TY - CONF A1 - Bresch, Harald T1 - Anwendungen von maschinellem Lernen und KI an der BAM N2 - Im Austausch mit den anderen Bundesoberbehörden wurden die KI-Ansätze der verschiedenen Bundesoberbehörden zu spezifischen Themen der Nanowissenschaften präsentiert. Der Vortrag der BAM fokusiert sich auf die Themen "Self driving lab", semantische Segmentierung und Auswertung von elektronenmikroskopischen Bildern sowie die Generierung von ausführbaren Machineninstruktionen aus natürlicher Sprache. Abschließend wird der neue BAM DataStore vorgestellt. T2 - Nano-Behördenklausur 2024 CY - Berlin, Germany DA - 03.07.02024 KW - Nano KW - Bundesoberbehörden KW - Künstliche Intelligenz KW - Neuronale Netzwerke KW - Elektronisches Laborbuch PY - 2024 AN - OPUS4-61819 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Hu, Y. ED - Wang, X. T1 - Influence of the Size and Dispersion State of Two-Dimensional Nanomaterials on the Fire Safety of Polymers N2 - Only the nano-scaled structure of the nanocomposite and the dispersion of nanoparticles within the polymer matrix harbor multifunctional potential including superior fire retardancy. Thus, this chapter focuses on the dispersion of nanoplates, based mainly on studies of layered silicates and graphene/graphene-related nanoplates. The nanostructure and properties of the nanocomposites are dependent mainly on thermodynamic and kinetic factors during preparation. Improving nano-dispersion often directly improves flame retardancy. Therefore, the modification of the nanoplates as well as the preparation of nanocomposites becomes very important to control this dispersion. The dispersion of nanoplates functions as a prerequisite for the formation of an efficient protective layer, changing the melt flow and dripping behavior, or the improvement of the char properties. KW - Nanocomposite KW - Flame retardancy KW - 2D nanoparticle KW - Exfoliation KW - Dispersion KW - Flammability PY - 2023 SN - 978-1-032-35268-8 SN - 978-1-032-35502-3 SN - 978-1-003-32715-8 DO - https://doi.org/10.1201/9781003327158-2 SP - 23 EP - 58 PB - CRC Press CY - Boca Raton AN - OPUS4-58290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Laskina, Sofya T1 - Computing the forward and inverse problem of X-ray scattering N2 - Continuing progress in the field of X-ray scattering methods empowers scientists with new possibilities to capture the most important piece of information about the structure of the sample - its 3D electron density. Although the first methods appeared almost a century ago, recovering the density structure of a sample is still very problematic. Most avail-able imaging techniques transform a 3D electron density of a realspace structure into the 2D Fourier Transform of the intensity of scattered waves in the reciprocal space. This process causes a loss of information. Firstly, instead of a 3D sample, a 2D image is created, and secondly, the phase information of the scattered waves is lost. The latter is known as the ”phase problem” and poses a serious obstacle on a way to recover a 3D electron density. In this work, we draw attention to the problem of forward and inverse Small Angle X-Ray Scattering. In the first, forward, part, we rethink the existing pipelines to computationally simulate such scattering experiments. Although there are efficient implementations of fast Fourier transformation, they often have some drawbacks. For instance, to calculate a 3D fast Fourier transform it is required to place its density in the RAM. For high-resolution structures of size > 1024 3 , this becomes very problematic, as the whole density structure requires more than 16 GB of memory. CUDA solution allows for a very fast and parallelizable implementation of high-resolution data on hundreds of last-generation machines. Such computations are very pricy and inaccessible for most scientists. To bypass this limitation, we propose a solution for a split-up 3D fast Fourier transform, which is implemented as a sequence of 2D and 1D operations. We compare our implementation on the simulated 3D shapes and show the result of a proof-of-concept on 4096 3 Metallorganic framework density structure. In the second, inverse problem, we train an invertible neural network, that given scattering data can predict the shape and its parameters. The architecture is built such, that the inverse problem is learned together with the forward process - the Fourier Transformation. We achieved very good results with this architecture, nonetheless, further testing is required, as the current training set only encompasses three simple shapes: sphere, hard sphere and cylinder. All code to reproduce and analyze the results is available at https: //github.com/sofyalaski/SAXS-simulations. KW - Machine Learning KW - SAXS KW - DFT PY - 2023 SP - 1 EP - 76 PB - Freie Universität Berlin CY - Berlin AN - OPUS4-56798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Development of a specific OECD Test Guideline on Particle Size and Particle Size Distribution of Nanomaterials N2 - In this research project, a new OECD Test Guideline (TG) for the determination of “Particle Size and Particle Size Distributions of Nanomaterials” was developed as the existing OECD TG 110 is considered to be outdated in terms of applicable size range (not covering sizes <200 nm) and methods. By its scope with an applicable size range from 1 to 1000 nm the new Test Guideline (TG PSD) covers the whole nanoscale. The TG PSD is applicable for particulate and fibrous nanomaterials. The prescribed, pairwise measurement of fibre diameter and length in the TG PSD allows for the first time to differen-tiate fibres with regard to their size-dependent hazard properties. Measurement instructions for each included method were validated within two separated interlaboratory comparisons, as a distinction between near spherical particles and fibres when applying the methods has to be made. Besides information on content and structure of the TG PSD, this final report outlines essential steps, considerations and organisational aspects during the development of the TG. Insights into the selec-tion, preparation and prevalidation of test materials used in the interlaboratory comparison are given. Finally, main results of the interlaboratory comparisons and their impacts on the TG PSD are pre-sented. N2 - Im Rahmen des Forschungsprojekts wurde eine neue OECD-Prüfrichtlinie (TG) für die Bestimmung von Partikelgrößen und Partikelgrößenverteilungen von Nanomaterialien entwickelt, da die existie-rende OECD TG 110 zur Bestimmung von Partikelgrößen in Bezug auf den anwendbaren Größenbe-reich und die gegebenen Methoden veraltet ist bzw. den Nanometerbereich < 200 nm nicht abdeckt. Mit ihrem Anwendungsbereich von 1 bis 1000 nm deckt die neue Prüfrichtlinie (TG PSD) die gesamte Nanoskala ab. Die TG PSD ist für partikel- und faserförmige Nanomaterialien anwendbar. Durch die, in der TG PSD vorgeschriebene, paarweise Messung von Faserdurchmesser und -länge ermöglicht diese TG zum ersten Mal Fasern hinsichtlich ihrer größenabhängigen Gefahrstoffeigenschaften zu unter-scheiden. Die Messanweisungen aller enthaltenen Methoden wurden im Rahmen von zwei getrennten Ringversuchen validiert, da bei der Anwendung der Methoden eine Unterscheidung zwischen Parti-keln und Fasern gemacht werden muss. Neben Angaben zum Inhalt und Struktur der TG PSD, befasst sich der vorliegende Abschlussbericht mit den wesentlichen Schritten, Überlegungen und organisatorischen Aspekten bei der Entwicklung der Prüfrichtlinie. Darüber hinaus werden Einblicke in die Auswahl, Vorbereitung und Prävalidierung der im Ringversuch verwendeten Testmaterialien gegeben. Schließlich werden die wichtigsten Ergeb-nisse aus den Ringversuchen und ihre Auswirkungen auf die TG PSD vorgestellt. KW - Nano KW - OECD KW - Particle size distribution KW - Testguideline KW - Nanoparticle PY - 2021 VL - 2021 SP - 1 EP - 47 PB - German Environment Agency CY - Dessau AN - OPUS4-54021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Piquemal, François A1 - Hoffmann, Johannes A1 - Gautier, Brice A1 - Hertwig, Andreas A1 - Frabricius, Norbert T1 - Publishable Summary for 20IND12 Elena Electrical nanoscale metrology in industry N2 - Consumer electronics, innovative quantum technologies, and Internet of Things applications all rely on semiconductors, where reliable characterisation of electrical properties at the nanoscale is essential for European innovation and competitiveness. The measurement of these properties allows the evaluation of critical parameters used to define the performance of electronic materials and components. Currently, Conductive Atomic Force Microscopes and Scanning Microwave Microscopes enable nanoscale electrical characterisation, but they are costly, complicated and, in many cases where they are used, unreliable as measurements are not traceable. The aim of the project was to make such measurements traceable for the first time, with stated uncertainties, and affordable by developing and testing cost effective instrumentation and the first “out of lab” reference standards from DC to GHz and by elaborating robust calibration methods and good practice guides using simplified uncertainty budgets. All the objectives were achieved. The project has successfully improved the user-friendly uncertainty quantification for the electrical measurements at the nanoscale in the industrial environment. The design of calibration standards has been improved and new standards for DC resistance / current as well as HF impedance have been introduced and quantified. Good practice guides for the calibration and uncertainty quantification have been written and will be available to the users’ community. New ways of determining the properties of standard samples like ellipsometry have been evaluated. The interaction with stakeholders and industry collaborators was very important for the consortium and several case studies were carried out with industry-relevant samples. All data, procedures, and example uncertainty data from the project are included into the standardisation process and two IEC standards projects have been started during this project. These standards will be used as one important dissemination ways for the results of the project. KW - Electrical Properties KW - Nanometrology KW - Scanning Probe Microscopy KW - Optical Surface Analysis PY - 2024 SP - 1 EP - 9 AN - OPUS4-61812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Draft OECD Test Guideline for the Testing of Chemicals - Particle Size and Particle Size Distribution of Nanomaterials N2 - Final Draft of the OECD Test Guideline for Particle Size and Particle Size Distribution of Nanomaterials. The OECD Working Party on Manufactured Nanomaterials (WPMN) has actively worked towards understanding possible safety issues for manufactured nanomaterials and has contributed significantly to resolving these by developing Test Guidelines, Guidance Documents, Test Reports and other publications with the aim of a safe use of manufactured nanomaterials. The OECD website (www.oecd.org/science/nanosafety) and the referenced publications contain more background information. Among others, the OECD Test Guideline “Particle Size Distribution/Fibre Length and Diameter Distributions” (TG 110, adopted in 1981) was identified to require an update to address the specific needs of manufactured nanomaterials as the TG 110 is currently only valid for particles and fibres with sizes above 250 nm. The WPMN prioritised to either update TG 110 to be applicable also to particles at the nanoscale or draft a new nanomaterial specific Test Guideline (TG). Eventually, it was decided to develop a new TG for particle size and particle size distribution measurements of nanomaterials covering the size range from 1 nm to 1000 nm for further justification. This TG overlaps with TG 110 in the size range from 250 nm to 1000 nm. When measuring particulate or fibrous materials, the appropriate TG should be selected depending on the size range of particles tested. In line with TG 110, the new TG for nanomaterials includes separate parts for particles and fibres. For the part of this TG which addresses particles, several methods applicable to nanomaterials were reviewed and included to take into account developments since 1981 when the TG110 was adopted. This TG includes the following methods: Atomic Force Microscopy (AFM), Centrifugal Liquid Sedimentation (CLS)/Analytical Ultracentrifugation (AUC), Dynamic Light Scattering (DLS), Differential Mobility Analysis System (DMAS), (Nano)Particle Tracking Analysis (PTA/NTA), Small Angle X-Ray Scattering (SAXS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). For measuring the diameter and length of fibres, analysing images captured with electron microscopy is currently the only method available. This TG includes Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). To test the validity of this TG, an ILC was performed. Test materials were chosen to reflect a broad 68 range of nanomaterial classes, e.g. metals, metal oxides, polymers and carbon materials. Where possible, well-characterised test materials were used. Additionally, the test materials were chosen, so that they reflect a broad range of sizes representing the size range 1 nm to 1000 nm and finally, for fibres only, aspect ratios from length/diameter of 3 to > 50. KW - Nano KW - OECD KW - Test guideline KW - Nanomaterial KW - Nanoparticle PY - 2021 UR - https://www.oecd.org/chemicalsafety/testing/draft-test-guideline-particle-size-distribution-nanomaterials.pdf SP - 1 PB - Organisation for Economic Co-operation and Development CY - Paris AN - OPUS4-53828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Test Guideline No. 125 - Nanomaterial Particle Size and Size Distribution of Nanomaterials N2 - The OECD Working Party on Manufactured Nanomaterials (WPMN) has actively worked towards understanding possible safety issues for manufactured nanomaterials and has contributed significantly to resolving these by developing Test Guidelines, Guidance Documents, Test Reports and other publications with the aim of a safe use of manufactured nanomaterials. To address the specific needs of manufactured nanomaterials, the OECD Test Guideline No. 110 “Particle Size Distribution/Fibre Length and Diameter Distributions” was identified as one of the test guidelines (TGs) to require an update. The current TG 110 (adopted in 1981) is only valid for particles and fibres with sizes above 250 nm. The WPMN prioritised to either update TG 110 to be applicable also to particles at the nanoscale or draft a new nanomaterial specific (TG). Eventually, it was decided to develop a new TG that covers the size range from 1 nm to 1000 nm, intended for particle size and particle size distribution measurements of nanomaterials. Paragraph 11 provides further justification on the need for such measurements for nanomaterials. This TG overlaps with TG 110 in the size range from 250 nm to 1000 nm. When measuring particulate or fibrous materials, the appropriate TG should be selected depending on the size range of particles tested. In line with TG 110, the new TG for nanomaterials includes separate parts for particles and fibres. For the part of this TG which addresses particles, several methods applicable to nanomaterials were reviewed and included to take into account developments since 1981 when the TG 110 was adopted. This TG includes the following methods: Atomic Force Microscopy (AFM), Centrifugal Liquid Sedimentation (CLS)/Analytical Ultracentrifugation (AUC), Dynamic Light Scattering (DLS), Differential Mobility Analysis System (DMAS), (Nano)Particle Tracking Analysis (PTA/NTA), Small Angle X-Ray Scattering (SAXS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The method Single Particle Inductively Coupled Plasma Mass Spectrometry (sp-ICP-MS) could not be sufficiently validated within the interlaboratory comparison (ILC) carried out for the different methods in this TG (see also paragraph 6 for further details on the ILC). Applicability of sp-ICP-MS is strongly limited to nanomaterials with high mass values in combination with a sufficiently high particle size. However, the general method ICP-MS is widely used and the sp-mode for the size measurement of specific nanomaterials was successfully performed in ILCs elsewhere. The method is therefore included in the Appendix Part C of this TG, which further details the limitations of sp-ICP-MS. For measuring the diameter and length of fibres, analysing images captured with electron microscopy is currently the only method available. This TG includes Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). To test the validity of this TG, an ILC was performed. Test materials were chosen to reflect a broad range of nanomaterial classes, e.g. metals, metal oxides, polymers and carbon materials. Where possible, well-characterised test materials were used. Additionally, the test materials were chosen to reflect a broad range of sizes representing the size range 1 nm to 1000 nm. Specifically for fibres, a broad range of aspect ratios was included (length/diameter of 3 to > 50). Some of the test materials used are commercially available and further references are given in the validation report of the ILC. Sample preparation for physical chemical characterisation is critical for all listed methods. Due to the differences between individual nanomaterials and due to the wide range of individual material properties it is impossible to have a generic protocol to obtain the best possible sample preparation for every nanomaterial. Therefore, a generic protocol on sample preparation is not part of this TG. Information on sample preparation is given in the paragraphs 25-29, 33, 34 and 39 for particles and in paragraphs 159) for fibres. Further information on sample preparation of nanomaterials for physical chemical characterisation can be found in the OECD Guidance on Sample Preparation and Dosimetry for the Safety Testing of Manufactured Nanomaterials and elsewhere. KW - Nano KW - Nanomaterial KW - Nanoparticle KW - OECD KW - Test guideline PY - 2022 DO - https://doi.org/10.1787/20745753 SP - 1 EP - 72 PB - Organisation for Economic Co-operation and Development CY - Paris AN - OPUS4-55191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz T1 - Dynamics and conductivity of nanoconfined amino acid based superdiscs: Influence of the side chain length N2 - Ionic Liquid Crystals (ILCs) are emerging class of materials that combine the properties of liquid crystals with the ionic conduction similar to ionic liquids. It’s known that liquid crystals exhibit intriguing properties when confined and are of importance from both fundamental and technological perspective. Here, we study the molecular dynamics and electrical conductivity of a homologous series of Dopamine (DOPA) based ILCs, ILCn (n = 12,14,16) confined in self ordered nanoporous alumina oxide membrane of 180 nm pore size using Broadband Dielectric Spectroscopy (BDS). We aim to understand how the alkyl chain length and confinement influence the dynamics in this system. In the bulk, for all ILCs, we observe two relaxation modes in the crystalline phase, the  and α1 relaxation respectively, and one relaxation mode in the columnar phase, the α2 relaxation, but for ILC16, where two relaxation modes (α2 and α3) are detected in the columnar phase. For the confined case, all relaxation processes slowdown compared to the bulk. For ILC16, the α1 relaxation is completely suppressed. For all ILCs, the absolute values of DC conductivity are reduced by some three orders of magnitude. We discuss in detail the possible molecular origin of the relaxation processes and the charge transport in this system. T2 - CONFIT 2022 CY - Grenoble, France DA - 10.10.2022 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2022 AN - OPUS4-57341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Krüger, Jörg ED - Sugioka, K. T1 - Laser-induced periodic surface structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon and can be generated on almost any material by irradiation with linearly polarized radiation. This chapter reviews the current state in the field of LIPSS, which are formed in a “self-ordered” way and are often accompanying materials processing applications. LIPSS can be produced in a single-stage process and enable surface nanostructuring and, in turn, adaption of optical, mechanical, and chemical surface properties. Typically, they feature a structural size ranging from several micrometers down to less than 100 nm and show a clear correlation with the polarization direction of the light used for their generation. Various types of LIPSS are classified, relevant control parameters are identified, and their material-specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Femtosecond laser KW - Laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Microstructures KW - Nanostructures PY - 2021 SN - 978-3-319-69537-2 DO - https://doi.org/10.1007/978-3-319-69537-2_17-2 SP - 1 EP - 59 PB - Springer Nature CY - Cham, Switzerland ET - 2 AN - OPUS4-51493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, Y. A1 - Gruner, A. A1 - Aboud, D. G. K. A1 - Bonse, Jörn A1 - Schille, J. A1 - Loeschner, U. A1 - Kietzig, A.-M. T1 - Polarization effects on laser-inscribed angled micro-structures N2 - The polarization of the laser beam exhibits more substantial differences in laser micromachining as the angle of incidence deviates from zero. In the reported work, our focus was to explore the effects of circularly, p- and s-polarized laser on angled ultrashort pulse laser micromachining of micropillar arrays. The examination encompassed laser process factors, including angles of incidence, microstructure dimensions, and inter-pillar spacing. A comparison between the resulting structures demonstrated that p-polarized laser beam was the most efficient in material removal in angled laser micromachining, followed by circularly polarized laser. While the s-polarized beam exhibited the lowest ablation efficiency among the three. Such distinction is mainly attributed to the distinguishing reflectivity of the three states of polarization on tilted planes. The development of structural heights during ablation processes was examined, and potential defects in laser processing methodologies were interpreted. The dependency of structural heights on inter-pillar spacing was analyzed. This study bridges the gap between existing studies on angled ultrashort pulse laser machining and the influences of polarization on laser machining. The comparison between structures produced using laboratory-scale and industrial-scale laser systems also yielded pertinent recommendations for facilitating a smooth transition of angled laser micromachining from laboratory-scale research to industrial applications. KW - Laser processing KW - Laser-induced periodic surface structures (LIPSS) KW - Microstructures KW - Nanostructures PY - 2024 UR - https://www.sciencedirect.com/science/article/pii/S0169433223028714 DO - https://doi.org/10.1016/j.apsusc.2023.159191 SN - 0169-4332 VL - 649 SP - 1 EP - 15 PB - Elsevier AN - OPUS4-59329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omar, Hassan T1 - Investigations of Ultrathin Polymer Films Supported on Inorganic Substrates N2 - Interactions between a polymer and a substrate interface play a vital role in understanding the improvement in thin film material properties as well as serving as a model for nanocomposites. For any non-repulsive polymer-substrate interactions, polymer segments form an irreversibly adsorbed layer and show a slowdown in the glassy dynamics and thus an increase in the thermal glass transition temperature compared to the bulk-like values. The growth kinetics of the adsorbed layer showed a deviation for both poly (bisphenol-A carbonate) (PBAC) and polysulfone (PSU), two bulky polymers containing a functional group (phenyl ring) in the backbone. T2 - Royal Society of Chemistry (RSC) Online Poster Conference CY - Online meeting DA - 05.03.2024 KW - Adsorbed Layer KW - Thin Films KW - Atomic Force Microscopy KW - Ellipsometry PY - 2024 AN - OPUS4-59625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - Particle size determination of a commercially available CeO2 nano powder - SOPs and reference data N2 - Compilation of detailed SOPs for characterization of a commercially available CeO2 nano powder including - suspension preparation (indirect and direct sonication), - particle size determination (Dynamic Light Scattering DLS and Centrifugal Liquid Sedimentation CLS) with reference data, respectively. For sample preparation and analysis by Scanning Electron Microscopy (SEM) of this powder see related works (submitted, coming soon). KW - Wet dispersion KW - Nano powder KW - Particle size KW - CeO2 KW - Ceria KW - DLS KW - CLS PY - 2023 DO - https://doi.org/10.5281/zenodo.10061079 PB - Zenodo CY - Geneva AN - OPUS4-58785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - SOP and reference data for determination of the Volume-specific Surface Area (VSSA) of a commercially available CeO2 nano powder N2 - Detailed SOP and reference data for the determination of the VSSA of a commercially available CeO2 nano powder: specific (BET-) Surface Area by gas adsorption (Ar and N2) skeletal (true solid state) density by gas pycnometry. Estimation of the particle size by VSSA screening method. KW - Nano powder KW - VSSA KW - Volume specific surface area KW - Screening method KW - Ceria KW - CeO2 PY - 2023 DO - https://doi.org/10.5281/zenodo.10061235 PB - Zenodo CY - Geneva AN - OPUS4-58786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - BP150: Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement by Monte-Carlo based particle scattering Simulations N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined. Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. We apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. T2 - DPG Frühjahrstagung CY - Dresden, Germany DA - 26.03.2023 KW - AuNP KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Penelope model KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Radiotherapy KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - Beta particle KW - Particle scattering KW - Protein KW - Proteins PY - 2023 AN - OPUS4-57253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omar, Hassan T1 - Probing Nanoscale Relaxation Behavior in Thin Polymer Films N2 - The investigations into the complicated effects of film thickness on bulk properties of thin polymer films has yielded conflicting results. The reduction in molecular mobility, and with it an increase in the glass transition temperature, for thin films of poly (bisphenol A carbonate) (PBAC) was assigned to the formation of an adsorbed layer. The adsorbed layer was obtained by washing away the loosely bounded chains using a good solvent. Next, using atomic force microscopy (AFM), the thickness of each sample was measured after annealing for various times at three different annealing temperatures. The growth of this adsorbed layer was shown to deviate from the previously reported 2-step mechanism seen for other polymers. For PBAC, after very long annealing times at high temperatures the thin films were dewetted, where segments of the adsorbed layer were removed from the substrate. T2 - Royal Society of Chemistry (RSC) Poster CY - Online meeting DA - 28.02.2023 KW - Thin films KW - Adsorbed Layer KW - Broadband dielectric spectroscopy KW - Atomic force microscopy KW - Growth Kinetics PY - 2023 AN - OPUS4-57196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arai, Marylyn Setsuko A1 - Kim, Hyunho A1 - Pascavis, Madeleine A1 - Cha, Baekdong A1 - Brambilla, Gabriel A1 - Cho, Young Kwan A1 - Park, Jinho A1 - Vilela, Raquel R. C. A1 - de Camargo, Andrea S. S. A1 - Castro, Cesar M. A1 - Lee, Hakho T1 - Upconverting Nanoparticle-based Enhanced Luminescence Lateral-Flow Assay for Urinary Biomarker Monitoring N2 - Development of efficient portable sensors for accurately detecting biomarkers is crucial for early disease diagnosis, yet remains a significant challenge. To address this need, we introduce the enhanced luminescence lateral-flow assay, which leverages highly luminescent upconverting nanoparticles (UCNPs) alongside a portable reader and a smartphone app. The sensor’s efficiency and versatility were shown for kidney health monitoring as a proof of concept. We engineered Er3+- and Tm3+-doped UCNPs coated with multiple layers, including an undoped inert matrix shell, a mesoporous silica shell, and an outer layer of gold (UCNP@mSiO2@Au). These coatings synergistically enhance emission by over 40-fold and facilitate biomolecule conjugation, rendering UCNP@mSiO2@Au easy to use and suitable for a broad range of bioapplications. Employing these optimized nanoparticles in lateral-flow assays, we successfully detected two acute kidney injury-related biomarkers-kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL)-in urine samples. Using our sensor platform, KIM-1 and NGAL can be accurately detected and quantified within the range of 0.1 to 20 ng/mL, boasting impressively low limits of detection at 0.28 and 0.23 ng/mL, respectively. Validating our approach, we analyzed clinical urine samples, achieving biomarker concentrations that closely correlated with results obtained via ELISA. Importantly, our system enables biomarker quantification in less than 15 min, underscoring the performance of our novel UCNP-based approach and its potential as reliable, rapid, and user-friendly diagnostics. KW - Biosensor KW - Upconverting nanoparticles KW - Lateral flow KW - Portable sensor KW - Kidney injury PY - 2024 DO - https://doi.org/10.1021/acsami.4c06117 SN - 1944-8244 VL - 16 IS - 29 SP - 38243 EP - 38251 PB - American Chemical Society (ACS) AN - OPUS4-60689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Iannuzzi, Maurizio A1 - Chowdhary, Suvrat A1 - Fiedler, Holly A1 - Haoues, Kilian A1 - Schade, Boris A1 - Thünemann, Andreas A1 - Quaas, Elisa A1 - Koksch, Beate T1 - Rational design of polyfluorinated peptide-based materials: Self-assembly of an amphiphilic motif N2 - Generation of a pH sensitive amphiphilic block oligopeptide containing the bioactive function RGD and a library of derivatives varying the length of the hydrophobic core and the degree of side chain fluorination. Peptide rational design enables us to obtain desired features (pH sensitivity etc.). The introduction of fluorine alters a wide range of peptide properties such as secondary structure propensity, folding, thermal and metabolic stability and proteolytic resistance. The RGD function is highly effective at promoting the attachment of numerous cell types to a plethora of materials. This small sequence is the principal integrin-binding domain present within ECM proteins such as fiobronectin, vibronectin and fibrinogen. For this reason, RGD containing peptides offer several advantages for biomaterials applications. The use of RGD compared with native ECM proteins, minimized the risk of immune reactivity or pathogen transfer. Herein in this work, we present the peptide motif X6RGD and its fluoro-derivates for prospective receptor-specific drug delivery in cancer theraphy. Overall, our results demonstrate that high degree of fluorination achieved triggers a selective modification of peptide self-assembly dramatically improving the structural properties, the carrier suitability, enzimatic degradation profiles and cytotoxic features of the fluoropeptide conjugate(s). T2 - 37th European Peptide Symposium CY - Florence, Italy DA - 25.08.2024 KW - Nanostructure KW - SAXS KW - Small-angle X-ray scattering PY - 2024 SN - 1099-1387 VL - 30 IS - S2 SP - 247 EP - 248 PB - Wiley CY - New York, NY AN - OPUS4-62191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duarte Bernardino, Carolina T1 - Metal-Ion Loaded Silica Nanoparticles as Antimicrobial Coatings for Safer High-Touch Surfaces N2 - Not only since the Covid-19 pandemic have researchers focused their efforts on high touch surfaces to minimize the contraction of infectious diseases due to human contact. To help prevent the spread of infectious pathogens, surfaces and coatings are designed to minimize the presence or survivability of pathogens on surfaces in various settings, including healthcare centers, long-term care facilities, public transport, schools, and businesses. Extensive research has focused on finding solutions to prevent bacterial transmission and biofilm formation by killing or reducing the attachment of microbes. These solutions include surface-bound active antimicrobials, biocidal coatings, and passive pathogen-repellent surfaces, developed using nanomaterials, chemical modifications, and micro- and nano-structuring. Nanomaterials are a prime candidate for such a solution. Here, we developed mesoporous silica nanoparticles (MSNs) loaded with antimicrobially active silver and copper ions that can be used in sprayable formulations as surface coatings. The influence of different surface functionalization and metal ion loadings on the efficacy of these sprayable coatings was studied. Amine- (MSN-NH2), carboxy- (MSN-COOH) and thiol-functionalized mesoporous silica nanoparticles (MSN-SH) were synthesized and characterized using different techniques, such as transmission electron microscopy (TEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), dynamic light scattering (DLS), electrophoretic light scattering (Zeta potential measurements) and nitrogen sorption measurements. After loading MSNs with antimicrobially active silver or copper ions, the nanoparticle dispersions were spray-coated on stainless steel substrates that were primed with sprayable polyelectrolyte solutions to enhance coating homogeneity and nanoparticle adhesion. The metal ion release was analyzed by Inductively coupled plasma optical emission spectroscopy (ICP-OES). The antimicrobial properties of the nanoparticle suspension and the coatings were tested against three commonly found pathogenic bacteria, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli as well as a fungal pathogen, Candida albicans. The toxicity of the coatings against human skin cells was also assessed. T2 - STOP Antimicrobial Coatings Conference CY - Mons, Belgium DA - 05.12.2024 KW - Mesoporous Silica Nanoparticles KW - Antimicrobial Coatings KW - Spray-Coating KW - Pathogens PY - 2024 AN - OPUS4-62180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruehle, Bastian T1 - Natural language processing for automated workflow and knowledge graph generation in self-driving labs N2 - Natural language processing with the help of large language models such as ChatGPT has become ubiquitous in many software applications and allows users to interact even with complex hardware or software in an intuitive way. The recent concepts of Self-Driving Labs and Material Acceleration Platforms stand to benefit greatly from making them more accessible to a broader scientific community through enhanced user-friendliness or even completely automated ways of generating experimental workflows that can be run on the complex hardware of the platform from user input or previously published procedures. Here, two new datasets with over 1.5 million experimental procedures and their (semi)automatic annotations as action graphs, i.e., structured output, were created and used for training two different transformer-based large language models. These models strike a balance between performance, generality, and fitness for purpose and can be hosted and run on standard consumer-grade hardware. Furthermore, the generation of node graphs from these action graphs as a user-friendly and intuitive way of visualizing and modifying synthesis workflows that can be run on the hardware of a Self-Driving Lab or Material Acceleration Platform is explored. Lastly, it is discussed how knowledge graphs – following an ontology imposed by the underlying node setup and software architecture – can be generated from the node graphs. All resources, including the datasets, the fully trained large language models, the node editor, and scripts for querying and visualizing the knowledge graphs are made publicly available. KW - Natural Language Processing KW - Large Language Models KW - Self-Driving Labs KW - Materials Acceleration Platforms KW - Workflows KW - Nanomaterials KW - Advanced Materials PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631947 UR - https://github.com/BAMresearch/MAPz_at_BAM/tree/main/Minerva-Workflow-Generator DO - https://doi.org/10.1039/d5dd00063g SN - 2635-098X SP - 1 EP - 10 PB - Royal Society of Chemistry (RSC) AN - OPUS4-63194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed A. A1 - Schönhals, Andreas T1 - Application of Fast Scanning Calorimetry in Soft Matter Research – Two Examples: 1. Polymers for Gas separation membranes 2. Ionic Liquid Crystals N2 - The application of fast scanning calorimetry (FSC) with heating rates in the range from 10 K/s to 10,000 K/s in soft matter research is discussed through two examples. In the first part, FSC is applied to polymers of intrinsic microporosity (PIMs). No glass transition could be measured for these polymers by conventional calorimetry before their degradation. By decoupling the time scales of chemical degradation and the glass transition, it could be shown for the first time that PIMs undergo a glass transition. In the second part, FSC is applied to ionic liquid crystals to investigate their molecular mobility. In order to cover a broad dynamical range, FSC is combined with temperature-modulated differential scanning calorimetry, and temperature-modulated FSC. T2 - Colloqium at the physics department of the Charles university Prague CY - Prague, Czech Republic DA - 12.11.2024 KW - Fast Scanning Calorimetry PY - 2024 AN - OPUS4-61670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Small-angle scattering for everyone: How to unlock the power of this ancient technique N2 - The obscure, yet fundamental technique of scattering can unlock essential information on the fine structure of materials. For you, it can help you understand how your batteries charge, how squid backbones work, or how hundreds of small variations in your syntheses affect your samples. As a nondestructive technique, it also measures your materials *in situ* or operando, as you pull it, heat it, electrify it, or align it one way or another. Scattering can be done using light, X-rays, neutrons, and even electrons, giving you the choice on which probe is best for you. The only downside? Scattering will always remain a complicated technique to do right. The technique gives you only one piece of information: the length distribution of density in your sample. How you interpret this (rather abstract) piece of information is up to you and your samples. Unlike microscopy, where the real-space image can be interpreted almost intuitively and artefacts are easier to spot, in scattering you cannot always easily identify artefacts. Therefore, the only way to do scattering experiments correctly is through rigour and care. For those of us with that particular eccentricity, seeing the rigour and care pay off is exhilarating, and opens the door to a life of happiness and excitement. This lecture will introduce scattering (in particular using X-rays and neutrons), what it is, what you can (and cannot) get out of it, and how to approach your scattering experiment. Regarding the experimental section, it will discuss the five parts that make up a successful scattering experiment based on real-life examples: Preparation: which and how you prepare your samples affects what you can get out of the interpretation Measurement: The machine design and your measurement choices dictates the final quality of your data Correction: Obtaining trustworthy scattering curves will greatly improve the speed and quality of your analysis. Analysis: Do you linearize, use generic scattering models, perform classical least-squares fitting, play with Monte-Carlo analysis or transform your data.. Some tips to help you make a choice. Interpretation: what does the analysis of all your samples tell you? Can you fit the puzzle pieces together to form a piece of knowledge? For further information, please feel free to explore the https://lookingatnothing.com/ weblog, the https://youtube.com/drheaddamage video channel, or by asking me in person or by email for specific questions at brian.pauw@bam.de . Some introductory reading can be found in the following papers: Pauw, B. R. (2013): Everything SAXS: small-angle scattering pattern collection and correction. _J. Phys.: Condens. Matter_ 25: 383201. DOI: [10.1088/0953-8984/25/38/383201](http://dx.doi.org/10.1088/0953-8984/25/38/383201) B. R. Pauw, A. J. Smith, T. Snow, N. J. Terrill, A. F. Thünemann, (2017): The modular SAXS data correction sequence for solids and dispersions, _Journal of Applied Crystallography_, 50: 1800–1811, DOI: [10.1107/S1600576717015096](https://doi.org/10.1107/S1600576717015096) G. J. Smales, B. R. Pauw (2021): The MOUSE project: a meticulous approach for obtaining traceable, wide-range X-ray scattering information. _Journal of instrumentation_ 16 (6) P06034. DOI: [10.1088/1748-0221/16/06/P06034](https://doi.org/10.1088/1748-0221/16/06/P06034) T2 - SAS School at the XIX International Small Angle Scattering Conference CY - Taipei, Taiwan DA - 02.11.2024 KW - X-ray scattering KW - Neutron scattering KW - Scattering KW - X-ray KW - Neutron KW - Introduction KW - Methodology PY - 2024 AN - OPUS4-61623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Chasing perfection: A holistic approach to materials science scattering experiments N2 - The materials scientists we work with do not want (or need) to learn the ways of the scatterer; they are primarily interested in obtaining trustworthy answers. In particular, they need structural understanding in light of the wider framework of their experiment(s). Our interest, therefore, lies in helping them attain this this interconnected understanding, while using such investigations to further hone our methodology to approximate perfection. While perfection is by definition an unattainable goal, we have spent the last 15+ years exploring and expanding on many of its constituent aspects (often together with likeminded people) [1]. These aspects include: - developing various visualization and simulation tools, - deconstructing data corrections and uncertainty estimation, - advancing analysis methods, - quantifying questions on traceability, documentation, - reproducible automation of synthesis-, measurement- and data pipelines, - data visualization, exploration and education, - and many more… T2 - XIX International Small Angle Scattering Conference CY - Taipei, Taiwan DA - 04.11.2024 KW - Methodology KW - X-ray scattering KW - Data quality KW - Data provenance KW - Data stewardship KW - Lab automation KW - Perfection PY - 2024 AN - OPUS4-61625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kanerva, M. A1 - Matrenichev, V. A1 - Layer, R. A1 - Takala, T. M. A1 - Laurikainen, P. A1 - Sarlin, E. A1 - Elert, Anna Maria A1 - Yuding, V. A1 - Seitsonen, J. A1 - Ruokolainen, J. A1 - Saris, P. T1 - Comparison of Rosin and Propolis Antimicrobials in Cellulose Acetate Fibers Against Staphylococcus aureus N2 - The quantitative difference in the antibacterial response was measured for pine rosin and propolis against Staphylococcus aureus ATCC 12598. The activity was studied for fibrous networks that form entirely bio-based cellulose-acetate (CA) materials. The analysis considers the effects of bacterial input, additive dosage, solvent type, variation in preparation, as well as the effect of storage time. Based on the results, the electrospun network structure is dependent on the solvent and the concentration of rosin and propolis. Both rosin and propolis improved the cellulose acetate solution processability, yet they formed beads at high concentrations. Rosin and propolis created strong antibacterial properties when these material systems were immersed in the liquid for 24 h at room temperature. The response remained visible for a minimum of two months. The electrospun networks of water and DMAc solvent systems with 1 to 5 wt% rosin content were clearly more efficient (i.e., decrease of 4 to 6 logs in colony forming units per mL) than the propolis networks, even after two months. This efficiency is likely due to the high content of abietic acids present in the rosin, which is based on the Fourier transform infrared spectra. The results of the additional analysis and cell cultivation with dermal fibroblast cells indicated an impairing effect on skin tissue by the rosin at a 1 wt% concentration compared to the pure CA fibers. KW - Electrospinning KW - Rosin KW - Propolis KW - Antibacterial KW - Cellulose acetate PY - 2020 SN - 1930-2126 VL - 15 IS - 2 SP - 3756 EP - 3773 AN - OPUS4-50635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Review: Advanced Coating Materials N2 - This book by Scrivener Publishing contains 14 chapters written by 82 leading scientists, experienced in the field of coatings. They demonstrate mechanisms, usage and manipulation of cutting‐edge coating methods. Each chapter is well structured and ends with a conclusion, highlighting the content. The book is divided into 3 parts: “Materials and Methods”, “Coating Materials Nanotechnology” and “Advanced Coating Technology and Applications”. Finally, this book provides a comprehensive insight into innovative research in advanced coating materials and state‐of‐the‐art technologies, without being a real textbook. It fulfills its intension of being beneficial both for technicians and scientists. KW - Corrosion KW - Coating KW - Protection PY - 2020 DO - https://doi.org/10.1002/maco.202070044 SN - 1521-4176 SN - 0947-5117 VL - 71 IS - 4 SP - 675 EP - 676 PB - WILEY‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stratakis, E. A1 - Bonse, Jörn A1 - Heitz, J. A1 - Siegel, J. A1 - Tsibidis, G.D. A1 - Skoulas, E. A1 - Papadopoulos, A. A1 - Mimidis, A. A1 - Joel, A.-C. A1 - Comanns, P. A1 - Krüger, Jörg A1 - Florian, C. A1 - Fuentes-Edfuf, Y. A1 - Solis, J. A1 - Baumgartner, W. T1 - Laser engineering of biomimetic surfaces N2 - The exciting properties of micro- and nano-patterned surfaces found in natural species hide a virtually endless potential of technological ideas, opening new opportunities for innovation and exploitation in materials science and engineering. Due to the diversity of biomimetic surface functionalities, inspirations from natural surfaces are interesting for a broad range of applications in engineering, including phenomena of adhesion, friction, wear, lubrication, wetting phenomena, self-cleaning, antifouling, antibacterial phenomena, thermoregulation and optics. Lasers are increasingly proving to be promising tools for the precise and controlled structuring of materials at micro- and nano-scales. When ultrashort-pulsed lasers are used, the optimal interplay between laser and material parameters enables structuring down to the nanometer scale. Besides this, a unique aspect of laser processing technology is the possibility for material modifications at multiple (hierarchical) length scales, leading to the complex biomimetic micro- and nano-scale patterns, while adding a new dimension to structure optimization. This article reviews the current state of the art of laser processing methodologies, which are being used for the fabrication of bioinspired artificial surfaces to realize extraordinary wetting, optical, mechanical, and biological-active properties for numerous applications. The innovative aspect of laser functionalized biomimetic surfaces for a wide variety of current and future applications is particularly demonstrated and discussed. The article concludes with illustrating the wealth of arising possibilities and the number of new laser micro/nano fabrication approaches for obtaining complex high-resolution features, which prescribe a future where control of structures and subsequent functionalities are beyond our current imagination. KW - Biomimetic surfaces KW - Laser processing KW - Surface functionalization KW - Bioinspiration KW - Bionic materials PY - 2020 DO - https://doi.org/10.1016/j.mser.2020.100562 SN - 0927-796X VL - 141 SP - 100562-1 EP - 100562-47 PB - Elsevier B.V. AN - OPUS4-50927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Mezera, Marek A1 - Florian, C. A1 - Römer, G.-W. A1 - Krüger, Jörg A1 - Bonse, Jörn ED - Stoian, R. ED - Bonse, Jörn T1 - Creation of Material Functions by Nanostructuring N2 - Surface nanostructures provide the possibility to create and tailor surface functionalities mainly via controlling their topography along with other chemical and physical material properties. One of the most appealing technologies for surface functionalization via micro- and nanostructuring is based on laser processing. This can be done either via direct contour-shaping of the irradiated material using a tightly focused laser beam or in a self-ordered way that allows employing larger laser beam diameters along with areal scanning to create a variety of laser-induced periodic surface structures (LIPSS). For the latter approach, particularly ultrashort pulsed lasers have recently pushed the borders across long-lasting limitations regarding the minimum achievable feature sizes and additionally boosted up the production times. This chapter reviews the plethora of recently investigated applications of LIPSS—for example, via imposing diffractive or plasmonic structural colors, the management of liquids and surface wetting properties, biomedical and bioinspired functionalities, beneficial effects in tribology for reducing friction and wear, the manipulation of optical scattering and absorption in photovoltaics, or the modification of magnetic or superconducting surface properties in other energy applications. The footprint of the LIPSS-based technology is explored in detail regarding the current state of industrialization, including an analysis of the market and associated LIPSS production costs. KW - Laser-induced periodic surface structures, LIPSS KW - Surface functionalization KW - Nanostructures KW - Microstructures KW - Laser processing PY - 2023 SN - 978-3-031-14751-7 SN - 978-3-031-14752-4 DO - https://doi.org/10.1007/978-3-031-14752-4_23 VL - 239 SP - 827 EP - 886 PB - Springer Nature Switzerland AG CY - Cham, Switzerland AN - OPUS4-57295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Sokolowski-Tinten, K. A1 - Bonse, Jörn A1 - Barty, A. A1 - Chapman, H.N. A1 - Bajt, S. A1 - Bogan, M.J. A1 - Boutet, S. A1 - Cavalleri, A. A1 - Düsterer, S. A1 - Frank, M. A1 - Hajdu, J. A1 - Hau-Riege, S. A1 - Marchesini, S. A1 - Stojanonovic, N. A1 - Treusch, R. ED - Stoian, R. ED - Bonse, Jörn T1 - In-Situ Observation of the Formation of Laser-Induced Periodic Surface Structures with Extreme Spatial and Temporal Resolution N2 - Irradiation of solid surfaces with intense ultrashort laser pulses represents a unique way of depositing energy into materials. It allows to realize states of extreme electronic excitation and/or very high temperature and pressure and to drive materials close to and beyond fundamental stability limits. As a consequence, structural changes and phase transitions often occur along unusual pathways and under strongly nonequilibrium conditions. Due to the inherent multiscale nature—both temporally and spatially—of these irreversible processes, their direct experimental observation requires techniques that combine high temporal resolution with the appropriate spatial resolution and the capability to obtain good quality data on a single pulse/event basis. In this respect, fourth-generation light sources, namely, short wavelength and short pulse free electron lasers (FELs), are offering new and fascinating possibilities. As an example, this chapter will discuss the results of scattering experiments carried out at the FLASH free electron laser at DESY (Hamburg, Germany), which allowed us to resolve laser-induced structure formation at surfaces on the nanometer to submicron length scale and in temporal regimes ranging from picoseconds to several nanoseconds with sub-picosecond resolution. KW - Laser-induced periodic surface structures, LIPSS KW - Capillary waves KW - Time-resolved scattering KW - Pump-probe experiments KW - Free electron laser PY - 2023 SN - 978-3-031-14751-7 SN - 978-3-031-14752-4 DO - https://doi.org/10.1007/978-3-031-14752-4_6 VL - 239 SP - 257 EP - 276 PB - Springer Nature Switzerland AG CY - Cham, Switzerland AN - OPUS4-57297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zutta Villate, J. M. A1 - Viviana Rojas, J. A1 - Hahn, Marc Benjamin A1 - Anselmo Puerta, J. T1 - Synthesis of 198Au nanoparticles sub 10 nm due optimization on local dose by Monte Carlo simulations for cancer treatment N2 - To enhance the biological effects of radiation damage in cancerous cells, we present an alternative approach to the use of gold nanoparticles (AuNP), focusing on the synthesis and characterization of highly monodisperse, spherical radioactive gold nanoparticles 198AuNP. The size of the AuNP size was optimized with the help of Geant4/TOPAS particle scattering simulations, and energy deposition per nm3 per decay for varying radii (2–10 nm) was evaluated. This work is the foundation for ongoing experimental work to evaluate cell death induced by 198AuNP which aims for the use of radioactive gold nanoparticles in cancer treatment. KW - AuNP KW - Beta decay KW - Beta particle KW - Brachytherapy KW - Cancer treatment KW - Nanoparticles KW - Nanoparticle KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Gamma ray KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - Synthesis KW - TEM KW - OH radicals KW - Particle scattering KW - Radiation damage KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio PY - 2022 DO - https://doi.org/10.1007/s10967-022-08355-5 SN - 1588-2780 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-55132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichelt, Manuel A1 - Cappella, Brunero T1 - Atomic force microscope study of friction at the submicron-scale during tribotests with self-mated steel N2 - Friction at the microscale during reciprocal sliding tribotests was studied for the first time with self-mated steel (100Cr6/AISI 52100) taking advantage of an atomic force microscope (AFM). To this aim, microsized steel particles were glued to the AFM-cantilever and employed as colloidal tips to perform tribotests on a steel disc. The torsion of the cantilever, which correlates with the friction force, was measured during the tests. Few tests with the same load did not yield any wear and show that the load and adhesion contributions to friction stay constant when the shape of the test particle does not change. Most of the presented tribotests engendered wear. For those tests, the increase of friction during the tribotests was attributed to the emerging plowing contribution. Furthermore, analysis of both torsion and local slope gives information on the creation of wear particles and their influence on friction. KW - Friction KW - Microtribology KW - Sliding KW - Wear PY - 2022 DO - https://doi.org/10.1115/1.4054251 VL - 144 IS - 10 SP - 1 EP - 9 PB - ASME AN - OPUS4-54839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kohlbrecher, J. A1 - Breßler, Ingo T1 - SASfit 0.94.12 N2 - Small-angle scattering is an increasingly common method for characterizing particle ensembles in a wide variety of sample types and for diverse areas of application. SASfit has been one of the most comprehensive and flexible curve-fitting programs for decades, with many specialized tools for various fields. KW - Small-angle scattering KW - SAXS KW - SANS KW - Scattering pattern analysis PY - 2023 UR - https://doi.org/10.5281/zenodo.7530357 DO - https://doi.org/10.5281/zenodo.7530356 PB - Zenodo CY - Geneva AN - OPUS4-57913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz T1 - Confinement induced relaxations and phase behavior of a nanoconfined ionic liquid crystal N2 - Liquid crystalline mesophases in nanoconfinement exhibit intriguing phase transition behaviors and relaxation dynamics. Here in, we investigate the molecular dynamics and electrical conductivity of a linear shaped guanidinium based ILC confined in self-ordered nano porous alumina oxide membranes of pore size ranging from 180nm down to 25nm by employing broadband dielectric spectroscopy (BDS) and calorimetry. Calorimetric investigation reveals a complete suppression of the columnar – isotropic transition, while the plastic crystalline – columnar transition temperature decreases with inverse pore size and deviates from the Gibbs – Thomson equation. For the bulk case, BDS detects two relaxation modes in the crystalline phase, the  relaxation and the α1 relaxation, and two relaxation modes in the columnar phase, the α2 and α3 relaxation. For the confined case, all relaxation modes slow down compared to the bulk. However, for the least pore size (25 nm), the α2 relaxation is absent. We discuss the possible molecular origins of the different relaxation modes observed. For the bulk ILC, a clear jump of 4 orders of magnitude in the absolute values of DC conductivity occurs at the transition from the plastic crystalline to hexagonal columnar phase, for the confined ILC, this transition is smooth. DC conductivity is reduced for the confined case, except for the 25nm, where the values is similar to the bulk. T2 - 11th IDS conference 2022 CY - San Sebastian, Spain DA - 03.09.2022 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2022 AN - OPUS4-55879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zaki, Mohammad T1 - Nano- And Advanced Materials Synthesis In A Self-driving Lab (SDL) N2 - Development of new nano- and advanced materials - or improvement of existing ones - are important drivers in materials research due to the high importance of these material classes for various applications. Traditional laboratory methods for material development often suffer from reproducibility issues, inefficiencies, human errors, and long experimental optimization times. To overcome these challenges and thus accelerate and optimize the process of material synthesis and discovery, we are building a Self-Driving Lab (SDL), in which we integrate robotics for autonomous nanomaterial synthesis, and automated characterization and data analysis for a complete and reliable nanomaterial synthesis workflow. We also leverage artificial intelligence (AI) and machine learning (ML) algorithms to analyze characterization results and plan new experiments to optimize material properties in an ML-guided active learning feedback loop. Our SDL is very agnostic towards the types of nano- and advanced materials it can synthesize. On the same SDL platform, we successfully synthesized Stober silica, mesoporous silica, copper-oxide, and gold nanoparticles, as well as metal-organic frameworks and more complex structures from multi-step reactions, such as Au@SiO2 and CuO@SiO2 core-shell nanoparticles. All these material syntheses showed excellent reproducibility when run on the SDL platform multiple times. Automated, in-line characterization measurements of hydrodynamic diameter, zeta potential, and optical properties (absorbance, fluorescence) of the nanomaterials have also been incorporated in the SDL, along with automating data analysis of at-line or off-line characterization techniques such as electron microscopy image analyses [1]. Incorporating these characterization results alongside a machine learning feedback loop that suggests new experimental parameters for obtaining materials with target properties is a key step for developing autonomous, closed-loop optimization processes. In such a process, we typically start by using random sampling to suggest initial experimental parameters, followed by ML-guided active learning algorithms such as Bayesian optimization, artificial neural networks, or downhill simplex optimizers (e.g., Nelder-Mead) that suggest new synthesis parameters to finally arrive at a material with the targeted or enhanced properties. Further improvement and optimization of our SDL has the potential to mitigate challenges faced by traditional approaches and open a way for rapid and reproducible nano- and advanced material synthesis, optimization, and discovery. T2 - ANAKON Conference 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Self-driving laboratories KW - Materials acceleration platforms KW - Nanomaterials KW - Advanced materials KW - Automation KW - Robotics KW - In-line characterization PY - 2025 AN - OPUS4-62737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwibbert, Karin A1 - Richter, Anja A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Laser-Textured Surfaces: A Way to Control Biofilm Formation? N2 - Bacterial biofilms pose serious problems in medical and industrial settings. One of the major societal challenges lies in the increasing resistance of bacteria against biocides used in antimicrobial treatments, e.g., via overabundant use in medicine, industry, and agriculture or cleaning and disinfection in private households. Hence, new efficient bacteria-repellent strategies avoiding the use of biocides are strongly desired. One promising route to achieve bacteria-repellent surfaces lies in the contactless and aseptic large-area laser-processing of technical surfaces. Tailored surface textures, enabled by different laser-processing strategies that result in topographic scales ranging from nanometers to micrometers may provide a solution to this challenge. This article presents a current state-of-the-art review of laser-surface subtractive texturing approaches for controlling the biofilm formation for different bacterial strains and in different environments. Based on specific properties of bacteria and laser-processed surfaces, the challenges of anti-microbial surface designs are discussed, and future directions will be outlined. KW - Antibacterial surfaces KW - Biofilms KW - Laser processing KW - Laser-induced periodic surface structures (LIPSS) KW - Microbial adhesions PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588260 DO - https://doi.org/10.1002/lpor.202300753 SN - 1863-8899 SP - 1 EP - 41 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Anja T1 - Reducing Escherichia coli adhesion to PET by modulating spatial periods of laser-induced surface nanoripples N2 - Using nanofiber-like cell appendages, secreted proteins and sugars, bacteria can establish initial surface contact followed by irreversible adhesion and the formation of multicellular biofilms. Here, the stabilizing extracellular biofilm matrix together with physiological changes on the single cell level leads to an increased resilience towards harsh environmental conditions, antimicrobials, the host immune response and established cleaning procedures. Persistent microbial adhesion on e.g., medical implants, in water supply networks or food-processing industry is often associated with chronic inflammation, nosocomial and foodborne infections, enhanced biofouling and product contamination. To prevent persistent microbial colonization, antibacterial surface strategies often target the initial steps of biofilm formation and impede adhesion of single cells before a mature biofilm is being formed. While chemical coatings have been widely used, their restricted biocompatibility for eukaryotic cells and attenuated antibacterial-effects due to compound release limit their areas of application and alternative strategies focus on modified surfaces topographies to impede bacterial adhesion. In this work, we used ns-UV laser treatment (wavelength 248 nm and a pulse duration of 20 ns) to generate laser-induced periodic surface structures (LIPSS) with different submicrometric periods ranging from ~210 to ~610 nm on commercial poly(ethylene terephthalate) (PET) foils. Following structurally and chemically analyses, PET samples were subjected to bacterial colonization studies with Escherichia coli TG1, a bacterial test strain with a strong biofilm formation capacity due to the formation of nanofiber-like cell-appendages (pili). Bacterial adhesion tests revealed that E. coli repellence decisively depends on the spatial periods of the LIPSS with the strongest reduction (~91%) in cell adhesion observed for LIPSS periods of 214 nm. Scanning electron microscopy and additional biofilm studies using a pili-deficient E. coli TG1 strain revealed the importance of extracellular appendages in the bacterial repellence observed here, thus, pointing out new antibiotics-free strategies for antibacterial surfaces by impeding nanofiber-mediated bacterial adhesion. T2 - E-MRS Spring Meeting 2022 CY - Online meeting DA - 30.05.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Bacterial adhesion tests KW - Bacteria repellent surfaces KW - Polymer foils KW - E. coli PY - 2022 AN - OPUS4-54930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Laserstrukturierte Oberflächen: Ein Weg zur Kontrolle der Biofilmbildung? N2 - Bakterielle Biofilme stellen in medizinischen und industriellen Bereichen ein ernsthaftes Problem dar. Eine der größten gesellschaftlichen Herausforderungen liegt in der zunehmenden Resistenz von Bakterien gegen Biozide, die bei antimikrobiellen Behandlungen eingesetzt werden, z.B. durch übermäßigen Einsatz in Medizin, Industrie und Landwirtschaft oder durch Reinigung und Desinfektion in Privathaushalten. Daher sind neue effiziente bakterienabweisende Strategien, die den Einsatz von Bioziden vermeiden, dringend erforderlich. Ein vielversprechender Weg zur Erzielung bakterienabweisender Oberflächen liegt in der berührungslosen und aseptischen großflächigen Laserbearbeitung von technischen Oberflächen. Maßgeschneiderte Oberflächentexturen, ermöglicht durch verschiedene Laserbearbeitungsstrategien, die zu topographischen Skalen im Bereich von Nanometern bis Mikrometern führen, können eine Lösung für diese Herausforderung darstellen. In dem Vortrag wird ein Überblick über den aktuellen Stand der Technik bei der subtraktiven Texturierung von Laseroberflächen zur Kontrolle der Biofilmbildung bei verschiedenen Bakterienstämmen und in unterschiedlichen Umgebungen gegeben. Auf der Grundlage spezifischer Eigenschaften von Bakterien und laserbearbeiteten Oberflächen werden die Herausforderungen antimikrobieller Oberflächendesigns erörtert und zukünftige Richtungen aufgezeigt. T2 - GRAVOSeminar, GRAVOmer Kompetenznetzwerk CY - Online meeting DA - 28.02.2024 KW - Laser-Materialbearbeitung KW - Ultrakurzpuls-Laser KW - Biofilme KW - Antibakterielle Oberflächen KW - Oberflächenfunktionalisierung PY - 2024 UR - https://gravomer.de/veranstaltungen-anzeigen/laserstrukturierte-oberflaechen-ein-weg-zur-kontrolle-der-biofilmbildung AN - OPUS4-59594 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Driscoll, Laura L. A1 - Driscoll, Elizabeth H. A1 - Dong, Bo A1 - Sayed, Farheen N. A1 - Wilson, Jacob N. A1 - O’Keefe, Christopher A. A1 - Gardner, Dominic J. A1 - Grey, Clare P. A1 - Allan, Phoebe K. A1 - Michalchuk, Adam A1 - Slater, Peter R. T1 - Under pressure: offering fundamental insight into structural changes on ball milling battery materials N2 - Synthesis of Li ion battery materials via ball milling has been a huge area of growth, leading to new high-capacity electrode materials, such as a number of promising disordered rocksalt (DRS) phases. In prior work, it was generally assumed that the synthesis was facilitated simply by local heating effects during the milling process. In this work, we show that ball milling Li2MoO4 leads to a phase transformation to the high pressure spinel polymorph and we report electrochemical data for this phase. This observation of the formation of a high pressure polymorph shows that local heating effects alone cannot explain the phase transformation observed (phenakite to spinel) and so indicates the importance of other effects. In particular, we propose that when the milling balls collide with the material, the resulting shockwaves exert a localised pressure effect, in addition to local heating. To provide further support for this, we additionally report ball milling results for a number of case studies (Li2MnO3, Li2SnO3, Nb2O5) which reinforces the conclusion that local heating alone cannot explain the phase transformations observed. The work presented thus provides greater fundamental understanding of milling as a synthetic pathway and suggests potential strategies to prepare such samples without milling (e.g., doping to create internal chemical pressure). In addition, we suggest that further research is needed into the effect of the use of milling as a route to smaller particles, since we believe that such milling may also be affecting the surface structure of the particles through the influence of the shockwaves generated. KW - Pollution KW - Nuclear Energy and Engineering KW - Sustainability and the Environment KW - Environmental Chemistry KW - Renewable Energy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590086 DO - https://doi.org/10.1039/d3ee00249g VL - 16 IS - 11 SP - 5196 EP - 5209 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schoenhals, Andreas T1 - The bahvior of inonic liquid crystals as investigated by broadband dielectric spectroscopy and complementary methodas N2 - The behavior of liquid crystals based on phenylbenzoate was investigated using broadband dielectric spectroscopy and advanced calorimetry. The length of the alkyl side chain was systematically varied from 8 to 16 carbon atoms. The experimental results were compared with those obtained from molecular dynamics simulations. T2 - Sympoium: "Dipoles is soft matter - How they move and organize" CY - Leuven, Belgium DA - 06.06.2025 KW - Ionic liquid crystals PY - 2025 AN - OPUS4-63316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Juranyi, F. A1 - Kruteva, M. A1 - Zorn, R. A1 - Schönhals, Andreas T1 - Low-Frequency Vibrational Density of States of Nanophase- Separated Poly(n‑alkyl methacrylate)s: Confined Phonons and Relationship to Specific Heat N2 - This study investigates the low-frequency vibrational Density of states of nanophase-separated poly(n-alkyl methacrylate)s (PnMAs) and its relationship to specific heat. This system undergoes a nanophase separation for n > 1 in alkyl side chain-rich domains and a backbone-rich matrix. Using inelastic neutron scattering, the low-frequency vibrational density of states (Boson peak, BP) of PnMAs with varying alkyl side chain lengths (methyl, butyl, hexyl, and octyl) is measured. The results reveal that the BP shifts to higher frequencies with increasing side chain length reaching a maximum. This result indicates a counterbalance of confinement effects and the scattering of the matrix. The behavior of the Boson peak of the PnMAs is compared to other nanophase-separated systems, such as Janus-polynorbornenes and hexakis(n-alkyloxy)triphenylene discotic liquid crystals. The study also explores the connection between the BP and specific heat capacity, showing a linear relationship between the maximum frequency of the BP and the maximum temperature of the specific heat capacity anomaly. Moreover, from the measured vibrational density of states, the specific heat capacity is calculated and compared to experimental results. The comparison reveals qualitative agreement between the calculated and experimental data. These findings provide evidence for the sound wave interpretation of the Boson peak. KW - Inelastic Neutron Scattering PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-636928 DO - https://doi.org/10.1021/acs.macromol.5c00898 SN - 1520-5835 SP - 1 EP - 12 PB - ACS Publications AN - OPUS4-63692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gawek, Marcel A1 - Szymoniak, Paulina A1 - Hülagü, Deniz A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Molecular Mobility of Thin Films and the Adsorbed Layer of Poly(2-vinylpyridine) N2 - The molecular dynamics of thin films and the adsorbed layer of poly(2-vinylpyridine) (P2VP) were investigated using broadband dielectric spectroscopy (BDS) and spectroscopic ellipsometry. Thin films of P2VP were prepared on silicon substrates and characterized to understand the influence of film thickness on the thermal glass transition temperature (Tg) and molecular mobility. The ellipsometric study revealed a decrease in Tg with decreasing film thickness, attributed to the enhanced mobility at the polymer/air interface. The adsorbed layer, prepared via the solvent leaching approach, exhibited a higher Tg compared to the bulk, indicating reduced molecular mobility due to strong polymer substrate interactions. The dielectric measurements were carried out in two different electrode configurations, crossed electrode capacitors (CEC) and nanostructured electrodes (NSE), where the latter allows for a free surface layer at the polymer/air interface. The relaxation rates of the α-relaxation measured in the CEC geometry collapse into one chart independent from the film thickness. For the thin films measured in the NSE arrangement the relaxation rates slow down with decreasing film thickness which was discussed as related to a stronger interaction of the P2VP segments with the native SiO2 at the surface of the silicon substrate compared to aluminum. It is worth to note that the effect of the enhanced mobility at the polymer/air interface is not observed in the dielectric measurements. BDS measurements in NSE geometry identified an additional relaxation process (α*-relaxation) in thin films, which was more pronounced in the adsorbed layer. This process is hypothesized to be related to molecular fluctuations within the adsorbed layer including the adsorption/desorption dynamics of segments or to a Slow Arrhenius Process (SAP) related to the equilibration dynamics deep in the glassy state. KW - Thin polymer films PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637181 DO - https://doi.org/10.1039/d5sm00539f SN - 1744-6848 SP - 1 EP - 12 PB - Royal Society of Chemistry (RSC) AN - OPUS4-63718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Busch, Richard T1 - Surface Initiated Structure Formation in Glass Ceramics N2 - A summery of previous research regarding surface crystallization is given as well as results regarding thecurrent DFG project are presented. T2 - XRM Workshop CY - Halle, Germany DA - 03.03.2020 KW - Glass KW - Surface KW - XRM PY - 2020 AN - OPUS4-51337 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed A. A1 - Böhning, Martin A1 - Frick, B. A1 - Apple, M. A1 - Mole, R. A. A1 - De Souza, N. R. A1 - Zorn, R. A1 - Schönhals, Andreas T1 - Confined Segmental Diffusion in Nanophase Separated Janus Polynorbornenes as Investigated by Quasielastic Neutron Scattering N2 - A combination of neutron time-of-flight and neutron backscattering spectroscopy was used to investigate the molecular dynamics of Janus polynorbornenes (Janus poly(tricyclononenes)) on a microscopic level. These Janus polynorbornenes, denoted as PTCNSiOR, have a semirigid backbone with −Si(OR)3 side groups attached to it. R represents the length of the alkyl side chain. Here side chain lengths of R = 3 (propyl) and R = 8 (octyl) were considered. It is worth mentioning that these polymers have some potential as active layers in gas separation membranes, especially for the separation of higher hydrocarbons. The combination of time-of-flight and backscattering will ensure a reasonably broad time window for analysis where the incoherent intermediate scattering function SInc(q,t) is considered. Previously, it was shown by X-ray investigations that the system undergoes a nanophase separation into alkyl side chain-rich domains surrounded by a backbone-rich matrix. For PTCNSiOPr (R = 3), the alkyl side-chain-rich domains are truly isolated in the backbone-rich matrix, whereas for PTCNSiOOc (R = 8) these domains percolate through the matrix. Further, it was also previously shown that the alkyl side-chain-rich domains undergo a glass transition. The advantage of neutron scattering experiments discussed here is that besides temporal also spatial information is obtained which will allow conclusions to be drawn about the type of molecular fluctuations. At the lowest measured temperature, the decay in Sinc(q,t) is due to the methyl group rotation. The methyl group dynamics is analyzed in terms of a modified jump-diffusion in a 3-fold potential and yields to a reasonable fraction of hydrogens which contribute to the methyl group rotation. At higher temperatures, the decay in SInc(q,t) is due to both the methyl group rotation and the segmental dynamics in the alkyl side-chain-rich domains. The segmental diffusion is modeled by a sublinear diffusion. For the analysis of the scattering function SInc(q,t) of PTCNSiOPr an elastic scattering due to the immobilized backbone-rich matrix must be taken into account. The analysis reveals that the segmental dynamics is confined by the finite size of alkyl chain-rich domains and that it is intrinsically heterogeneous in nature. Both effects are more pronounced for PTCNSiOPr in comparison to those of PTCNSiOOc. KW - Polynorbornene KW - Quasielastic Neutron Scattering PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608712 DO - https://doi.org/10.1021/acs.macromol.4c01045 SP - 1 EP - 14 PB - ACS Publications AN - OPUS4-60871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed A. A1 - Böhning, Martin A1 - De Souza, N. R. A1 - Juranyi, F. A1 - Zorn, R. A1 - Schönhals, Andreas T1 - Inelastic and Quasielastic Neutron Scattering on Polynorbornenes with Bulky Carbocyclic Side groups N2 - This study investigates the molecular mobility and vibrational properties of polynorbornenes with bulky carbocyclic side groups using inelastic and quasielastic neutron scattering techniques. The polymers, synthesized via metathesis and addition polymerization, exhibit varying degrees of microporosity, which ignificantly influences their gas separation performance. By inelastic neutron scattering experiments, it could be shown that all considered polymers have excess contributions to the low frequency vibrational density of states known as the Boson peak. The maximum frequency of the Boson peak correlates to the microporosity of the polymers. This correlation supports the sound wave interpretation of the Boson peak, suggesting that the microporous structure enhances the compressibility of the material at a microscopic length scale. The molecular mobility, particularly the methyl group rotation, was characterized using elastic scans and quasielastic neutron scattering. The study revealed a temperature dependent relaxation process, with the onset of molecular fluctuations observed around 200 K for the polymer containing methyl groups. For the polymer having no methyl groups only elastic scattering is observed. The methyl group rotation was analyzed in terms of a jump diffusion in a threefold potential with three equivalent energy minima. This leads to an almost correct description of the q dependence of the elastic incoherent scattering function when the number of hydrogen nuclei undergoing the methyl group rotation is considered. It was further evidenced that the fraction of methyl undergoing the methyl group rotation increases with increasing temperature. KW - Polymers of Intrinsic Microporosity KW - Neutron scattering PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630297 DO - https://doi.org/10.1016/j.polymer.2025.128358 SN - 1873-2291 VL - 328 SP - 241 PB - Elsevier Ltd. AN - OPUS4-63029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed Aejaz A1 - Malpass-Evans, R. A1 - McKeown, N. A1 - Jalarvo, N. A1 - Tyagi, M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Microscopic molecular mobility of high-performance polymers of intrinsic microporosity revealed by neutron scattering – bend fluctuations and signature of methyl group rotation N2 - Polymers of intrinsic microporosity exhibit a combination of high gas permeability and reasonable permselectivity, which makes them attractive candidates for gas separation membrane materials. The diffusional selective gas transport properties are connected to the molecular mobility of these polymers in the condensed state. Incoherent quasielastic neutron scattering was carried out on two polymers of intrinsic microporosity, PIM-EA-TB(CH3) and its demethylated counterpart PIM-EA-TB(H2), which have high Brunauer–Emmett–Teller surface area values of 1030 m2 g-1 and 836 m2 g-1, respectively. As these two polymers only differ in the presence of two methyl groups at the ethanoanthracene unit, the effect of methyl group rotation can be investigated solely. To cover a broad dynamic range, neutron time-of-flight was combined with neutron backscattering. The demethylated PIM-EA-TB(H2) exhibits a relaxation process with a weak intensity at short times. As the backbone is rigid and stiff this process was assigned to bendand-flex fluctuations. This process was also observed for the PIM-EA-TB(CH3). A further relaxation process is found for PIM-EA-TB(CH3), which is the methyl group rotation. It was analyzed by a jump-diffusion in a three-fold potential considering also the fact that only a fraction of the present hydrogens in PIM-EATB(CH3) participate in the methyl group rotation. This analysis can quantitatively describe the q dependence of the elastic incoherent structure factor. Furthermore, a relaxation time for the methyl group rotation can be extracted. A high activation energy of 35 kJ mol-1 was deduced. This high activation energy evidences a strong hindrance of the methyl group rotation in the bridged PIM-EA-TB(CH3) structure. KW - Polymers of Intrinsic Microporosity KW - Neutron Scattering PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604114 DO - https://doi.org/10.1039/d4sm00520a SP - 1 EP - 11 PB - RSC AN - OPUS4-60411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stühler, Merlin R. A1 - Makki, Hesam A1 - Silbernagl, Dorothee A1 - Dimde, Mathias A1 - Ludwig, Kai A1 - Tegner, Bengt E. A1 - Greve, Christopher A1 - Rausch, Konstantin A1 - Herzig, Eva M. A1 - Köhler, Anna A1 - Plajer, Alex J. T1 - Flexibility and Dynamicity Enhances and Controls Supramolecular Self-Assembly of Zinc(II) Metallogels N2 - Supramolecular self-assembly of stacked architectures is typically achieved through hydrogen bonding or π–π interactions between monomers constructed from stable and inert bonds. In contrast, coordinative interactions of early metals promise distinct self-assembly behaviour due to more flexible bonding geometries and a wider range of stabilities and exchange kinetics. In this report we demonstrate that tailoring the flexible coordination sphere of Zinc(II) complexes via subtle ligand modification promotes not only one but also three-dimensional self-assembly both thermodynamically and kinetically into higher-order fibrous morphologies, the latter being elucidated by electron tomography. As a result, coordination chemistry can be translated into both nanoscopic (fibre stiffness) and macroscopic (thermal gel stability) material properties. Utilizing dynamicity enables gelation via subcomponent self-assembly, constructing the supramolecular polymer network simultaneously with the monomer. Furthermore, coordinative dis- and reassembly via metal-ligand exchange reactions involving the first and second coordination spheres allows for control over gelation and emission of the system. Our report links concepts in supramolecular self-assembly and coordination chemistry by leveraging the unique bonding interactions that cannot be achieved for traditional monomers, promising applications in stimuli-responsive optoelectronics. KW - Nanomaterial KW - AFM KW - Organometallic KW - Gel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634221 DO - https://doi.org/10.1002/adfm.202507793 SN - 1616-301X SP - 1 EP - 10 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-63422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schönhals, Andreas A1 - Böhning, Martin A1 - Szymoniak, Paulina ED - Schönhals, Andreas ED - Szymoniak, Paulina T1 - (Nano)Composite Materials—An Introduction N2 - The chapter gives a brief introduction to (nano)compositecomposite materials having the focus on polymer-based nanocomposites. The different dimensionalities of nanoparticles are introduced, along with their distribution in the matrix. Different application fields of polymer-based nanocomposites, like flame retardancy, filled rubbers, nanofilled thermosets and thermoplastics, separation membranes and nanodielectrics, are considered in greater detail. KW - Polymer-based nanocomposites KW - Nanoparticle KW - Distribution of nanoparticles KW - Filled rubbers KW - Filled thermosets and plastics KW - Separation membranes KW - Nanodielectrics PY - 2022 DO - https://doi.org/10.1007/978-3-030-89723-9_1 SP - 1 EP - 31 PB - Springer CY - Cham, Switzerland AN - OPUS4-54565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed A. A1 - Juranyi, Fanni A1 - Böhning, Martin A1 - Zorn, Reiner A1 - Schönhals, Andreas T1 - Low-Frequency Vibrational Density of State of Janus-Polynorbornenes: The Dependence of the Boson Peak on the Nanophase-Separated Structure N2 - Inelastic incoherent neutron time-of-flight scattering was employed to investigate the low-frequency vibrational density of states (VDOSs) for a series of glassy Janus-poly(tricyclononenes), which consist of a rigid main chain and flexible alkyl side chains. Here, the length of the flexible side chains was systematically varied from propyl to octyl. Such materials have potential applications as active separation layers in gas separation membranes as a green future technology, especially for the separation of higher hydrocarbons. From the morphological point of view, the Janus polynorbornenes undergo a nanophase separation into alkyl side chain-rich nanodomains surrounded by a rigid polynorbornene matrix. Here, the influence of the nanophase-separated structure on the low-frequency VDOS is investigated from a fundamental point of view. The low-frequency VDOSs of these Janus polynorbornene show excess contributions to the Debye type VDOS known as the Boson peak (BP) for all side chain lengths. Due to the high incoherent scattering cross-section of hydrogen, most of the scattering comes from the alkyl side chain-rich domains. Compared to conventional glass-forming materials, in the considered Janus polynorbornenes, the BP has a much lower intensity and its frequency position is shifted to higher values. These experimental results are discussed in terms of the nanophase-separated structure where the alkyl chain-rich domains were constrained by the surrounding matrix dominated by the rigid backbone. With increasing alkyl chain length, the size of the alkyl chain-rich domains increases. The frequency position of the BP shifts linearly to lower frequencies with the size of these nanodomains estimated from X-ray measurements. The obtained results support the sound wave interpretation to the BP KW - Inelastic neutron scattering PY - 2023 DO - https://doi.org/10.1021/acs.macromol.3c00913 SN - 0024-9297 SP - 1 EP - 10 PB - ACS AN - OPUS4-57972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strommer, Bettina T1 - Networking Skills: The Effect of Graphene on Crosslinking N2 - 2D layered nanoparticles enable a distinct reduction of filler loadings in rubber compounds combined with a boost in performance due to their high surface to volume ratio. They often enable unique property profiles providing a great potential as effective fillers in rubber, especially by enhancing mechanical and barrier properties. As the best possible incorporation into the elastomer matrix is crucial for the efficiency of the nanofiller, dispersing and exfoliation of the nanoparticles without formation of agglomerates usually constitutes an outstanding challenge - especially when using conventional processing methods. Laboratory-scale approaches for highly dispersed nanocomposites sometimes solve this problem, but these are often too energy and time consuming and provide no scale up possibility for real applications. Therefore, a latex premixing process was established to produce highly filled masterbatches, enabling the processing with conventional techniques. The presence of nanoparticles greatly impacts the behavior of elastomeric compounds, besides affecting the properties of the final product also the processing is influenced (rheology, crosslinking). In this study, nanocomposites of natural rubber and multilayer graphene (MLG) were prepared via a latex masterbatch route. Different strategies for masterbatch premixing are compared (stirring vs. ultrasonication, coagulation vs. drying). Dispersion and exfoliation of MLG were determined by transmission electron microscopy. The reinforcing effect of MLG affects the viscosity while the dispersed graphene layers may also act as diffusion barrier/absorbent for the crosslinking agents. In contrast to that, MLG forms physical crosslinks in the final product. Swelling measurements and differential scanning calorimetry allow a differentiation between chemical and physical network links. Different technical properties of the nanocomposites were measured with respect to mechanical and application relevant behavior. T2 - PPS 37 CY - Online meeting DA - 12.04.2022 KW - Elastomers KW - Nanocomposites KW - Graphene KW - Nanoparticles KW - Latex KW - Natural rubber KW - Processing PY - 2022 AN - OPUS4-54696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Multifunctional Elastomer/Graphene Nanocomposites N2 - A few layer/multilayer graphene (MLG) with a specific surface area of BET=250 m2/g is proposed as an efficient multifunctional nanofiller for rubbers. The preparation method, i.e., ultrasonically-assisted solution mixing of master batches followed by two-roll milling, strongly influences the dispersion in the elastomeric matrix and is fundamental for the final properties. When homogenously dispersed, single stacks of only approximately 10 graphene sheets, with an aspect ratio of 34, work at low loadings, enabling the replacement of large amounts of carbon black (CB), an increase in efficiency, and a reduction in filler load. The appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing, gas barrier properties, electrical and thermal conductivity, as well as mechanical properties of different rubbers, as shown for chlorine-Isobutylene-Isoprene rubber (CIIR), nitrile-butadiene rubber (NBR), natural rubber (NR), and styrene-butadiene rubber (SBR). 3 phr of MLG tripled the Young’s modulus of CIIR, an effect equivalent to 20 phr of CB. The stronger interactions between MLG and NR or SBR also resulted in a reduction in the elongation at break by 20% and 50%, respectively, while the same parameter was hardly changed for CIIR/MLG and NBR/MLG. CIIR/MLG and NBR/MLG were stiffer but just as defomable than CIIR and NBR. The strong reinforcing effect of 3 phr MLG was confirmed by the increase of greater than 10 Shore A in hardness. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards flammability, the latter shown by the reduction in heat release rate in the cone calorimeter. We investigated MLG also as a synergist for reducing the aluminium trihydrate loading in flame retardant hydrogenated acrylonitrile-butadiene (HNBR), polybutadiene chloroprene (BR/CR), and chlorosulfonated polyethylene rubber(CSM). The higher the nanofiller concentration is, the greater the improvement in the properties. For instance, the permeability decreased by 30% at 3 phr of MLG, 50% at 5 phr and 60% at 10 phr, respectively. Moreover, the MLG nanocomposites improve stability of mechanical properties against the effects of weathering. In key experiments an increase in UV-absorption and a pronounced radical scavenging were proved as stabilizing mechanisms. In a nutshell, MLG is an efficient multifunctional nanofiller ready to be used for innovative rubber development. T2 - 19th European Polymer Congress, EPF 2022 CY - Prague, Czech Republic DA - 26.06.2022 KW - Graphene KW - Nanocomposite KW - Rubber KW - Elastomer PY - 2022 AN - OPUS4-55196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz T1 - Molecular dynamics of Janus Polynorbornenes: Glass Transitions and Nanophase separation N2 - We report the dielectric and calorimetric investigations of an homologous series of Janus polynorbornenes with rigid main backbone and flexible -Si(OR)3 side groups, of differing length alkyl chains (R = Propyl, Butyl, Hexyl, Octyl, Decyl). Dielectric dispersion reveals two active processes at low temperatures, denoted as β- and α- relaxation. The former can be assigned to localized fluctuations, whilst the latter relates to the glassy dynamics of the flexible -Si(OR)3 side groups, that creates a nanophase separation in both the alkyl chain rich and backbone rich domains. Temperature modulated DSC measurements and X-ray scattering experiment confirm the nanophase separation. Fast Scanning Calorimetry employing both fast heating and cooling rates detects the glass transition temperatures of the backbone rich domains, which are beyond or near to their degradation temperatures in terms of conventional DSC. The cooperative length scale of glass transition and the size of the alkyl chain rich domains increases with chain length. Alongside these results, a significant conductivity contribution was observed for all Poly(tricyclononenes) with Si(OR)3 side groups, which is interpreted in terms of a percolation model. T2 - IDS Online conference 2021 CY - Online meeting DA - 06.09.2021 KW - Glass transition KW - Conductivity KW - Dynamics KW - Fast Scanning Calorimetry PY - 2021 AN - OPUS4-53299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Pauw, Brian Richard A1 - Laskina, Sofya A1 - Naik, Aakash A1 - Smales, Glen Jacob A1 - George, Janine A1 - Breßler, Ingo A1 - Benner, Philipp T1 - "Ultima Ratio": Simulating wide-range X-ray scattering and diffraction N2 - We demonstrate a strategy for simulating wide-range X-ray scattering patterns, which spans the small- and wide scattering angles as well as the scattering angles typically used for Pair Distribution Function (PDF) analysis. Such simulated patterns can be used to test holistic analysis models, and, since the diffraction intensity is on the same scale as the scattering intensity, may offer a novel pathway for determining the degree of crystallinity. The "Ultima Ratio" strategy is demonstrated on a 64-nm Metal Organic Framework (MOF) particle, calculated from Q < 0.01 1/nm up to Q < 150 1/nm, with a resolution of 0.16 Angstrom. The computations exploit a modified 3D Fast Fourier Transform (3D-FFT), whose modifications enable the transformations of matrices at least up to 8000^3 voxels in size. Multiple of these modified 3D-FFTs are combined to improve the low-Q behaviour. The resulting curve is compared to a wide-range scattering pattern measured on a polydisperse MOF powder. While computationally intensive, the approach is expected to be useful for simulating scattering from a wide range of realistic, complex structures, from (poly-)crystalline particles to hierarchical, multicomponent structures such as viruses and catalysts. KW - X-ray KW - Simulation KW - 3D Fourier Transform KW - High resolution KW - XRD KW - SAXS KW - PDF KW - Total scattering KW - X-ray scattering KW - Metal organic framework KW - Electron density map KW - FFT PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572067 DO - https://doi.org/10.48550/arXiv.2303.13435 VL - Cornell University SP - 1 EP - 12 PB - Ithaca, NY AN - OPUS4-57206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -