TY - CONF A1 - Radnik, Jörg T1 - Comparative chemical analysis of Ni-Fe oxide nanoparticles N2 - Ni-Fe oxide nanoparticles have gained a lot of interest because of their high activity in the oxygen evolution reaction (OER) which is crucial for water splitting. [1] Although there have been great efforts in the last years, the understanding of the synergistic effect between Fe and Ni is still under discussion. Therefore, we prepared different Ni-Fe oxide nanoparticles with different compositions from pure iron oxide to pure nickel oxide adapting a known procedure. [2,3] Size and morphology of the nanoparticles depend on the composition which was shown with Transmission Electron Microscopy (TEM). The compositions of the nanoparticles were measured with a comparative approach using X-ray Photoelectron Spectroscopy (XPS), Hard X-ray Photoelectron Spectroscopy (HAXPES), and Energy Dispersive X-Ray Spectroscopy (EDS) coupled with the TEM providing detailed chemical information of the nanoparticles in different sample regions. EDS reveals that the different sample regions are dominated by one of the components, Fe or Ni, but a slight mixing between the components can be found (see Figure 1), which was confirmed with X-ray Diffraction (XRD). XPS indicates the enrichment of Fe at the sample surface, while HAXPES and EDS data agree on the stoichiometry of the bulk. High-resolution XPS and HAXPES exhibit some differences in the valence states of Fe and Ni, whereas Ni seems to be easier to reduce than Fe. Further investigations combining these different techniques and additionally Secondary Ion Mass Spectrometry (ToF-SIMS) are ongoing by using in situ approaches and coupling cyclic voltammetry to the analytical techniques. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Oxygen evolution reaction KW - Transmission Electron Microscopy KW - (Hard) X-ray Photoelectron Spectroscopy KW - Synergistic effects PY - 2024 AN - OPUS4-60534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Voss, Heike T1 - Picosecond laser processing of hierarchical micro-nanostructures on Ti-alloy upon pre- and post-anodization N2 - Recent publications indicate that the order of electrochemical anodization (before or after the laser-processing step) plays an important role for the response of boneforming osteoblasts – an effect that can be utilized for improving permanent dental- or removable bone-implants. For exploring these different surface functionalities, multi-method chemical and structural characterizations were performed for two different characteristic micro-spikes covered by nanometric laserinduced periodic surface structures (LIPSS) on Ti-6Al-4V upon irradiation with nearinfrared ps-laser pulses (1030 nm wavelength, ~1 ps pulse duration, 66 & 80 kHz pulse repetition rate) at two distinct sets of laser fluence and beam scanning parameters. This involves morphological and topographical investigations by scanning electron microscopy (SEM) and white light interference microscopy (WLIM), near-surface chemical analysis by X-ray photoelectron spectroscopy (XPS) and hard X-ray photoelectron spectroscopy (HAXPES), as well as structural material examination via X-ray diffraction (XRD) measurements. The results allow to qualify the laser ablation depth, assess the spike geometry and surface roughness parameters, and provide detailed insights into the near-surface oxidation that may cause the different cell growth behavior for pre- or post-anodized medical implants. T2 - E-MRS Spring Meeting 2023 CY - Strasbourg, France DA - 29.05.2023 KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Laser-induced periodic surface structures (LIPSS) KW - Ti6Al4V alloy KW - Hierarchical micro-nanostructures KW - Ultrashort laser processing PY - 2023 AN - OPUS4-60344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Ongoing VAMAS interlaboratory comparisons on nanoparticles size and shape as pre standardisation projects for harmonized measurements N2 - Traceable morphological and chemical characterization of nanomaterials with respect to the various possible sizes, size distributions, shapes, and concentrations of real-world nanoparticles (NPs) is a challenging task. Particularly for the nonspherical, non-monodisperse nanoparticles – as typically for most of the commercial particles, including their strong tendency to agglomerate, there is a lack of standard operation procedures providing accurate nanoparticle characterisation. In the framework of the pre-standardisation framework of VAMAS (Versailles Project on Advanced Materials and Standards, www.vamas.org) two interlaboratory comparison (ILC) studies are being carried out under the Technical Working Area (TWA) 34 “Nanoparticle Populations”:i) Project #15 addresses the analysis of the size and shape distribution of TiO2 bipyramidal NPs by traceable imaging methods such as TEM, SEM, STEM-in-SEM, AFM as well as with SAXS as an ensemble method. This ILC is thought as the next level development of the case studies exemplified in the published ISO standards ISO 21363 and ISO 19749. It was agreed to complete the first ILC with the NPs already prepared according to the same procedure on a TEM grid, and, at a later stage, to carry out second ILCs with the same NPs distributed to the participants as liquid suspensions together with protocols for the uniform NP deposition on suited substrates - as developed and optimized within the European project nPSize. Once having good deposition protocols available, the door for automated image analysis gets opened. Corresponding image analysis protocols and reporting templates have been distributed to the ILC participants, too. ii) Project #16: two spherical SiO2 NP samples with bi-modal size distributions in two nominal relative number concentrations were prepared and distributed also as liquid suspensions accompanied by sample preparation, measurement, and image analysis protocols and reporting templates. Here, the NP concentration is the primary parameter to be measured. For the imaging methods it is targeted to measure the relative nanoparticle concentrations (relative populations of the two modes). The results of all the participating laboratories, in both ILCs, compiled in comparative representations will be shown and discussed for the first time. The reduction of the measurement uncertainties associated to the size, shape and number-concentration results induced by the significant improvement of the sample preparation on substrates (as single particles with a high-density coverage), combined with welldefined image analysis procedures will be highlighted. T2 - 2024 Spring Meeting of the European Materials Research Society (E-MRS) CY - Strasbourg, France DA - 27.05.2024 KW - VAMAS KW - Interlaboratory comparison KW - Electron microscopy KW - Particle size distribution KW - Article concentration PY - 2024 AN - OPUS4-60184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Morphological and chemical analysis of mesoporous mixed IrOx-TiOy thin films as electrode materials N2 - Porous films play an important role particularly in energy applications like photovoltaics, electrolysis or batteries. Thin film properties such as thickness, chemical composition, crystallinity of the framework, and porosity define the activity of the porous films. The accurate morpho-chemical characterisation of mesoporous thin films is a challenging analytical task which requires the consideration of new analytical approaches based on the combination of data of different methods able to address the structure and chemical composition at the nanoscale. In this contribution we characterise thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with Energy-Dispersive X-ray Spectroscopy (EDS) at an SEM applied in a dedicated “thin film analysis” approach (1). Thus, the film mass deposition, film thickness and the film density can be determined. Further, by dividing the measured film density to an assumed (theoretical) metal oxide framework (skeletal) density, the thin film porosity can be extracted, too. In order to assess the homogeneity of the thin film properties like the chemical composition, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Auger Electron Spectrometry are applied in the depth profiling mode, so that possible in-depth gradients are detected. Lateral inhomogeneities in the chemical composition and structure of the thin mesoporous films are also identified by applying the same methods in the line-scan or mapping mode, which can be further combined with in-depth sputtering for 3D information. The role of the spatial resolution of the analytical methods considered, which can go down well below 100 nm, will be highlighted. T2 - 2024 Spring Meeting of the European Materials Research Society (E-MRS) CY - Strasbourg, France DA - 27.05.2024 KW - Mesoporous KW - Thin films KW - Iridium oxide KW - Titanium oxide KW - Thin film analysis KW - Porosity KW - SIMS KW - Auger electron spectroscopy PY - 2024 AN - OPUS4-60185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Measurement of Lateral Dimensions of Particles & Flakes (2D) by Imaging Methods N2 - An overview with the basics of size and shape measurement of particles and 2D structures according to established methodologies (and popular imaging processing software packages) with imaging techniques is given. Main descriptors are explained based on practical cases are determined interactively at the flipchart. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Nanoparticles KW - 2D materials KW - Lateral dimensions KW - ISO KW - Imaging PY - 2024 AN - OPUS4-60454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auxillos, J. A1 - Crouigneau, R. A1 - Li, Y.-F. A1 - Dai, Y. A1 - Stigliani, A. A1 - Tavernaro, Isabella A1 - Resch-Genger, Ute A1 - Sandelin, A. A1 - Marie, R. A1 - Pedersen, S. F. T1 - Spatially resolved analysis of microenvironmental gradient impact on cancer cell phenotypes N2 - Despite the physiological and pathophysiological significance of microenvironmental gradients, e.g., for diseases such as cancer, tools for generating such gradients and analyzing their impact are lacking. Here, we present an integrated microfluidic-based workflow that mimics extracellular pH gradients characteristic of solid tumors while enabling high-resolution live imaging of, e.g., cell motility and chemotaxis, and preserving the capacity to capture the spatial transcriptome. Our microfluidic device generates a pH gradient that can be rapidly controlled to mimic spatiotemporal microenvironmental changes over cancer cells embedded in a 3D matrix. The device can be reopened allowing immunofluorescence analysis of selected phenotypes, as well as the transfer of cells and matrix to a Visium slide for spatially resolved analysis of transcriptional changes across the pH gradient. This workflow is easily adaptable to other gradients and multiple cell types and can therefore prove invaluable for integrated analysis of roles of microenvironmental gradients in biology. KW - Bioimaging KW - Fluorescence KW - Cell KW - Cancer KW - Method KW - Microfluids KW - Model KW - Calibration KW - Sensor KW - Ph KW - Probe KW - Workflow PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604631 DO - https://doi.org/10.1126/sciadv.adn3448 VL - 19 IS - 18 SP - 1 EP - 17 AN - OPUS4-60463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Absolute Determination of Photoluminescence Quantum Yields of Scattering LED Converter Materials – How to Get it Right N2 - Optical measurements of scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders play an important role in fundamental research and industry. Typical examples are luminescent nano- and microparticles and phosphors of different composition in different matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter for the performance of these materials is the photoluminescence quantum yield QY, i.e., the number of emitted photons per number of absorbed photons. QY of transparent luminophore solutions can be determined relatively to a fluorescence quantum yield standard of known QY. Such standards are meanwhile available as certified reference materials.[1] The determination of QY of scattering liquid and solid samples like dispersions of luminescent nanoparticles, solid phosphors, and optoceramics requires, however, absolute measurements with an integrating sphere setup. Although the importance of reliable absolute QY measurements has been recognized, no interlaboratory comparisons (ILCs) on measurement uncertainties and the identification of typical sources of uncertainty have been yet reported. Also, no scattering reference materials with known QY are available. We present here the results of a first ILC of 3 laboratories from academia and industry performed to identify and quantify sources of uncertainty of absolute QY measurements of scattering samples. Thereby, two types of commercial stand-alone integrating sphere setups with different illumination and detection geometries were utilized for measuring QY of transparent and scattering dye solutions and solid phosphors. As representative and industrially relevant solid and scattering samples, YAG:Ce optoceramics of varying surface roughness were chosen, applied, e.g., as converter materials for blue light emitting diodes. Special emphasis was dedicated to the influence of the measurement geometry, the optical properties of the blank, utilized to determine the number of photons of the incident excitation light absorbed by the sample, and the sample-specific surface roughness. While matching QY values could be obtained for transparent dye solutions and scattering dispersions, here using a blank with scattering properties closely matching those of the sample, QY measurements of optoceramic samples with different blanks revealed substantial differences, with the blank's optical properties accounting for measurement uncertainties of more than 20 %. Based upon the ILC results, we recommend non-absorbing blank materials with a high reflectivity (>95 %) such as a 2 mm-thick PTFE target placed on the sample holder which reveals a near-Lambertian light scattering behavior, yielding a homogeneous light distribution within the integrating sphere. T2 - e-MRS 2024 CY - Strasbourg, France DA - 27.05.2024 KW - Luminescence KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Phosphor KW - Converter marterial KW - Fluorescence KW - Interlaboratory KW - Comparison KW - Method KW - Uncertainty KW - Reference material PY - 2024 AN - OPUS4-60490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madbouly, Loay Akmal T1 - Chemical Analysis of Functionalized Graphene along the Production Chain N2 - Graphene has been commercialized for over a decade. It is usually used in the form of suspensions or inks. In this study, we analyze the starting material for commercial functionalized graphene (FG) solutions and inks as well as their starting material (FG powders) using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), energy-dispersive X-Ray spectroscopy (EDX), time of flight secondary ion mass spectrometry (ToF-SIMS) and Auger electron spectroscopy (AES). Graphene was functionalized with fluorine, oxygen, ammonia, and carboxylic acid. Our results suggest a significant effect of water and commercial resins on the presence as well as the morphological behavior of graphene and associated functionalized group. For example, XPS analysis shows some significant differences between the solutions and the starting materials (powders). These changes can be explained by the location of the functionalization at the outer most surface as indicated by Chemello et al. T2 - European Conference on Applications of Surface and Interface Analysis (ECASIA 2024) CY - Gothenburg, Sweden DA - 09.06.2024 KW - Functionalized graphene KW - Commercial graphene KW - Graphene inks PY - 2024 AN - OPUS4-60446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren T1 - Approaches to Surface Analysis of Modified Quartz Nanopipettes N2 - Nanopipettes are a type of solid-state nanopore with needle-like geometry. Their applications range from imaging, sensing, diagnostics, and use as injectors. The response of nanopipette sensors is highly dependent on the size, geometry and chemical properties of the sensing region. As they are increasingly tuned and modified for specific analytes, a better understanding of the surface chemistry and morphology of the inner channel is necessary. With the aim of developing a comprehensive approach for characterisation of such nanopipettes, this research focuses on combining surface-sensitive analysis methods with advanced sample preparation techniques. Quartz substrates were modified by gas phase silanization, a well-utilised technique in the field to enhance performance of nanopipettes, and further functionalised with a metal bis thiolate complex, to aid in chemical analysis. The sample characterisation involved scanning electron microscopy (SEM), low-energy dispersive x-ray spectroscopy (EDX), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Auger electron spectroscopy (AES). Using focused ion beam (FIB) milling under gentle conditions, the inner surface of quartz nanopipettes was exposed whilst preserving the integrity of the overall structure (see figure). Owing to the challenging analysis conditions, modification and analysis of flat quartz substrates has been performed in parallel for optimisation purposes. The results demonstrate the first steps towards full characterisation of nanopipettes at the nanoscale, notably with access to the inner channel. The methods used here can be applied to gain further understanding of the response of these sensors to complex analytes and allow for the study of different surface functionalisations at the all-important sensing region. T2 - European Conference on Applications of Surface and Interface Analysis (ECASIA 2024) CY - Gothenburg, Sweden DA - 09.06.2024 KW - Quartz nanopipettes KW - Nanopipette modification KW - Silanization KW - Surface analysis KW - Focussed ion beam PY - 2024 AN - OPUS4-60447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madbouly, Loay Akmal T1 - Chemical Analysis of Functionalized Graphene along the Production Chain N2 - Graphene has been commercialized for over a decade. It is usually used in the form of suspensions or inks. In this study, we analyze the starting material for commercial functionalized graphene (FG) solutions and inks as well as their starting material (FG powders) using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), energy-dispersive X-Ray spectroscopy (EDX), time of flight secondary ion mass spectrometry (ToF-SIMS) and Auger electron spectroscopy (AES). Graphene was functionalized with fluorine, oxygen, ammonia, and carboxylic acid. Our results suggest a significant effect of water and commercial resins on the presence as well as the morphological behavior of graphene and associated functionalized group. For example, XPS analysis shows some significant differences between the solutions and the starting materials (powders). These changes can be explained by the location of the functionalization at the outer most surface as indicated by Chemello et al. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Functionalized graphene KW - Commercial graphene KW - Graphene inks PY - 2024 AN - OPUS4-60448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren T1 - Approaches to Surface Analysis of Modified Quartz Nanopipettes N2 - Nanopipettes are a type of solid-state nanopore with needle-like geometry. Their applications range from imaging, sensing, diagnostics, and use as injectors. The response of nanopipette sensors is highly dependent on the size, geometry and chemical properties of the sensing region. As nanopipettes are increasingly tuned and modified for specific analytes, a better understanding of the surface chemistry and morphology of the inner channel is necessary. For exploring these effects, quartz nanopipettes were modified by gas phase silanization, a well-utilised technique in the field to enhance performance of nanopipettes, and further functionalised with a metal bis thiolate complex, to aid in chemical analysis. The inner channel of the sensing region was exposed with focused ion beam (FIB) milling as a dedicated sample preparation method for nanoscale surface analysis. The sample characterisation involved scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and low-energy energy dispersive x-ray spectroscopy (EDX). The results demonstrate the first steps towards full characterisation of nanopipettes at the nanoscale, notably with access to the inner channel. The methods used here can be applied to gain further understanding of the response of these sensors to complex analytes, and allow for the study of different surface functionalisation at the all-important sensing region. T2 - 2024 Spring Meeting of the European Materials Research Society (E-MRS) CY - Strasbourg, France DA - 27.05.2024 KW - Nanopipettes KW - FIB KW - Surface analysis KW - Surface modification KW - Silanisation PY - 2024 AN - OPUS4-60449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren T1 - Breaking the Wall of Rapid Diagnostics N2 - In this short presentation the diagnostics, biomarkers and analysis are interrelated. The specificity and sensitivity of the DNA structures as well as the high-throughput option of the nanopore sensing are discussed. T2 - Falling Walls Lab Berlin-Adlershof CY - Berlin, Germany DA - 21.09.2023 KW - Nanopipettes KW - Sensing KW - Diagnosis KW - DNA structures PY - 2023 AN - OPUS4-60450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren T1 - Rapid Desease Monitoring with Resistive-Pulse Sensing in Nanopipettes N2 - Following parts of the research project as proceeded at University of Birminngham are presented: Translocation, Experiments, Synthesis of DNA Structures, Antibody, Biomarker, Binding. Following works have been carried out at BAM: High Resolution Electron Microscopy, Dedicated Sample Preparation, Surface Analysis Methods. T2 - UoB-BAM Chemistry Theme Meeting CY - Online meeting DA - 15.05.2024 KW - Nanopipettes KW - Sensing KW - Diagnosis KW - Surface analysis PY - 2024 AN - OPUS4-60451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Chemical Nanoscale Analysis of Mesoporous Mixed IrOx-TiOx Thin Films N2 - Porous films play an important role particularly in energy applications like photovoltaics, electrolysis or batteries. Thin film properties such as thickness, chemical composition, crystallinity of the framework, and porosity define the activity of the porous films. The accurate morpho-chemical characterisation of mesoporous thin films is a challenging analytical task which requires the consideration of new analytical approaches based on the combination of data of different methods able to address the structure and chemical composition at the nanoscale. In this contribution we characterise thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with Energy-Dispersive X-ray Spectroscopy (EDS) at an SEM applied in a dedicated “thin film analysis” approach. Thus, the film mass deposition, film thickness and the film density can be determined. Further, by dividing the measured film density to an assumed (theoretical) metal oxide framework (skeletal) density, the thin film porosity can be extracted, too. In order to assess the homogeneity of the thin film properties like the chemical composition, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Auger Electron Spectrometry are applied in the depth profiling mode, so that possible in-depth gradients are detected. Lateral inhomogeneities in the chemical composition and structure of the thin mesoporous films are also identified by applying the same methods in the line-scan or mapping mode, which can be further combined with in-depth sputtering for 3D information. The role of the spatial resolution of the analytical methods considered, which can go down well below 100 nm, will be highlighted. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Thin films KW - Mesoporous KW - IR oxide KW - Ti oxide KW - Porosity PY - 2024 AN - OPUS4-60452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Role of Sample Preparation for Accurate and Automated Morphological Analysis of Nanoparticles proven in Interlaboratory Comparison Exercises N2 - Traceable morphological and chemical characterization of nanomaterials with respect to the various possible sizes, size distributions, shapes, and concentrations of real-world nanoparticles (NPs) is a challenging task. Particularly for the nonspherical, non-monodisperse nanoparticles – as typically for most of the commercial particles, including their strong tendency to agglomerate, there is a lack of standard operation procedures providing accurate nanoparticle characterisation. In the framework of the pre-standardisation framework of VAMAS (Versailles Project on Advanced Materials and Standards, www.vamas.org) two interlaboratory comparison (ILC) studies are being carried out under the Technical Working Area (TWA) 34 “Nanoparticle Populations”:i) Project #15 addresses the analysis of the size and shape distribution of TiO2 bipyramidal NPs by traceable imaging methods such as TEM, SEM, STEM-in-SEM, AFM as well as with SAXS as an ensemble method. This ILC is thought as the next level development of the case studies exemplified in the published ISO standards ISO 21363 and ISO 19749. It was agreed to complete the first ILC with the NPs already prepared according to the same procedure on a TEM grid, and, at a later stage, to carry out second ILCs with the same NPs distributed to the participants as liquid suspensions together with protocols for the uniform NP deposition on suited substrates - as developed and optimized within the European project nPSize. Once having good deposition protocols available, the door for automated image analysis gets opened. Corresponding image analysis protocols and reporting templates have been distributed to the ILC participants, too. ii) Project #16: two spherical SiO2 NP samples with bi-modal size distributions in two nominal relative number concentrations were prepared and distributed also as liquid suspensions accompanied by sample preparation, measurement, and image analysis protocols and reporting templates. Here, the NP concentration is the primary parameter to be measured. For the imaging methods it is targeted to measure the relative nanoparticle concentrations (relative populations of the two modes). The results of all the participating laboratories, in both ILCs, compiled in comparative representations will be shown and discussed for the first time. The reduction of the measurement uncertainties associated to the size, shape and number-concentration results induced by the significant improvement of the sample preparation on substrates (as single particles with a high-density coverage), combined with welldefined image analysis procedures will be highlighted. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Nanoparticles KW - VAMAS KW - Interlaboratory comparison KW - Sample preparation KW - Nanoparticle concentration PY - 2024 AN - OPUS4-60453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Revealing surface functionalities of micro- and nanoplastic particles’ surface by means of XPS N2 - Over the last 20 years, many researchers, politicians, and citizens themselves have become increasingly aware of the growing plastic problem of our time. Inadequate recycling concepts, collection points, and careless dumping of plastic products in the environment lead to an accumulation of plastic. External weather influences can cause these to degrade and fractionate, so that today microplastics (1-1000 µm, ISO/TR 21960:2020) [1] of different polymer materials can be detected in all parts of the world. The precautionary principle applies to microplastics. The particles can break down further to form nanoplastics (<1 µm, ISO/TR 21960:2020) [1]. Whether microplastics or nanoplastics pose a toxicological hazard is being investigated in a variety of ways. Valid results are still pending, however, investigations into the frequency, transport, possible sinks and entry paths must be taken into account. This is why monitoring of microplastics is already required in the revision of the Drinking Water Framework Directive [2]. The same is still pending in the final version of the revision of the Waste Water Framework Directive this year, but is expected. Nanoplastics are particularly under discussion for having a toxic effect on humans and animals, as these particles are small enough to be absorbed by cells. For targeted toxicological studies, it is important to have test and reference materials that resemble the particles found in the environment. To mimic environmental samples, these materials should also have an irregular shape and show aging at the surface, which can be detected with XPS or SEM/EDS. BAM in collaboration with the EMPIR project "PlasticTrace" works on a reference material candidate of nano-sized polypropylene (nano-PP) [3]. The nano-PP vials were tested for homogeneity with PTA and further characterized with bulk and surface-sensitive techniques. An SEM image and a corresponding XPS spectrum are presented in Figure 1. Raman measurements as well as XPS indicate an aged surface. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Surface chemistry KW - Micro- and nanoplastics KW - X-ray Photoelectron Spectroscopy KW - MNP production technique PY - 2024 AN - OPUS4-60535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - How to expand the use of your test method? Validation is key towards standardisation N2 - Standardised methods need validation. The main validation parameters like trueness, repeatability and intermediate precision and reproducibility are presented. Furthermore, different methods for the validation are disussed: (certified) reference materials, representative testing materials and interlaboratory comparisons. At last, the need of proficiency testing is stressed. T2 - Materials Week 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Validation KW - Reproducibility crisis KW - Metrological traceability KW - Measurement uncertainty PY - 2024 AN - OPUS4-60536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Standardisation needs for regulatory testing of graphene and related 2D materials. phy-chem properties N2 - The main properties and main methods which are needed for the physico-chemical characterisation of graphene related 2D materials are discussed. As expample for standardization, protocols for the measurement of the chemical composition with XPS are discussed. The results of an interlaboratory comparisons led to new recommendations for the reliable measurments protocols. T2 - Materials Week 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Standardisation KW - Functionalized graphene KW - Interlaboratory comparison KW - Endpoints PY - 2024 AN - OPUS4-60537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. T1 - A new XPS test material for more reliable surface analysis of microstructures N2 - Small-area XPS analysis is one of the most popular and powerful methods for analysing the surface of features in the micro-range. When measuring microstructures, the ques-tion arises whether the measuring point is really located at the point intended to be ana-lysed. Information in a measured spectrum might originate within the field of view (FoV) on the surface of the sample, from outside the FoV, or even from inherent contamination. To ensure that small structures can be measured correctly regardless of user and instru-ment, certain instrument and sample settings must be known and selected correctly: beam and aperture size as well as the aperture settings and the approximate dimensions of the structure to be analysed. This is the only way to ensure that the information in the spectrum originates only from the FoV on the analysed structure. To test the performance of the XPS instruments, a dedicated test material was developed that consists of a gold surface on which 8 circles and 8 squares of chrome are incorpo-rated using a masking process, so that the Au substrate and the Cr structure surfaces are in the same surface plane. In order to be able to test as many as possible instruments from different manufacturers, the structures have been designed with a size ranging from 300 µm down to 7 µm. The layout of the test material has been optimised in regard of the handling. The structures are arranged along lines instead of a circumference, marking arrows around the smaller structures (≤50 µm) are added, and the lithography mask is optimised regarding edge and diffraction effects. Furthermore, the manufacturing process was changed from electron-beam deposition to mask lithography due to costs reasons. The structures on the test material were measured with a metrological SEM to determine their accurate dimensions and check the repeatability of the manufacturing process. XPS investigations with a Kratos AXIS Ultra DLD and an ULVAC-Phi Quantes demonstrates the suitability of this new test material for measuring the analysed area. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Small-area XPS KW - Test material KW - Field of view KW - Imaging PY - 2024 AN - OPUS4-60539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, Heike A1 - Knigge, Xenia A1 - Knapic, D. A1 - Weise, Matthias A1 - Sahre, Mario A1 - Hertwig, Andreas A1 - Sacco, A. A1 - Rossi, A. M. A1 - Radnik, Jörg A1 - Müller, Kai A1 - Wasmuth, Karsten A1 - Krüger, Jörg A1 - Hassel, A. W. A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Picosecond laser processing of hierarchical micro–nanostructures on titanium alloy upon pre- and postanodization: morphological, structural, and chemical effects N2 - Recent publications indicate that the order of electrochemical anodization (before or after the laser processing step) plays an important role for the response of bone-forming osteoblasts—an effect that can be utilized for improving permanent dental or removable bone implants. For exploring these different surface functionalities, multimethod morphological, structural, and chemical characterizations are performed in combination with electrochemical pre- and postanodization for two different characteristic microspikes covered by nanometric laser-induced periodic surface structures on Ti–6Al–4V upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ≈1 ps pulse duration, 67 and 80 kHz pulse repetition frequency) at two distinct sets of laser fluence and beam scanning parameters. This work involves morphological and topographical investigations by scanning electron microscopy and white light interference microscopy, structural material examinations via X-ray diffraction, and micro-Raman spectroscopy, as well as near-surface chemical analyses by X-ray photoelectron spectroscopy and hard X-ray photoelectron spectroscopy. The results allow to qualify the mean laser ablation depth, assess the spike geometry and surface roughness parameters, and provide new detailed insights into the near-surface oxidation that may affect the different cell growth behavior for pre- or postanodized medical implants. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Hierarchical micro-nanostructures KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Ti-6Al-4V alloy KW - X-ray photoelectron spectroscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601962 DO - https://doi.org/10.1002/pssa.202300920 SN - 1862-6319 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-60196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -