TY - CONF A1 - Thünemann, Andreas T1 - The Single Chain Architecture of (Bio)Polymers in Contact with Nanoplastics N2 - In contrast to microplastics, little is known about nanoplastics (1 to 100 nm). In order to make the dectecability of nanoplasics more reliable, we started to develop nanoplastic reference materials. This project also aims to anser the question of how the single chain conformation of bio(polymers) changes in contact with nanoplastics. Small-angle X-ray and neutron scattering methods are suitable methods for studing this topic. Recently the soft and hard interactions between polystyrene nanoplasics and human serum albumin corona was investigated with small-angle neutron scattering. Here we concentrate on small-angle X-ray scattering as our favorite method to study how (bio)polymers change their conformation in contact with nanoplastics. The scattering of bovine serum albumin in its native state can be detected easily. The scattering pattern of this biopolymer changes dramatically when its globular stucture changes to a coil structure. Modeling of chain conformations and the calculation of the scattering pattern is relatively easy to perform. Numerous model calculations will be provided to predict the changes of conformation of single bio(polymer) chains when in conatact with nanoplastics. These predictions will be compared with recent experimenal results from in situ measurments of bio(polymers) in contact with nanoplastics. The impact of temperature, polymer concentration and salt on the single-chain conformation changes will be discussed. T2 - PolyDays 2019 CY - Berlin, Germany DA - 11.09.2019 KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Protein KW - Nanoplastics PY - 2019 AN - OPUS4-48959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana A1 - Thünemann, Andreas T1 - PP and PE nanoplastics in water N2 - Plastic debris in micron and nanometer scale pollutes the nature all over the world. The potential dangers of these pollutants remain unpredictable. While risk assessment studies on microplastics are already popular, nanoplastic has not yet reached the same focus of investigation. The reason for this difference is simple: There is a "methodological gap" in the analytics of plastic particles with a diameter smaller than 1 μm. Submicron and nanoplastic particles are currently not detectable in environmental matrices. Therefore, it is important for researchers to have a well-characterized nanoplastic material, that serves as a reference for nanoplastics found in nature. Our aim was to synthesize nanoplastics made from the most common used plastics such as polypropylene (PP) and polyethylene (PE). We found an easy way to form nanoparticles consisting of PP and PE (nano-PP/PE). Herein, nano-PP/PE was formed via a top-down method where the polymer was dispersed to acetone and then transferred to water. No surfactant is needed to obtain a dispersion which is stable for more than 35 weeks. The success of forming nanoplastics and their size was detected via scattering methods, predominantly dynamic light scattering. The chemical analysis of the nanoplastics was performed via Fourier Transform Infrared spectroscopy. Furthermore, electron microscopy was used to complement the results. To examine the good stability of the nanoparticles, zeta potential measurements were performed, which revealed zeta potentials of -30 to -40 mV. T2 - IUPAC-MACRO2020+ CY - Online meeting DA - 17.05.2021 KW - Nanoplastic PY - 2021 AN - OPUS4-53774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, M. B. A1 - Fahrenson, C. A1 - Givelet, L. A1 - Herrmann, T. A1 - Loescher, K. A1 - Böhmert, L. A1 - Thünemann, Andreas A1 - Braeuning, A. A1 - Sieg, H. T1 - Beyond microplastics ‑ investigation on health impacts of submicron and nanoplastic particles after oral uptake in vitro N2 - The continuously increasing use of plastics is supposed to result in a rising exposure of MNPs to humans. Available data on human health risks of microplastics after oral uptake increased immensely in the past years and indicates very likely only low risks after oral consumption. Concerning nanoplastics, uptake, transport and potential adverse effects after oral uptake are less well understood. This study aims to investigate differences between microplastic particles and particles in the submicron- and nanoscaled size derived from food-relevant polymers with a particle size range consistent with higher potential for cellular uptake, fate, and effects when applied to human intestinal and liver cells. This work includes the development of cellular and subcellular detection methods for synthetic polymeric particles in the micro- and nanometer-range, using Scanning Electron Microscopy, Small-Angle X-ray and Dynamic Light Scattering methods, Asymmetric Flow Field Flow Fractionation, octanol-water fractionation, fluorescence microscopy and flow cytometry. Polylactic acid (250 nm and 2 μm (polydisperse)), melamine formaldehyde (366 nm) and polymethylmethacrylate (25 nm) were thoroughly characterized. The submicro- and nanoplastic test particles showed an increased uptake and transport quantity through intestinal cells. Both types of particles resulted in observed differences of uptake behavior, most likely influenced by different lipophilicity, which varied between the polymeric test materials. Toxic effects were detected after 24 h only in overload situations for the particles in the submicrometer range. This study provides further evidence for gastrointestinal uptake of submicro- and nanoplastics and points towards differences regarding bioavailability between microplastics and smaller plastic particles that may result following the ingestion of contaminated food and beverages. Furthermore, the results reinforce the importance for studying nanoplastics of different materials of varying size, surface properties, polymer composition and hydrophobicity. KW - Small-angle X-ray scattering KW - SAXS KW - nanoparticle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550741 DO - https://doi.org/10.1186/s43591-022-00036-0 VL - 2 SP - 1 EP - 19 PB - Springer Nature AN - OPUS4-55074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thünemann, Andreas A1 - Gruber, Alexandra A1 - Klinger, Daniel T1 - Amphiphilic Nanogels: Fuzzy Spheres with a Pseudo-Periodic Internal Structure N2 - Amphiphilic polymer nanogels (NGs) are promising drug delivery vehicles that extend the application of conventional hydrophilic NGs to hydrophobic cargoes. By randomly introducing hydrophobic groups into a hydrophilic polymer network, loading and release profiles as well as surface characteristics of these colloids can be tuned. However, very little is known about the underlying internal structure of such complex colloidal architectures. Of special interest is the question how the amphiphilic network composition influences the internal morphology and the “fuzzy” surface structure. To shine light into the influence of varying network amphiphilicity on these structural features, we investigated a small library of water-swollen amphiphilic NGs using small-angle X-ray scattering (SAXS). It was found that overall hydrophilic NGs, consisting of pure poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA), display a disordered internal structure as indicated by the absence of a SAXS peak. In contrast, a SAXS peak is present for amphiphilic NGs with various amounts of incorporated hydrophobic groups such as cholesteryl (CHOLA) or dodecyl (DODA). The internal composition of the NGs is considered structurally homologous to microgels. Application of the Teubner–Strey model reveals that hydrophilic PHPMA NGs have a disordered internal structure (positive amphiphilicity factor) while CHOLA and DODA samples have an ordered internal structure (negative amphiphilicity factor). From the SAXS data it can be derived that the internal structure of the amphiphilic NGs consists of regularly alternating hydrophilic and hydrophobic domains with repeat distances of 3.45–5.83 nm. KW - Polymer KW - Nanoparticle KW - SAXS PY - 2020 DO - https://doi.org/10.1021/acs.langmuir.0c01812 VL - 36 IS - 37 SP - 10979 EP - 10988 PB - American Chemical Society AN - OPUS4-51302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Resch-Genger, Ute T1 - The 2023 Nobel Prize in Chemistry: Quantum dots N2 - The 2023 Nobel Prize in Chemistry was awarded to Aleksey I. Ekimov (prize share 1/3), Louis E. Brus (prize share 1/3), and Moungi G. Bawendi (prize share 1/3) for groundbreaking inventions in the field of nanotechnology, i.e., for the discovery and synthesis of semiconductor nanocrystals, also termed quantum dots, that exhibit size-dependent physicochemical properties enabled by quantum size effects. This feature article summarizes the main milestones of the discoveries and developments of quantum dots that paved the road to their versatile applications in solid-state lighting, display technology, energy conversion, medical diagnostics, bioimaging, and image-guided surgery. KW - Quantum dots KW - Semiconductor nanocrystals KW - Luminescence KW - Quantitative spectroscopy KW - Quantum yield KW - Advanced nanomaterials KW - Quality assurance KW - Energy transfer PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597843 DO - https://doi.org/10.1007/s00216-024-05225-9 VL - 2024 SP - 1 EP - 11 PB - Springer CY - Cham AN - OPUS4-59784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Hsiao, I-L. A1 - Ebisch, Maximilian A1 - Vidmar, J. A1 - Dreiack, N. A1 - Böhmert, L. A1 - Stock, V. A1 - Braeuning, A. A1 - Loeschner, K. A1 - Laux, P. A1 - Thünemann, Andreas A1 - Lampen, A. A1 - Sieg, H. T1 - The presence of iron oxide nanoparticles in the food pigment E172 N2 - Iron oxides used as food colorants are listed in the European Union with the number E172. However, there are no specifications concerning the fraction of nanoparticles in these pigments. Here, seven E172 products were thoroughly characterized. Samples of all colors were analyzed with a Broad spectrum of methods to assess their physico-chemical properties. Small-Angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), zeta-potential, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), X-ray diffraction (XRD), Brunauer-Emmett-Teller analysis (BET), Asymmetric Flow Field-Flow Fractionation (AF4) and in vitro cell viability measurements were used. Nanoparticles were detected in all E172 samples by TEM or SAXS measurements. Quantitative results from both methods were comparable. Five pigments were evaluated by TEM, of which four had a size median below 100 nm, while SAXS showed a size median below 100 nm for six evaluated pigments. Therefore, consumers May be exposed to iron oxide nanoparticles through the consumption of food pigments. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1016/j.foodchem.2020.127000 VL - 327 SP - 127000 PB - Elsevier Ltd. AN - OPUS4-50810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tarantini, A. A1 - Wegner, Karl David A1 - Dussert, F. A1 - Sarret, G. A1 - Beal, D. A1 - Mattera, L. A1 - Lincheneau, C. A1 - Proux, O. A1 - Truffier-Boutry, D. A1 - Moriscot, C. A1 - Gallet, B. A1 - Jouneau, P.-H. A1 - Reiss, P. A1 - Carriere, M. T1 - Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation N2 - Due to their unique optical properties, quantum dots (QDs) are used in a number of optoelectronic devices and are forecasted to be used in the near future for biomedical applications. The most popular QD composition consists of cadmium selenide (CdSe) or cadmium telluride (CdTe), which has been shown to pose health risks due to the release of toxic cadmium (Cd) ions. Due to similar optical properties but lower intrinsic toxicity, indium phosphide (InP) QDs have been proposed as a safer alternative. Nevertheless, investigations regarding their safety and possible toxicological effects are still in their infancy. The fate and toxicity of seven different water-dispersible indium (In) based QDs, either pristine or after ageing in a climatic chamber, was evaluated. The core of these QDs was composed of indium, zinc and phosphorus (InZnP) or indium, zinc, phosphorus and sulfur (InZnPS). They were assessed either as core-only or as core-shell QDs, for which the core was capped with a shell of zinc, selenium and sulfur (Zn(Se,S)). Their Surface was functionalized using either penicillamine or glutathione. In their pristine form, these QDs showed essentially no cytotoxicity. The particular case of InZnPS QD showed that core-shell QDs were less cytotoxic than core-only QDs. Moreover, surface functionalization with either penicillamine or glutathione did not appreciably influence cytotoxicity but affected QD stability. These QDs did not lead to over-accumulation of reactive oxygen species in exposed cells, or to any oxidative damage to cellular DNA. However, accelerated weathering in a climatic chamber led to QD precipitation and degradation, together with significant cytotoxic effects. Ageing led to dissociation of IneP and ZneS bonds, and to complexation of In Zn ions with carboxylate and/or phosphate moieties. These results show that InZnP and InZnPS alloyed QDs are safer alternatives to CdSe QDs. They underline the necessity to preserve as much as possible the structural integrity of QDs, for instance by developing more robust shells, in order to ensure their safety for future applications. KW - Indium phosphide KW - Safe by design KW - Toxicity KW - EXAFS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483070 DO - https://doi.org/10.1016/j.impact.2019.100168 VL - 14 SP - 100168-1 EP - 100168-13 PB - Elsevier AN - OPUS4-48307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chowdhary, S. A1 - Moschner, J. A1 - Mikolajczak, D. J. A1 - Becker, M. A1 - Thünemann, Andreas A1 - Kästner, Claudia A1 - Klemczak, D. A1 - Stegemann, A.-K. A1 - Böttcher, C. A1 - Metrangolo, P. A1 - Netz, R. R. A1 - Koksch, B. T1 - The Impact of Halogenated Phenylalanine Derivatives on NFGAIL Amyloid Formation N2 - The hexapeptide hIAPP22–27 (NFGAIL) is known as a crucial amyloid core sequence of the human islet amyloid polypeptide (hIAPP) whose aggregates can be used to better understand the wild‐type hIAPP′s toxicity to β‐cell death. In amyloid research, the role of hydrophobic and aromatic‐aromatic interactions as potential driving forces during the aggregation process is controversially discussed not only in case of NFGAIL, but also for amyloidogenic peptides in general. We have used halogenation of the aromatic residue as a strategy to modulate hydrophobic and aromatic‐aromatic interactions and prepared a library of NFGAIL variants containing fluorinated and iodinated phenylalanine analogues. We used thioflavin T staining, transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS) to study the impact of side‐chain halogenation on NFGAIL amyloid formation kinetics. Our data revealed a synergy between aggregation behavior and hydrophobicity of the phenylalanine residue. This study introduces systematic fluorination as a toolbox to further investigate the nature of the amyloid self‐assembly process. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Nanostructure KW - Peptide KW - Amyloid PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518632 DO - https://doi.org/10.1002/cbic.202000373 VL - 21 IS - 24 SP - 3544 EP - 3554 PB - Wiley CY - Weinheim AN - OPUS4-51863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Dussert, F. A1 - Truffier-Boutry, D. A1 - Benayad, A. A1 - Beal, D. A1 - Mattera, L. A1 - Ling, W. L. A1 - Carrière, M. A1 - Reiss, P. T1 - Influence of the Core/Shell Structure of Indium Phosphide Based Quantum Dots on Their Photostability and Cytotoxicity N2 - With the goal to improve their photostability, InP-based QDs are passivated with three types of inorganic shells, namely (i) a gradient ZnSexS1−x shell, (ii) an additional ZnS shell on top of the gradient shell with two different thicknesses (core/shell/shell, CSS), (iii) an alumina coating on top of ZnS. All three systems have photoluminescence Quantum yields (PLQY) > 50%and similar PL decay times (64–67 ns). To assess their photostability they are incorporated into a transparent poly (methyl methacrylate) (PMMA) matrix and exposed to continuous irradiation with simulated sunlight in a climate chamber. The alumina coated core/shell system exhibits the highest stability in terms of PLQY Retention as well as the lowest shift of the PL maximum and lowest increase of the PL linewidth, followed by the CSS QDs and finally the gradient shell system. By means of XPS studies we identify the degradation of the ZnS outer layer and concomitant xidation of the emissive InZnP core as the main origins of degradation in the gradient structure. These modifications do not occur in the case of the alumina-capped sample, which exhibits excellent chemical stability. The gradient shell and CSS systems could be transferred to the aqueous phase using surface ligand exchange with penicillamine. Cytotoxicity studies on human primary keratinocytes revealed that exposure for 24 h to 6.25–100 nM of QDs did not affect cell viability. However, a trend toward reduced cell proliferation is observed for higher concentrations of gradient shell and CSS QDs with a thin ZnS shell, while CSS QDs with a thicker ZnS shell do not exhibit any impact. KW - Indium phosphide KW - Quantum dots KW - Cytotoxicity KW - Photostability PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494249 DO - https://doi.org/10.3389/fchem.2019.00466 VL - 7 SP - Article Number: 466 PB - Frontiers Media SA AN - OPUS4-49424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Hoche, E. A1 - Stock, V. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Sieg, H. T1 - Intestinal and hepatic effects of iron oxide nanoparticles N2 - Iron oxide nanoparticles gain increasing attention due to their broad industrial use. However, safety concerns exist since their effects on human cells are still under investigation. The presence of iron oxide nanoparticles in the food pigment E172 has been shown recently. Here, we studied four iron oxide nanoparticles, one food pigment E172 and the ionic control FeSO4 regarding dissolution in biological media, uptake and transport, and cellular effects in vitro in human intestinal Caco-2 and HepaRG hepatocarcinoma cells. The iron oxide nanoparticles passed the gastrointestinal passage without dissolution and reached the intestine in the form of particles. Minor uptake was seen into Caco-2 cells but almost no transport to the basolateral site was detected for any of the tested particles. HepaRG cells showed higher particle uptake. Caco-2 cells showed no alterations in reactive oxygen species production, apoptosis, or mitochondrial membrane potential, whereas two particles induced apoptosis in HepaRG cells, and one altered mitochondrial membrane potential at non-cytotoxic concentrations. No correlation between physicochemical particle characteristics and cellular effects was observed, thus emphasizing the Need for case-by-case assessment of iron oxide nanoparticles. KW - Nanoparticles PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521651 DO - https://doi.org/10.1007/s00204-020-02960-7 VL - 95 IS - 3 SP - 895 EP - 905 PB - Springer AN - OPUS4-52165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liebig, F. A1 - Sarhan, R. M. A1 - Schmitt, C. N. Z. A1 - Thünemann, Andreas A1 - Prietzel, C. A1 - Bargheer, M. A1 - Koetz, J. T1 - Gold Nanotriangles with Crumble Topping and their Influence on Catalysis and Surface‐Enhanced Raman Spectroscopy N2 - By adding hyaluronic acid (HA) to dioctyl sodium sulfosuccinate (AOT)‐stabilized gold nanotriangles (AuNTs) with an average thickness of 7.5±1 nm and an edge length of about 175±17 nm, the AOT bilayer is replaced by a polymeric HA‐layer leading to biocompatible nanoplatelets. The subsequent reduction process of tetrachloroauric acid in the HA‐shell surrounding the AuNTs leads to the formation of spherical gold nanoparticles on the platelet surface. With increasing tetrachloroauric acid concentration, the decoration with gold nanoparticles can be tuned. SAXS measurements reveal an increase of the platelet thickness up to around 14.5 nm, twice the initial value of bare AuNTs. HRTEM micrographs show welding phenomena between densely packed particles on the platelet surface, leading to a crumble formation while preserving the original crystal structure. Crumbles crystallized on top of the platelets enhance the Raman signal by a factor of around 20, and intensify the plasmon‐driven dimerization of 4‐nitrothiophenol (4‐NTP) to 4,4′‐dimercaptoazobenzene in a yield of up to 50 %. The resulting crumbled nanotriangles, with a biopolymer shell and the absorption maximum in the second window for in vivo imaging, are promising candidates for biomedical sensing. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle KW - Gold PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503977 DO - https://doi.org/10.1002/cplu.201900745 VL - 85 IS - 3 SP - 519 EP - 526 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-50397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Smales, Glen Jacob A1 - Clark, Adam H. A1 - Thünemann, Andreas T1 - Zinc Phosphate Nanoparticles Produced in Saliva N2 - This paper reports the formation of zinc phosphate nanoparticles from the artificial digestion of zinc chloride. Initially, the formation of amorphous primary particles with a mean radius of 1.1 nm is observed, alongside the formation of larger, protein stabilized aggregates. These aggregates, with a radius of gyration of 37 nm, are observed after 5 minutes of exposure to artificial saliva and are shown to be colloidally stable for a minimum time of two weeks. The initially formed primary particles are thought to consist of amorphous zinc phosphate, which is then transformed into crystalline Zn3(PO4)2·4H2O over the course of two weeks. Our results demonstrate that the interaction of inorganic salts with bodily fluids can induce the formation of de novo nanoparticles, which in turn, provides insights into how zinc‐enriched foods may also facilitate the formation of nanoparticles upon contact with saliva. As such, this may be considered as an undesirable (bio)mineralization. KW - SAXS KW - Digestion KW - Zinc phosphate PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514239 DO - https://doi.org/10.1002/ejic.202000521 IS - 38 SP - 3654 EP - 3661 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-51423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Klusmann, L. A1 - Ellermann, A. L. A1 - Böhmert, L. A1 - Thünemann, Andreas A1 - Braeuning, A. T1 - Counterions determine uptake and effects of aluminum in human intestinal and liver cells N2 - Aluminum (Al) is highly abundant in the biosphere and can occur in different physico-chemical states. It is present in human food and undergoes transitions between dissolved and particulate species during the passage of the gastrointestinal tract. Moreover, in a complex matrix such as food different inorganic and organic counterions can affect the chemical behavior of Al following oral uptake. In this work, the effects of different counterions, namely chloride, citrate, sulfate, lactate and acetylacetonate, on Al uptake and toxicity in the human intestine are studied. The respective Al salts showed different dissolution behavior in biological media and formed nanoscaled particles correlating in reverse with the amount of their dissolved fraction. The passage through the intestinal barrier was studied using a Caco-2 Transwell® system, showing counterion-dependent variance in cellular uptake and transport. In addition, Al toxicity was investigated using Al species (Al3+, metallic Al0 and oxidic γAl2O3 nanoparticles) and counterions individually or in mixtures on Caco-2 and HepG2 cells. The strongest toxicity was observed using a combination of Al species, depending on solubility, and the lipophilic counterion acetylacetonate. Notably, only the combination of both led to toxicity, while both substances individually did not show toxic effects. A toxification of previously non-toxic Al-species by the presence of acetylacetonate is shown here for the first time. The dependency on the concentration of free Al ions was demonstrated using sodium hydrogen phosphate, which was able to counteract the toxic effects by complexing free Al ions. These findings, using Al salts as an example for a common food contaminant, underline the importance of a consideration of the chemical properties of human nutrition, especially dissolution and hydrophobicity, which can significantly influence the cellular uptake and effects of xenobiotic substances. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2022 DO - https://doi.org/10.1016/j.tiv.2021.105295 VL - 79 SP - 1 EP - 7 PB - Elsevier AN - OPUS4-54110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - SOP and reference data for determination of the Volume-specific Surface Area (VSSA) of a commercially available CeO2 nano powder N2 - Detailed SOP and reference data for the determination of the VSSA of a commercially available CeO2 nano powder: specific (BET-) Surface Area by gas adsorption (Ar and N2) skeletal (true solid state) density by gas pycnometry. Estimation of the particle size by VSSA screening method. KW - Nano powder KW - VSSA KW - Volume specific surface area KW - Screening method KW - Ceria KW - CeO2 PY - 2023 DO - https://doi.org/10.5281/zenodo.10061235 PB - Zenodo CY - Geneva AN - OPUS4-58786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shanmugam, Sankaran A1 - Peterlechner, Martin A1 - Iskandar, Mohamad Riza A1 - Saikia, Ujjal A1 - Kulitckii, Vladislav A1 - Lipińska-Chwałek, Marta A1 - Mayer, Joachim A1 - Rösner, Harald A1 - Hickel, Tilmann A1 - Divinski, Sergiy V. A1 - Wilde, Gerhard T1 - Coherent twin-oriented Al3Sc-based precipitates in Al matrix N2 - Al3(Sc,Zr,Ti) nanoparticles with an ideal twin-type orientation relationship to Al host matrix were found in cold-rolled and subsequently annealed Al-based alloy. Atomic-scale investigations using high-resolution scanning transmission electron microscopy identified particles that form prominent coherent (111) twin-type interfaces along their longer facets and semi-coherent twin interfaces on their shorter facets. Ab-initio calculations showed that a coherent Al/Al3Sc twin-like phase boundary corresponds to a local energy minimum. A model is proposed explaining the formation of the twin orientation relationship of an Al3Sc nanoparticle with the Al host matrix. KW - Al-based alloy KW - Precipitation KW - Twin orientation relationship KW - Ab initio calculations KW - Transition electron microscopy PY - 2023 DO - https://doi.org/10.1016/j.scriptamat.2023.115351 SN - 1359-6462 VL - 229 SP - 1 EP - 6 PB - Elsevier BV AN - OPUS4-58789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rühle, Bastian A1 - Bresch, Harald T1 - Competence Center nano@BAM Welcomes ISO/TC 229 Meeting in Berlin N2 - The Competence Center nano@BAM is presented. Examples directly related to the activities of the ISO Technical Committee TC 229 Nanotechnologies as well as BAM projects on nano reference measurement procedures, nano reference materials and nano reference data sets are showed. T2 - The 32nd ISO/TC 229 IEC/TC 113 JWG2 General Meeting CY - Berlin, Germany DA - 06.11.2023 KW - ISO/TC 229 Nanotechnologies KW - Nanoparticles KW - Nano@BAM KW - Reference materials KW - Reference data KW - Reference procedures PY - 2023 AN - OPUS4-58814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - López-Puertollano, Daniel A1 - Tobias, Charlie A1 - Bell, Jeremy A1 - Abad-Somovilla, A. A1 - Abad Fuentes, A. A1 - Rurack, Knut T1 - Superparamagnetic core-shell particles application: from cytometry assay to simplified fluidic system N2 - Superparamagnetic hybrid polystyrene-core silica-shell beads have emerged as promising alternatives to traditional in flow cytometry-based competitive antibody assays [1]. These materials consist of a polystyrene core and a silica shell, in which magnetic nanoparticles are embedded, facilitating the handling and retention in tests. The outer silica surface allows for easy modification through silane chemistry, allowing the attachment of antibodies, or other molecules of interest. Ochratoxin A (OTA), a mycotoxin that can be found in grain products, coffee, cacao, or grapes, was chosen as the main target analyte to detect [2]. In this study, previously in house produced anti-OTA antibodies [3] were attached to the surface of the particles and the whole system was used as detection entity. In a first approach, the system was used for the development of a competitive cytometry assay using an OTA-fluorescein (OTA-F) adduct as competitor and marker. In this assay the fluorescence emitted by the OTA-F competitor on the surface of the particle was detected at a wavelength of 518 nm using a 533/30.H filter and was correlated to the forward scatter (FSC) to distinguish it from the excess of competitor still in solution. Under optimised conditions, the final assay showed a limit of detection of 0.03 nM. In a second approach, a simplified ready-to-inject fluidic system was built based on a laser (488 nm) and a photomultiplier detector to measure the signal of competitor still in solution. The competition step was carried out in a vial and the whole mixture was injected into the fluidic system. To avoid signal scattering, the particles were separated in-line using a magnet and only the OTA-F competitor still in solution was detected, reaching a limit of detection of 1.2 nM. With the aim to reduce user manipulation, the final assay is still under development for in-line incubation during the competitive step. T2 - 15th Rapid Methods Europe Conference CY - Amsterdam, Netherlands DA - 06.11.2023 KW - Microfluidics KW - Flow cytometry KW - Bead-based assays KW - Magnetic beads KW - Core-shell particles KW - Immunoassays PY - 2023 AN - OPUS4-58817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zubia Aranburu, Judith A1 - Cappella, Brunero A1 - Zabala Eguren, A. A1 - Buruaga Lamarain, L. A1 - Aginagalde Lopez, A. A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Quantification of the adhesion force of E. coli on Ti via single-cell force spectroscopy N2 - Antibiotic resistance is a growing global problem which poses a massive threat to human health. Although human activity contributes to the acceleration of the process, bacteria have a self-driven stabilisation mechanism to protect themselves from such and other external threats: biofilm formation. Nonetheless, it is the adhesion of a single bacterial cell to a surface that triggers the formation of such network of biomolecules and microorganisms, as well as its hazardous consequences. The main objective of this work was to quantify the adhesion force of a single E. coli cell on a Ti substrate via the AFM-related single-cell force spectroscopy, with both the cell and the substrate material being of high clinical relevance. A set of 25 x 25 force displacement curves was acquired with a maximum force of 3.2 nN without dwell time, yielding a topography map and an adhesion force map that showed to be correlated. A mean adhesion force of 0.85 ± 0.175 nN was measured and the presence of cell appendages on the bacterial cell wall was verified through individual force-displacement curves. Bacterial viability was assessed after the measurements via live/dead staining. T2 - XL Congreso Anual de la Sociedad Española de Ingeniería Biomédica CASEIB 2022 CY - Valladolid, Spain DA - 23.11.2022 KW - Bacteria KW - Atomic force microscopy KW - Force distance curve PY - 2022 SN - 978-84-09-45972-8 SP - 217 EP - 220 AN - OPUS4-57039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Andresen, Elina A1 - Würth, Christian A1 - Weigert, Florian A1 - Frenzel, Florian T1 - Functional Luminophores – From Photophysics to Standardized Luminescence Measurements N2 - Inorganic nanocrystals with linear and nonlinear luminescence in the ultraviolet, visible, near infrared and short-wave infrared like semiconductor quantum dots and spectrally shifting lanthanide-based nanophosphors have meanwhile found applications in the life and material sciences ranging from optical reporters for bioimaging and sensing over security barcodes to solid state lighting and photovoltaics. These nanomaterials commonly have increasingly sophisticated core/shell particle architectures with shells of different chemical composition and thickness to minimize radiationless deactivation at the particle surface that is usually the main energy loss mechanism [1]. For lanthanide-based spectral shifters, particularly for very small nanoparticles, also surface coatings are needed which protect near-surface lanthanide ions from luminescence quenching by high energy vibrators like O-H groups and prevent the disintegration of these nanoparticles under high dilution conditions. [2,3,4]. The identification of optimum particle structures requires quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield [5,6], ideally flanked by single particle studies to assess spectroscopic inhomogeneities on a particle-to-particle level for typical preparation methods [7,8], Moreover, in the case of upconversion nanoparticles with a multi-photonic and hence, excitation power density (P)-dependent luminescence, quantitative luminescence studies over a broad P range are required to identify particle architectures that are best suited for applications in fluorescence assays up to fluorescence microscopy. Here, we present methods to quantify the photoluminescence of these different types of emitters in the vis/NIR/SWIR and as function of P and demonstrate the importance of such measurements for a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different size and particle architecture in different environments. T2 - Eingeladener Vortrag Uni Erlangen CY - Erlangen, Germany DA - 18.01.2023 KW - Semiconductor quantum dot KW - Upconversion nanocrystal KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Reference material KW - Surface analysis KW - Quantification PY - 2023 AN - OPUS4-57011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - X-ray Scattering USAXS/SAXS/WAXS (/XRD/PDF) N2 - A ten minute introduction to the technique of X-ray scattering. This talk discusses the foundation and the resulting morphological parameters that can be obtained from the technique. The talk is prepared for discussion within the framework of the OECD REACH guideline for nanomaterials. T2 - Digitaler Info-Tag "Nano or not Nano" CY - Berlin, Germany DA - 16.02.2023 KW - X-ray scattering KW - BAM Academy KW - SAXS KW - XRD KW - WAXS KW - Nanomaterial KW - REACH KW - OECD KW - Guideline PY - 2023 AN - OPUS4-57013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya T1 - New project on the quantification of functional groups (FGS) on nanomaterials N2 - The surface chemistry of nanomaterials controls their interaction with the environment and biological species and their fate and is hence also relevant for their potential toxicity. This has meanwhile led to an increasing interest in validated and preferably standardized methods for the determination and quantification of surface functionalities on nanomaterials and initiated different standardization projects within ISO/TC 229 and IEC/TC 113 as well as interlaboratory comparisons (ILCs) of different analytical methods for the quantification of surface coatings by OECD. Here we present the results of a first ILC on the quantification of the amount of amino functionalities on differently sized inorganic nanoparticles done by division Biophotonics and the National Research Council of Canada (NRC) and the PWI 19257 on the Characterization and Quantification of Surface Functional Groups and Coatings on Nanoobjects approved by ISO/TC 229 (WG2) in fall 2022 that will result in a VAMAS study on this topic organized by division Biophotonics. Key words: nanoparticles, surface analysis, surface functional groups, quantification, optical assay, qNMR, VAMAS, standardization, ICL, quality assurance, reference material. T2 - Eingeladener Vortrag Universität Erlangen CY - Erlangen, Germany DA - 18.01.2023 KW - Quality assurance KW - Nano KW - Particle KW - Standard KW - Reference material KW - Surface analysis KW - Quantification KW - Interlaboratory comparison KW - Standardization KW - VAMAS PY - 2023 AN - OPUS4-57044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Applications of photoluminescence lifetime measurements in the life and material sciences N2 - Bioanalytical, diagnostic, and security applications require the fast and sensitive determination of a steadily increasing number of analytes or events in parallel in a broad variety of detection formats and increased sensitivities. This – flanked by recent technical advancements and the availability of simple to use, commercial time-resolved photoluminescence measuring devices at reasonable costs - calls for the exploitation of the species- and environment-specific photoluminescence parameter luminescence lifetime. In this context, time-resolved photoluminescence measurements of different classes of molecular and nanocrystalline emitter and luminescent particles in different time windows are presented and examples for applications such as lifetime multiplexing and barcoding in conjunction with fluorescence lifetime imaging microscopy (FLIM) and flow cytometry are given. T2 - Eingeladener Vortrag bei dem Workshop von Picoquant „Time-resolved fluorescence“ CY - Berlin, Germany DA - 17.11.2022 KW - Dye KW - Quantum dot KW - Upconversion nanocrystal KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Reference material PY - 2022 AN - OPUS4-57048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Tavernaro, Isabella A1 - Kläber, Christoph A1 - Kunst, Alexandra T1 - Design, characterization, and application of fluorescent sensor particles N2 - pH and oxygen are amongst the most important and frequently measured analytes in the life and material sciences, indicating, e.g., diseases and corrosion processes. This includes the optical monitoring of pH in living cells for studying cellular internalization pathways, such as phagocytosis, endocytosis, and receptor ligand internalization with the aid of molecular and nanoscale fluorescent sensors. Nanoparticle (NP)-based sensors, that are labeled or stained with a multitude of sensor dyes, have several advantages as compare to conventional molecular probes like enhanced brightness, i.e., amplified signals, ease of designing ratiometric systems by combining analyte sensitive and inert reference dyes, and increased photostability. Moreover, this can enable the use of hydrophobic dyes in aqueous environments. Versatile templates and carriers for the fabrication of nanosensors by the staining and/or labelling with different fluorophores and sensor molecules or surface functionalized NP like silica (SiO2-NP) and polystyrene (PS-NP) particles provide. Here we present the design of a versatile platform of color emissive nanosensors and stimuli-responsive microparticles for the measurement of pH, oxygen, and other targets utilizing both types of matrices and sets of spectrally distinguishable sensor and reference dyes and their characterization and demonstrate the applicability of representative sensor particle for cellular studies. T2 - Vortrag bei dem Projekttreffen MicraGen CY - Copenhagen, Denmark DA - 18.08.2022 KW - Dye KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Integrating sphere spectroscopy KW - Sensor KW - pH KW - Oxygen KW - Microfluidics KW - Cancer KW - Cell KW - Life sciences PY - 2022 AN - OPUS4-57049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Würth, Christian T1 - Time resolved spectroscopy of upconverting lanthanide based upconversion nanocrystals N2 - The optical properties of these materials strongly depend on the excitation power density, i.e., the number of photons absorbed per time interval. The upconversion quantum efficiencies (ΦUC) of these materials, the excitation power dependent population i.e. the emission characteristics, and the deactivation dynamics are influenced by nanoparticle architecture, doping concentration, and the microenvironment. We will discuss how time resolved measurements can help to understand the fundamental photophysical mechanisms and discuss differences to other nanocrystals like quantum dots. T2 - 19th International Course on “Principles and Applications of Time-resolved Fluorescence Spectroscopy” CY - Berlin, Germany DA - 16.11.2022 KW - Nanoparticle KW - Lanthanide KW - Upconversion KW - Energy transfer PY - 2022 AN - OPUS4-57000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gawek, Marcel A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Growth kinetics of the adsorbed layer of poly(2-vinylpyridine) - An indirect observation of desorption of polymers from substrates N2 - The growth kinetics of the adsorbed layer of poly(2-vinylpiridine) on silicon oxide is studied using a leaching technique which is based on the Guiselin brushes approach. The adsorbed layer is grown from a 200 nm thick P2VP film for several annealing time periods at different annealing temperatures. Then the film is solvent-leached, and the height of the remaining adsorbed layer is measured by atomic force microscopy. At the lowest annealing temperature only a linear growth regime is observed, followed by a plateau. Here, the molecular mobility of segments is too low to allow for a logarithmic growth. At higher annealing temperatures, both linear and logarithmic growth regimes are observed, followed by a plateau. At even higher annealing temperatures, the growth kinetics of the adsorbed layer changes. A linear growth followed by logarithmic growth kinetics is observed for short annealing time periods. For longer annealing time periods, an upturn of the growth kinetics is observed. At the highest annealing temperature, only a logarithmic growth regime is found. The change in the growth kinetics is discussed by an alteration in the structure of the adsorbed layer. Moreover, the interaction between the polymer segments and the substrate becomes weaker due to both enthalpic and entropic effects. Therefore, at high annealing temperatures the polymer segments might more easily desorb from the substrate. KW - Ultra thin polymer films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575423 DO - https://doi.org/10.1039/d3sm00129f SN - 1744-683X SN - 1744-6848 VL - 19 IS - 21 SP - 3975 EP - 3982 PB - Royal Society of Chemistry (RSC) CY - London AN - OPUS4-57542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Partikelgrößen-verteilung mittels Zentrifugen-Sedimentationsverfahren nach ISO 13318-2 (Küvette) N2 - Im Vortrag werden das Messprinzip einer Photozentrifuge erläutert und die Anforderungen der zugrundeliegenden Normen diskutiert. Die praktische Durchführung der Messung und insbesondere auch die vorbereitenden Arbeiten, sowie die Auswertung der Rohdaten bilden den Schwerpunkt des Vortrags. Gezeigt werden auch die Validierung sowie ein Beispiel zur regelmäßigen Verifizierung des Verfahrens. Nach Anwendungsbeispielen und Vergleichen zu Ergebnissen mit anderen Messverfahren, wird das Verfahren in einer Zusammenfassung bewertet. T2 - Seminar Rheologie und Stabilität von dispersen Systemen CY - Potsdam, Germany DA - 08.05.2023 KW - CLS KW - Particle size KW - Nano PY - 2023 AN - OPUS4-57679 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Fischer, Daniel A1 - Freiberg, K. A1 - Duwe, M. A1 - Sahre, Mario A1 - Schneider, S. A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Rettenmayr, M. A1 - Beck, Uwe A1 - Undisz, A. T1 - Single Femtosecond Laser Pulse induced Amorphization, Re-crystallization and Native Oxide Removal at Silicon Wafer Surfaces N2 - Single femtosecond laser pulse induced amorphization, re-crystallization and native oxide layer removal at silicon wafer surfaces of different crystal orientation is studied via spectroscopic imaging ellipsometry, atomic force microscopy, and high-resolution transmission electron microscopy. T2 - 2023 Conference on Lasers and Electro-Optics/Europe – European Quantum Electronics Conferences CY - Munich, Germany DA - 26.06.2023 KW - Femtosecond laser KW - Laser-induced amorphization KW - Spectroscopic imaging ellipsometry KW - Transmission electron microscopy KW - Native oxide layer PY - 2023 AN - OPUS4-57829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Foroutan, F. A1 - Kyffin, B. A. A1 - Nikolaou, A. A1 - Merino-Gutierrez, J. A1 - Abrahams, I. A1 - Kanwal, N. A1 - Knowles, J. C. A1 - Smith, A. J. A1 - Smales, Glen Jacob A1 - Carta, D. T1 - Highly porous phosphate-based glasses for controlled delivery of antibacterial Cu ions prepared via sol–gel chemistry N2 - Mesoporous glasses are a promising class of bioresorbable biomaterials characterized by high surface area and extended porosity in the range of 2 to 50 nm. These peculiar properties make them ideal materials for the controlled release of therapeutic ions and molecules. Whilst mesoporous silicate-based glasses (MSG) have been widely investigated, much less work has been done on mesoporous phosphate-based glasses (MPG). In the present study, MPG in the P2O5–CaO–Na2O system, undoped and doped with 1, 3, and 5 mol% of Cu ions were synthesized via a combination of the sol–gel method and supramolecular templating. The non-ionic triblock copolymer Pluronic P123 was used as a templating agent. The porous structure was studied via a combination of Scanning Electron Microscopy (SEM), Small-Angle X-ray Scattering (SAXS), and N2 adsorption–desorption analysis at 77 K. The structure of the phosphate network was investigated via solid state 31P Magic Angle Spinning Nuclear Magnetic Resonance (31P MAS-NMR) and Fourier Transform Infrared (FTIR) spectroscopy. Degradation studies, performed in water via Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), showed that phosphates, Ca2+, Na+ and Cu ions are released in a controlled manner over a 7 days period. The controlled release of Cu, proportional to the copper loading, imbues antibacterial properties to MPG. A significant statistical reduction of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial viability was observed over a 3 days period. E. coli appeared to be more resistant than S. aureus to the antibacterial effect of copper. This study shows that copper doped MPG have great potential as bioresorbable materials for controlled delivery of antibacterial ions. KW - Bioresorbable Biomaterials KW - Mesoporous phosphate-based glasses KW - Synthesis KW - Degradation studies KW - X-ray scattering KW - MOUSE KW - Antibacterial properties KW - Aantimicrobial PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578101 DO - https://doi.org/10.1039/D3RA02958A VL - 13 IS - 29 SP - 19662 EP - 19673 PB - Royal Society of Chemistry AN - OPUS4-57810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - What’s that beyond the grasslands? Expanding your world view via wide-range X-ray scattering N2 - This talk introduces the expanded view that comes from wide-range X-ray scattering investigations. Compared to X-ray diffraction studies alone, the additional angular range of this technique provides information on the larger structural dimensions present in your samples. This allows for the extraction of information on the size and size distribution of nanostructural components, such as nanoparticles, nanovoids, and any other structure exhibiting an electron density contrast. The talk introduces the technique, the MOUSE instrument used for these investigations, and provides several real-world examples of its uses. The audience is invited to choose which examples captures their interest from a range of options, in the latter segment of the talk. T2 - ECS8: European Crystallography School 2023 CY - Berlin, Germany DA - 18.06.2023 KW - X-ray scattering KW - Introduction KW - Fourier transforms KW - Nanostructure investigation KW - Instrument automation KW - MOUSE PY - 2023 AN - OPUS4-57769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - External Liaison Report ISO/TC 202 'Microbeam Analysis' to ISO/TC 229 'Nanotechnologies' N2 - The liaison report from the ISO Technical Committee ISO/TC 202 'Microbeam Analysis' for the November 2022 ISO/TC 229 Nanotechnologies Plenary Meeting Nanotechnologies Liaison Coordination Group (NLCG) is provided. Essential Information such as newly published standards and projects in develeopment relevant for ISO/TC 229 resulted from the progress within the last year and additional comments on behalf of ISO/TC 202 are included in the report. KW - ISO/TC 202 KW - ISO/TC 229 KW - VAMAS KW - Nanotechnologies KW - Microbeam Analysis KW - Standardisation PY - 2022 SP - 1 EP - 4 CY - ISO, Geneva, CH AN - OPUS4-56734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costache, F. A1 - Valette, S. A1 - Bonse, Jörn T1 - Editorial: Special Issue “Dynamics and Processes at Laser-Irradiated Surfaces—A Themed Issue in Honor of the 70th Birthday of Professor Jürgen Reif” N2 - The Special Issue “Dynamics and Processes at Laser-irradiated Surfaces” is dedicated to the 70th birthday of Jürgen Reif, retired full professor, former Chair of Experimental Physics II of the Faculty of Physics of the Brandenburg University of Technology Cottbus—Senftenberg in Germany. KW - Laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Femtosecond laser PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569482 DO - https://doi.org/10.3390/nano13030611 SN - 2079-4991 VL - 13 IS - 3 SP - 1 EP - 3 PB - MDPI CY - Basel AN - OPUS4-56948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures: mechanisms, applications, and unsolved problems N2 - Laser-induced Periodic Surface Structures (LIPSS, ripples) are a universal phenomenon and can be generated in a contactless, single-step process on almost any type of solid upon irradiation with intense laser pulses. They represent a (quasi-)periodic modulation of the surface topography in the form of a linear grating and are typically formed in a “self-ordered” way in the focus of a laser beam. Thus, they are often accompanying laser material processing applications. The structural sizes of LIPSS typically range from several micrometers down to less than 100 nanometers – far beyond the optical diffraction limit – while their orientations exhibit a clear correlation with the local polarization direction of the laser radiation. From a theoretical point of view, a controversial debate has emerged during the last decades, whether LIPSS originate from electromagnetic effects (seeded already during the laser irradiation) – or whether they emerge from matter-reorganization processes (distinctly after the laser irradiation). From a practical point of view, however, LIPSS represent a simple and robust way for the nanostructuring of solids that allows creating a wide range of different surface functionalities featuring applications in optics, tribology, medicine, energy technologies, etc. This presentation reviews the currently existent theories of LIPSS. A focus is laid on the historic development of the fundamental ideas behind the LIPSS, their corresponding mathematical descriptions and numerical implementations, along with a comparison and critical assessment of the different approaches. Fourth generation light sources, namely short wavelength, short pulse free electron lasers (FELs) are offering new and fascinating possibilities to resolve laser-induced structure formation at surfaces on the sub-micrometer to nanometer length scale and in temporal regimes ranging from picoseconds to several nanoseconds with sub-picosecond resolution. This unique spatio-temporal resolution allows to reveal early signatures of coherent/plasmonic electromagnetic scattering effects followed by the excitation of hydrodynamic capillary waves – providing new insights to the above-mentioned debate. Finally, some unsolved scientific problems related to LIPSS are identified and the pending technological limitations are discussed. While the currently available laser and scanner technology already allows large area surface processing with rates at the m2/min level, industrial applications of LIPSS are sometimes limited by the complex interplay between the nanoscale surface topography and the specific surface chemistry. This typically manifests in difficulties to control the processing of LIPSS and in limitations to ensure the long-term stability of the created surface functions. Strategies for overcoming such limitations are outlined. T2 - Institutskolloquium des Leibniz-Instituts für Oberflächenmodifizierung CY - Leipzig, Germany DA - 02.02.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Industrial applications KW - Femtosecond laser PY - 2023 AN - OPUS4-56949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, R. A1 - Zhenlong, F. A1 - Yang, J. A1 - Ansari, A. A1 - Ou, Jun A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Retracted article: Effect of Ca2+ doping on the upconversion luminescence properties of NaYF4:Yb3+/Tm3+ nanoparticles and study of its temperature measurement performance N2 - A solvothermal method was used to prepare a series of Yb3+/Tm3+/Ca2+ co-doped NaYF4 nanoparticles with different Ca2+ contents. Strong upconversion blue fluorescence could be observed under 980 nm laser excitation of the samples. The effect of different Ca2+ contents on the luminescence intensity was investigated, and it was found that the UV-vis upconversion luminescence increased and then decreased with an increasing Ca2+ concentration during the increase of the Ca2+ content from 0 mol% to 25 mol%, reaching the strongest fluorescence at 15 mol%, which was up to about 28 times stronger than that without Ca2+ doping. Furthermore, the mechanism was investigated, and it was found that the doping of Ca2+ disrupted the symmetry of the crystal field, resulting in a significant enhancement of the overall fluorescence. Applied to fluorescence intensity ratio thermometry, the absolute and relative sensitivities are as high as 0.0418 K−1 and 2.31% K−1, respectively, with a minimum temperature resolution of 0.0129 K. KW - Sensor KW - Temperature KW - Lanthanide KW - Luminescence KW - Nanoparticles KW - Upconversion KW - Advanced materials PY - 2022 DO - https://doi.org/10.1039/D2CE00562J SN - 1466-8033 VL - 24 IS - 27 SP - 4887 EP - 4898 PB - Royal Society of Chemistry CY - London AN - OPUS4-56952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard T1 - McSAS3 N2 - McSAS3 is a refactored version of the original McSAS (see DOI 10.1107/S1600576715007347). This software fits scattering patterns to obtain size distributions without assumptions on the size distribution form. The refactored version has some neat features: - Multiprocessing is included, spread out over as many cores as number of repetitions! - Full state of the optimization is stored in an organized HDF5 state file. - Histogramming is separate from optimization and a result can be re-histogrammed as many times as desired. - SasModels allow a wide range of models to be used - If SasModels does not work (e.g. because of gcc compiler issues on Windows or Mac), an internal sphere model is supplied - Simulated data of the scattering of a special shape can also be used as a McSAS fitting model. Your models are infinite! - 2D fitting also works. KW - X-ray scattering KW - Polydispersity KW - Monte carlo KW - Scattering pattern analysis KW - Analysis approach KW - Neutron scattering KW - Automation KW - Command line PY - 2023 DO - https://doi.org/10.6084/m9.figshare.21814128.v1 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-56787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Laskina, Sofya T1 - Computing the forward and inverse problem of X-ray scattering N2 - Continuing progress in the field of X-ray scattering methods empowers scientists with new possibilities to capture the most important piece of information about the structure of the sample - its 3D electron density. Although the first methods appeared almost a century ago, recovering the density structure of a sample is still very problematic. Most avail-able imaging techniques transform a 3D electron density of a realspace structure into the 2D Fourier Transform of the intensity of scattered waves in the reciprocal space. This process causes a loss of information. Firstly, instead of a 3D sample, a 2D image is created, and secondly, the phase information of the scattered waves is lost. The latter is known as the ”phase problem” and poses a serious obstacle on a way to recover a 3D electron density. In this work, we draw attention to the problem of forward and inverse Small Angle X-Ray Scattering. In the first, forward, part, we rethink the existing pipelines to computationally simulate such scattering experiments. Although there are efficient implementations of fast Fourier transformation, they often have some drawbacks. For instance, to calculate a 3D fast Fourier transform it is required to place its density in the RAM. For high-resolution structures of size > 1024 3 , this becomes very problematic, as the whole density structure requires more than 16 GB of memory. CUDA solution allows for a very fast and parallelizable implementation of high-resolution data on hundreds of last-generation machines. Such computations are very pricy and inaccessible for most scientists. To bypass this limitation, we propose a solution for a split-up 3D fast Fourier transform, which is implemented as a sequence of 2D and 1D operations. We compare our implementation on the simulated 3D shapes and show the result of a proof-of-concept on 4096 3 Metallorganic framework density structure. In the second, inverse problem, we train an invertible neural network, that given scattering data can predict the shape and its parameters. The architecture is built such, that the inverse problem is learned together with the forward process - the Fourier Transformation. We achieved very good results with this architecture, nonetheless, further testing is required, as the current training set only encompasses three simple shapes: sphere, hard sphere and cylinder. All code to reproduce and analyze the results is available at https: //github.com/sofyalaski/SAXS-simulations. KW - Machine Learning KW - SAXS KW - DFT PY - 2023 SP - 1 EP - 76 PB - Freie Universität Berlin CY - Berlin AN - OPUS4-56798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - VIDEO A1 - Pauw, Brian Richard T1 - The Human Factor: Results of a Data Analysis Round Robin N2 - This is a remote presentation I gave at the 2022 Small-angle Scattering conference in Campinas, Brazil. The video has been obtained from the conference organisers with their explicit permission for use on YouTube. I've tried to spruce up the audio from the remote recording the best I could. The conference abstract for this talk was: "How much do we, the small-angle scatterers, influence the results of an investigation? What uncertainty do we add by our human diversity in thoughts and approaches, and is this significant compared to the uncertainty from the instrumental measurement factors? After our previous Round Robin on data collection, we know that many laboratories can collect reasonably consistent small-angle scattering data on easy samples[1]. To investigate the next, human component, we compiled four existing datasets from globular (roughly spherical) scatterers, each exhibiting a common complication, and asked the participants to apply their usual methods and toolset to the quantification of the results (https://lookingatnothing.com/index.ph.... Accompanying the datasets was a modicum of accompanying information to help with the interpretation of the data, similar to what we normally receive from our collaborators. More than 30 participants reported back with volume fractions, mean sizes and size distribution widths of the particle populations in the samples, as well as information on their self-assessed level of experience and years in the field. While the Round Robin is still underway (until the 25th of April, 2022), the initial results already show significant spread in the results. Some of these are due to the variety in interpretation of the meaning of the requested parameters, as well as simple human errors, both of which are easy to correct for. Nevertheless, even after correcting for these differences in understanding, a significant spread remains. This highlights an urgent challenge to our community: how can we better help ourselves and our colleagues obtain more reliable results, how could we take the human factor out of the equation, so to speak? In this talk, we will introduce the four datasets, their origins and challenges. Hot off the press, we will summarize the anonymized, quantified results of the Data Analysis Round Robin. (Incidentally, we will also see if a correlation exists between experience and proximity of the result to the median). Lastly, potential avenues for improving our field will be offered based on the findings, ranging from low-effort yet somehow controversial improvements, to high-effort foundational considerations." KW - Round robin KW - Data analysis KW - X-ray scattering KW - Neutron scattering KW - Nanomaterials KW - Metrology KW - Interlaboratory comparison PY - 2023 UR - https://www.youtube.com/watch?v=t1Rowo--Osg PB - YouTube, LLC CY - San Bruno, CA, USA AN - OPUS4-56897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jamro, R. A1 - Mente, Tobias A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Al-Falahat, Ala'A. M. A1 - Woracek, R. A1 - Manke, I. A1 - Griesche, Axel T1 - Temperature distribution during welding measured by neutron imaging N2 - This study was carried out to investigate the neutron transmission signal as a function of sample temperature during a welding process. A theoretical description that includes the Debye-Waller factor was used to describe the temperature influence on the neutron crosssections. Neutron imaging using a monochromatic beam helps to observe transmission variations related to the material temperature. In-situ neutron imaging of welding experiments show the distribution of the temperature in bulk steel samples. The performed finite element modelling of expected temperature distributions shows good agreement with the obtained experimental data. KW - Neutron imaging KW - Debye-Waller-Faktor PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586268 DO - https://doi.org/10.1088/1742-6596/2605/1/012026 VL - 2605 SP - 1 EP - 10 PB - IOP Publishing Ltd. AN - OPUS4-58626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hering, Marcus A1 - Sievers, Jürgen A1 - Curbach, Manfred A1 - Beckmann, Birgit T1 - An Approach to Predicting the Ballistic Limit of Thin Textile-Reinforced Concrete Plates Based on Experimental Results N2 - In this article, a partial selection of experiments on enhancing the impact resistance of structural components with non-metallic, textile-reinforced concrete is discussed. The focus is on the experimental investigations in which the impact resistance of thin, textile-reinforced concrete plates is characterized. The article discusses the materials, fabrics and test setup used. For the experimental work, a drop tower from the Otto Mohr Laboratory, which belongs to the Technische Universtät Dresden, was used. Furthermore, the experimental results are presented and evaluated using different methods. Based on the collected data, a suitable approach to determining the perforation velocity of an impactor through the investigated thin, textile-reinforced concrete plates is shown. KW - Building and Construction KW - Civil and Structural Engineering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586692 DO - https://doi.org/10.3390/buildings13092234 VL - 13 IS - 9 SP - 1 EP - 14 PB - MDPI AN - OPUS4-58669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spaltmann, Dirk A1 - Ayerdi Gomez, A. A1 - Slachciak, Nadine A1 - Zubia Aranburu, J. A1 - Zabala, A. A1 - Aginagalde, A. A1 - Bonse, Jörn T1 - Improvement of the tribological performance of titanium alloy using FS-laser-induced periodic surface structures in combination with ZDDP and ionic liquid lubricant additives N2 - The performance of titanium alloy (Ti6Al4V) surfaces was investigated in lubricated reciprocating sliding tribological tests (RSTT). Special emphasis was laid on the effect of surface nanostructures in area of contact on the respective friction and wear behaviour. These so-called laser-induced periodic surface structures (LIPSS, ripples) were produced on the titanium alloy surface upon scan processing in air by an ultrashort pulsed femtosecond (fs) laser. As lubricant served two types of base oils, a pure polyalcylene-glycol, and an SAE 0W30 oil containing only antioxidants and temperature stabilizers. Tribological tests were carried out on polished as well as LIPSS covered areas using both types of base oil. A test metrics was established, combining the additive 2-ethylhexyl-zincdithiophosphate (ZDDP) or the ionic liquid [P6,6,6,14] [DEHP] (98% purity) with the respective base oils. The test metrics also considered the orientation of motion with respect to the orientation of the structures formed on the surface. Results are presented which show that the interplay between LIPSS and the local chemistry formed by the respective additives is beneficial for the tribological behaviour of the titanium alloy. Certain combinations of base oil, additive and LIPSS reduced friction and wear significantly in the tribological contact. T2 - 64. Tribologie-Fachtagung CY - Göttingen, Germany DA - 25.09.2023 KW - TiAl64V KW - 100Cr6 KW - Friction KW - Wear KW - LIPSS KW - Lubrication KW - PAG KW - Ionic liquid PY - 2023 AN - OPUS4-58641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ayerdi Gomez, A. A1 - Slachciak, Nadine A1 - Zubia Aranburu, J. A1 - Zabala, A. A1 - Aginagalde, A. A1 - Bonse, Jörn A1 - Spaltmann, Dirk T1 - Improvement of the tribological performance of titanium alloy using FS-laser-induced periodic surface structures in combination with ZDDP and ionic liquid lubricant additives N2 - The performance of titanium alloy (Ti6Al4V) surfaces was investigated in lubricated reciprocating sliding tribological tests (RSTT). Special emphasis was laid on the effect of surface nanostructures in area of contact on the respective friction and wear behaviour. These so-called laser-induced periodic surface structures (LIPSS, ripples) were produced on the titanium alloy surface upon scan processing in air by an ultrashort pulsed femtosecond (fs) laser. As lubricant served two types of base oils, a pure polyalcylene-glycol, and an SAE 0W30 oil containing only antioxidants and temperature stabilizers. Tribological tests were carried out on polished as well as LIPSS covered areas using both types of base oil. A test metrics was established, combining the additive 2-ethylhexyl-zincdithiophosphate (ZDDP) or the ionic liquid [P6,6,6,14] [DEHP] (98% purity) with the respective base oils. The test metrics also considered the orientation of motion with respect to the orientation of the structures formed on the surface. Results are presented which show that the interplay between LIPSS and the local chemistry formed by the respective additives is beneficial for the tribological behaviour of the titanium alloy. Certain combinations of base oil, additive and LIPSS reduced friction and wear significantly in the tribological contact. T2 - 64. Tribologie-Fachtagung CY - Göttingen, Germany DA - 25.09.2023 KW - TiAl64V KW - 100Cr6 KW - Friction KW - Wear KW - LIPSS KW - Lubrication KW - PAG KW - Ionic liquid PY - 2023 SP - 1 EP - 5 AN - OPUS4-58642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Chambers, Aaron P. A. A1 - Breßler, Ingo T1 - A holistic experiment chain for scattering-powered materials science investigations N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology1 let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators over the last five years. Combined with universal, automat-ed data correction pipelines, as well as our analysis and simulation software, this led to more than 40 papers2 in the last 5 years with just over 2 full-time staff members. While this approach greatly improved the consistency of the results, the consistency of the samples and sample series provided by the users was less reliable nor necessarily reproducible. To address this issue, we built an EPICS-controlled, modular synthesis platform to add to our laboratory. To date, this has prepared over 1200 additional (Metal-Organic Framework) samples for us to meas-ure, analyse and catalogue. By virtue of the automation, the synthesis of these samples is automat-ically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases alongside the morphological results obtained from the automated X-ray scat-tering analysis. Having developed these proof-of-concepts, we find that the consistency of results are greatly im-proved by virtue of their reproducibility, hopefully adding to the reliability of the scientific findings as well. Additionally, the nature of the experiments has changed greatly, with much more emphasis on preparation and careful planning. This talk will discuss the advantages and disadvantages of this highly integrated approach and will touch upon upcoming developments. T2 - canSAS-XIII CY - Grenoble, France DA - 16.10.2023 KW - Methodology KW - Lab automation KW - X-ray scattering KW - Automated synthesis KW - Data stewardship KW - Holistic experimental procedures KW - Scicat PY - 2023 AN - OPUS4-58643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprachmann, J. A1 - Grabicki, N. A1 - Möckel, Anna A1 - Maltitz, J. A1 - del Refugio Monroy Gómez, J. A1 - Smales, Glen Jacob A1 - Dumele, O. T1 - Substituted Benzophenone Imines for COF Synthesis via Formal Transimination N2 - Covalent organic frameworks (COFs) are a prominent class of organic materials constructed from versatile building blocks via reversible reactions. The quality of imine-linked COFs can be improved by using amine monomers protected with benzophenone forming benzophenone imines. Here, we present a study on substituted benzophenones in COF synthesis via formal transimination. 12 para-substituted N-aryl benzophenone imines, with a range of electron-rich to electron-poor substituents, were prepared and their hydrolysis kinetics were studied spectroscopically. All substituted benzophenone imines can be employed in COF synthesis and lead to COFs with high crystallinity and high porosity. The substituents act innocent to COF formation as the substituted benzophenones are cleaved off. Imines can be tailored to their synthetic demands and utilized in COF formation. This concept can make access to previously unattainable, synthetically complex COF monomers feasible. KW - Materials Chemistry KW - Metals and Alloys KW - Surfaces, Coatings and Films KW - General Chemistry KW - Ceramics and Composites KW - Electronic, Optical and Magnetic Materials KW - Catalysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586449 DO - https://doi.org/10.1039/D3CC03735E SN - 1359-7345 SP - 1 EP - 4 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drobne, D. A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Bohmer, N. A1 - Novak, S. A1 - Kranjc, E. A1 - Kononenko, V. A1 - Reuther, R. T1 - Knowledge, Information, and Data Readiness Levels (KaRLs) for Risk Assessment, Communication, and Governance of Nano-, New, and Other Advanced Materials N2 - The obvious benefits derived from the increasing use of engineered nano-, new, and advanced materials and associated products have to be weighed out by a governance process against their possible risks. Differences in risk perception (beliefs about potential harm) among stakeholders, in particular nonscientists, and low transparency of the underlying decision processes can lead to a lack of support and acceptance of nano-, new, and other advanced material enabled products. To integrate scientific outcomes with stakeholders needs, this work develops a new approach comprising a nine-level, stepwise categorization and guidance system entitled “Knowledge, Information, and Data Readiness Levels” (KaRLs), analogous to the NASA Technology Readiness Levels. The KaRL system assesses the type, extent, and usability of the available data, information, and knowledge and integrates the participation of relevant and interested stakeholders in a cocreation/codesign process to improve current risk assessment, communication, and governance. The novelty of the new system is to communicate and share all available and relevant elements on material related risks in a user/stakeholder-friendly, transparent, flexible, and holistic way and so stimulate reflection, awareness, communication, and a deeper understanding that ultimately enables the discursive process that is needed for the sustainable risk governance of new materials. KW - Risk asessment KW - Advanced materials KW - TRL KW - Governance KW - Data readiness level PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575344 DO - https://doi.org/10.1002/gch2.202200211 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-57534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hunter, R. D. A1 - Hayward, E. C. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Kulak, A. A1 - Guan, S. A1 - Schnepp, Z. T1 - The effect of nitrogen on the synthesis of porous carbons by iron-catalyzed graphitization N2 - This paper reports a systematic study into the effect of nitrogen on iron-catalyzed graphitization of biomass. Chitin, chitosan, N-acetylglucosamine, gelatin and glycine were selected to represent nitrogen-rich saccharides and amino-acid/polypeptide biomass precursors. The materials were pyrolyzed with an iron catalyst to produce carbons with a wide range of chemical and structural features such as mesoporosity and nitrogen-doping. Many authors have reported the synthesis of nitrogen-doped carbons by pyrolysis and these have diverse applications. However, this is the first systematic study of how nitrogen affects pyrolysis of biomass and importantly the catalytic graphitization step. Our data demonstrates that nitrogen inhibits graphitization but that some nitrogen survives the catalytic graphitization process to become incorporated into various chemical environments in the carbon product. KW - Graphitization KW - Nanoparticles KW - Nanocomposite KW - Porous carbon KW - Nitrogen KW - Scattering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575351 DO - https://doi.org/10.1039/d3ma00039g VL - 4 SP - 2070 EP - 2077 PB - Royal Society of Chemistry AN - OPUS4-57535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kohlbrecher, J. A1 - Breßler, Ingo T1 - SASfit 0.94.12 N2 - Small-angle scattering is an increasingly common method for characterizing particle ensembles in a wide variety of sample types and for diverse areas of application. SASfit has been one of the most comprehensive and flexible curve-fitting programs for decades, with many specialized tools for various fields. KW - Small-angle scattering KW - SAXS KW - SANS KW - Scattering pattern analysis PY - 2023 UR - https://doi.org/10.5281/zenodo.7530357 DO - https://doi.org/10.5281/zenodo.7530356 PB - Zenodo CY - Geneva AN - OPUS4-57913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Monavari, Mahshid A1 - Homaeigohar, Shahin A1 - Medhekar, Rucha A1 - Nawaz, Qaisar A1 - Monavari, Mehran A1 - Zheng, Kai A1 - Boccaccini, Aldo R. T1 - A 3D-Printed Wound-Healing Material Composed of Alginate Dialdehyde–Gelatin Incorporating Astaxanthin and Borate Bioactive Glass Microparticles N2 - In this study, a wound dressing composed of an alginate dialdehyde−gelatin (ADA-GEL) hydrogel incorporated by astaxanthin (ASX) and 70B (70:30 B2O3/CaO in mol %) borate bioactive glass (BBG) microparticles was developed through 3D printing. ASX and BBG particles sti.ened the composite hydrogel construct and delayed its in vitro degradation compared to the pristine hydrogel construct, mainly due to their cross-linking role, likely arising from hydrogen bonding between the ASX/BBG particles and ADA-GEL chains. Additionally, the composite hydrogel construct could hold and deliver ASX steadily. The composite hydrogel constructs codelivered biologically active ions (Ca and B) and ASX, which should lead to a faster, more e.ective wound-healing process. As shown through in vitro tests, the ASX-containing composite hydrogel promoted fibroblast (NIH 3T3) cell adhesion, proliferation, and vascular endothelial growth factor expression, as well as keratinocyte (HaCaT) migration, thanks to the antioxidant activity of ASX, the release of cell-supportive Ca2+ and B3+ ions, and the biocompatibility of ADA-GEL. Taken together, the results show that the ADA-GEL/BBG/ASX composite is an attractive biomaterial to develop multipurposed wound-healing constructs through 3D printing. KW - General Materials Science PY - 2023 DO - https://doi.org/10.1021/acsami.2c23252 SP - 1 EP - 12 PB - American Chemical Society (ACS) AN - OPUS4-58548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nourinejhad Zarghani, Shaheen A1 - Ehlers, Jens A1 - Monavari, Mehran A1 - von Bargen, Susanne A1 - Hamacher, Joachim A1 - Büttner, Carmen A1 - Bandte, Martina T1 - Applicability of Different Methods for Quantifying Virucidal Efficacy Using MENNO Florades and Tomato Brown Rugose Fruit Virus as an Example N2 - After entry of a quarantine/regulated pathogen, infected plants shall be destroyed, and the cultivated area (e.g., greenhouse) shall be disinfected. Therefore, the selection of an effective disinfectant plays an important role. With the availability of different methods for virus quantification, we investigated the application of quantitative ELISA (qELISA), RT-qPCR (reverse transcription-quantitative polymerase chain reaction), and bioassays for the quantification of disinfectant efficacy. Therefore, we estimated the titer reduction in tomato brown rugose fruit virus (ToBRFV), a regulated pathogen, in plant sap and on germ carriers after treatment with MENNO Florades 4% for 16 h. The virus load before and after the treatment was measured with the mentioned methods. The RT-qPCR and qELISA methods showed very low efficacy in the presence of the disinfectant. Although bioassays are time-consuming, need purified particles for establishing the quantification models, and are less sensitive than RT-qPCR, they were able to quantify the differences in virus titer in the presence/absence of disinfectant. Interestingly, the bioassays reached at least the lower limit sensitivity of a qELISA. By being less sensitive to the presence of the disinfectant, bioassays proved to be the only technique for the determination of the disinfectant efficacy against ToBRFV on different germ carriers as well as on virus-infected plant sap. KW - Plant Science KW - Ecology KW - Evolution KW - Behavior and Systematics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585497 DO - https://doi.org/10.3390/plants12040894 VL - 12 IS - 4 SP - 1 EP - 18 PB - MDPI AG AN - OPUS4-58549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nourinejhad Zarghani, Shaheen A1 - Monavari, Mehran A1 - Ehlers, Jens A1 - Hamacher, Joachim A1 - Büttner, Carmen A1 - Bandte, Martina T1 - Comparison of Models for Quantification of Tomato Brown Rugose Fruit Virus Based on a Bioassay Using a Local Lesion Host N2 - Considering the availability of serological and molecular biological methods, the bioassay has been paled into insignificance, although it is the only experimental method that can be used to demonstrate the infectivity of a virus. We compared goodness-of-fit and predictability power of five models for the quantification of tomato brown rugose fruit virus (ToBRFV) based on local lesion assays: the Kleczkowski model, Furumoto and Mickey models I and II, the Gokhale and Bald model (growth curve model), and the modified Poisson model. For this purpose, mechanical inoculations onto Nicotiana tabacum L. cv. Xanthi nc and N. glutionosa L. with defined virus concentrations were first performed with half-leaf randomization in a Latin square design. Subsequently, models were implemented using Python software and fitted to the number of local lesions. All models could fit to the data for quantifying ToBRFV based on local lesions, among which the modified Poisson model had the best prediction of virus concentration in spike samples based on local lesions, although data of individual indicator plants showed variations. More accurate modeling was obtained from the test plant N. glutinosa than from N. tabacum cv. Xanthi nc. The position of the half-leaves on the test plants had no significant effect on the number of local lesions. KW - Plant Science KW - Ecology KW - Evolution KW - Behavior and Systematics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585506 DO - https://doi.org/10.3390/plants11243443 VL - 11 IS - 24 SP - 1 EP - 16 PB - MDPI AN - OPUS4-58550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill T1 - Reaction of high-entropy alloys with hydrogen under extreme conditions N2 - In the current study, we investigate an interaction under high-pressure high-temperature of single phase fcc-, hcp- and bcc-structured high-entropy alloys with hydrogen, carbon and nitrogen to obtain high-entropy hydrides, carbides and nitrides. Structural changes in high-entropy alloys upon compression and heating in the presence of these light elements are in the focus of our investigation. An easy route to high-entropy hydrides, carbides and nitrides will open new synthetic horizons in compositionally complex materials. Our study suggests that high-entropy alloys form high- entropy hydrides mainly with a composition close to M:H 1:1 ratio. Hydrides can be obtained under compression with hydrogen as a pressure compression medium or using hydrogen fluid as reactive agent. T2 - Intermetallics 2023 CY - Bad Staffelstein, Germany DA - 03.10.2023 KW - HEA PY - 2023 AN - OPUS4-58555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Fürstenwerth, Paul A1 - Resch-Genger, Ute T1 - pH-Responsive Dyad Molecules: MiGraGen Project N2 - Optical pH sensors utilizing colorimetric or fluorescent indicator dyes are highly promising in many biomedical and life science applications where electrochemical sensors fail. For instance, optical sensors are not prone to electrical interferences, they are noninvasive and enable remote measurements. Moreover, fluorescence detection is very fast, highly sensitive, and provides several readout parameters ideal for multiplexing with nanometer resolution using simple, inexpensive, and miniaturizable instrumentation. Here, we present the design of a dyad sensor molecule, consisting of an analyte-responsive and an analyte inert reference fluorophore. T2 - MiGraGen Project Meeting 16.06.2023 CY - Online Meeting DA - 16.06.2023 KW - Dyad molecules KW - pH sensing KW - Fluorescent indicator KW - Ratiometric sensors PY - 2023 AN - OPUS4-58070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -