TY - JOUR A1 - Friedrich, Sebastian A1 - Cappella, Brunero T1 - Friction and mechanical properties of AFM-scan-induced ripples in polymer films N2 - In the present paper, friction and mechanical properties of AFM-Scan-Induced ripple structures on films of polystyrene and poly-n-(butyl methacrylate) are investigated. Force volume measurements allow a quantitative analysis of the elastic moduli with nanometer resolution, showing a contrast in mechanical response between bundles and troughs. Additionally, analysis of the lateral cantilever deflection shows a clear correlation between friction and the sample topography. Those results support the theory of crack propagation and the formation of voids as a mechanism responsible for the formation of ripples. This paper also shows the limits of the presented measuring methods for soft, compliant, and small structures. KW - AFM KW - Polymer KW - Ripples KW - Mechanical properties KW - Friction PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532772 DO - https://doi.org/10.3389/fmech.2021.672898 SN - 2297-3079 VL - 7 SP - 1 EP - 8 PB - Frontiers Media CY - Lausanne AN - OPUS4-53277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Gräf, S. T1 - Ten Open Questions about Laser-Induced Periodic Surface Structures N2 - Laser-induced periodic surface structures (LIPSS) are a simple and robust route for the nanostructuring of solids that can create various surface functionalities featuring applications in optics, medicine, tribology, energy technologies, etc. While the current laser technologies already allow surface processing rates at the level of m2/min, industrial applications of LIPSS are sometimes hampered by the complex interplay between the nanoscale surface topography and the specific surface chemistry, as well as by limitations in controlling the processing of LIPSS and in the long-term stability of the created surface functions. This Perspective article aims to identify some open questions about LIPSS, discusses the pending technological limitations, and sketches the current state of theoretical modelling. Hereby, we intend to stimulate further research and developments in the field of LIPSS for overcoming these limitations and for supporting the transfer of the LIPSS technology into industry. KW - Laser-induced periodic surface structures (LIPSS) KW - Industrial application KW - Functional properties KW - Surface functionalization KW - Modelling PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539503 DO - https://doi.org/10.3390/nano11123326 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 21 PB - MDPI CY - Basel, Switzerland AN - OPUS4-53950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN ED - Simon, P. ED - Ihlemann, J. ED - Bonse, Jörn T1 - Laser-generated periodic nanostructures N2 - This book is a reprint collection of articles from the Special Issue published online in the open access journal Nanomaterials. KW - Laser-induced periodic surface structures (LIPSS) KW - Direct laser-interference patterning (DLIP) KW - Applications KW - Numerical simulations PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535146 UR - https://www.mdpi.com/books/pdfview/book/4426 SN - 978-3-0365-2027-8 SN - 978-3-0365-2028-5 DO - https://doi.org/10.3390/books978-3-0365-2028-5 SP - 1 EP - 328 PB - MDPI CY - Basel AN - OPUS4-53514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Anja T1 - Bacterial adhesion on ultrashort laser processed surfaces N2 - Bacterial biofilms are multicellular communities adhering to surfaces and embedded in a self-produced extracellular matrix. Due to physiological adaptations and the protective biofilm matrix itself, biofilm cells show enhanced resistance towards antimicrobial treatment. In medical and industrial settings, biofilms on e.g. for implants or for surfaces in food-processing industry can be a fertile source of bacterial pathogens and are repeatedly associated with persisting, nosocomial and foodborne infections. As extensive usage of antibiotics and biocides can lead to the emergence of resistances, various strategies are currently developed, tested and improved to realize anti-bacterial surface properties through surface functionalization steps avoiding antibiotics. In this study, contact-less and aseptic large-area ultrashort laser scan processing is employed to generate different surface structures in the nanometer- to micrometer-scale on technical materials, i.e. titanium-alloy, steel, and polymer. The processed surfaces were characterized by optical and scanning electron microscopy and subjected to bacterial colonization studies with Escherichia coli test strains. For each material, biofilm results of the fs-laser treated surfaces are compared to that obtained on polished (non-irradiated) surfaces as a reference. Depending on the investigated surfaces, different bacterial adhesion patterns were found, suggesting an influence of geometrical size, shape and cell appendages of the bacteria and – above all – the laser-processed nanostructure of the surface itself. T2 - European Materials Research Society Spring Meeting 2021 CY - Online Meeting DA - 31.05.2021 KW - Bacterial adhesion KW - Biofilm formation KW - Ultrashort laser processing KW - Laser-induced periodic surface structures (LIPSS) PY - 2021 UR - https://www.european-mrs.com/laser-material-processing-fundamental-interactions-innovative-applications-emrs AN - OPUS4-52765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Krüger, Jörg ED - Sugioka, K. T1 - Laser-Induced Periodic Surface Structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon and can be generated on almost any material by irradiation with linearly polarized radiation. This chapter reviews the current state in the field of LIPSS, which are formed in a “self-ordered” way and are often accompanying materials processing applications. LIPSS can be produced in a single-stage process and enable surface nanostructuring and, in turn, adaption of optical, mechanical, and chemical surface properties. Typically, they feature a structural size ranging from several micrometers down to less than 100 nm and show a clear correlation with the polarization direction of the light used for their generation. Various types of LIPSS are classified, relevant control parameters are identified, and their material-specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Laser ablation KW - Microstructures KW - Nanostrcutures PY - 2021 SN - 978-3-030-63646-3 (Print) SN - 978-3-030-63647-0 (Online) DO - https://doi.org/10.1007/978-3-030-63647-0_17 SP - 879 EP - 936 PB - Springer-Nature Switzerland AG CY - Cham ET - 1 AN - OPUS4-53728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Simon, P. ED - Ihlemann, J. ED - Bonse, Jörn T1 - Special issue "Laser-generated periodic nanostructures" N2 - The study of laser-fabricated periodic nanostructures is one of the leading topics of today’s photonics research. Such structures on the surface of metals, semiconductors, dielectrics, or polymers can generate new material properties with special functionalities. Depending on the specific material parameters and the morphology of the structures, new devices such as microlasers, optical nanoswitches, optical storage devices, sensors or antifraud features can be realized. Furthermore, laser-generated surface textures can be used to improve the tribological properties of surfaces in contact and in relative motion—to reduce friction losses or wear, to modify the wettability or the cell and biofilm growth properties of surfaces through bioinspired laser engineering, for emerging medical applications, or as decoration elements for the refinement of precious goods. This Special Issue “Laser-Generated Periodic Nanostructures” focuses on the latest experimental and theoretical developments and practical applications of laser-generated periodic structures that can be generated in a “self-organized” way (laser-induced periodic surface structures, LIPSS, ripples) or via laser interference-based direct ablation (often referred to as direct laser interference patterning, DLIP). We aimed to attract both academic and industrial researchers in order to collate the current knowledge of nanomaterials and to present new ideas for future applications and new technologies. By 8 August 2021, 22 scientific articles have been published in the Special Issue. KW - Laser-induced periodic surface structures (LIPSS) KW - Direct laser-interference patterning (DLIP) KW - Surface functionalization KW - Laser processing KW - Applications PY - 2021 UR - https://www.mdpi.com/journal/nanomaterials/special_issues/laser-generated_periodic SN - 2079-4991 VL - 10(1)-11(8) SP - 147-1 EP - 2054-7 PB - MDPI CY - Basel AN - OPUS4-53099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Busch, R. A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Patzig, C. A1 - Krause, M. A1 - Höche, T. T1 - Sample preparation for analytical scanning electron microscopy using initial notch sectioning N2 - A novel method for broad ion beam based sample sectioning using the concept of initial notches is presented. An adapted sample geometry is utilized in order to create terraces with a well-define d step in erosion depth from the surface. The method consists of milling a notch into the surface, followed by glancing-angle ion beam erosion, which leads to preferential erosion at the notch due to increased local surface elevation. The process of terrace formation can be utilized in sample preparation for analytical scanning electron microscopy in order to get efficient access to the depth-dependent microstructure of a material. It is demonstrated that the method can be applied to both conducting and non-conducting specimens. Furthermore, experimental parameters influencing the preparation success are determined. Finally, as a proof-of-concept, an electron backscatter diffraction study on a surface crystallized diopside glass ceramic is performed, where the method is used to analyze orientation dependent crystal growth phenomena occurring during growth of surface crystals into the bulk. KW - 3D etching KW - Ion beam erosion Sectioning KW - EBSD KW - Sample preparation KW - Analytical scanning electron microscopy KW - SEM KW - Glass Ceramic KW - Glass KW - Diopsid PY - 2021 DO - https://doi.org/10.1016/j.micron.2021.103090 SN - 0968-4328 VL - 150 PB - Elsevier B.V. AN - OPUS4-53075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuchenbecker, Petra T1 - Granulometry of Nano Powders - a Challenge Especially for the Dispersion Process N2 - The use of increasingly finer starting powders up to nanopowders can also be observed in the field of ceramics. Their advantages consist, for example, in their lower activation energy, an increase in strength or unique optical properties. However, handling and characterization of the powders are much more difficult. The main reason for this is the very high adhesive forces between the particles and between particles and other surfaces, too. Therefore, submicron and even more so nanoparticles tend to agglomerate and their separation into primary particles during sample preparation prior to particle sizing is of particular challenge. A representative measurement sample is only obtained when it no longer contains agglomerates. The evaluation of the dispersion process and a decision on whether it was successful thus increases in importance for the reliability of the measurement results of particle sizing. The presentation uses examples to show possible approaches and provides information on possible sources of error. It is shown that successful granulometric characterisation of fine powders requires both an improved dispersion technique and very often an effective combination of two or more measurement methods. KW - Agglomerates KW - Nano-powder KW - Dispersion process PY - 2021 SN - 0173-9913 VL - 98 IS - 2 SP - 47 EP - 54 PB - Göller Verlag GmbH CY - Baden-Baden AN - OPUS4-52504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strommer, Bettina T1 - Natural Rubber Nanocomposites via Optimized Latex Premixing and Conventional Technical Processing N2 - Creation of highly functional materials and replacement of high amounts of conventional fillers are driving forces for the development of nanocomposites. Besides the type and properties of nanoparticles, their dispersing in the elastomeric matrix and the stability of this dispersion through all processing steps are the main factors for the resulting performance of the produced material. Therefore, a preparation chain via latex premixing to a highly filled masterbatch, followed by conventional technical processing is to be developed. Three types of carbon-based particles are characterized as such (SEM, Raman Spectroscopy, BET specific surface area) and in combination with natural rubber, as nanocomposites (TEM. Hardness, Abrasion resistance, Compression set, Cone calorimetry). All of the studied particles lead to an improvement in the investigated mechanical properties, the extent of reinforcement depends strongly on the specific surface of the particle interacting with the elastomeric matrix in combination with their shape. T2 - DKG Elastomer Symposium CY - Online meeting DA - 28.06.2021 KW - Processing KW - Elastomers KW - Nanocomposites KW - Graphene KW - Nanoparticles KW - Latex KW - Natural rubber PY - 2021 AN - OPUS4-53106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Battig, Alexander T1 - Multifunctional Graphene in Flame Retarded Polybutadiene/ Chloroprene/ Carbon Black Composites N2 - Multilayer graphene is investigated as a multifunctional nanofiller to polybutadiene/ chloroprene rubbers (BR/CR) that partially substitutes carbon black (CB) and aluminum trihydroxide (ATH). Loadings of only 3 parts per hundred rubber (phr) MLG replaced 15 phr of CB and/or 3 phr of ATH in BR/CR nanocomposites. Mechanical and fire behavior were investigated, and results point to improved rheological, curing and mechanical properties of MLG-containing rubber composites. T2 - 18th European Meeting on Fire Retardant Polymeric Materials, FRPM21 CY - Budapest, Hungary DA - 29.08.2021 KW - Graphene KW - Rubber KW - Fire Retardant KW - Nanofiller KW - Nanocomposite KW - ATH PY - 2021 AN - OPUS4-53202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Development of a specific OECD Test Guideline on Particle Size and Particle Size Distribution of Nanomaterials N2 - In this research project, a new OECD Test Guideline (TG) for the determination of “Particle Size and Particle Size Distributions of Nanomaterials” was developed as the existing OECD TG 110 is considered to be outdated in terms of applicable size range (not covering sizes <200 nm) and methods. By its scope with an applicable size range from 1 to 1000 nm the new Test Guideline (TG PSD) covers the whole nanoscale. The TG PSD is applicable for particulate and fibrous nanomaterials. The prescribed, pairwise measurement of fibre diameter and length in the TG PSD allows for the first time to differen-tiate fibres with regard to their size-dependent hazard properties. Measurement instructions for each included method were validated within two separated interlaboratory comparisons, as a distinction between near spherical particles and fibres when applying the methods has to be made. Besides information on content and structure of the TG PSD, this final report outlines essential steps, considerations and organisational aspects during the development of the TG. Insights into the selec-tion, preparation and prevalidation of test materials used in the interlaboratory comparison are given. Finally, main results of the interlaboratory comparisons and their impacts on the TG PSD are pre-sented. N2 - Im Rahmen des Forschungsprojekts wurde eine neue OECD-Prüfrichtlinie (TG) für die Bestimmung von Partikelgrößen und Partikelgrößenverteilungen von Nanomaterialien entwickelt, da die existie-rende OECD TG 110 zur Bestimmung von Partikelgrößen in Bezug auf den anwendbaren Größenbe-reich und die gegebenen Methoden veraltet ist bzw. den Nanometerbereich < 200 nm nicht abdeckt. Mit ihrem Anwendungsbereich von 1 bis 1000 nm deckt die neue Prüfrichtlinie (TG PSD) die gesamte Nanoskala ab. Die TG PSD ist für partikel- und faserförmige Nanomaterialien anwendbar. Durch die, in der TG PSD vorgeschriebene, paarweise Messung von Faserdurchmesser und -länge ermöglicht diese TG zum ersten Mal Fasern hinsichtlich ihrer größenabhängigen Gefahrstoffeigenschaften zu unter-scheiden. Die Messanweisungen aller enthaltenen Methoden wurden im Rahmen von zwei getrennten Ringversuchen validiert, da bei der Anwendung der Methoden eine Unterscheidung zwischen Parti-keln und Fasern gemacht werden muss. Neben Angaben zum Inhalt und Struktur der TG PSD, befasst sich der vorliegende Abschlussbericht mit den wesentlichen Schritten, Überlegungen und organisatorischen Aspekten bei der Entwicklung der Prüfrichtlinie. Darüber hinaus werden Einblicke in die Auswahl, Vorbereitung und Prävalidierung der im Ringversuch verwendeten Testmaterialien gegeben. Schließlich werden die wichtigsten Ergeb-nisse aus den Ringversuchen und ihre Auswirkungen auf die TG PSD vorgestellt. KW - Nano KW - OECD KW - Particle size distribution KW - Testguideline KW - Nanoparticle PY - 2021 VL - 2021 SP - 1 EP - 47 PB - German Environment Agency CY - Dessau AN - OPUS4-54021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Draft OECD Test Guideline for the Testing of Chemicals - Particle Size and Particle Size Distribution of Nanomaterials N2 - Final Draft of the OECD Test Guideline for Particle Size and Particle Size Distribution of Nanomaterials. The OECD Working Party on Manufactured Nanomaterials (WPMN) has actively worked towards understanding possible safety issues for manufactured nanomaterials and has contributed significantly to resolving these by developing Test Guidelines, Guidance Documents, Test Reports and other publications with the aim of a safe use of manufactured nanomaterials. The OECD website (www.oecd.org/science/nanosafety) and the referenced publications contain more background information. Among others, the OECD Test Guideline “Particle Size Distribution/Fibre Length and Diameter Distributions” (TG 110, adopted in 1981) was identified to require an update to address the specific needs of manufactured nanomaterials as the TG 110 is currently only valid for particles and fibres with sizes above 250 nm. The WPMN prioritised to either update TG 110 to be applicable also to particles at the nanoscale or draft a new nanomaterial specific Test Guideline (TG). Eventually, it was decided to develop a new TG for particle size and particle size distribution measurements of nanomaterials covering the size range from 1 nm to 1000 nm for further justification. This TG overlaps with TG 110 in the size range from 250 nm to 1000 nm. When measuring particulate or fibrous materials, the appropriate TG should be selected depending on the size range of particles tested. In line with TG 110, the new TG for nanomaterials includes separate parts for particles and fibres. For the part of this TG which addresses particles, several methods applicable to nanomaterials were reviewed and included to take into account developments since 1981 when the TG110 was adopted. This TG includes the following methods: Atomic Force Microscopy (AFM), Centrifugal Liquid Sedimentation (CLS)/Analytical Ultracentrifugation (AUC), Dynamic Light Scattering (DLS), Differential Mobility Analysis System (DMAS), (Nano)Particle Tracking Analysis (PTA/NTA), Small Angle X-Ray Scattering (SAXS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). For measuring the diameter and length of fibres, analysing images captured with electron microscopy is currently the only method available. This TG includes Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). To test the validity of this TG, an ILC was performed. Test materials were chosen to reflect a broad 68 range of nanomaterial classes, e.g. metals, metal oxides, polymers and carbon materials. Where possible, well-characterised test materials were used. Additionally, the test materials were chosen, so that they reflect a broad range of sizes representing the size range 1 nm to 1000 nm and finally, for fibres only, aspect ratios from length/diameter of 3 to > 50. KW - Nano KW - OECD KW - Test guideline KW - Nanomaterial KW - Nanoparticle PY - 2021 UR - https://www.oecd.org/chemicalsafety/testing/draft-test-guideline-particle-size-distribution-nanomaterials.pdf SP - 1 PB - Organisation for Economic Co-operation and Development CY - Paris AN - OPUS4-53828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Krüger, Jörg ED - Sugioka, K. T1 - Laser-induced periodic surface structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon and can be generated on almost any material by irradiation with linearly polarized radiation. This chapter reviews the current state in the field of LIPSS, which are formed in a “self-ordered” way and are often accompanying materials processing applications. LIPSS can be produced in a single-stage process and enable surface nanostructuring and, in turn, adaption of optical, mechanical, and chemical surface properties. Typically, they feature a structural size ranging from several micrometers down to less than 100 nm and show a clear correlation with the polarization direction of the light used for their generation. Various types of LIPSS are classified, relevant control parameters are identified, and their material-specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Femtosecond laser KW - Laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Microstructures KW - Nanostructures PY - 2021 SN - 978-3-319-69537-2 DO - https://doi.org/10.1007/978-3-319-69537-2_17-2 SP - 1 EP - 59 PB - Springer Nature CY - Cham, Switzerland ET - 2 AN - OPUS4-51493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz T1 - Molecular dynamics of Janus Polynorbornenes: Glass Transitions and Nanophase separation N2 - We report the dielectric and calorimetric investigations of an homologous series of Janus polynorbornenes with rigid main backbone and flexible -Si(OR)3 side groups, of differing length alkyl chains (R = Propyl, Butyl, Hexyl, Octyl, Decyl). Dielectric dispersion reveals two active processes at low temperatures, denoted as β- and α- relaxation. The former can be assigned to localized fluctuations, whilst the latter relates to the glassy dynamics of the flexible -Si(OR)3 side groups, that creates a nanophase separation in both the alkyl chain rich and backbone rich domains. Temperature modulated DSC measurements and X-ray scattering experiment confirm the nanophase separation. Fast Scanning Calorimetry employing both fast heating and cooling rates detects the glass transition temperatures of the backbone rich domains, which are beyond or near to their degradation temperatures in terms of conventional DSC. The cooperative length scale of glass transition and the size of the alkyl chain rich domains increases with chain length. Alongside these results, a significant conductivity contribution was observed for all Poly(tricyclononenes) with Si(OR)3 side groups, which is interpreted in terms of a percolation model. T2 - IDS Online conference 2021 CY - Online meeting DA - 06.09.2021 KW - Glass transition KW - Conductivity KW - Dynamics KW - Fast Scanning Calorimetry PY - 2021 AN - OPUS4-53299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Anja A1 - Buchberger, G. A1 - Stifter, D. A1 - Duchoslav, J. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Heitz, J. A1 - Schwibbert, Karin T1 - Spatial Period of Laser-Induced Surface Nanoripples on PET Determines Escherichia coli Repellence N2 - Bacterial adhesion and biofilm formation on surfaces are associated with persistent microbial contamination, biofouling, and the emergence of resistance, thus, calling for new strategies to impede bacterial surface colonization. Using ns-UV laser treatment (wavelength 248 nm and a pulse duration of 20 ns), laser-induced periodic surface structures (LIPSS) featuring different submicrometric periods ranging from ~210 to ~610 nm were processed on commercial poly(ethylene terephthalate) (PET) foils. Bacterial adhesion tests revealed that these nanorippled surfaces exhibit a repellence for E. coli that decisively depends on the spatial periods of the LIPSS with the strongest reduction (~91%) in cell adhesion observed for LIPSS periods of 214 nm. Although chemical and structural analyses indicated a moderate laser-induced surface oxidation, a significant influence on the bacterial adhesion was ruled out. Scanning electron microscopy and additional biofilm studies using a pili-deficient E. coli TG1 strain revealed the role of extracellular appendages in the bacterial repellence observed here. KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Polyethylene terephthalate KW - Biofilm formation KW - Cell appendages KW - Biomimetic KW - F pili PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537431 DO - https://doi.org/10.3390/nano11113000 VL - 11 IS - 11 SP - 3000 PB - MDPI AN - OPUS4-53743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Anja T1 - Laser-processing – a tool to direct biofilm formation N2 - Using nanofiber-like cell appendages, secreted proteins and sugars, bacteria can establish initial surface contact followed by irreversible adhesion and the formation of multicellular biofilms, often with enhanced resistance towards antimicrobial treatment and established cleaning procedures. On e.g. medical implants, in water supply networks or food-processing industry, biofilms can be a fertile source of bacterial pathogens and are repeatedly associated with persisting, nosocomial and foodborne infections. Nowadays, the emergence of resistances because of extensive usage of antibiotics and biocides in medicine, agriculture and private households have become one of the most important medical challenges with considerable economic consequences. In addition, aggravated biofilm eradication and prolonged cell-surface interaction can lead to increased biodeterioration and undesired modification of industrial and medical surface materials. Various strategies are currently developed, tested, and improved to realize anti-bacterial surface properties through surface functionalization steps avoiding antibiotics. In this study, contact-less and aseptic large-area short or ultrashort laser processing is employed to generate different surface structures in the nanometer- to micrometer-scale on technical materials such as titanium-alloy and polyethylene terephthalate (PET). The laser processed surfaces were subjected to bacterial colonization studies with Escherichia coli test strains and analyzed with reflected-light and epi-fluorescence microscopy. Depending on the investigated surfaces, different bacterial adhesion patterns were found, ranging from bacterial-repellent to bacterial-attractant effects. The results suggest an influence of size, shape and cell appendages of the bacteria and – above all – the laser-processed nanostructure of the surface itself, emphasizing the potential of laser-processing as a versatile tool to control bacterial surface adhesion. T2 - International Biodeterioration & Biodegradation Symposium 2021 CY - Online meeting DA - 06.09.2021 KW - Bacterial adhesion KW - Biofilm formation KW - Laser-induced periodic surface structueres (LIPPS) KW - Laser processing PY - 2021 UR - https://www.ibbs18.org/programme AN - OPUS4-53223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - How to manage a modern X-ray scattering lab – a modest example N2 - Introduction A good laboratory organization can help address the reproducibility crisis in science, and easily multiply the scientific output of a laboratory, while greatly elevating the quality of the measurements. We have demonstrated this for small- and wide-angle X-ray scattering in the MOUSE project (Methodology Optimization for Ultrafine Structure Exploration). In the MOUSE, we have combined: a) a comprehensive laboratory workflow with b) a heavily modified, highly automated X-ray scattering instrument. This combination allows us to collect fully traceable scattering data, with a well-documented data flow (akin to what is found at the more automated beamlines). With two full-time researchers, the lab collects and interprets thousands of datasets, on hundreds of samples for dozens of projects per year, supporting many users along the entire process from sample selection and preparation, to the analysis of the resulting data. While these numbers do not light a candle to those achieved by our hardworking compatriots at the synchrotron beamlines, the laboratory approach does allow us to continually modify and fine-tune the integral methodology. So for the last three years, we have incorporated e.g. FAIR principles, traceability, automated processing, data curation strategies, as well as a host of good scattering practices into the MOUSE system. We have concomitantly expanded our purview as specialists to include an increased responsibility for the entire scattering aspect of the resultant publications. This ensures full exploitation of the data quality, whilst avoiding common pitfalls. Talk scope This talk will present the MOUSE project as implemented to date, and will introduce foreseeable upgrades and changes. These upgrades include better pre-experiment sample scattering predictions to filter projects on the basis of their suitability, exploitation of the measurement database for detecting long-term changes and automated flagging of datasets, extending the measurement range through an Ultra-SAXS module, and enhancing MC fitting with sample scattering simulations for better matching of odd-shaped scatterers. T2 - 2021 joint virtual meeting of the African Light Source (AfLS), the African Physical Society (AfPS), and Pan African Conference on Crystallography (ePCCr) CY - Online meeting DA - 15.11.2021 KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Methodology KW - Laboratory management KW - Databases KW - Data management KW - Data catalog KW - Scicat PY - 2021 UR - https://events.saip.org.za/event/170/contributions/7619/ AN - OPUS4-53811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Scoppola, E. A1 - Jha, D. A1 - Morales, L. F. G. A1 - Moya, A. A1 - Wirth, R. A1 - Pauw, Brian Richard A1 - Emmerling, Franziska A1 - Van Driessche, A. E. S. T1 - Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals N2 - In recent years, we have come to appreciate the astounding intricacies associated with the formation of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that the nucleation of calcium sulfate systems occurs nonclassically, involving the aggregation and reorganization of nanosized prenucleation species. In recent work, we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant micrometer-sized CaSO4 crystals. This property of CaSO4 minerals provides us with the unique opportunity to search for evidence of nonclassical nucleation pathways in geological environments. In particular, we focused on large anhydrite Crystals extracted from the Naica Mine in Mexico. We were able to shed light on this mineral's growth history by mapping defects at different length scales. Based on this, we argue that the nanoscale misalignment of the structural subunits, observed in the initial calcium sulfate crystal seeds, propagates through different length scales both in morphological, as well as in strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nonclassical nucleation mechanism introduces a “seed of imperfection,” which leads to a macroscopic “single” crystal whose fragments do not fit together at different length scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very welldefined walls/edges. However, at the same time, the material retains in part its single crystal nature. KW - Calcium sulfate KW - Anhydrite KW - Mesocrystal KW - Nucleation KW - Naica PY - 2021 DO - https://doi.org/10.1073/pnas.2111213118 SN - 0027-8424 VL - 118 IS - 48 SP - 1 EP - 11 PB - National Academy of Sciences (USA) CY - Washington AN - OPUS4-53820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Meticulous Approach: Fully traceable X-ray scattering data via a comprehensive lab methodology N2 - To find out if experimental findings are real, you need to be able to repeat them. For a long time, however, papers and datasets could not necessarily include sufficient details to accurately repeat experiments, leading to a reproducibility crisis. It is here, that the MOUSE project (Methodology Optimization for Ultrafine Structure Exploration) tries to implement change – at least for small- and wide-angle X-ray scattering (SAXS/WAXS). In the MOUSE project, we have combined: a) a comprehensive laboratory workflow with b) a heavily modified, highly automated Xenocs Xeuss 2.0 instrumental component. This combination allows us to collect fully traceable scattering data, with a well-documented data flow (akin to what is found at the more automated beamlines). With two full-time researchers, the lab collects and interprets thousands of datasets, on hundreds of samples for dozens of projects per year, supporting many users along the entire process from sample selection and preparation, to the analysis of the resulting data. While these numbers do not light a candle to those achieved by our hardworking compatriots at the synchrotron beamlines, the laboratory approach does allow us to continually modify and fine-tune the integral methodology. So for the last three years, we have incorporated e.g. FAIR principles, traceability, automated processing, data curation strategies, as well as a host of good scattering practices into the MOUSE system. We have concomitantly expanded our purview as specialists to include an increased responsibility for the entire scattering aspect of the resultant publications, to ensure full exploitation of the data quality, whilst avoiding common pitfalls. This talk will discuss the MOUSE project1 as implemented to date, and will introduce foreseeable upgrades and changes. These upgrades include better pre-experiment sample scattering predictions to filter projects on the basis of their suitability, exploitation of the measurement database for detecting long-term changes and automated flagging of datasets, and enhancing MC fitting with sample scattering simulations for better matching of odd-shaped scatterers. T2 - S4SAS CY - Online meeting DA - 01.09.2021 KW - X-ray scattering KW - Methodology KW - MOUSE KW - Data organization KW - Automation KW - Traceability PY - 2021 AN - OPUS4-53273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - The MOUSE project - A meticulous approach for obtaining traceable, wide-range X-ray scattering information N2 - Herein, we provide a "systems architecture"-like overview and detailed discussions of the methodological and instrumental components that, together, comprise the "MOUSE" project (Methodology Optimization for UltrafineStructure Exploration). The MOUSE project provides scattering information on a wide variety of samples, with traceable dimensions for both the scattering vector (q) and the absolute scattering cross-section (I). The measurable scattering vector-range of 0.012≤ q (nm-1) ≤ 92, allows information across a hierarchy of structures with dimensions ranging from ca. 0.1 to 400 nm. In addition to details that comprise the MOUSE project, such as the organisation and traceable aspects, several representative examples are provided to demonstrate its flexibility. These include measurements on alumina membranes, the tobacco mosaic virus, and dual-source information that overcomes fluorescence limitations on ZIF-8 and iron-oxide-containing carbon catalyst materials. KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Methodology KW - Traceability KW - Wide-range KW - Data curation KW - FAIR KW - Uncertainties KW - Nanomaterials KW - Nanometrology PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528669 DO - https://doi.org/10.1088/1748-0221/16/06/P06034 VL - 16 IS - 6 SP - 1 EP - 50 PB - IOP CY - Bristol, UK AN - OPUS4-52866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Smales, Glen Jacob A1 - Henning, S. A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Calorimetric and Dielectric Investigations of Epoxy-Based Nanocomposites with Halloysite Nanotubes as Nanofillers N2 - Epoxy nanocomposites are promising materials for industrial applications (i.e., aerospace, marine and automotive industry) due to their extraordinary mechanical and thermal properties. Here, the effect of hollow halloysite nanotubes (HNT) on an epoxy matrix (Ep) was the focus of the study. The structure and molecular mobility of the nanocomposites were investigated using a combination of X-ray scattering, calorimetry (differential (DSC) and fast scanning calorimetry (FSC)) and dielectric spectroscopy. Additionally, the effect of surface modification of HNT (polydopamine (PDA) and Fe(OH)3 nanodots) was considered. For Ep/HNT, the glass transition temperature (Tg) is was de-creased due to a nanoparticle-related decrease of the crosslinking density. For the modified system, Ep/m-HNT, the surface modification resulted in enhanced filler–matrix interactions leading to higher Tg values than the pure epoxy in some cases. For Ep/m-HNT, the amount of interface formed between the nanoparticles and the matrix ranged from 5% to 15%. Through BDS measurements, localized fluctuations were detected as a β- and γ-relaxation, related to rotational fluctuations of phenyl rings and local reorientations of unreacted components. A combination of calorimetry and BDS dielectric spectroscopy revealed a dynamic and structural heterogeneity of the matrix, as confirmed by two glassy dynamics in both systems, related to regions with different crosslinking densities. KW - Rigid amorphous fraction KW - Epoxy nanocomposites KW - Halloysite nanotubes KW - X-ray scattering KW - Differential scanning calorimetry KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526668 DO - https://doi.org/10.3390/polym13101634 VL - 13 IS - 10 SP - 1634 PB - MDPI AN - OPUS4-52666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - X-ray Scattering for Nanostructure Quantification, and the Quest for the Perfect Experiment N2 - Compared to the clear, real-space images you can get from electron microscopy, X-ray scattering patterns are rather featureless. These patterns, however, contain structural information from all of the material structure illuminated by the X-ray beam. With this technique, you can measure nanoparticle dispersions, catalysts, composites, MOF powders, battery materials, light metal alloys and gels to reveal information on the structural features found within these materials. We have even measured many such materials for several research groups from the University of Birmingham, revealing structure features in the sub-nm to the micrometer range. Measuring an X-ray scattering pattern is relatively easy, but measuring a high-quality, useful pattern requires significant effort and good laboratory organization. Such laboratory organization can help address the reproducibility crisis in science, and easily multiply the scientific output of a laboratory, while greatly elevating the quality of the measurements. We have demonstrated this for small- and wide-angle X-ray scattering in the MOUSE project (Methodology Optimization for Ultrafine Structure Exploration) [1]. With the MOUSE, we have combined: a) a comprehensive and highly automated laboratory workflow with b) a heavily modified X-ray scattering instrument. This combination allows us to collect fully traceable scattering data, within a well-documented, FAIR-compliant data flow (akin to what is found at the more automated synchrotron beamlines). With two full-time researchers, our lab collects and interprets thousands of datasets, on hundreds of samples, for dozens of projects per year, supporting many users along the entire process from sample selection and preparation, to the analysis of the resulting data. T2 - School of Chemistry Seminars CY - Birmingham, UK DA - 10.11.2021 KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Methodology KW - Nanostructure PY - 2021 UR - https://www.youtube.com/watch?v=N2kY4wbqeM4 AN - OPUS4-53810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Przyklenk, A. T1 - European Metrology Network for Advanced Manufacturing N2 - The progress of Advanced Manufacturing, which has been identified by the European Commission as a Key Enabling Technology (KET) for future economic and societal progress is strongly reliant on the development of metrology capabilities. EURAMET, the association of metrology institutes in Europe, has established metrology research programs to address the metrology requirements across a spectrum of different thematic areas. In order to leverage the benefits of these developments on the wider industrial landscape, a high-level coordination of the metrology community supporting the Advanced Manufacturing landscape is required. This coordination is aimed to be achieved by the establishment of European Metrology Networks (EMNs), which are intended by EURAMET to provide a sustainable structure for stakeholder engagement and support. The joint networking project 19NET01 AdvManuNet funded by EMPIR for 4 years, started in June 2020 and aims to accelerate the process of establishing an EMN to strengthen Europe’s position in Advanced Manufacturing. The AdvManuNet project aims to support the establishment of an EMN on Advanced Manufacturing via the following specific aims: 1. Creation of a single hub for stakeholder engagement across the landscape of various industrial sectors including relevant societies and standardization bodies. 2. Development of a Strategic Research Agenda (SRA) and roadmaps for Advanced Manufacturing metrology based on the stakeholder engagement activities, considering current gaps in metrological capabilities existing networks and roadmaps. 3. Establish a knowledge-sharing program for Advanced Manufacturing stakeholders, promoting the dissemination and exploitation of the results of the project, including those from previous EU funded research projects. 4. Development of a sustainable web-based platform and service desk for Advanced Manufacturing stakeholders to allow for easy access to European metrology capabilities and support the wider advanced manufacturing community with metrology-based requirements. 5. Develop a plan for a coordinated and sustainable European metrology infrastructure for Advanced Manufacturing via a European Metrology Network. The project concept followed by the scope and definition of Advanced Manufacturing will be described. The analysis of the current capability of metrology for Advanced Manufacturing and the preliminary concepts for the strategic research agenda will be presented with a focus on dimensional metrology. T2 - CIM 2021 CY - Online meeting DA - 07.09.2021 KW - Advanced manufacturing KW - Metrology KW - European Metrology Networks (EMNs) KW - Strategic Research Agenda (SRA) KW - Stakeholder PY - 2021 AN - OPUS4-54101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Przyklenk, A. A1 - Balsamo, A. A1 - O'Connor, D. A1 - Evans, Alexander A1 - Yandayan, T. A1 - Akgöz, S. A1 - Flys, O. A1 - Zeleny, V. A1 - Czułek, D. A1 - Meli, F. A1 - Ragusa, C. A1 - Bosse, H. T1 - New European Metrology Network for advanced manufacturing N2 - Advanced manufacturing has been identified as one of the key enabling technologies with applications in multiple industries. The growing importance of advanced manufacturing is reflected by an increased number of publications on this topic in recent years. Advanced manufacturing requires new and enhanced metrology methods to assure the quality of manufacturing processes and the resulting products. However, a high-level coordination of the metrology community is currently absent in this field and consequently this limits the impact of metrology developments on advanced manufacturing. In this article we introduce the new European Metrology Network (EMN) for Advanced Manufacturing within EURAMET, the European Association of National Metrology Institutes (NMIs). The EMN is intended to be operated sustainably by NMIs and Designated Institutes in close cooperation with Stakeholders interested in advanced manufacturing. The objectives of the EMN are to set up a permanent stakeholder dialogue, to develop a Strategic Research Agenda for the metrology input required for advanced manufacturing technologies, to create and maintain a knowledge sharing programme and to implement a web-based service desk for stakeholders. The EMN development is supported by a Joint Network Project within the European Metrology Programme for Innovation and Research. KW - Stakeholder KW - Advanced manufacturing KW - Metrology KW - European Metrology Networks (EMNs) KW - Strategic Research Agenda (SRA), PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530618 DO - https://doi.org/10.1088/1361-6501/ac0d25 VL - 32 IS - 11 SP - 111001 PB - IOP Publishing AN - OPUS4-53061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Monavari, M. A1 - Homaeigohar, S. A1 - Fuentes-Chandía, M. A1 - Nawaz, Q. A1 - Monavari, Mehran A1 - Venkatraman, A. A1 - Boccaccini, A. T1 - 3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO2-CaO nanoparticles for bone tissue engineering N2 - 3D printing enables a better control over the microstructure of bone restoring constructs, addresses the challenges seen in the preparation of patient-specific bone scaffolds, and overcomes the bottlenecks that can appear in delivering drugs/growth factors promoting bone regeneration. Here, 3D printing is employed for the fabrication of an osteogenic construct made of hydrogel nanocomposites. Alginate dialdehyde-gelatin (ADA-GEL) hydrogel is reinforced by the incorporation of bioactive glass nanoparticles, i.e. mesoporous silica-calcia nanoparticles (MSNs), in two types of drug (icariin) loading. The composites hydrogel is printed as superhydrated composite constructs in a grid structure. The MSNs not only improve the mechanical stiffness of the constructs but also induce formation of an apatite layer when the construct is immersed in simulated body fluid (SBF), thereby promoting cell adhesion and proliferation. The nanocomposite constructs can hold and deliver icariin efficiently, regardless of its incorporation mode, either as loaded into the MSNs or freely distributed within the hydrogel. Biocompatibility tests showed that the hydrogel nanocomposites assure enhanced osteoblast proliferation, adhesion, and differentiation. Such optimum biological properties stem from the superior biocompatibility of ADA-GEL, the bioactivity of the MSNs, and the supportive effect of icariin in relation to cell Proliferation and differentiation. Taken together, given the achieved structural and biological properties and effective drug delivery capability, the hydrogel nanocomposites show promising potential for bone tissue engineering. KW - 3D printed hydrogel KW - ADA-GEL KW - Drug delivery KW - Mesoporous SiO2-CaO nanoparticles KW - Bone tissue engineering PY - 2021 DO - https://doi.org/10.1016/j.msec.2021.112470 VL - 131 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-53848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - The European Metrology Network (EMN) for Advanced Manufacturing N2 - Advanced Manufacturing and Advanced Materials have been identified by the European Commission as one of six Key Enabling Technologies (KETs), the full exploitation of which will create advanced and sustainable economies. Metrology is a key enabler for progress of these KETs. EURAMET, which is the association of metrology institutes in Europe, has addressed the vital importance of Metrology for these KETs through the support for the creation of a European Metrology Network for Advanced Manufacturing. The EMN for Advanced Manufacturing (AdvanceManu) was approved in June 2021 and held the formal kick-of meeting in October 2022. The EMN comprises both National Metrology Institutes (NMIs) from across Europe and other designated Institutes (Dis). The EMN is organized in three sections; Advanced Materials, Smart Manufacturing Systems and Manufactured components and products. The aim of the EMN is to engage with stakeholders in the field of Advanced Manufacturing and Advanced Materials (Large & SMEs, industry organisations, existing networks and academia) with the aim to prepare a Strategic Research Agenda (SRA) for Metrology for Advanced Manufacturing. In the shorter term, an orientation paper is aimed to be produce to in the context of the European Partnership for Metrology. In addition to the SRA, the EMN will establish knowledge and technology transfer and promotion plan. This includes leveraging the existing research results from the completed and running EMPIR JRP projects funded through EURAMET. This presentation will outline the EMN for Advanced Manufacturing, describing the structures and goals, the route to the production of the SRA and the progress made to date identifying the key metrology challenges across the related Key Industrial Sectors (KICs). In particular, the presentation aims to inform the community on how to be involved in the shaping of the strategic research agenda for the future of Metrology for Advanced Manufacturing and Advanced Materials. T2 - 3D Metrology Conference (3DMC) CY - Online meeting DA - 08.11.2021 KW - Advanced manufacturing KW - Metrology KW - European Metrology Network (EMN) KW - Strategic Research Agenda (SRA) KW - JNP PY - 2021 AN - OPUS4-54099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Enhanced photon upconversion using erbium-doped nanoparticles interacting with silicon metasurfaces N2 - Photon upconversion (UC) using trivalent erbium (Er+3) doped crystals is a promising concept to harness near infrared photons of the solar spectrum which cannot be directly absorbed by silicon solar cells. However, their UC efficiency at low-intensity 1 sun illumination is not relevant on device level so far. Exploiting giant near-field enhancement effects on metasurfaces is an appealing approach to enable efficient UC at low irradiance conditions. Here, we report on more than 1000-fold enhanced photon UC of NaYF4:Er+3 nanoparticles interacting with the near-fields supported by a silicon metasurface under 1550 nm excitation. T2 - 48th Photovoltaic Specialists Conference (PVSC) CY - Online meeting DA - 20.06.2021 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Brightness KW - NIR KW - Mechanism KW - Modeling KW - Simulation KW - Energy transfer KW - Photonic crystal KW - Enhancement strategy PY - 2021 DO - https://doi.org/10.1109/pvsc43889.2021.9518495 SP - 1 EP - 3 PB - IEEE CY - Berlin AN - OPUS4-53786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maisuls, I. A1 - Wang, Cui A1 - Gutierrez Suburu, M. E. A1 - Wilde, S. A1 - Daniliuc, C.-G. A1 - Brunink, D. A1 - Doltsinis, N. L. A1 - Ostendorp, S. A1 - Kösters, J. A1 - Resch-Genger, Ute A1 - Strassert, C. A. T1 - Ligand-controlled and nanoconfinement-boosted luminescence employing Pt(II) and Pd(II) complexes: from color-tunable aggregation-enhanced dual emitters towards self-referenced oxygen reporters N2 - In this work, we describe the synthesis, structural and photophysical characterization of four novel Pd(II) and Pt(II) complexes bearing tetradentate luminophoric ligands with high photoluminescence quantum yields (FL) and long excited state lifetimes (s) at room temperature, where the results were interpreted by means of DFT calculations. Incorporation of fluorine atoms into the tetradentate ligand favors aggregation and thereby, a shortened average distance between the metal centers, which provides accessibility to metal–metal-to-ligand charge-transfer (3MMLCT) excimers acting as red-shifted Energy traps if compared with the monomeric entities. This supramolecular approach provides an elegant way to enable room-temperature phosphorescence from Pd(II) complexes, which are otherwise quenched by a thermal population of dissociative states due to a lower ligand field splitting. Encapsulation of These complexes in 100 nm-sized aminated polystyrene nanoparticles enables concentration-controlled aggregation-enhanced dual emission. This phenomenon facilitates the tunability of the absorption and emission colors while providing a rigidified environment supporting an enhanced FL up to about 80% and extended s exceeding 100 ms. Additionally, these nanoarrays constitute rare examples for selfreferenced oxygen reporters, since the phosphorescence of the aggregates is insensitive to external influences, whereas the monomeric species drop in luminescence lifetime and intensity with increasing triplet molecular dioxygen concentrations (diffusion-controlled quenching). KW - Fluorescence KW - Multiplexing KW - Lifetime KW - Bead KW - Particle KW - Dye KW - Barcoding KW - Encoding KW - Quantum yield KW - Label KW - Reporter KW - Pd(II) KW - Pt(II) KW - Complex KW - NMR KW - X-ray KW - Sythesis KW - Aggregation KW - Monomer KW - Color PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525288 DO - https://doi.org/10.1039/d0sc06126c VL - 12 IS - 9 SP - 3270 EP - 3281 PB - Royal Society of Chemistry AN - OPUS4-52528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Pauli, Jutta A1 - Weigert, Florian T1 - Quantitative optical-spectroscopic characterization of luminescent nanomaterials - Photoluminescence Quantum Yields N2 - Accurate and quantitative photoluminescence measurements are mandatory for the comparison of different emitter classes and the rational design of the next generation of molecular and nanoscale reporters as well as for most applications relying on their luminescence features in the life and material sciences and nanobiophotonics. In the following, procedures for the determination of the spectroscopic key parameter photoluminescence quantum yield, i.e., the number of emitted per absorbed photons, in the UV/vis/NIR/SWIR are presented including pitfalls and achievable uncertainties and material-specific effects related to certain emitter classes are addressed. Special emphasis is dedicated to luminescent nanocrystals. T2 - International Workshop on "Emerging Nanomaterials for Displays and SSL" CY - Dresden, Germany DA - 11.11.2021 KW - Nano KW - Nanomaterial KW - Nanocrystal KW - Semiconductor quantum dot KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Brightness KW - NIR KW - SWIR KW - Method KW - Uncertainty KW - Rreference material PY - 2021 AN - OPUS4-53783 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, C. A1 - Schäferling, Michael A1 - Resch-Genger, Ute A1 - Gradzielski, M. T1 - Solvothermal Synthesis of Lanthanide-doped NaYF4 Upconversion N2 - Lanthanide-doped NaYF4 upconversion nano- and microcrystals were synthesized via a facile solvothermal approach. Thereby, the influence of volume ratios of ethylene glycol (EG)/H2O, molar ratios of NH4F/RE3+ (RE3+ represents the total amount of Y3+ and rare-earth dopant ions), Gd3+ ion contents, types of activator dopant ions, and different organic co-solvents on the crystal phase, size, and morphology of the resulting particles were studied systematically. A possible formation mechanism for the growth of crystals of different morphology is discussed. Our results show that the transition from the α- to the β-phase mainly depends on the volume ratio of EG/H2O and the molar ratio of NH4F/RE3+, while the morphology and size could be controlled by the type of organic co-solvent and Gd3+ dopant ions. Furthermore, the reaction time has to be long enough to convert α-NaYF4 into β-NaYF4 during the growth process to optimize the upconversion luminescence. The formation of larger β-NaYF4 crystals, which possess a higher upconversion luminescence than smaller particles, proceeds via intermediates of smaller crystals of cubic structure. In summary, our synthetic approach presents a facile route to tailor the size, Crystal phase, morphology, and luminescence features of upconversion materials. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Photoluminescence KW - Lanthanide KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Single particle KW - Brightness KW - NIR KW - Synthesis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520307 DO - https://doi.org/10.1002/cnma.202000564 VL - 7 IS - 2 SP - 174 EP - 183 PB - Wiley AN - OPUS4-52030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Metasurface-Enhanced Photon Upconversion upon 1550 nm Excitation N2 - Photon upconversion upon 1550 nm excitation is of high relevance for applications in the third biological excitation window, for photovoltaics beyond current limitations, and enables appealing options in the field of glass Fiber telecommunications. Trivalent doped erbium ions (Er3+) are the material of choice for 1550 nm excited upconversion, however, they suffer from a low absorption cross-section and a low brightness. Therefore, the ability of Silicon metasurfaces to provide greatly enhanced electrical near-fields is employed to enable efficient photon upconversion even at low external Illumination conditions. Hexagonally shaped β-NaYF4:Er3+ nanoparticles are placed on large-area silicon metasurfaces designed to convert near-infrared (1550 nm) to visible light. More than 2400-fold enhanced photon upconversion luminescence is achieved by using this metasurface instead of a planar substrate. With the aid of optical simulations based on the finite-element method, this result is attributed to the coupling of the excitation source with metasurface resonances at appropriate incident angles. Analysis of the excitation power density dependence of upconversion luminescence and red-to-green-emission ratios enables the estimation of nanoscale near-field enhancement on the metasurface. The findings permit the significant reduction of required external excitation intensities for photon upconversion of 1550 nm light, opening perspectives in biophotonics, telecommunication, and photovoltaics. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Single enhancement KW - SWIR KW - Method PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537193 DO - https://doi.org/10.1002/adom.202101285. SN - 2195-1071 VL - 9 IS - 24 SP - 2101285 PB - Wiley-VCH-GmbH AN - OPUS4-53719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Weigert, Florian A1 - Andresen, Elina A1 - Grauel, Bettina A1 - Wegner, Karl David T1 - Semiconductor (SCNC) & Upconversion Nanocrystals (UCNC) – Optical Properties, Applications & Challenges N2 - Inorganic nanocrystals with linear and nonlinear luminescence in the ultraviolet, visible, near infrared and shortwave infrared like semiconductor quantum dots and spectrally shifting lanthanide-based nanophosphors have meanwhile found applications in the life and material sciences ranging from optical reporters for bioimaging and sensing over security barcodes to solid state lighting and photovoltaics. These nanomaterials commonly have increasingly sophisticated core/shell particle architectures with shells of different chemical composition and thickness to minimize radiationless deactivation at the particle surface that is usually the main energy loss mechanism [1]. For lanthanide-based spectral shifters, particularly for very small nanoparticles, also surface coatings are needed which protect near-surface lanthanide ions from luminescence quenching by high energy vibrators like O-H groups and prevent the disintegration of these nanoparticles under high dilution conditions. [2,3,4]. The identification of optimum particle structures requires quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield [5,6], ideally flanked by single particle studies to assess spectroscopic inhomogeneities on a particle-to-particle level for typical preparation methods [7], Moreover, in the case of upconversion nanoparticles with a multi-photonic and hence, excitation power density (P)-dependent luminescence, quantitative luminescence studies over a broad P range are required to identify particle architectures that are best suited for applications in fluorescence assays up to fluorescence microscopy. Here, we present methods to quantify the photoluminescence of these different types of emitters in the vis/NIR/SWIR and as function of Pand demonstrate the importance of such measurements for a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different size and particle architecture in different environments. T2 - 27th Annual Meeting of the Slovenian Chemical Society CY - Portoroz-Portorose, Slovenia DA - 21.09.2021 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Single particle KW - Brightness KW - NIR KW - Synthesis KW - Semiconductur KW - Quantum dot KW - Nanocrystal KW - SWIR PY - 2021 AN - OPUS4-53723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute T1 - Tumore abbilden, Biomarker nachweisen, Messungen standardisieren N2 - Zu den am häufigsten eingesetzten Analysemethoden in den Lebens- und Materialwissenschaften gehören Lumineszenzmethoden. Sie nutzen die Emission von Licht nach Absorption von Energie, um Signale zu erzeugen, und umfassen spektroskopische und mikroskopische Messungen. KW - Quality assurance KW - Sensor KW - Imaging KW - Reference material KW - Nano KW - Particle KW - Nanomaterial KW - Upconversion KW - Nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Excitation KW - Power density KW - Single particle KW - Brightness KW - NIR PY - 2021 SP - 75 EP - 77 PB - GDCH AN - OPUS4-53526 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Measuring the Upconversion Luminescence of Ensemble and Single Particle Lanthanide-Based Upconversion Nanocrystals N2 - Lanthanide-based upconversion nanoparticles (UCNPs) like hexagonal 𝛽-NaYF4 UCNPs doped with Yb3+ and Er3+, which efficiently convert 976 nm light to ultraviolet, visible, and near infrared photons, offer new strategies for luminescence-based sensing, barcoding, and Imaging. Their upconversion (UC) luminescence (UCL) features like UCL intensity, quantum yield, relative spectral distribution / UCL luminescence color, and luminescence decay kinetics are, however, strongly influenced by particle size, dopant ion concentration, particle architecture, surface chemistry including presence and thickness of surface passivation and shielding shells, microenvironment/presence of quenchers with high energy vibrations, and excitation power density (P). We present here a comprehensive study of the influence of excitation power density on the UCL features of different types of UCNPs, focusing on Yb3+ and Er3+ co-doped NaYF4 core-only and core-shell nanostructures with different sizes and doping ion concentration, which underlines the importance of P-dependent optimum dopant concentrations for UCNP performance and the potential of P-tuning of UCL. T2 - Materials Challenges in Alternative & Renewable Energy 2021 (MCARE 2021) CY - Online meeting DA - 19.07.2021 KW - Fluorescence KW - Lifetime KW - Method KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Upconversion KW - Nano KW - Particle KW - Single particle spectroscopy KW - Quantum yield KW - Microscopy KW - Photophysics PY - 2021 AN - OPUS4-53111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frenzel, Florian A1 - Würth, Christian A1 - Dukhno, O. A1 - Przybilla, F. A1 - Wiesholler, L. M. A1 - Muhr, V. A1 - Horsch, T. A1 - Mély, Y. A1 - Resch-Genger, Ute T1 - Multiband emission from single β-NaYF4(Yb,Er) nanoparticles at high excitation power densities and comparison to ensemble studies N2 - Ensemble and single particle studies of the excitation power density (P)-dependent upconversion luminescence (UCL) of core and core–shell β-NaYF4:Yb,Er upconversion nanoparticles (UCNPs) doped with 20% Yb3+ and 1% or 3% Er3+ performed over a P regime of 6 orders of magnitude reveal an increasing contribution of the emission from high energy Er3+ levels at P > 1 kW/cm2. This changes the overall emission color from initially green over yellow to white. While initially the green and with increasing P the red emission dominate in ensemble measurements at P < 1 kW/cm2, the increasing population of higher Er3+ energy levels by multiphotonic processes at higher P in single particle studies results in a multitude of emission bands in the ultraviolet/visible/near infrared (UV/vis/NIR) accompanied by a decreased contribution of the red luminescence. Based upon a thorough analysis of the P-dependence of UCL, the emission bands activated at high P were grouped and assigned to 2–3, 3–4, and 4 photonic processes involving energy transfer (ET), excited-state absorption (ESA), cross-relaxation (CR), back energy transfer (BET), and non-radiative relaxation processes (nRP). This underlines the P-tunability of UCNP brightness and color and highlights the potential of P-dependent measurements for mechanistic studies required to manifest the population pathways of the different Er3+ levels. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Llifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Color tuning PY - 2021 DO - https://doi.org/10.1007/s12274-021-3350-y SN - 1998-0124 VL - 14 IS - 11 SP - 4107 EP - 4115 PB - Nano Research AN - OPUS4-52364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunc, F. A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Sung, Y. A1 - Johnston, L.J. A1 - Resch-Genger, Ute T1 - Interlaboratory Comparison on the Quantification of Total and Accessible Amine Groups on Silica Nanoparticles with qNMR and Optical Assays N2 - Risk assessment of nanomaterials requires not only standardized toxicity studies but also validated methods for nanomaterial surface characterization with known uncertainties. In this context, a first bilateral interlaboratory comparison on Surface group quantification of nanomaterials is presented that assesses different reporter-free and labeling methods for the quantification of the total and accessible number of amine functionalities on commercially available silica nanoparticles that are widely used in the life sciences. The overall goal of this comparison is the identification of optimum methods as well as achievable measurement uncertainties and the comparability of the results across laboratories. We also examined the robustness and ease of implementation of the applied analytical methods and discussed method-inherent limitations. In summary, this comparison presents a first step toward the eventually required standardization of methods for surface group quantification. KW - Nano KW - Nanomaterial KW - Surface KW - Method KW - QNMR KW - Quantification KW - Comparison KW - Quality assurance KW - Optical probe KW - Sensor KW - Interlabority comparison KW - Standardization KW - Optical assay KW - Functional group analysis KW - Silica KW - Particle KW - Safety KW - Environment PY - 2021 DO - https://doi.org/10.1021/acs.analchem.1c02162 SN - 1520-6882 VL - 93 IS - 46 SP - 15271 EP - 15278 PB - ASC Publications AN - OPUS4-53818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella T1 - Quantification of surface functional groups on inorganic and organic nanomaterials using cleavable reporters N2 - Engineered nanomaterials (NM) with their unique size-dependent properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing and electronics or food and consumer products. The performance and safety of NM are determined by the sum of their intrinsic physicochemical properties. Especially, the particle surface chemistry, which is largely controlled by the chemical nature and density of functional groups and ligands, is an important key driver for the performance, stability, and processibility of NM, as well as their interaction with the environment. Thus, methods for functional group quantification can foster the sustainable development of functional and safe(r) NM. Aiming at the development of simple, versatile and multimodal tools for the quantification of common bioanalytically relevant functional groups, we designed a catch-and-release assay based on cleavable probes that enable the quantification of the cleaved-off reporters in the supernatant after particle separation. Thus, the approach circumvents interferences resulting from particle light scattering and sample-inherent absorption or emission. To study the potential of the assay, commercially available and in-house synthesized aminated and carboxylated polymer and silica nanoparticles of different functional group densities were tested. Our cleavable probe strategy can be easily adapted to other analytical techniques requiring different reporters, or to different types of linkers that can be cleaved thermally, photochemically, or by variation of pH, utilizing well-established chemistry. In addition, it can contribute to the development of multi-method characterization strategies to provide a more detailed picture of the intrinsic physicochemical property - performance/safety relationships and thus can support the design of tailored nanomaterials with better controlled properties. T2 - E-MRS Spring Meeting 2021 / ALTECH 2021 - Analytical techniques for precise characterization of nanomaterials CY - Online meeting DA - 31.05.2021 KW - Surface modified nano- and microparticles KW - Optical assays KW - Particle surface analysis KW - Surface functional group quantification PY - 2021 AN - OPUS4-55596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana T1 - Preparation of polypropylene and polyethylene nanoplastics in water N2 - Considering the huge amount of plastics, that is produced and thrown away all over the world every day, an increasing part of the society became aware of microplastic and its possible impact on the environment. Polymer particles smaller than 1 µm are called nanoplastic. Due to their small size they form a special group within particulate waste. Their high specific surface makes it easier for them to penetrate tissue and pose potential harm. On the other hand, the size and the chemical structure make it difficult to detect and analyze nanoplastics in nature. Furthermore, the concentrations in environmental samples are very low. Therefore, there is a need for a well-characterized nanoplastic material, that serves as a reference for nanoplastic found in nature. T2 - 101 years of Macromolecular Chemistry CY - Online meeting DA - 13.09.2021 KW - Nanoplastic PY - 2021 AN - OPUS4-53773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana T1 - PP and PE nanoplastics in water N2 - Plastic debris in micron and nanometer scale pollutes the nature all over the world. The potential dangers of these pollutants remain unpredictable. While risk assessment studies on microplastics are already popular, nanoplastic has not yet reached the same focus of investigation. The reason for this difference is simple: There is a "methodological gap" in the analytics of plastic particles with a diameter smaller than 1 μm. Submicron and nanoplastic particles are currently not detectable in environmental matrices. Therefore, it is important for researchers to have a well-characterized nanoplastic material, that serves as a reference for nanoplastics found in nature. Our aim was to synthesize nanoplastics made from the most common used plastics such as polypropylene (PP) and polyethylene (PE). We found an easy way to form nanoparticles consisting of PP and PE (nano-PP/PE). Herein, nano-PP/PE was formed via a top-down method where the polymer was dispersed to acetone and then transferred to water. No surfactant is needed to obtain a dispersion which is stable for more than 35 weeks. The success of forming nanoplastics and their size was detected via scattering methods, predominantly dynamic light scattering. The chemical analysis of the nanoplastics was performed via Fourier Transform Infrared spectroscopy. Furthermore, electron microscopy was used to complement the results. To examine the good stability of the nanoparticles, zeta potential measurements were performed, which revealed zeta potentials of -30 to -40 mV. T2 - IUPAC-MACRO2020+ CY - Online meeting DA - 17.05.2021 KW - Nanoplastic PY - 2021 AN - OPUS4-53774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keshmiri, Hamid A1 - Armin, F. A1 - Elsayad, K. A1 - Schreiber, Frank A1 - Moreno, M. T1 - Leaky and waveguide modes in biperiodic holograms N2 - This study details a theoretical analysis of leaky and waveguide modes in biperiodic all-dielectric holograms. By tuning diffraction orders and subsequently confining local density of optical states at two distinct resonance wavelengths, we present a new class of highly sensitive refractive index biosensing platforms that are capable of resolving 35.5 to 41.3 nm/RIU of spectral shift for two separate biological analytes. KW - Antimicrobial resistance KW - Bacteria KW - Photonics KW - Diffractive gratings PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527632 DO - https://doi.org/10.1038/s41598-021-89971-1 SN - 2045-2322 (online) VL - 11 IS - 1 SP - 10991 PB - Springer Nature AN - OPUS4-52763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohammadifar, E. A1 - Ahmadi, V. A1 - Gholami, M.F. A1 - Oehrl, A. A1 - Kolyvushko, O. A1 - Nie, C. A1 - Donskyi, Ievgen A1 - Herziger, S. A1 - Radnik, Jörg A1 - Ludwig, K. A1 - Böttcher, C. A1 - Rabe, J.P. A1 - Osterrieder, K. A1 - Azab, W. A1 - Haag, R. A1 - Adeli, M. T1 - Graphene-Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions N2 - 2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes Simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus Inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts.2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes Simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus Inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts. KW - 2D Materials KW - Graphene template KW - Multivalency KW - Polyglycerol KW - Virus inhibition PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527726 DO - https://doi.org/10.1002/adfm.202009003 VL - 31 IS - 32 SP - 2009003 PB - Wiley VCH AN - OPUS4-52772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K.J. A1 - Kim, C.S. A1 - Ruh, S. W. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Mata-Salazar, J. A1 - Juarez-Garcia, J.M. A1 - Cortazar-Martinez, O. A1 - Herrera-Gomez, A. A1 - Hansen, P.E. A1 - Madesen, J.S. A1 - Senna, C.A. A1 - Archanjo, B.S. A1 - Damasceno, J.C. A1 - Achete, C.A. A1 - Wang, H. A1 - Wang, M. A1 - Windover, D. A1 - Steel, E. A1 - Kurokawa, A. A1 - Fujimoto, T. A1 - Azuma, Y. A1 - Terauchi, S. A1 - Zhang, L. A1 - Jordaan, W.A. A1 - Spencer, S.J. A1 - Shard, A.G. A1 - Koenders, L. A1 - Krumrey, M. A1 - Busch, I. A1 - Jeynes, C. T1 - Thickness measurement of nm HfO2 films N2 - A pilot study for the thickness measurement of HfO2 films was performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of this pilot study was to ensure the equivalency in the measurement capability of national metrology institutes for the thickness measurement of HfO2 films. In this pilot study, the thicknesses of six HfO2 films with nominal thickness from 1 nm to 4 nm were measured by X-ray Photoelectron Spectroscopy (XPS), X-ray Reflectometry(XRR), X-ray Fluorescence Analysis (XRF), Transmission Electron Spectroscopy (TEM), Spectroscopic Ellipsometry (SE) and Rutherford Backscattering Spectrometry (RBS). The reference thicknesses were determined by mutual calibration of a zero-offset method (Medium Energy Ion Scattering Spectroscopy (MEIS) of KRISS) and a method traceable to the length unit (the average thicknesses of three XRR data except the thinnest film). These reference thicknesses are traceable to the length unit because they are based on the traceability of XRR. For the thickness measurement by XPS, the effective attenuation length of Hf 4f electrons was determined. In the cases of XRR and TEM, the offset values were determined from a linear fitting between the reference thicknesses and the individual data by XRR and TEM. The amount of substance of HfO2, expressed as thickness of HfO2 films (in both linear and areal density units), was found to be a good subject for a CCQM key comparison. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM. KW - Thickness measurements KW - nm films KW - X-ray Photoelectron Spectroscopy KW - Mutual calibration PY - 2021 DO - https://doi.org/10.1088/0026-1394/58/1A/08016 SN - 0026-1394 VL - 58 IS - 1a SP - 08016 PB - IOP Publishing Lt. CY - Bristol AN - OPUS4-54175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Nanocarriers – Challenges Imposed by Material Characterization N2 - A brief perspective of BAM on nanocarriers is presented including examples with special emphasis on the characterization of such materials and underlying challenges. In this respect, also ongoing activities at BAM on different types of core/shell nanomaterials and related systems are briefly summarized. T2 - Kolloquium BfR CY - Online meeting DA - 18.03.2021 KW - Nanomaterial KW - Nanocarrier KW - Size KW - Surface chemistry KW - Release kinetics KW - Chemical composition KW - Core/shell nanoparticle KW - Quantum dot KW - Spectroscopy KW - Fluorescence PY - 2021 AN - OPUS4-52412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhatia, S. A1 - Donskyi, Ievgen A1 - Block, S. A1 - Nie, C. A1 - Burdinski, A. A1 - Lauster, D. A1 - Radnik, Jörg A1 - Herrmann, A. A1 - Haag, R. A1 - Ludwig, K. A1 - Adeli, M. T1 - Wrapping and Blocking of Influenza A Viruses by Sialylated 2D Nanoplatforms N2 - Inhibition of respiratory viruses is one of the most urgent topics as underlined by different pandemics in the last two decades. This impels the development of new materials for binding and incapacitation of the viruses. In this work, we have demonstrated that an optimal deployment of influenza A virus (IAV) targeting ligand sialic acid (SA) on a flexible 2D platform enables its binding and wrapping around IAV particles. A series of 2D sialylated platforms consisting graphene and polyglycerol are prepared with different degrees of SA functionalization around 10%, 30%, and 90% named as G-PG-SAL, G-PG-SAM, and G-PG-SAH, respectively. The cryo-electron tomography (Cryo-ET) analysis has proved wrapping of IAV particles by G-PG-SAM. A confocal-based colocalization assay established for these materials has offered the comparison of binding potential of sialylated and non-sialylated nanoplatforms for IAV. With this method, we have estimated the binding potential of the G-PG-SAM and G-PG-SAH sheets for IAV particles around 50 and 20 times higher than the control sheets, respectively, whereas the low functionalized G-PG-SAL have not shown any significant colocalization value. Moreover, optimized G-PG-SAM exhibits high potency to block IAV from binding with the MDCK cells. KW - 2D Materials KW - Graphhene KW - Influenza A virus KW - Sialic acid KW - wrapping PY - 2021 DO - https://doi.org/10.1002/admi.202100285 VL - 8 IS - 12 SP - 285 PB - Wiley VCH AN - OPUS4-52715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Elucidating core shell nanostructures with surface analytics N2 - XPS is a versatile tool for elucidating core shell structures. XPS can obtain information for organic compounds (polymer particle, organic coating ) which are hardly or not detectable with other Methods. XPS is an important tool for the risk assessement of nanoparticles T2 - Kratos German User Meeting CY - Online meeting DA - 26.05.2021 KW - Core-shell nanoparticles KW - X-ray photoelectron spectroscopy KW - Complementary methods PY - 2021 AN - OPUS4-52717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, M. A1 - Schlaich, C. A1 - Zhang, J. A1 - Donskyi, Ievgen A1 - Schwibbert, Karin A1 - Schreiber, Frank A1 - Xia, Y. A1 - Radnik, Jörg A1 - Schwerdtle, T. A1 - Haag, R. T1 - Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction N2 - Bacterial infection and osteogenic integration are the two main problems that cause severe complications after surgeries. In this study, the antibacterial and osteogenic properties were simultaneously introduced in biomaterials, where copper nanoparticles (CuNPs) were generated by in situ reductions of Cu ions into a mussel-inspired hyperbranched polyglycerol (MI-hPG) coating via a simple dip-coating method. This hyperbranched polyglycerol with 10 % catechol groups’ modification presents excellent antifouling property, which could effectively reduce bacteria adhesion on the surface. In this work, polycaprolactone (PCL) electrospun fiber membrane was selected as the substrate, which is commonly used in biomedical implants in bone regeneration and cardiovascular stents because of its good biocompatibility and easy post-modification. The as-fabricated CuNPs-incorporated PCL membrane [PCL-(MI-hPG)-CuNPs] was confirmed with effective antibacterial performance via in vitro antibacterial tests against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and multi-resistant E. coli. In addition, the in vitro results demonstrated that osteogenic property of PCL-(MI-hPG)-CuNPs was realized by upregulating the osteoblast-related gene expressions and protein activity. This study shows that antibacterial and osteogenic properties can be balanced in a surface coating by introducing CuNPs. KW - Mussel-inspired coating KW - CuNPs KW - Multi-resistant bacteria KW - Antibacterial KW - Antifouling KW - Osteogenesis PY - 2021 DO - https://doi.org/10.1016/j.jmst.2020.08.011 SN - 1005-0302 VL - 68 SP - 160 EP - 171 PB - Elsevier Ltd. AN - OPUS4-51519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Hoche, E. A1 - Stock, V. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Sieg, H. T1 - Intestinal and hepatic effects of iron oxide nanoparticles N2 - Iron oxide nanoparticles gain increasing attention due to their broad industrial use. However, safety concerns exist since their effects on human cells are still under investigation. The presence of iron oxide nanoparticles in the food pigment E172 has been shown recently. Here, we studied four iron oxide nanoparticles, one food pigment E172 and the ionic control FeSO4 regarding dissolution in biological media, uptake and transport, and cellular effects in vitro in human intestinal Caco-2 and HepaRG hepatocarcinoma cells. The iron oxide nanoparticles passed the gastrointestinal passage without dissolution and reached the intestine in the form of particles. Minor uptake was seen into Caco-2 cells but almost no transport to the basolateral site was detected for any of the tested particles. HepaRG cells showed higher particle uptake. Caco-2 cells showed no alterations in reactive oxygen species production, apoptosis, or mitochondrial membrane potential, whereas two particles induced apoptosis in HepaRG cells, and one altered mitochondrial membrane potential at non-cytotoxic concentrations. No correlation between physicochemical particle characteristics and cellular effects was observed, thus emphasizing the Need for case-by-case assessment of iron oxide nanoparticles. KW - Nanoparticles PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521651 DO - https://doi.org/10.1007/s00204-020-02960-7 VL - 95 IS - 3 SP - 895 EP - 905 PB - Springer AN - OPUS4-52165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hewel, M. A1 - Siemann, U. A1 - Smarsly, B. A1 - Stribeck, A. A1 - Thünemann, Andreas T1 - Nachruf auf Wilhelm Ruland N2 - Mit Prof. Dr. Wilhelm Ruland starb am 3. Februar 2021 einer der letzten großen Wissenschaftler, welche die Streutheorie nach dem Zweiten Weltkrieg vorangetrieben haben. Sein zentrales Thema war die Streuung an weicher Materie. Hier lieferte er bis ins hohe Alter grundlegende Beiträge, die den Stellenwert seines Leitspruchs demonstrieren: Nichts ist praktischer als eine gute Theorie. KW - SAXS PY - 2021 VL - 20 IS - 4 SP - 50 EP - 50 PB - Wiley AN - OPUS4-52413 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ihlenburg, R. B. J. A1 - Mai, T. A1 - Thünemann, Andreas A1 - Baerenwald, R. A1 - Saalwächter, K. A1 - Koetz, J. A1 - Taubert, A. T1 - Sulfobetaine Hydrogels with a Complex Multilength-Scale Hierarchical Structure N2 - Hydrogels with a hierarchical structure were prepared from a new highly water-soluble crosslinker N,N,N′,N′-tetramethyl-N,N′-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and from the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The free radical polymerization of the two compounds is rapid and yields near-transparent hydrogels with sizes up to 5 cm in diameter. Rheology shows a clear correlation between the monomer-to-crosslinker ratio and the storage and loss moduli of the hydrogels. Cryo-scanning electron microscopy, low-field nuclear magnetic resonance (NMR) spectroscopy, and small-angle X-ray scattering show that the gels have a hierarchical structure with features spanning the nanometer to the sub-millimeter scale. The NMR study is challenged by the marked inhomogeneity of the gels and the complex chemical structure of the sulfobetaine monomer. NMR spectroscopy shows how these complications can be addressed via a novel fitting approach that considers the mobility gradient along the side chain of methacrylate-based monomers. KW - Small-angle X-ray scattering KW - SAXS KW - Gel PY - 2021 DO - https://doi.org/10.1021/acs.jpcb.0c10601 SN - 1520-6106 VL - 125 IS - 13 SP - 3398 EP - 3408 PB - American Chemical Society AN - OPUS4-52403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana T1 - Polypropylene and polyethylene nanoplastics in water N2 - Considering the huge amount of plastics, that is produced and thrown away all over the world every day, an increasing part of the society became aware of microplastic and its possible impact on the environment. Polymer particles smaller than 1 µm are called nanoplastic. Due to their small size they form a special group within particulate waste. Their high specific surface makes it easier for them to penetrate tissue and pose potential harm. On the other hand, the size and the chemical structure make it difficult to detect and analyze nanoplastics in nature. Furthermore, the concentrations in environmental samples are very low. Therefore, there is a need for a well-characterized nanoplastic material, that serves as a reference for nanoplastic found in nature. T2 - Tag der Chemie 2021 Uni Potsdam CY - Online meeting DA - 06.07.2021 KW - Nanoplastic PY - 2021 AN - OPUS4-53775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -