from the workflows. In this context, we are currently also working on a common description or ontology for representing the process steps and parameters of the workflows, which will greatly facilitate the semantic description and interoperability of workflows between different SDL hardware and software platforms. These features underscore the SDL’s potential as a transformative tool for advancing and accelerating the development of nano- and advanced materials, offering solutions for a sustainable and environmentally responsible future. T2 - MRS Fall Meeting 2025 CY - Boston, MA, USA DA - 30.11.2025 KW - Self-Driving Labs KW - Materials Acceleration Platforms KW - Advanced Materials KW - Nanomaterials KW - Automation PY - 2025 AN - OPUS4-65129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Page, T.M. A1 - Nie, C. A1 - Neander, L. A1 - Povolotsky, T.L. A1 - Sahoo, A.K. A1 - Nickl, Philip A1 - Adler, J.M. A1 - Bawadkji, O. A1 - Radnik, Jörg A1 - Achazi, K. A1 - Ludwig, K. A1 - Lauster, D. A1 - Netz, R.R. A1 - Trimpert, J. A1 - Kaufer, B. A1 - Haag, R. A1 - Donskyi, Ievgen T1 - Functionalized Fullerene for Inhibition of SARS-CoV-2 Variants N2 - As virus outbreaks continue to pose a challenge, a nonspecific viral inhibitor can provide significant benefits, especially against respiratory viruses. Polyglycerol sulfates recently emerge as promising agents that mediate interactions between cells and viruses through electrostatics, leading to virus inhibition. Similarly, hydrophobic C60 fullerene can prevent virus infection via interactions with hydrophobic cavities of surface proteins. Here, two strategies are combined to inhibit infection of SARS-CoV-2 variants in vitro. Effective inhibitory concentrations in the millimolar range highlight the significance of bare fullerene’s hydrophobic moiety and electrostatic interactions of polysulfates with surface proteins of SARS-CoV-2. Furthermore, microscale thermophoresis measurements support that fullerene linear polyglycerol sulfates interact with the SARS-CoV-2 virus via its spike protein, and highlight importance of electrostatic interactions within it. All-atom molecular dynamics simulations reveal that the fullerene binding site is situated close to the receptor binding domain, within 4 nm of polyglycerol sulfate binding sites, feasibly allowing both portions of the material to interact simultaneously. KW - Covalent functionalization KW - Fullerene KW - SARS-CoV 2 KW - Sulfated materials KW - Virus inhibition PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568672 DO - https://doi.org/10.1002/smll.202206154 SN - 1613-6810 SP - 1 EP - 8 PB - Wiley VCH AN - OPUS4-56867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bawadkji, O. A1 - Cherri, M. A1 - Schäfer, A. A1 - Herziger, S. A1 - Nickl, Philip A1 - Achazi, K. A1 - Donskyi, Ievgen A1 - Adeli, M. A1 - Haag, R. T1 - One-pot covalent functionalization of 2D black phosphorus by anionic ring opening polymerization N2 - In this work, a one-pot approach for the covalent functionalization of few-layer black phosphorus (BP) by anionic ring opening polymerization of glycidol to obtain multifunctional BP-polyglycerol (BP-PG) with high amphiphilicity for near-infrared-responsive drug delivery and biocompatibility is reported. Straightforward synthesis in combination with exceptional biological and physicochemical properties designates functionalized BP-PG as a promising candidate for a broad range of biomedical applications. KW - 2D nanomaterial KW - Amphiphilicity KW - Black phosphorus KW - Hyperbranched KW - Polyglycerol KW - Water dispersibility PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568833 DO - https://doi.org/10.1002/admi.202201245 SN - 2196-7350 VL - 9 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - 1,3-Dimethyl-imidazolium dimethyl phosphate ([MMIM]+[DMP]−) analyzed by XPS and HAXPES N2 - The ionic liquid 1,3-dimethyl-imidazolium-dimethylphosphate ([MMIM]+[DMP]−) was analyzed using (hard) x-ray photoelectron spectroscopy. Here, XPS and HAXPES spectra are shown in comparison. For the acquisition of the XPS spectra, monochromatic Al Kα radiation at 1486.6 eV was used, while for the acquisition of the HAXPES spectra, monochromatic Cr Kα radiation at 5414.8 eV was applied. Here, survey scans and high-resolution spectra of P 2p, P 2s, C 1s, O 1s, and N 1s for both methods and P 1s, P KL2,3L2,3, and P KL1L2,3 for HAXPES are shown. KW - C7H15N2O4P KW - [MMIM]+[DMP]− KW - Lonic liquid KW - Hard x-ray photoelectron spectroscopy KW - HAXPES KW - XPS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571604 DO - https://doi.org/10.1116/6.0002297 VL - 30 IS - 1 SP - 1 EP - 20 PB - AIP Publishing AN - OPUS4-57160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Z. A1 - Perez, J. P. H. A1 - Smales, Glen Jacob A1 - Blukis, R. A1 - Pauw, Brian Richard A1 - Stammeier, J. A. A1 - Radnik, Jörg A1 - Smith, A. J. A1 - Benning, L. G. T1 - Impact of organic phosphates on the structure and composition of short-range ordered iron nanophases N2 - Organic phosphates (OP) are important nutrient components for living cells in natural environments, where they readily interact with ubiquitous iron phases such as hydrous ferric oxide, ferrihydrite (FHY). FHY partakes in many key bio(geo)chemical reactions including iron-mediated carbon storage in soils, or iron-storage in living organisms. However, it is still unknown how OP affects the formation, structure and properties of FHY. Here, we document how β-glycerophosphate (GP), a model OP ligand, affects the structure and properties of GP–FHY nanoparticles synthesized by coprecipitation at variable nominal molar P/Fe ratios (0.01 to 0.5). All GP–FHY precipitates were characterized by a maximum solid P/Fe ratio of 0.22, irrespective of the nominal P/Fe ratio. With increasing nominal P/Fe ratio, the specific surface area of the GP–FHY precipitates decreased sharply from 290 to 3 m2 g−1, accompanied by the collapse of their pore structure. The Fe–P local bonding environment gradually transitioned from a bidentate binuclear geometry at low P/Fe ratios to monodentate mononuclear geometry at high P/Fe ratios. This transition was accompanied by a decrease in coordination number of edge-sharing Fe polyhedra, and the loss of the corner-sharing Fe polyhedra. We show that Fe(III) polymerization is impeded by GP, and that the GP–FHY structure is highly dependent on the P/Fe ratio. We discuss the role that natural OP-bearing Fe(III) nanophases have in biogeochemical reactions between Fe–P and C species in aquatic systems. KW - Organic phosphates KW - Iron nanophases KW - Scattering KW - Diffraction KW - Nanomaterials KW - Coprecipitation KW - Carbon storage PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599399 DO - https://doi.org/10.1039/d3na01045g SN - 2516-0230 SP - 1 EP - 13 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-59939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Opitz, R. A1 - Ghoreishi, N. A1 - Plate, K. A1 - Barnes, J.-P. A1 - Bellew, A. A1 - Bellu, A. A1 - Ceccone, G. A1 - de Vito, E. A1 - Delcorte, A. A1 - Franquet, A. A1 - Fumageli, F. A1 - Gilliland, D. A1 - Jungnickel, H. A1 - Lee, T.G. A1 - Poleunis, C. A1 - Rading, D. A1 - Shon, H.K. A1 - Spampinato, V. A1 - Son, J.G. A1 - Wang, F. A1 - Wang, Y.-C. A. A1 - Zhao, Y. A1 - Roloff, A. A1 - Tentschert, J. A1 - Radnik, Jörg T1 - VAMAS TWA2 interlaboratory comparison: Surface analysis of TiO2 nanoparticles using ToF-SIMS N2 - Due to the extremely high specific surface area of nanoparticles and corresponding potential for adsorption, the results of surface analysis can be highly dependent on the history of the particles, particularly regarding sample preparation and storage. The sample preparation method has, therefore, the potential to have a significant influence on the results. This report describes an interlaboratory comparison (ILC) with the aim of assessing which sample preparation methods for ToF-SIMS analysis of nanoparticles provided the most intra- and interlaboratory consistency and the least amount of sample contamination. The BAM reference material BAM-P110 (TiO2 nanoparticles with a mean Feret diameter of 19 nm) was used as a sample representing typical nanoparticles. A total of 11 participants returned ToF-SIMS data,in positive and (optionally) negative polarity, using sample preparation methods of “stick-and-go” as well as optionally “drop-dry” and “spin-coat.” The results showed that the largest sources of variation within the entire data set were caused by adventitious hydrocarbon contamination or insufficient sample coverage, with the spin-coating protocol applied in this ILC showing a tendency toward insufficient sample coverage; the sample preparation method or the participant had a lesser influence on results. KW - Secondary Ion Mass Spectrometry KW - VMAAS KW - Titania KW - Interlaboratory comparison KW - Reproducibility PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582290 DO - https://doi.org/10.1116/6.0002814 SN - 0734-2101 VL - 41 IS - 5 SP - 053210-1 EP - 053210-13 PB - AIP (American Institute of Physics) AN - OPUS4-58229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hirahara, Kenta A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Weise, Matthias A1 - Ermilova, Elena A1 - Schusterbauer, Robert A1 - Unterreiner, Andreas-Neil A1 - Hertwig, Andreas T1 - A multi-method study of femtosecond laser modification and ablation of amorphous hydrogenated carbon coatings N2 - e present a study on femtosecond laser treatment of amorphous hydrogen-containing carbon coatings (a-C:H). The coatings were deposited on silicon wafers by a plasma-assisted chemical vapour deposition (PA-CVD), resulting in two different types of material with distinct properties (referred to as “absorbing” and “semi-transparent” coatings in the following). The samples were laser-treated with single fs-laser pulses (800 nm center wavelength, 35 fs pulse duration) in the ablative regime. Through a multi-method approach using topometry, Raman spectroscopy, and spectroscopic imaging ellipsometry, we can identify zones and thresholds of diferent fuence dependent efects and have access to the local dielectric function. The two coating materials react signifcantly diferent upon laser treatment. We determined the (non-ablative) modifcation threshold fuence for the absorbing coating as 3.6 × 10−2 Jcm−2 and its ablation threshold as 0.22 Jcm−2. The semi-transparent coating does not show such a low-fuence modifcation but exhibits a characteristic interference-based intra-flm ablation mechanism with two distinguishable ablation thresholds at 0.25 and 0.28 Jcm−2, respectively. The combination of tailored layer materials and correlative imaging spectroscopic methods delivers new insights into the behaviour of materials when treated with ultrashort-pulse laser radiation KW - Amorphous Hydrogenated Carbon Coatings KW - Correlative Imaging Measurement Techniques KW - Hybrid Metrology KW - Imaging Spectroscopy KW - Spectroscopic Ellipsometry KW - Ultra-short Pulse Laser Materials Processing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-617829 DO - https://doi.org/10.1007/s00339-024-07980-z VL - 130 IS - 12 SP - 1 EP - 17 PB - Springer Science and Business Media LLC AN - OPUS4-61782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Broichert, C. A1 - Klingenhof, M. A1 - Frisch, M. A1 - Dresp, S. A1 - Kubo, N.M. A1 - Artz, J. A1 - Radnik, Jörg A1 - Palkovits, S. A1 - Beine, A.K. A1 - Strasser, P. A1 - Palkovits, R. T1 - Particle size-controlled synthesis of highperformance MnCo-based materials for alkaline OER at fluctuating potentials N2 - For the large-scale generation of hydrogen via water electrolysis the design of long term stable and active catalysts for the oxygen evolution reaction (OER) remains a key challenge. Most catalysts suffer from severe structural corrosion that becomes even more pronounced at fluctuating potentials. Herein, MnCo based cubic particles were prepared via a hydrothermal approach, in which the edge length of the micron-sized particles can be controlled by changing the pH value of the precursor solution. The cubes are composed of varying amounts of MnCo2O4, CoCO3 and a mixed (Mn/Co)CO3 phase. Structure–activity relationships were deduced revealing a volcano-type behavior for the intrinsic OER activity and fraction of spinel oxide phase. A low overpotential of 0.37 V at 10 mA cm−2 and a stability of more than 25 h was achieved in 1.0 M KOH using a rotating disc electrode (RDE) setup. The best performing catalyst material was successfully tested under dynamic process conditions for 9.5 h and shows a superior catalytic activity as anode for the Overall water splitting in an electrolyser setup in 1.0 M KOH at 333 K compared to a reference NiCo-spinel catalyst. KW - Water electrolysis KW - Oxygen evolution reaction KW - Structure activity relationships PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536050 DO - https://doi.org/10.1039/d1cy00905b SN - 2044-4753 VL - 11 IS - 12 SP - 7278 EP - 7286 PB - Royal Society of Chemistry AN - OPUS4-53605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chemello, Giovanni A1 - Knigge, Xenia A1 - Ciornii, Dmitri A1 - Reed, B.P. A1 - Pollard, A.J. A1 - Clifford, C.A. A1 - Howe, T. A1 - Vyas, N. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Influence of the Morphology on the Functionalization of Graphene Nanoplatelets Analyzed by Comparative Photoelectron Spectroscopy with Soft and Hard X-Rays N2 - Since its isolation, graphene has received growing attention from academia and industry due to its unique properties. However, the “what is my material” barrier hinders further commercialization. X-ray photoelectron spectroscopy (XPS) is considered as a method of choice for the determination of the elemental and chemical composition. In this work the influence of the morphology of graphene particles on the XPS results is studied and investigated as a function of X-ray energy, using conventional XPS with Al K𝜶 radiation and hard X-ray photoemission spectroscopy (HAXPES) using Cr K𝜶 radiation. Thereby, the information depth is varied between 10 and 30 nm. For this purpose, two commercial powders containing graphene nanoplatelets with lateral dimensions of either ≈100 nm or in the micrometer range are compared. These larger ones exist as stack of graphene layers which is inspected with scanning electron microscopy. Both kinds of particles are then functionalized with either oxygen or fluorine. The size of the graphene particles is found to influence the degree of functionalization. Only the combination of XPS and HAXPES allows to detect the functionalization at the outermost surface of the particles or even of the stacks and to provide new insights into the functionalization process. KW - Functionalized graphene KW - Hard-energy X-ray photoelectron spectroscopy KW - X-ray photoelectron spectroscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578860 DO - https://doi.org/10.1002/admi.202300116 SN - 2196-7350 SP - 1 EP - 8 PB - Wiley VCH AN - OPUS4-57886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terborg, R. A1 - Kim, K. J. A1 - Hodoroaba, Vasile-Dan T1 - Elemental composition and thickness determination of thin films by electron probe microanalysis N2 - Electron probe microanalysis (EPMA) applies to solid samples of homogenous (bulk) chemical composition and can usually not be applied to structures which are inhomogeneous in the micrometer range such as thin film systems down to a few nm. However, in combination with the established thin film software Stratagem, the thickness as well as the elemental composition of thin films on a substrate can be determined. This has been recently successfully demonstrated for Fe-Ni on Si and Si-Ge on Al2O3 thin film systems. For both systems five samples of different elemental composition and a reference were produced and characterised by inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM) as reference values. Last year, a new and open-source thin film evaluation programme called BadgerFilm has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we reevaluated the data acquired for the Fe-Ni and Si-Ge systems using the BadgerFilm software package and compared the obtained elemental compositions and thickness values with the results of the Stratagem software and the reference methods. The conclusion is that the BadgerFilm software shows good agreement with the elemental composition and thickness calculated by Stratagem (mostly <2% for both composition and thickness) and with the reference values for two representative thin film systems (<1%–2% for composition and <10%–20% for thickness). KW - Elemental composition KW - EPMA KW - Film thickness KW - Thin films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576368 DO - https://doi.org/10.1002/sia.7183 SN - 0142-2421 VL - 55 SP - 496 EP - 500 PB - Wiley AN - OPUS4-57636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bartczack, Dorota A1 - Taché, Olivier A1 - Hodoroaba, Vasile-Dan T1 - Report on the homogeneity assessment of bimodal gold materials (nPSize1 and nPSize2) and particle number concentration by frequency method N2 - The main objective was to assess homogeneity of two bimodal gold materials, namely nPsize1 and nPSize2, containing approximately 1:1 and 10:1 particle number-based ratio of ~30nm and ~60nm particles. Particle number-based concentration within the two size fractions was determined with spICP-MS using the particle frequency method of calibration. KW - Nanoparticles KW - Homogeneity KW - Particle number concentration KW - Gold KW - nPSize PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595451 DO - https://doi.org/10.5281/zenodo.10654245 SP - 1 EP - 5 PB - Zenodo CY - Geneva AN - OPUS4-59545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ankli, P. P. A1 - Abdelwahab, A. A. A1 - Logachov, A. A1 - Bugiel, R. A1 - Drobne, D. A1 - Novak, S. A1 - Kranjc, E. A1 - Saje, S. A1 - Pellegrino, F. A1 - Alladio, E. A1 - Sordello, F. A1 - Corrao, E. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Mrkwitschka, Paul A1 - Madbouly, Loay Akmaal A1 - Akdemir, Yücel A1 - Gulumian, M. A1 - Wepener, V. A1 - Andraos, C. A1 - Boodhia, K. A1 - Jones, E. A1 - Doolin, A. A1 - Leuchtenberg, K. A1 - Valsami Jones, E. A1 - Rocca, C. A1 - Ibrahim, B. A1 - Singh, D. A1 - Chakraborty, S. A1 - Jurkschat, K. A1 - Johnston, C. A1 - Van Der Zande, M. A1 - Fernandez, D. A1 - Queipo, P. A1 - Clifford, C. A1 - Hardy, B. T1 - Knowledge Infrastructure supporting image-based characterisation of 2D graphene materials N2 - As part of the European Horizon ACCORDs project, advanced methods are being developed for the image-based characterisation of 2D nanomaterials. Given the complexity of this task, robust nd wellorganised data management is critical to ensuring high-quality outcomes. To support this, we have established a knowledge infrastructure that serves as the central repository for protocols, images and experimental data which are stored in a standardised, harmonised manner and in accordance with the FAIR principles – Findable, Accessible, Interoperable and Reusable and open science. This machine-readable framework enables the systematic and computationally automated correlation of image features with experimental descriptors, facilitating accurate material characterisation and transparent reporting which is all integrated in the ACCORDs KI. KW - Graphene-related 2D materials (GR2M) KW - 2D materials KW - Knowledge infrastructure KW - Characterisation PY - 2025 DO - https://doi.org/10.1016/j.toxlet.2025.07.660 SN - 0378-4274 VL - 411 SP - S281 EP - S282 PB - Elsevier B.V. AN - OPUS4-65061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Other than spherical/monodisperse Towards real world NPs as candidate reference materials for traceable size measurements N2 - By far most of the current nanoparticle (NP) research is dealing with (quasi-) spherical and/or monodisperse particles. However, many NPs used in industrial applications are rather aspherical and polydisperse. This inhomogeneity considerably hampers their characterization and, particularly, the accurate determination of the nanoparticle size. In order to overcome this problem and to promote the availability of standardized size measurement methods, it is crucial to develop and establish (candidate) reference materials with inhomogeneous size (distribution), aspherical shape as well as agglomerated or aggregated particles. Therefore, a new set of NPs including Au-, SiO2 , and TiO2-particles is investigated. The range of properties comprises polydisperse spherical, bimodal spherical, rod-like, acicular, bipyramidal, sheet-like as well as cubic NPs. With respect to a good traceability of the measurements, size and size distributions of the candidate reference materials are determined using microscopic methods like scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning electron microscopy in transmission mode (STEM-in-SEM), atomic force microscopy (AFM) as well as small angle X-ray scattering (SAXS) as an ensemble technique. The development of protocols for sample preparation is of particular importance to obtain a homogeneous dispersion of the NPs on a substrate. Further, approaches for signal modelling for all the methods above are being developed. The initiation of two VAMAS (www.vamas.org/twa34/index.html) inter-laboratory comparisons on bipyramidal titania and bimodal silica with different modal concentration ratios will be also highlighted. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Nanoparticles KW - Particle size distribution KW - Imaging KW - Traceability KW - Reference material PY - 2021 AN - OPUS4-52764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habibimarkani, Heydar T1 - Comparative chemical analysis of Ni-Fe oxide nanoparticles N2 - Ni-Fe oxide nanoparticles have gained a lot of interest because of their high activity in the oxygen evolution reaction (OER) which is crucial for water splitting. [1] Although there have been great efforts in the last years, the understanding of the synergistic effect between Fe and Ni is still under discussion. Therefore, we prepared different Ni-Fe oxide nanoparticles with different compositions from pure iron oxide to pure nickel oxide adapting a known procedure. [2,3] Size and morphology of the nanoparticles depend on the composition which was shown with Transmission Electron Microscopy (TEM). The compositions of the nanoparticles were measured with a comparative approach using X-ray Photoelectron Spectroscopy (XPS), Hard X-ray Photoelectron Spectroscopy (HAXPES), and Energy Dispersive X-Ray Spectroscopy (EDS) coupled with the TEM providing detailed chemical information of the nanoparticles in different sample regions. EDS reveals that the different sample regions are dominated by one of the components, Fe or Ni, but a slight mixing between the components can be found (see Figure 1), which was confirmed with X-ray Diffraction (XRD). XPS indicates the enrichment of Fe at the sample surface, while HAXPES and EDS data agree on the stoichiometry of the bulk. High-resolution XPS and HAXPES exhibit some differences in the valence states of Fe and Ni, whereas Ni seems to be easier to reduce than Fe. Further investigations combining these different techniques and additionally Secondary Ion Mass Spectrometry (ToF-SIMS) are ongoing by using in situ approaches and coupling cyclic voltammetry to the analytical techniques T2 - SALSA Make and Measure 2024: Interfaces CY - Berlin, Germany DA - 11.09.2024 KW - (Hard) X-ray Photoelectron Spectroscopy KW - Oxygen evolution reaction KW - Synergistic effects KW - TEM PY - 2024 AN - OPUS4-62346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement; What nPSize can offer to CEN/TC 352? N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities (e.g. reference materials, measurement procedures, inter-laboratory comparisons) as pertinent contributions to normative projects within CEN/TC 352 Nanotechnologies are discussed. E.g. the first technical report of nPSize on full algorithm sequences for nanoparticle detection and size measurement as developed on both a physical basis (SEM, TSEM, AFM and SAXS) and by machine learning is put at disposal. T2 - 29th Meeting of CEN/TC 352 Nanotechnologies CY - Online meeting DA - 25.03.2021 KW - Nanoparticles KW - Electron microscopy KW - CEN/TC 352 Nanotechnologies KW - Particle size distribution KW - Modelling KW - Machine learning PY - 2021 AN - OPUS4-52464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise T1 - Monodisperse iron oxide nanoparticles as reference material candidate for particle size measurements N2 - In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important, especially with respect to the assessment of their environmental or biological impact. Furthermore, the European Commission’s REACH Regulations require the registration of nanomaterials traded in quantities of at least 1 ton. Powders or dispersions where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as nanomaterials. This creates a need for industrial manufacturers and research or analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution and will also target other key parameters like shape, structure, porosity or functional properties. In this respect, materials like iron oxide or titanium dioxide are considered as candidates to complement the already available silica, Au, Ag, and polystyrene reference nanoparticles. The thermal decomposition of iron oleate precursors in high boiling organic solvents can provide large quantities of iron oxide nanoparticles that can be varied in size and shape.[1, 2] The presence of oleic acid or other hydrophobic ligands as capping agents ensures stable dispersion in nonpolar solvents. Such monodisperse, spherical particles were synthesized at BAM and pre-characterized by electron microscopy (TEM, SEM including the transmission mode STEM-in-SEM) and dynamic light scattering comparing cumulants analysis and frequency power spectrum. 1. REACH regulations and nanosafety concerns create a strong need for nano reference materials with diverse properties. 2. Iron oxide nanoparticles are under development as new candidate reference material at BAM. 3. Narrow particle size distribution confirmed by light scattering and electron microscopy. T2 - Nanosafety 2020 CY - Online meeting DA - 05.10.2020 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Electron microscopy KW - Nanoplattform PY - 2020 AN - OPUS4-52774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -