TY - JOUR A1 - Zou, T. A1 - Nonappa, N. A1 - Khavani, M. A1 - Vuorte, M. A1 - Penttilä, P. A1 - Zitting, A. A1 - Valle-Delgado, J. J. A1 - Elert, Anna Maria A1 - Silbernagl, Dorothee A1 - Balakshin, M. A1 - Sammalkorpi, M. A1 - Österberg, M. T1 - Experimental and Simulation Study of the Solvent Effects on the Intrinsic Properties of Spherical Lignin Nanoparticles N2 - Spherical lignin nanoparticles (LNPs) fabricated via nanoprecipitation of dissolved lignin are among the most attractive biomass-derived nanomaterials. Despite various studies exploring the methods to improve the uniformity of LNPs or seeking more application opportunities for LNPs, little attention has been given to the fundamental aspects of the solvent effects on the intrinsic properties of LNPs. In this study, we employed a variety of experimental techniques and molecular dynamics (MD) simulations to investigate the solvent effects on the intrinsic properties of LNPs. The LNPs were prepared from softwood Kraft lignin (SKL) using the binary solvents of aqueous acetone or aqueous tetrahydrofuran (THF) via nanoprecipitation. The internal morphology, porosity, and mechanical properties of the LNPs were analyzed with electron tomography (ET), small-angle X-ray scattering (SAXS), atomic force microscopy (AFM), and intermodulation AFM (ImAFM). We found that aqueous acetone resulted in smaller LNPs with higher uniformity compared to aqueous THF, mainly ascribing to stronger solvent−lignin interactions as suggested by MD simulation results and confirmed with aqueous 1,4-dioxane (DXN) and aqueous dimethyl sulfoxide (DMSO). More importantly, we report that both LNPs were compact particles with relatively homogeneous density distribution and very low porosity in the internal structure. The stiffness of the particles was independent of the size, and the Young’s modulus was in the range of 0.3−4 GPa. Overall, the fundamental understandings of LNPs gained in this study are essential for the design of LNPs with optimal performance in applications. KW - Lignin KW - Electron tomography KW - Intermodulation AFM KW - Modulus KW - SAXS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546948 DO - https://doi.org/10.1021/acs.jpcb.1c05319 SN - 1520-5207 VL - 125 IS - 44 SP - 12315 EP - 12328 PB - ACS AN - OPUS4-54694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Müller, Anja A1 - Radnik, Jörg A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Laue, P. A1 - Luch, A. A1 - Tentschert, J. T1 - Preparation of Nanoparticles for ToF-SIMS and XPS Analysis N2 - Nanoparticles have gained increasing attention in recent years due to their potential and application in different fields including medicine, cosmetics, chemistry, and their potential to enable advanced materials. To effectively understand and regulate the physico-chemical properties and potential adverse effects of nanoparticles, validated measurement procedures for the various properties of nanoparticles need to be developed. While procedures for measuring nanoparticle size and size Distribution are already established, standardized methods for analysis of their surface chemistry are not yet in place, although the influence of the surface chemistry on nanoparticle properties is undisputed. In particular, storage and preparation of nanoparticles for surface analysis strongly influences the analytical results from various methods, and in order to obtain consistent results, sample preparation must be both optimized and standardized. In this contribution, we present, in detail, some standard procedures for preparing nanoparticles for surface analytics. In principle, nanoparticles can be deposited on a suitable substrate from suspension or as a powder. Silicon (Si) Wafers are commonly used as substrate, however, their cleaning is critical to the process. For sample preparation from suspension, we will discuss drop-casting and spin-coating, where not only the cleanliness of the substrate and purity of the suspension but also its concentration play important roles for the success of the preparation methodology. For nanoparticles with sensitive ligand shells or coatings, deposition as powders is more suitable, although this method requires particular care in fixing the sample. KW - Titania nanoparticles KW - X-ray photoelectron spectroscopy KW - Secondary ion mass spectrometry KW - Surface chemisttry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520103 UR - https://www.jove.com/video/61758 DO - https://doi.org/10.3791/61758 VL - 163 SP - e61758 AN - OPUS4-52010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz A1 - Günster, Jens T1 - First time additively manufactured advanced ceramics by using two-photon polymerization for powder processing N2 - Methods and materials are presented here, which enable the manufacturing of fine structures using a 3D-printing method known as two-photon polymerization (2PP). As traditional photolithography methods for structuring ceramic slurries do not function with 2PP, due to light scattering on ceramic particles, a novel water-based photoresist with high ceramic loading of extremely well dispersed ceramic nano particles was developed. This photoresist is basically a ceramic slurry containing a photocurable agent and a photoinitiator to be crosslinkable with the 780 nm wavelength femtosecond laser light source of the 2PP machine. It is demonstrated that it is possible to gain a highly transparent and low viscous slurry suitable for 2PP processing. This work shows the development of the slurry, first printing results and the post-printing processes required to form three dimensional ceramic microstructures consisting of alumina toughened zirconia (ATZ). KW - 3D-printing KW - Two-photon polymerization KW - 2PP KW - Ceramic nano particles KW - Slurry KW - Alumina toughened zirconia KW - ATZ KW - Additive manufacturing KW - SchwarzP cells KW - Nano-ceramic-additive-manufacturing photoresin KW - NanoCAM PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517441 DO - https://doi.org/10.1016/j.oceram.2020.100040 VL - 4 SP - 100040 PB - Elsevier Ltd. AN - OPUS4-51744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of Fe3O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of Fe3O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Fe3O4 KW - Nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7990085 PB - Zenodo CY - Geneva AN - OPUS4-57759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. T1 - Ejemplos de simulaciónes de Montecarlo La desintegración radioactiva N2 - A walkthrough how to setup radioactive sources in monte-carlo particle scattering simulations and perform different types of scorings. N2 - En esta presentación desarrollaremos un ejemplo de aplicación para la dispersión de partículas utilizando el método de simulación de Monte- Carlo. Se discutirá el caso de las nanopartículas de oro radiactivo y los diferentes tipos del scoring. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Columbia DA - 27.02.2020 KW - MCS KW - Geant4-DNA KW - Geant4 KW - Radioactive nanoparticle KW - Radioactive decay KW - Particle scattering simulations KW - Particle scattering simulation KW - Topas KW - Monte-Carlo simulations KW - Desintegracion radioactiva KW - Método de Montecarlo KW - Geant4 KW - nanoparticula PY - 2020 AN - OPUS4-50472 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Simulaciónes de Montecarlo II: El scoring en las superficies N2 - En esta presentación desarrollaremos un ejemplo de aplicación para la dispersión de partículas utilizando el método de simulación de Monte- Carlo. Se discutirá el caso de las nanopartículas de oro radiactivo y como obtener informacions sobre diferente tipos de particulas pasando las superfices. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Colombia DA - 16.03.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Particle scattering simulation KW - Particle scattering simulations KW - Radioactive decay KW - Radioactive nanoparticle KW - Desintegracion radioactiva KW - Geant4 KW - Monte-Carlo simulations KW - Método de Montecarlo KW - Topas KW - nanoparticula PY - 2020 AN - OPUS4-50564 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - Temperature effects in the Object Oriented Micromagnetic Framework (OOMMF) - OOMMF input parameter files for Tc determination N2 - To simulate the movement of the macroscopic magnetic moment in ferromagnetic systems under the influence of elevated temperatures, the stochastic version of the Landau-Lifshitz (LL) or the Landau-Lifshitz-Gilbert equation with a spin density of one per unit cell has to be used. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion has to be performed. OOMMF sample files MIF) are provided which can be used to determine the Curie temperature for the classical bulk magnets, iron, nickel and cobalt. KW - OOMMF KW - Temperature KW - Micromagnetism KW - Thetaevolve KW - Ferromagnetism KW - Exchange interaction KW - LLG KW - Landau Lifshitz equation KW - Magnetic moment KW - Magnetic nanoparticles KW - Object oriented micromagnetic framework KW - Stochastic Landau Lifshitz Gilbert equation KW - Temperature scaling PY - 2020 DO - https://doi.org/10.26272/opus4-51169 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-51169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Setup of a Particle Scattering Simulation environment N2 - A step by step introduction to the setup of a particle scattering simulation is given. Followed by an installation session. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Columbia DA - 12.02.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Monte-Carlo simulations KW - Particle scattering simulations KW - Scattering KW - Simulations KW - Debian KW - Linux KW - Topas KW - C++ KW - Topas-nbio KW - Git KW - Cmake PY - 2020 AN - OPUS4-50366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Reed, B. P. A1 - Pollard, A. A1 - Clifford, C. T1 - VAMAS Project A33: Chemical composition of functionalized graphene with X ray photoelectron spectroscopy (XPS) N2 - The results of the interlaboratory comparison about the chemical composition of functionalized graphene are presented. T2 - DIN Meeting NA 062-08-16 AA CY - Berlin, Germany DA - 25.05.2023 KW - X-ray photoelectron spectroscopy KW - Functionalized graphene KW - Interlaboratory comparison KW - VAMAS PY - 2023 AN - OPUS4-57650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - TOPAS cell model with nanoparticles N2 - These files contain cell models for TOPAS/Geant4 and the inclusion of nano particles in particle scattering simulations. A simple spherical cell with nanoparticles can be generated in a fast manner. The user has the option to include the following organelles: nucleus, mitochondria, cell membrane. Additionally nanoparticles can be included in the cytosol and at the surface of the nucleus and/or the mitochondria. The C++ classes in this repository extend the functionality of the TOPAS (http://www.topasmc.org/) Monte-Carlo program, which is itself a wrapper of the Geant4 MCS Toolkit (http://geant4.org). The sourcecode together with examples and scorers are provided. "If you use this extension please cite the following literature: Hahn, M.B., Zutta Villate, J.M. "Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles." Sci Rep 11, 6721 (2021). https://doi.org/10.1038/s41598-021-85964-2 " KW - Monte-Carlo simulation KW - MCS KW - Geant4 KW - TOPAS KW - TOPAS-nBio KW - Dosimetry KW - Nanoparticles KW - Nanoparticle KW - AuNP KW - Gold KW - Microdosimetry KW - Targeted nanoparticle KW - Simulation KW - Particle scattering KW - Cell KW - Nucleus KW - Mitochondria KW - Cancer therapy KW - Radiation therapy PY - 2020 UR - https://github.com/BAMresearch/TOPAS-CellModels UR - https://github.com/MarcBHahn/TOPAS-CellModels DO - https://doi.org/10.26272/opus4-51150 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-51150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pellegrino, F. A1 - Rossi, A. A1 - Sordello, A. A1 - Sordello, F. A1 - Alladio, E. A1 - Santalucia, R. A1 - Primieri, A. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Maurino, V. T1 - Safe-by-Design Synthesis of 2D Materials N2 - The use of a dedicated approach: DoE for synthesis + characterization + Chemometric Analysis, is a valuable method for the safe-by-design synthesis of several types of materials for large-scale application in catalysis, energy harvesting, biomedical and environmental applications, etc. This approach is not only related to the material synthesis, but can be expanded to any type of molecules/material, with relevant saving of solvents, energy and times. T2 - Congress of the Environment and Cultural Heritage - Section of Italian Chemistry Society CY - Ischia, Italy DA - 28.09.2023 KW - Safe-by-design KW - 2D materials KW - Synthesis KW - Chemometric analysis PY - 2023 UR - https://www.congressodabc.it/ AN - OPUS4-59780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peters, R. A1 - Elbers, I. A1 - Undas, A. A1 - Sijtsma, E. A1 - Briffa, S. A1 - Carnell-Morris, P. A1 - Siupa, A. A1 - Yoon, T.-H. A1 - Burr, L. A1 - Schmid, D. A1 - Tentschert, J. A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Luch, A. A1 - Meier, F. A1 - Kocic, J. A1 - Kim, J. A1 - Park, B. C. A1 - Hardy, B. A1 - Johnston, C. A1 - Jurkschat, K. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Lynch, I. A1 - Valsami-Jones, E. T1 - Benchmarking the ACEnano toolbox for characterisation of nanoparticle size and concentration by interlaboratory comparisons N2 - ACEnano is an EU-funded project which aims at developing, optimising and validating methods for the detection and characterisation of nanomaterials (NMs) in increasingly complex matrices to improve confidence in the results and support their use in regulation. Within this project, several interlaboratory comparisons (ILCs) for the determination of particle size and concentration have been organised to benchmark existing analytical methods. In this paper the results of a number of these ILCs for the characterisation of NMs are presented and discussed. The results of the analyses of pristine well-defined particles such as 60 nm Au NMs in a simple aqueous suspension showed that laboratories are well capable of determining the sizes of these particles. The analysis of particles in complex matrices or formulations such as consumer products resulted in larger variations in particle sizes within technologies and clear differences in capability between techniques. Sunscreen lotion sample analysis by laboratories using spICP-MS and TEM/SEM identified and confirmed the TiO2 particles as being nanoscale and compliant with the EU definition of an NM for regulatory purposes. In a toothpaste sample orthogonal results by PTA, spICP-MS and TEM/SEM agreed and stated the TiO2 particles as not fitting the EU definition of an NM. In general, from the results of these ILCs we conclude that laboratories are well capable of determining particle sizes of NM, even in fairly complex formulations. KW - Nanomaterials KW - Benchmarking KW - Inter-laboratory comparison KW - ACEnano KW - Characterisation KW - Size KW - Concentration PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531852 DO - https://doi.org/10.3390/molecules26175315 SN - 1420-3049 VL - 26 IS - 17 SP - 1 EP - 23 PB - MDPI CY - Basel AN - OPUS4-53185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fortes Martin, R. A1 - Thünemann, Andreas A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Koetz, J. T1 - From Nanoparticle Heteroclusters to Filament Networks by Self-Assembly at the Water–Oil Interface of Reverse Microemulsions N2 - Surface self-assembly of spherical nanoparticles of sizes below 10 nm into hierarchical heterostructures is under arising development despite the inherent difficulties of obtaining complex ordering patterns on a larger scale. Due to template-mediated interactions between oil-dispersible superparamagnetic nanoparticles (MNPs) and polyethylenimine-stabilized gold nanoparticles (Au(PEI)NPs) at the water–oil interface of microemulsions, complex nanostructured films can be formed. Characterization of the reverse microemulsion phase by UV–vis absorption revealed the formation of heteroclusters from Winsor type II phases (WPII) using Aerosol-OT (AOT) as the surfactant. SAXS measurements verify the mechanism of initial nanoparticle clustering in defined dimensions. XPS suggested an influence of AOT at the MNP surface. Further, cryo-SEM and TEM visualization demonstrated the elongation of the reverse microemulsions into cylindrical, wormlike structures, which subsequently build up larger nanoparticle superstructure arrangements. Such WPII phases are thus proven to be a new form of soft template, mediating the self-assembly of different nanoparticles in hierarchical network-like filaments over a substrate during solvent evaporation. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Nano structure PY - 2021 DO - https://doi.org/10.1021/acs.langmuir.1c01348 VL - 37 IS - 29 SP - 8876 EP - 8885 PB - American Chemical Society AN - OPUS4-53034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as Certified Reference Material for Size and Shape N2 - BAM is currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance to the material and life sciences. As a first candidate of this series, we present cubic iron oxide nanoparticles with a nominal edge length of 8 nm. These particles were synthesized by thermal decomposition of iron oleate in high boiling organic solvents adapting well-known literature procedures. After dilution to a concentration suitable for electron microscopy (TEM and SEM) as well as for small-angle X-ray scattering (SAXS) measurements, the candidate nanoRM was bottled and assessed for homogeneity and stability by both methods following the guidelines of ISO 17034 and ISO Guide 35. The particle sizes obtained by both STEM-in-SEM and TEM are in excellent agreement with a minimum Feret of 8.3 nm ± 0.7 nm. The aspect ratio (AR) of the iron oxide cubes were extracted from the images as the ratio of minimum Feret to Feret resulting in an AR of 1.18 for TEM to 1.25 for SEM. Alternatively, a rectangular bounding box was fitted originating from the minimum Feret and the longest distance through the particle in perpendicular direction. This led to AR values of 1.05 for TEM and 1.12 for SEM, respectively. The results confirm the almost ideal cubic shape. KW - Reference nanoparticles KW - Iron oxide KW - Cubical shape KW - Electron microscopy KW - SAXS KW - Nano CRM KW - Size PY - 2022 DO - https://doi.org/10.1017/S1431927622003610 SN - 1435-8115 VL - 28 IS - Suppl. 1 SP - 802 EP - 805 PB - Cambridge University Press AN - OPUS4-55599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sordello, F. A1 - Prozzi, M. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Pellegrino, F. T1 - Increasing the HER efficiency of photodeposited metal nanoparticles over TiO2 using controlled periodic illumination N2 - Although the use of noble metal catalysts can increase the efficiency of hydrogen evolution reaction, the process is still limited by the characteristics of the metal-hydrogen (M−H) bond, which can be too strong or too weak, depending on the metal employed. Studies revealed that the hydrogen affinity for the metal surface (i.e. H absorption/desorption) is regulated also by the potential at the metal nanoparticles. Through controlled periodic illumination (CPI) of a series of metal/TiO2 suspensions, here we demonstrated that an increase of the HER efficiency is possible for those photodeposited metals which have a Tafel slope below 125 mV. Two possible explanations are here reported, in both of them the M−H interaction and the metal covering level play a prominent role, which also depend on the prevailing HER mechanism (Volmer-Heyrovsky or Volmer-Tafel). KW - Controlled periodic illumination KW - Hydrogen evolution reaction KW - Titanium dioxide KW - Photoreforming KW - Volcano plot KW - Sabatier KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589875 DO - https://doi.org/10.1016/j.jcat.2023.115215 VL - 429 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-58987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, M. A1 - Schlaich, C. A1 - Zhang, J. A1 - Donskyi, Ievgen A1 - Schwibbert, Karin A1 - Schreiber, Frank A1 - Xia, Y. A1 - Radnik, Jörg A1 - Schwerdtle, T. A1 - Haag, R. T1 - Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction N2 - Bacterial infection and osteogenic integration are the two main problems that cause severe complications after surgeries. In this study, the antibacterial and osteogenic properties were simultaneously introduced in biomaterials, where copper nanoparticles (CuNPs) were generated by in situ reductions of Cu ions into a mussel-inspired hyperbranched polyglycerol (MI-hPG) coating via a simple dip-coating method. This hyperbranched polyglycerol with 10 % catechol groups’ modification presents excellent antifouling property, which could effectively reduce bacteria adhesion on the surface. In this work, polycaprolactone (PCL) electrospun fiber membrane was selected as the substrate, which is commonly used in biomedical implants in bone regeneration and cardiovascular stents because of its good biocompatibility and easy post-modification. The as-fabricated CuNPs-incorporated PCL membrane [PCL-(MI-hPG)-CuNPs] was confirmed with effective antibacterial performance via in vitro antibacterial tests against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and multi-resistant E. coli. In addition, the in vitro results demonstrated that osteogenic property of PCL-(MI-hPG)-CuNPs was realized by upregulating the osteoblast-related gene expressions and protein activity. This study shows that antibacterial and osteogenic properties can be balanced in a surface coating by introducing CuNPs. KW - Mussel-inspired coating KW - CuNPs KW - Multi-resistant bacteria KW - Antibacterial KW - Antifouling KW - Osteogenesis PY - 2021 DO - https://doi.org/10.1016/j.jmst.2020.08.011 SN - 1005-0302 VL - 68 SP - 160 EP - 171 PB - Elsevier Ltd. AN - OPUS4-51519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Voss, Heike A1 - Knigge, Xenia A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Hertwig, Andreas A1 - Wasmuth, Karsten A1 - Sahre, Mario A1 - Weise, Matthias A1 - Mezera, Marek A1 - Krüger, Jörg A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Chemical analyses of ps-laser generated LIPSS and Spikes on titanium alloy by HAXPES, XPS, and depth-profiling TOF-SIMS N2 - Laser-induced periodic surface structures (LIPSS) and their combination with self-ordered microstructures forming hierarchical Spikes enable a large variety of different surface functionalizations for applications in the fields of optics, fluidics, tribology, or medicine. Moreover, high spatial frequency LIPSS (HSFL) provide an appealing and straightforward way for surface nanostructuring featuring spatial periods even below 100 nm – far beyond the optical diffraction limit. However, the imposed surface functionalities are usually caused by both, topographic and chemical surface alterations. For exploring these effects in detail, multi-method characterizations were performed here for HSFL and hierarchical Spikes processed on Ti-6Al-4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ~1 ps pulse duration, 1 – 400 kHz pulse repetition rate) under different laser and scan processing conditions. The following sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), stylus profilometry (SP), and white light interference microscopy (WLIM), as well as near-surface chemical analyses by X-ray photoelectron spectroscopy (XPS), hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (TOF-SIMS). The results allow to qualify the laser ablation depth, the geometrical HSFL/Spikes characteristics and provide detailed insights into the depth extent and the nature of the ps-laser-induced near-surface oxidation arising from the laser-processing in ambient air and into the relevance of heat-accumulation effects at high pulse repetition rates. Moreover, the direct comparison of the HAXPES and XPS data reveals the role of surface-covering organic contaminants adsorbed from the ambient atmosphere without the uncertainties and potential sputter reduction potentially caused by ion-sputter depth profiling. T2 - 11th International LIPSS Workshop CY - Madrid, Spain DA - 27.09.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrafast laser processing KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Time-of-flight secondary ion mass spectrometry (ToF-SIMS) KW - Ti6Al4V alloy PY - 2023 AN - OPUS4-58532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Knigge, Xenia A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Sahre, Mario A1 - Weise, Matthias A1 - Voss, Heike A1 - Hertwig, Andreas A1 - Wasmuth, Karsten A1 - Mezera, Marek A1 - Krüger, Jörg A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Chemical and topographical analyses of ps-laser generated HSFL on titanium alloy N2 - Laser-induced periodic surface structures (LIPSS) enable a large variety of different surface functionalizations for applications in the fields of optics, fluidics, tribology, or medicine. Moreover, high spatial frequency LIPSS (HSFL) provide an appealing and straightforward way for the generation of surface nanostructures featuring spatial periods even below 100 nm – far beyond the optical diffraction limit. However, the imposed surface functionalities are usually caused by both, topographic and chemical surface alterations. For exploring these effects in detail, multi-method characterization was performed here for HSFL processed on Ti-6Al-4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ~1 ps pulse duration, 1 – 400 kHz pulse repetition rate) under different scan processing conditions. The subsequent sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), stylus profilometry (SP), as well as near-surface chemical analyses by X-ray photoelectron spectroscopy (XPS), hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (TOF-SIMS). The results allow to qualify the laser ablation depth, the geometrical HSFL characteristics and provide detailed insights into the depth extent and the nature of the ps-laser-induced near-surface oxidation arising from the laser-processing in ambient air and into the relevance of heat-accumulation effects at high pulse repetition rates. Moreover, the direct comparison of the HAXPES and XPS data reveals the role of surface-covering organic contaminants adsorbed from the ambient atmosphere without ion-sputter depth profiling. Furthermore, reduction of the oxides by sputtering can be avoided. T2 - SPIE Photonics Europe 2024 Conference, Symposium "Lasers and Photonics for Advanced Manufacturing" CY - Strasbourg, France DA - 07.04.2024 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrafast laser processing KW - Nanostructures KW - Chemical analyses PY - 2024 UR - https://spie.org/photonics-europe/presentation/Chemical-and-topographical-analyses-of-ps-laser-generated-high-spatial/13005-69#_=_ AN - OPUS4-59853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Hahn, Marc Benjamin A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Cover image for the article "Nanomechanical study of polycarbonate/boehmite nanoparticles/epoxy ternary composite and their interphases" N2 - The image designed by Natalia Cano Murillo and colleagues shows the cross section of a ternary composite (boehmite/polycarbonate/epoxy, 80μm x 80μm). The surface was measured by AFM kelvin probe microscopy, yielding the surface potential which is shown as 3D‐surface and contour lines. The sample was further subjected to AFM force spectroscopy with a lateral resolution of 1μm², yielding the local Young's modulus, projected in false colors on the 3D surface. The ternary system, containing boehmite nanoparticles, shows a broad distribution of modulus, desirable for optimized macroscopic mechanical properties, such as high stiffness as well as toughness. KW - Boehmite KW - Epoxy KW - Polycarbonate KW - AFM KW - BNP PY - 2020 DO - https://doi.org/10.1002/app.50400 SN - 0021-8995 SN - 1097-4628 VL - 138 IS - 12 SP - 1 PB - Wiley CY - New York, NY AN - OPUS4-51831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Szymoniak, Paulina A1 - Smales, Glen Jacob A1 - Sturm, Heinz A1 - Schönhals, Andreas T1 - Electrospun nanocomposites fibers of polycarbonate and taurine modified boehmite nanoparticles - What can be learned from structural and thermal investigations N2 - Though the reinforcing properties of inorganic particles in thermosetting nanocomposites, has been exploited, the integration of nanoparticles continues to be challenging in terms of their homogeneous distribution and their manipulation which can contribute to occupational hazards. Due to a second encapsulations of nanoparticles, electrospun nanocomposite fibers containing nanoparticles might be an alternative for overcoming these issues, as the fiber nonwovens contains the nanoparticles allowing for safer manipulation. Here, the morphology, and the thermal properties of electrospun polycarbonate fibers containing taurine modified boehmite nanoparticles (BNP) are investigated by means of small and wide-angle X-ray scattering as well as fast scanning and temperature modulated fast scanning calorimetry for the first time. The latter techniques allow the investigation of the thermal properties of single fibers at heating rates up to 10^4 K s^-1 keeping its structure intact. A quantitative analysis of the scattering data reveals a porous structure of the fibers. The porous structure is quantified regarding the pore volume and the pore size. A constant amount of aggregation is found even for the highly BNP loaded fibers. Thermal analysis on the fibers reveals a rigid amorphous fraction (RAF) where it is known that RAF determinates the properties of a nanocomposite to a large extent. For the fibers RAF amounts up to 40 wt%, which is essential higher compared to equally formulated PC/BNP composite cast films. The RAF in the case of the fibers, is not only due to the presence of particles in the polymer but also due to orientation effects induced by the electrospinning process. KW - Nanocomposite fibers KW - Electrospinning KW - X-ray scattering KW - Fast scanning calorimetry KW - Rigid amorphous fraction PY - 2021 DO - https://doi.org/10.1021/acsapm.1c01265 VL - 3 IS - 12 SP - 6572 EP - 6585 PB - ACS AN - OPUS4-53871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -