TY - GEN A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Dao, R. A1 - Komarow, P. A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Dataset accompanying the publication "Towards 3D determination of the surface roughness of core-shell microparticles as a routine quality control procedure by scanning electron microscopy" N2 - This dataset accompanies the following publication: Hülagü, D., Tobias, C., Dao, R., Komarov, P., Rurack, K., Hodoroaba, V.-D., Towards 3D determination of the surface roughness of core-shell microparticles as a routine quality control procedure by scanning electron microscopy. Sci.Rep, 14, 17936 (2024), https://doi.org/10.1038/s41598-024-68797-7. It contains SEM and AFM-in-SEM images of polystyrene (PS) core particles, polystyrene-iron oxide (PS/Fe3O4) core-shell particles, and polystyrene-iron oxide-silica (PS/Fe3O4/SiO2) core-shell-shell particles. Please refer to the publication and its supporting information for more details on the acquisition and contents of the dataset, as well as the GitHub repository at https://github.Com/denizhulagu/roughness-analysis-by-electron-microscopy. The investigated particles were produced at BAM laboratories as previously described in: Hülagü, D. et al. Generalized analysis approach of the profile roughness by electron microscopy with the example of hierarchically grown polystyrene–iron oxide–silica core–shell–shell particles. Adv. Eng. Mater. 24, 2101344, https://doi.org/10.1002/adem.202101344 (2022). Tobias, C., Climent, E., Gawlitza, K. & Rurack, K. Polystyrene microparticles with convergently grown mesoporous silica shells as a promising tool for multiplexed bioanalytical assays. ACS Appl. Mater. Interfaces 13, 207, https://dx.doi.org/10.1021/acsami.0c17940 (2020). KW - Core–shell particles KW - Image analysis KW - Roughness KW - Scanning electron microscopy KW - Atomic force microscopy KW - Tilting KW - Batch analysis PY - 2024 UR - https://zenodo.org/records/11108726 DO - https://doi.org/10.5281/zenodo.11108725 PB - Zenodo CY - Geneva AN - OPUS4-60760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Boehm, S. A1 - Kim, K. J. T1 - Analysis of elemental composition of Fe1-xNix and Si1-xGex alloy thin films by electron probe microanalysis and micro-focus X-ray fluorescence N2 - The present study reports on results of analysis of the elemental composition of thin films by electron probe microanalysis with energy dispersive (ED-EPMA) X-ray spectrometry in conjunction with the dedicated thin-film analysis software package Stratagem and by X-ray fluorescence in its version with a micro-focus X-ray fluorescence (μ-XRF) source attached to a scanning electron microscope (SEM). Two thin-film systems have been analyzed: Fe1-xNix on silicon wafer and Si1-xGex on Al2O3 substrate, in both cases the layers being grown to a thickness of about 200 nm by ion beam sputter deposition. Samples of five different atomic fractions have been produced and analyzed for each thin-film system. Moreover, reference samples with certified elemental composition and thickness have been also available. This study is part of an interlaboratory comparison organized in the frame of standardization technical committee ISO/TC 201 “Surface chemical analysis.” Two laboratories have been analyzed by ED-EPMA (one laboratory standardless and one laboratory using both standardless and with standards variants) and one laboratory by μ-XRF (standardless and with standards). All the elemental compositions obtained with different methods are in very good agreement for the complete two sets of five samples each. KW - Thin films KW - Elemental composition KW - FeNi KW - SiGe KW - Electron probe microanalysis KW - X-ray Fluorescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509262 DO - https://doi.org/10.1002/sia.6834 SN - 0142-2421 VL - 52 IS - 12 SP - 929 EP - 932 PB - John Wiley & Sons Ltd AN - OPUS4-50926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Ce0.25Zr0.75O2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Ce0.25Zr0.75O2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Ce0.25Zr0.75O2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7966165 PB - Zenodo CY - Geneva AN - OPUS4-57674 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Co1.5Fe1.5O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Co1.5Fe1.5O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Co1.5Fe1.5O4 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7940271 PB - Zenodo CY - Geneva AN - OPUS4-57662 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized TiO2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized TiO2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - TiO2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7941566 PB - Zenodo CY - Geneva AN - OPUS4-57668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized TiO2 PVP nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized TiO2 PVP nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Nanoparticles KW - TiO2 PVP PY - 2023 DO - https://doi.org/10.5281/zenodo.7966354 PB - Zenodo CY - Geneva AN - OPUS4-57761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterile ZnO nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of ZnO nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Nanoparticles KW - ZnO PY - 2023 DO - https://doi.org/10.5281/zenodo.7990213 PB - Zenodo CY - Geneva AN - OPUS4-57762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of Ce0.9Zr0.1O2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of Ce0.9Zr0.1O2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Ce0.9Zr0.1O2 KW - Nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7986672 PB - Zenodo CY - Geneva AN - OPUS4-57758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterile citrated stabilized Au nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of Au nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Au Nanoparticles KW - NanoSolveIT PY - 2023 DO - https://doi.org/10.5281/zenodo.7990250 PB - Zenodo CY - Geneva AN - OPUS4-57763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Embedding and cross-sectioning as a sample preparation procedure for accurate and representative size and shape measurement of nanopowders N2 - Reliable measurement of the size of polydisperse, complex-shaped commercial nanopowders is a difficult but necessary task, e.g., for regulatory requirements and toxicity risk assessment. Suitable methods exist for the accurate characterization of the size of non-aggregated, stabilized, spherical and monodisperse nanoparticles. In contrast, industrial nanoscale powders usually require dedicated sample preparation procedures developed for the analysis method of choice. These nano-powders tend to agglomerate and/or aggregate, a behavior which in combination with an innate broad particle size distribution and irregular shape often significantly alters the achievable accuracy of the measured size parameters. The present study systematically tests two commercially available nanoscale powders using different sample preparation methods for correlative analysis by scanning electron microscopy, dynamic light scattering, Brunauer–Emmet–Teller method and differential mobility analysis. One focus was set on the sample preparation by embedding nanoparticles in carbon-based hot-mounting resin. Literature on this topic is scarce and the accuracy of the data extracted from cross sections of these particles is unclearly stated. In this paper systematic simulations on the deviation of the size parameters of well-defined series of nanoparticles with different shapes from the nominal value were carried out and the contributing factors are discussed. KW - Nanopowder KW - Electron microscopy KW - Sample preparation KW - Cross-sectioning KW - Cerium oxide KW - Zinc oxide PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593289 DO - https://doi.org/10.1038/s41598-023-51094-0 SN - 2045-2322 VL - 14 SP - 1 EP - 10 PB - Springer Nature CY - London AN - OPUS4-59328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - López de Ipina, J.-M. A1 - Arevalillo, A. A1 - Martín, A. A1 - Caillard, B. A1 - Marcoulaki, E. A1 - Aguerre- Charol, O. A1 - van Duuren-Stuurman, B. A1 - Hodoroaba, Vasile-Dan A1 - Viitanen, A.-K. A1 - Witters, H. A1 - Vercauteren, S. A1 - Persson, K. A1 - Bard, D. A1 - Evans, G. A1 - Jensen, K.A. A1 - Himly, M. A1 - Scalbi, S. A1 - Papin, A. A1 - Le Bihan, O. A1 - Kanerva, T. A1 - Tirez, K. A1 - Frijns, E. A1 - Niga, P. A1 - Eleftheriadis, K. A1 - Travlos, A. A1 - Geppert, M. A1 - Himly, M. A1 - Radnik, Jörg A1 - Kuchenbecker, Petra A1 - Resch-Genger, Ute A1 - Fraboulet, I. A1 - Bressot, C. A1 - Rissler, J. A1 - Gaucher, R. A1 - Binotto, G. A1 - Krietsch, Arne A1 - Braun, A. A1 - Abenet, S. A1 - Catalan, J. A1 - Verstraelen, S. A1 - Manier, N. A1 - Manzo, S. A1 - Fransman, S. A1 - Queron, J. A1 - Charpentier, D. A1 - Taxell, D. A1 - Säämänen, A. A1 - Brignon, J.-M. A1 - Jovanovic, A. A1 - Bisson, M A1 - Neofytou, P. T1 - EC4Safenano - Catalogue of Services N2 - The publicly available document encapsulates the first version of the Catalogue of Services of the future EC4Safenano Centre (CoS 2019). The CoS 2019 is structured in 12 Service Categories and 27 Service Topics, for each of the 12 categories considered. This architecture configures a 12 x 27 matrix that allows ordering the potential EC4Safenano offer in 324 types of services/groups of services. Each type of service/group of services is described, in a simple and friendly way, by means of a specific service sheet: the EC4Safenano - Service Data Sheet (EC4-SDS). These EC4-SDSs allow structuring and summarizing the information of each service, providing the customer with a concise view of characteristics of the service and also the contact details with the service provider. The CoS 2019 deploys a map of services consisting of a set of 100 EC4-SDSs, covering 7 of the 12 Service Categories and 17 of the 27 Service Topics. The harmonization of services is visualized as a future necessary step in EC4Safenano, in order to strengthen the offer and provide added value to customers with a growing offer of harmonized services in future versions of the CoS. The information contained in this document is structured in 3 main sections, as follows: • Catalogue structure. This section describes in short the main characteristics of the CoS 2019. • Catalogue content. This section represents the core part of the document and encapsulates the set of 100 SDSs displaying the offer proposed by the CoS 2019. • Online Catalogue. This section describes the resources implemented by EC4Safenano to facilitate the on-line consultation of the CoS 2019 by customers and other interested parties. KW - Nano-safety KW - Analytical services KW - Nanomaterials KW - Catalogue of services KW - EC4SafeNano KW - European Centre PY - 2021 UR - https://ec4safenano.eu-vri.eu/Public/Guidance SP - 1 EP - 72 PB - EU-VRi – European Virtual Institute for Integrated Risk Management CY - Stuttgart, Germany AN - OPUS4-52943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, F. A1 - Isopescu, R. A1 - Pellutiè, L. A1 - Sordello, F. A1 - Rossi, A. M. A1 - Ortel, Erik A1 - Martra, G. A1 - Hodoroaba, Vasile-Dan A1 - Maurino, V. T1 - Machine learning approach for elucidating and predicting the role of synthesis parameters on the shape and size of TiO2 nanoparticles N2 - In the present work a series of design rules are developed in order to tune the morphology of TiO2 nanoparticles through hydrothermal process. Through a careful experimental design, the influence of relevant process parameters on the synthesis outcome are studied, reaching to the develop predictive models by using Machine Learning methods. The models, after the validation and training, are able to predict with high accuracy the synthesis outcome in terms of nanoparticle size, polydispersity and aspect ratio. Furthermore, they are implemented by reverse engineering approach to do the inverse process, i.e. obtain the optimal synthesis parameters given a specific product characteristic. For the first time, it is presented a synthesis method that allows continuous and precise control of NPs morphology with the possibility to tune the aspect ratio over a large range from 1.4 (perfect truncated bipyramids) to 6 (elongated nanoparticles) and the length from 20 to 140 nm. KW - Machine learning KW - Nanoparticles KW - Titanium dioxide KW - Size KW - Shape KW - Synthesis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515084 DO - https://doi.org/10.1038/s41598-020-75967-w VL - 10 IS - 1 SP - 18910 PB - Springer Nature AN - OPUS4-51508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmed, R. A1 - Vaishampayan, A. A1 - Cuellar-Camacho, J. L. A1 - Wight, D. J. A1 - Donskyi, Ievgen A1 - Unger, Wolfgang A1 - Grohmann, E. A1 - Haag, R. A1 - Wagner, O. T1 - Multivalent Bacteria Binding by Flexible Polycationic Microsheets Matching Their Surface Charge Density N2 - Aiming at the overall negative surface charge of bacteria, a new strategy of antibacterial agents based on large polymer-modified graphene oxide (GO) sheets is assessed. The presented flexible, polycationic Sheets match the size and charge density of the Escherichia coli surface charge density (2 × 1014 cm−2). These matching parameters create an unspecific but very strong bacteria adsorber by multivalent, electrostatic attraction. Their interaction with bacteria is visualized via atomic force and confocal microscopy and shows that they effectively bind and wrap around E. coli cells, and thereby immobilize them. The incubation of Gram-negative and -positive bacteria (E. coli and methicillin-resistant Staphylococcus aureus, MRSA) with these polycationic sheets leads to the inhibition of proliferation and a reduction of the colony forming bacteria over time. This new type of antibacterial agent acts in a different mode of Action than classical biocides and could potentially be employed in medicinal, technical, or agriculture applications. The presented microsheets and their unspecific binding of cell interfaces could further be employed as adsorber material for bacterial filtration or immobilization for imaging, analysis, or sensor technologies. KW - Surface charge KW - Bacteria KW - Graphene oxide KW - Escherichia coli KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509651 DO - https://doi.org/10.1002/admi.201902066 VL - 7 IS - 15 SP - 1902066 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - MinimUm Information Requirements for Electron Microscopy and Surface analysis Data For Risk Assessment of Nanoforms N2 - The European legislation has responded to the wide use of nanomaterials in our daily life and defined the term “nanoform” in the Annexes to the REACH (Registration, Evaluation, Authorization of Chemicals) Regulation. Now specific information of the nanomaterials is required from the companies when registering the appropriate materials in a dossier. In the context of REACH eleven physicochemical properties were considered as relevant, of which the following six are essential for registration of nanoforms (priority properties): chemical composition, crystallinity, particle size, particle shape, chemical nature of the surface (“surface chemistry”), and specific surface area (SSA). A key role is the reliable, reproduceable and traceable character of the data of these priority properties. In this context, we want to discuss which ‘analytical’ information is exactly required to fulfill these conditions. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS) were chosen as the most popular surface analytical methods. Both methods allow a detailed understanding of the surface chemistry with an information depth below ten nanometers. As a rather bulk method for the analysis of nanoforms, Electron Probe Microanalysis (EPMA) in the version with energy dispersive X-ray spectroscopy (EDS) is considered for the quick identification of the main chemical elements present in the sample. Furthermore, Scanning Electron Microscopy (SEM) results are discussed which provide results on particle size and shape. Thus, four of the six priority properties can be obtained with these methods. T2 - Nanosafe 2020 CY - Online meeting DA - 17.11.2020 KW - Risk assessment KW - Nanomaterials KW - Standardization KW - Regulation PY - 2020 AN - OPUS4-51612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sordello, F. A1 - Prozzi, M. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Pellegrino, F. T1 - Increasing the HER efficiency of photodeposited metal nanoparticles over TiO2 using controlled periodic illumination N2 - Although the use of noble metal catalysts can increase the efficiency of hydrogen evolution reaction, the process is still limited by the characteristics of the metal-hydrogen (M−H) bond, which can be too strong or too weak, depending on the metal employed. Studies revealed that the hydrogen affinity for the metal surface (i.e. H absorption/desorption) is regulated also by the potential at the metal nanoparticles. Through controlled periodic illumination (CPI) of a series of metal/TiO2 suspensions, here we demonstrated that an increase of the HER efficiency is possible for those photodeposited metals which have a Tafel slope below 125 mV. Two possible explanations are here reported, in both of them the M−H interaction and the metal covering level play a prominent role, which also depend on the prevailing HER mechanism (Volmer-Heyrovsky or Volmer-Tafel). KW - Controlled periodic illumination KW - Hydrogen evolution reaction KW - Titanium dioxide KW - Photoreforming KW - Volcano plot KW - Sabatier KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589875 DO - https://doi.org/10.1016/j.jcat.2023.115215 VL - 429 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-58987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faghani, A. A1 - Gholami, M. F. A1 - Trunk, M. A1 - Müller, J. A1 - Pachfule, P. A1 - Vogl, S. A1 - Donskyi, Ievgen A1 - Li, M. A1 - Nickl, Philip A1 - Shao, J. A1 - Huang, M. R. S. A1 - Unger, Wolfgang A1 - Arenal, R. A1 - Koch, C. T. A1 - Paulus, B. A1 - Rabe, J. P. A1 - Thomas, A. A1 - Haag, R. A1 - Adeli, M. T1 - Metal-Assisted and Solvent-Mediated Synthesis of Two-Dimensional Triazine Structures on Gram Scale N2 - Covalent triazine frameworks are an emerging material class that have shown promising performance for a range of applications. In this work, we report on a metal-assisted and solvent-mediated reaction between calcium carbide and cyanuric chloride, as cheap and commercially available precursors, to synthesize two-dimensional triazine structures (2DTSs). The reaction between the solvent, dimethylformamide, and cyanuric chloride was promoted by calcium carbide and resulted in dimethylamino-s-triazine intermediates, which in turn undergo nucleophilic substitutions. This reaction was directed into two dimensions by calcium ions derived from calcium carbide and induced the formation of 2DTSs. The role of calcium ions to direct the two-dimensionality of the final structure was simulated using DFT and further proven by synthesizing molecular intermediates. The water content of the reaction medium was found to be a crucial factor that affected the structure of the products dramatically. While 2DTSs were obtained under anhydrous conditions, a mixture of graphitic material/2DTSs or only graphitic material (GM) was obtained in aqueous solutions. Due to the straightforward and gram-scale synthesis of 2DTSs, as well as their photothermal and photodynamic properties, they are promising materials for a wide range of future applications, including bacteria and virus incapacitation. KW - XPS KW - Triazine KW - 2D PY - 2020 DO - https://doi.org/10.1021/jacs.0c02399 VL - 142 IS - 30 SP - 12976 EP - 12986 PB - ACS American Chemical Society AN - OPUS4-51203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Terborg, R. A1 - Hodoroaba, Vasile-Dan T1 - Determination of Thin Film Thickness and Composition using Energy Dispersive EPMA N2 - Electron Probe Microanalysis (EPMA) provides a non-destructive approach in the dedicated thin film analysis mode with the commercial StrataGem software. Recently, the open-source programme BadgerFilm by Moy and Fournelle became available. Similarly to StrataGem, it is based on the algorithm of Pouchou and Pichoir and needs intensity ratios of the unknown sample and standards (k-values). We have evaluated the k-values measured for the FeNi and SiGe film systems using the BadgerFilm software package and compared the thickness and composition with the results obtained with the established StrataGem software and other reference methods. The thicknesses of the SiGe films obtained by the BadgerFilm software agree within 20% with the StrataGem and TEM results; the elemental compositions BadgerFilm-StrataGEM agree within 2% with one exception (9%). T2 - Microscopy and Microanalysis 2022 CY - Portland, OR, USA DA - 31.07.2022 KW - Thin films KW - Thickness KW - Elemental composition KW - FeNi KW - SiGe KW - BadgerFilm KW - Electron Probe Microanalysis (EPMA) PY - 2022 AN - OPUS4-55522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Morphological Characterization and Chemical Identification of TiO2 Nanoparticles Doped with Ultrafine Metal Particles for Enhanced Photocatalytical Activity N2 - Water splitting using semiconductor photo-catalysts is considered a sustainable method to produce clean hydrogen fuel. Nevertheless, H2 photo-production efficiency remains still low, although extensive research works to understand better the mechanisms of the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) are being carried out. In this respect, TiO2 is a key photoactive material, usually employed with a co-catalyst deposited onto the surface to enhance charge carriers’ separation and catalyze surface charge transfer reactions. The deposition of a co-catalyst on the TiO2 nanoparticle surface represents one successful way to enhance the activity of the photocatalyst through a modification of its surface and redox properties. In this context, high-resolution scanning electron microscopy (SEM) coupled with elemental analysis by energy-dispersive X-ray spectroscopy (EDS) is fundamental for studying and understanding the effect of the nanoparticle morphology on the functional properties of shape-controlled TiO2 crystals (bipyramides, platelets, and elongated particles). Different types of metal-semiconductor combinations, TiO2 shapes and dopant metals (Ag, Pt, Au, Rh, Pd) and metal concentrations are discussed. T2 - Microscopy and Microanalysis 2022 CY - Portland, OR, USA DA - 31.07.2022 KW - Nanoparticles KW - Me-TiO2 KW - Photocatalysis KW - Morpho-chemical characterization KW - Shape KW - SEM/EDS PY - 2022 AN - OPUS4-55541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drobne, D. A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Bohmer, N. A1 - Novak, S. A1 - Kranjc, E. A1 - Kononenko, V. A1 - Reuther, R. T1 - Knowledge, Information, and Data Readiness Levels (KaRLs) for Risk Assessment, Communication, and Governance of Nano-, New, and Other Advanced Materials N2 - The obvious benefits derived from the increasing use of engineered nano-, new, and advanced materials and associated products have to be weighed out by a governance process against their possible risks. Differences in risk perception (beliefs about potential harm) among stakeholders, in particular nonscientists, and low transparency of the underlying decision processes can lead to a lack of support and acceptance of nano-, new, and other advanced material enabled products. To integrate scientific outcomes with stakeholders needs, this work develops a new approach comprising a nine-level, stepwise categorization and guidance system entitled “Knowledge, Information, and Data Readiness Levels” (KaRLs), analogous to the NASA Technology Readiness Levels. The KaRL system assesses the type, extent, and usability of the available data, information, and knowledge and integrates the participation of relevant and interested stakeholders in a cocreation/codesign process to improve current risk assessment, communication, and governance. The novelty of the new system is to communicate and share all available and relevant elements on material related risks in a user/stakeholder-friendly, transparent, flexible, and holistic way and so stimulate reflection, awareness, communication, and a deeper understanding that ultimately enables the discursive process that is needed for the sustainable risk governance of new materials. KW - Risk asessment KW - Advanced materials KW - TRL KW - Governance KW - Data readiness level PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575344 DO - https://doi.org/10.1002/gch2.202200211 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-57534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Towards Automated Electron Microscopy Image Segmentation for Nanoparticles of Complex Shape by Convolutional Neural Networks N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. KW - Nanoparticles KW - Convolutional neural networks KW - Image segmentation KW - Electron microscopy KW - Automatisation PY - 2020 DO - https://doi.org/10.1017/S1431927620017262 VL - 26 IS - S2 SP - 1188 EP - 1189 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -