TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Schönhals, Andreas T1 - Suppressed Transition and Dynamic self-asembly of ionic superdiscs in cylindrical nanochannels N2 - Liquid crystalline mesophases in nanoconfinement exhibit intriguing phase transition behaviors and relaxation dynamics. Here, we investigate the molecular mobility and electrical conductivity of a columnar ionic liquid crystal confined in self-ordered nanoporous alumina oxide membranes of pore size ranging from 180 nm down to 25 nm. We use nano-broadband dielectric spectroscopy (BDS) and calorimetry to study the dynamics and phase behavior. Calorimetric investigation reveals a complete suppression of the columnar – isotropic transition, while the plastic crystalline – columnar transition temperature decreases with inverse pore size and deviates from the Gibbs – Thomson equation. For the bulk case, BDS detects two relaxation modes in the crystalline phase, the γ relaxation and the α1 relaxation, and two relaxation modes in the columnar phase, the α2 and α3 relaxation. All relaxation modes slow down for the confined case compared to the bulk. However, a new relaxation mode reflecting the interfacial layer emerges for the 80 and 25 nm. We discuss the possible molecular origins of the different relaxation modes observed. For the bulk ILC, a clear jump of 4 orders of magnitude in the absolute values of DC conductivity occurs at the transition from the plastic crystalline to hexagonal columnar phase, for the confined ILC, this transition is smooth. DC conductivity is reduced for the confined case, except for the 25nm, where the values are similar to the bulk. T2 - APS March Meeting 2023 CY - Las Vegas, NV, USA DA - 05.03.2023 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2023 AN - OPUS4-57342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Smales, Glen Jacob A1 - Böhning, Martin T1 - Molecular Dynamics of Janus Polynorbornenes: Glass Transitions and Nanophase separation N2 - We report the dielectric and calorimetric investigations of an homologous series of Janus polynorbornenes with rigid main backbone and flexible -Si(OR)3 side groups, of differing length alkyl chains (R = Propyl, Butyl, Hexyl, Octyl, Decyl). Dielectric dispersion reveals two active processes at low temperatures, denoted as β- and α- relaxation. The former can be assigned to localized fluctuations, whilst the latter relates to the glassy dynamics of the flexible -Si(OR)3 side groups, that creates a nanophase separation in both the alkyl chain rich and backbone rich domains. Temperature modulated DSC measurements and X-ray scattering experiment confirm the nanophase separation. Fast Scanning Calorimetry employing both fast heating and cooling rates detects the glass transition temperatures of the backbone rich domains, which are beyond or near to their degradation temperatures in terms of conventional DSC. The cooperative length scale of glass transition and the size of the alkyl chain rich domains increases with chain length. Alongside these results, a significant conductivity contribution was observed for all Poly(tricyclononenes) with Si(OR)3 side groups, which is interpreted in terms of a percolation model. T2 - Chemical Engg Seminar CY - Columbia University, NY, USA DA - 14.03.2023 KW - Glass transition KW - Conductivity KW - Fast Scanning Calorimetry KW - Dynamics PY - 2023 AN - OPUS4-57343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Schönhals, Andreas A1 - Li, Z. A1 - Huber, P. T1 - Suppressed Transition and Dynamic self-asembly of ionic superdiscs in cylindrical nanochannels N2 - Liquid crystalline mesophases in nanoconfinement exhibit intriguing phase transition behaviors and relaxation dynamics. Here, we investigate the molecular mobility and electrical conductivity of a columnar ionic liquid crystal confined in self-ordered nanoporous alumina oxide membranes of pore size ranging from 180 nm down to 25 nm. We use nano-broadband dielectric spectroscopy (BDS) and calorimetry to study the dynamics and phase behavior. Calorimetric investigation reveals a complete suppression of the columnar – isotropic transition, while the plastic crystalline – columnar transition temperature decreases with inverse pore size and deviates from the Gibbs – Thomson equation. For the bulk case, BDS detects two relaxation modes in the crystalline phase, the γ relaxation and the α1 relaxation, and two relaxation modes in the columnar phase, the α2 and α3 relaxation. All relaxation modes slow down for the confined case compared to the bulk. However, a new relaxation mode reflecting the interfacial layer emerges for the 80 and 25 nm. We discuss the possible molecular origins of the different relaxation modes observed. For the bulk ILC, a clear jump of 4 orders of magnitude in the absolute values of DC conductivity occurs at the transition from the plastic crystalline to hexagonal columnar phase, for the confined ILC, this transition is smooth. DC conductivity is reduced for the confined case, except for the 25nm, where the values are similar to the bulk. T2 - DPG Spring Meet 2023 CY - Dresden, Germany DA - 26.03.2023 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2023 AN - OPUS4-57345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feltin, N. A1 - Crouzier, L. A1 - Delvallée, A. A1 - Pellegrino, F A1 - Maurino, V. A1 - Bartczak, D. A1 - Goenaga-Infante, H. A1 - Taché, O. A1 - Marguet, S. A1 - Testard, F. A1 - Artous, S. A1 - Saint-Antonin, F. A1 - Salzmann, Christoph A1 - Deumer, J. A1 - Gollwitzer, C. A1 - Koops, R. A1 - Sebaïhi, N. A1 - Fontanges, R. A1 - Neuwirth, M. A1 - Bergmann, D. A1 - Hüser, D. A1 - Klein, T. A1 - Hodoroaba, Vasile-Dan T1 - Metrological Protocols for Reaching Reliable and SI-Traceable Size Results for Multi-Modal and Complexly Shaped Reference Nanoparticles N2 - The study described in this paper was conducted in the framework of the European nPSize project (EMPIR program) with the main objective of proposing new reference certified nanomaterials for the market in order to improve the reliability and traceability of nanoparticle size measurements. For this purpose, bimodal populations as well as complexly shaped nanoparticles (bipyramids, cubes, and rods) were synthesized. An inter-laboratory comparison was organized for comparing the size measurements of the selected nanoparticle samples performed with electron microscopy (TEM, SEM, and TSEM), scanning probe microscopy (AFM), or small-angle X-ray scattering (SAXS). The results demonstrate good consistency of the measured size by the different techniques in cases where special care was taken for sample preparation, instrument calibration, and the clear definition of the measurand. For each characterization method, the calibration process is described and a semi-quantitative table grouping the main error sources is proposed for estimating the uncertainties associated with the measurements. Regarding microscopy-based techniques applied to complexly shaped nanoparticles, data dispersion can be observed when the size measurements are affected by the orientation of the nanoparticles on the substrate. For the most complex materials, hybrid approaches combining several complementary techniques were tested, with the outcome being that the reliability of the size results was improved. KW - Certified reference nanomaterials KW - Traceable nanoparticle size measurements; KW - Hybrid metrology KW - Scanning probe microscopy KW - Small-angle X-ray scattering KW - Electron microscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571902 DO - https://doi.org/10.3390/nano13060993 SN - 2079-4991 VL - 13 IS - 6 - Special Issue "Identification and Quantification of Nanomaterials" SP - 1 EP - 25 PB - MDPI CY - Basel, CH AN - OPUS4-57190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Probing Nanoscale Relaxation Behavior in Thin Polymer Films N2 - The investigations into the complicated effects of film thickness on bulk properties of thin polymer films has yielded conflicting results. The reduction in molecular mobility, and with it an increase in the glass transition temperature, for thin films of poly (bisphenol A carbonate) (PBAC) was assigned to the formation of an adsorbed layer. The adsorbed layer was obtained by washing away the loosely bounded chains using a good solvent. Next, using atomic force microscopy (AFM), the thickness of each sample was measured after annealing for various times at three different annealing temperatures. The growth of this adsorbed layer was shown to deviate from the previously reported 2-step mechanism seen for other polymers. For PBAC, after very long annealing times at high temperatures the thin films were dewetted, where segments of the adsorbed layer were removed from the substrate. T2 - Royal Society of Chemistry (RSC) Poster CY - Online meeting DA - 28.02.2023 KW - Thin films KW - Adsorbed Layer KW - Broadband dielectric spectroscopy KW - Atomic force microscopy KW - Growth Kinetics PY - 2023 AN - OPUS4-57196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - VIDEO A1 - Pauw, Brian Richard T1 - "Ultima Ratio": Multi-scale, high-resolution 3D-FFT scattering pattern simulations N2 - This talk highlights a proof-of-concept that demonstrates the ability to calculate high-resolution Fourier transforms. These can be combined with multi-scale modeling to simulate scattering over a wide range, from small-angle scattering to XRD and PDF. The preprint documenting this is available on the ArXiv here: https://doi.org/10.48550/arXiv.2303.13435 The Jupyter notebook, VASP calculation details and MOUSE measured scattering patterns are available from this Zenodo repository: https://dx.doi.org/10.5281/zenodo.7764045 KW - Video KW - Simulation KW - High-resolution KW - Fourier Transform KW - 3D FFT KW - Nanomaterial KW - Metal organic framework KW - MOF KW - SAXS KW - XRD KW - PDF KW - X-ray diffraction KW - Pair distribution function KW - Small-angle X-ray scattering PY - 2023 UR - https://www.youtube.com/watch?v=lEApkOqR5e8 PB - YouTube, LLC CY - San Bruno, CA, USA AN - OPUS4-57212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Electric Safety Interlock N2 - This interlock is designed to prevent electrical shock from high voltage (>60V) equipment. While the general safety interlock can be generically applied, this particular example employs an external vacuum-activated switch. It is for safeguarding human operations inside a vacuum sample chamber while the chamber doors are open. The circuit is closed (output is active) when a sufficient level of vacuum is reached, i.e. when all accessible openings are necessarily closed. The initial application is to interrupt power to a 220V, 250W heating cartridge (itself mounted inside a small sample holder with potentially exposed contacts) when the sample chamber is open. The external circuit can be modified to use different interlock mechanisms as needed. Note that the external interlock circuit is only a single circuit (with two signal lines) and thus is not protected against external shorts. To accomodate a range of safety interlocks, the 4-pin M12 connector is wired as follows: Pin 1 (Brown): +24V for power supply, max current 0.6A Pin 2 (White): Safety interlock system signal 1 (0 or 24V) Pin 3 (Blue) : Safety interlock system signal 2 (0 or 24V) Pin 4 (Black): 0V for power supply The safety is interlocked (output active) when both signal pins are set high (24V), with sufficient current to activate the two relays. Pin 1 and 4 can be used to power safety hardware (such as light curtains or proximity detectors) with 24VDC up to a current of 0.6A. A larger power supply can be installed when higher currents are needed, while staying within the current limits imposed by the wiring cross-section. KW - Electric Safety Interlock KW - MOUSE KW - 60-230V PY - 2023 DO - https://doi.org/10.6084/m9.figshare.22265920.v1 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-57138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Gawlitza, Kornelia A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Polymerizable BODIPY probe crosslinker for the molecularly imprinted polymer-based detection of organic carboxylates via fluorescence N2 - This contribution reports the development of a polymerizable BODIPY-type fluorescent probe targeting small-molecule carboxylates for incorporation into molecularly imprinted polymers (MIPs). The design of the probe crosslinker includes a urea recognition site p-conjugated to the 3-position of the BODIPY core and two methacrylate moieties. Titration experiments with a carboxylate-expressing antibiotic, levofloxacin (LEVO), showed a blue shift of the absorption band as well as a broadening and decrease in emission, attributed to hydrogen bonding between the probe’s urea group and the carboxylate group of the antibiotic. Using this probe crosslinker, core–shell particles with a silica core and a thin MIP shell were prepared for the detection of LEVO. The MIP exhibited highly selective recognition of LEVO, with an imprinting factor of 18.1 compared to the non-imprinted polymer. Transmission electron microscopy confirmed the core–shell structure and spectroscopic studies revealed that the receptor’s positioning leads to a unique perturbation of the polymethinic character of the BODIPY chromophore, entailing the favourable responses. These features are fully preserved in the MIP, whereas no such response was observed for competitors such as ampicillin. The sensory particles allowed to detect LEVO down to submicromolar concentrations in dioxane. We have developed here for the first time a BODIPY probe for organic carboxylates and incorporated it into polymers using the imprinting technique, paving the way for BODIPY-type fluorescent MIP sensors. KW - Fluorescence KW - BODIPY probe KW - Molecularly Imprinted Polymers KW - Sensor Materials KW - Dyes KW - Water analysis KW - Advanced materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598629 DO - https://doi.org/10.1039/D3MA00476G SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Navigating the Nanoworld: Understanding Materials Properties with the Transmission Electron Microscope N2 - The field of materials science is defined as “the study of the properties of solid materials and how those properties are determined by a material’s composition and structure.”. Many –if not most– of the materials that are produced nowadays owe their properties to structures engineered down to the nanoscopic level. This need has been partly realized thanks to the understanding of materials’ building blocks via characterization techniques that reach this level of resolution. Transmission electron microscopy, since its first implementation in the early 1930s (in Berlin), has been implemented to achieve imaging –and spectral– analysis at lateral resolutions down to the atomic level. In this contribution, a series of practical examples will be presented, where applied materials are characterized by a range of transmission electron microscopy techniques to understand structural and functional properties of a wide range of materials. Among these materials examples will be presented on structural conventionally and additively manufactured metallic alloys, high entropy alloys, dissimilar aluminum-to-steel welds, magnetic nanoparticles, ceramic coatings, high temperature oxidation products. Addressed will be either the effect of processing route or that of the exposure to experimental conditions similar to those found in the respective intended applications. T2 - UA/UAB/UAH MSE Graduate Seminar CY - Online meeting DA - 19.01.2022 KW - Transmission electron microscopy (TEM) KW - Characterization KW - Microstructure KW - 3D PY - 2022 AN - OPUS4-54238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Probenpräparation für AFM-basierte Untersuchungsverfahren N2 - Adapted and advanced sample preparation of semiconductor layer systems with the focused ion beam for AFM-based test methods N2 - Der vorliegende Vortrag gibt einen Überblick über Probenpräparationen mit der Focused Ion Beam (FIB) für AFM-basierte Untersuchungsverfahren. Anhand zweier Beispiele wird gezeigt, wie ionenstrahlpolierte Lamellen aus Halbleiter-Schichtsystemen elektrisch leitfähig auf Substrate platziert werden, so dass in-situ und in-operando Messungen mit Scanning Microwave Microscope (SMM) bzw. Spectroscopic infrared scanning near-field optical microscope (IR-SNOM) durchgeführt werden können. T2 - 15. Berlin-Brandenburger Präparatorentreffen CY - Potsdam/Golm, Germany DA - 11.04.2019 KW - Focused Ion Beam KW - AFM based test methods KW - Sample preparation KW - Semiconductor materials KW - Layer system PY - 2019 AN - OPUS4-47784 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Altmann, Korinna A1 - Hodoroaba, Vasile-Dan T1 - Getting reliable data on microplastic detection methods by means of ILC N2 - There is an urgent demand for reliable data on microplastic analysis, particularly on its physico-chemical properties as well as validated methodology to obtain such data. Through interlaboratory comparisons (ILCs) it becomes possible to assess accuracy and precision of methods by involving many laboratories around the world. At BAM, my tasks focused around organisation of an ILC on physico-chemical characterisation of microplastic detection methods under the international pre-standardisation platform VAMAS (www.vamas.org/twa45/) as Project 2 “Development of standardized methodologies for characterisation of microplastics with microscopy and spectroscopy methods” under the Technical Working Area TWA 45 “Micro and Nano Plastics in the Environment”. With a proud number of 84 participants this ILC is able to provide superior statistical results. Thermoanalytical (Py-GC/MS and TED-GC/MS) and vibrational (µ-IR and µ-Raman) methods were asked for identification and quantification of microplastic test samples according to mass or particle number. Preliminary results indicate which methods show a higher accuracy and precision and reveal some sample preparation ideas which work best for microplastics characterisation. At the end of the ILC an overall plausibility of the results will be assessed. T2 - CUSP Early Career Researchers Meeting CY - Online meeting DA - 21.11.2023 KW - Micro- and Nanoplastics KW - Interlaboratory comparison KW - Microplastic reference materials PY - 2023 AN - OPUS4-59056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burkert, Andreas A1 - Müller, Thoralf A1 - Lehmann, Jens T1 - Bedeutung der Wirksumme bei Nichtrostenden Stählen N2 - Anhand der Wirksumme ist eine Abschätzung des legierungsabhängigen Einflusses auf den Korrosionswiderstand gegen chloridhaltige Medien möglich. Die berechneten Werte sind nur bei optimaler Wärmebehandlung und Verarbeitung zutreffend. Die Anwendung einer einfachen Formel unter Berücksichtigung von Chrom, Molybdän und Stickstoff ist in der Regel völlig ausreichend. Das daraus abgeleitete Ranking von Werkstoffen ist für diverse technische Regelwerke und zur Unterstützung der Werkstoffauswahl geeignet. Für die Warenein-/Ausgangskontrolle ist die alleinige Feststellung der Wirksumme unzureichend. Ergänzende Korrosionsuntersuchungen/-prüfungen zur Beschreibung des Korrosionswiderstandes sind dafür notwendig. Gleiches gilt für die Beurteilung von Schadensfällen. Hier sind Verarbeitung, Einsatzbedingungen und die Konstruktion von ausschlaggebender Bedeutung. T2 - Fortbildung Kursleiter Kompetenzzentren Edelstahl Rostfrei CY - Trier, Germany DA - 25.09.2023 KW - Nichtrostender Stahl KW - Korrosion KW - Wirksumme PY - 2023 AN - OPUS4-58453 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Waniek, Tassilo A1 - Braun, Ulrike A1 - Altmann, Korinna A1 - Hodoroaba, Vasile-Dan T1 - Interlaboratory Comparisons – ILCs (2022-2023) N2 - To obtain reliable data on micro- and nanoplastics (MPs, NPs) BAM (Federal Institute for Materials Research and Testing) is organizing interlaboratory comparisons (ILCs). Main focus is detection and physico-chemical characterisation. The accuracy and precision of the results of different laboratories and comparability of the results among the participants are addressed. The ILCs will be performed in the following order: i) ILC #1: Detection and Characterisation of MPs (1-1000 µm) and ii) ILC #2: Detection and Characterisation of NPs (< 1 µm). For the ILC #1 the parameters to be analysed are: particle size distribution, shape, mass content, particle concentration, with thermoanalytic (Py-GC/MS, TED-GC/MS) and spectroscopy (µ-Raman, µ-FTIR) methods. For the ILC #2 the parameters are: particle size distribution, shape, particle concentration, with methods such as spectroscopical (Raman), Electron Microscopies (SEM, AFM), etc. Exact measurands and methods are still under discussion. BAM will provide test materials of well-known stability and homogeneity. ILC participants will include partners of the CUSP (the European research cluster to understand the health impacts of micro- and nanoplastics), and any other institutions over the world. The ILCs will take place under the international pre-standardisation platform VAMAS, new Technical Working Area 35 “Micro and Nano Plastics in the Environment” (http://www.vamas.org/twa45/). T2 - Progressing Together: 2nd CUSP Annual Meeting at the JRC (Ispra) CY - Ispra, Italy DA - 08.06.2022 KW - ILC KW - Micro- and nanoplastics KW - VAMAS KW - Analytical methods PY - 2022 AN - OPUS4-55097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Altmann, Korinna T1 - Micro- and Nanoplastics: from physico-chemical properties to reference products N2 - In this presentation we demonstrate the importance of physico-chemical properties (pc) of micro- and nanoplastic particles (MNPs). These properties determine interaction between MNPs and cells or living organisms. To perform accurate experiments for acquiring pc information it is essential to develop well-characterized and understood plastic reference materials. Such reference materials can be used in interlaboratory comparisons (ILCs). BAM is organizing under VAMAS two ILCs, on micro- and nanoplastics to obtain reliable results and methodologies for pc characterization of MNPs. By gaining profound knowledge on pc properties it becomes possible to estimate the impact of MNPs on the humans and environment and therefore to translate the knowledge to the level of regulation. T2 - CUSP early-stage researchers meeting CY - Online meeting DA - 08.11.2022 KW - Micro- and nanoplastics KW - Plastic reference materials KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-56330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Florian, C. A1 - Sokolowski-Tinten, K. A1 - Gräf, S. T1 - Advances in ultrafast laser manufacturing: nanostructures, thin films, and scaling perspectives N2 - Advanced ultrafast laser technology is a rapidly growing field that currently enables many new industrial and scientific applications. During the last decades, this has been significantly driven by the availability of high-repetition-rate laser sources and novel beam delivery concepts. At the laser side, Moore’s law equally manifests for ultrafast laser technologies, since the average output power of such lasers doubles approximately every two years. This development is mainly driven by the increase of the pulse repetition rates of energetic laser pulses, currently enforcing the development of smart beam control and novel scanning strategies for preventing heat-accumulation and plasma-shielding effects during laser-based materials processing. This keynote presentation addresses the advantages, recent developments, and perspectives of laser processing with ultrashort laser pulses. A special focus is laid on the tailored structuring of thin films as well as the manufacturing and probing of sub-diffraction surface nanostructures – an ongoing race to extreme scales. Current limitations are identified and an outlook to future scaling perspectives will be provided. T2 - SPIE Photonics Europe 2024 Conference, Symposium "Lasers and Photonics for Advanced Manufacturing" CY - Strasbourg, France DA - 07.04.2024 KW - Ultrafast laser processing KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Laser technology KW - Time-resolved analysis PY - 2024 UR - https://spie.org/photonics-europe/presentation/Advances-in-ultrafast-laser-manufacturing--nanostructures-thin-films-and/13005-36#_=_ AN - OPUS4-59852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Battig, Alexander A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Huth, Christian A1 - Böhning, Martin A1 - Schartel, Bernhard T1 - Multifunctional Property Improvements by Combining Graphene and Conventional Fillers in Chlorosulfonated Polyethylene Rubber Composites N2 - The incorporation of nanoparticles like multilayer graphene (MLG) into elastomeric composites boosts their technical performance, such as their mechanical behavior and electrical conductivity. Common filler types (carbon black (CB) and aluminum trihydroxide (ATH)) generally fulfill single, specific purposes and are often used in high loadings. CB typically reinforces rubber mechanically, while ATH increases flame retardancy. Small amounts of MLG reduce these high filler contents and maintain the multifunctional characteristics of rubber composites. In chlorosulfonated polyethylene (CSM) + ATH, an intrinsically flame-retardant rubber was designed to achieve the highest standards such as maximum average of heat emission (MARHE) <90 kW m−2, 3 phrMLG was substituted for 15 phr CB and/or 3 phr ATH via an industrially applicable processing approach. Replacing either CB or ATH resulted in a property profile that was multifunctionally improved in terms of features such as mechanical performance, reduced sorption, and flame retardance. MLG nanocomposites are reported to show promise as an industrially utilizable route to obtain multifunctional high-performance rubbers. KW - Nanocomposites KW - Rubber KW - Multilayer graphene KW - Flame retardancy KW - Synergy KW - Nanoparticles KW - Elastomers PY - 2022 DO - https://doi.org/10.1021/acsapm.1c01469 SN - 2637-6105 VL - 4 IS - 2 SP - 1021 EP - 1034 PB - ACS Publ. CY - Washington, DC AN - OPUS4-54330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Abdou-Rahaman Fadul, Naïssa A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Multifunctional graphene nanofiller in flame retarded polybutadiene/chloroprene/carbon black composites N2 - To curtail flammability risks and improve material properties, flame retardants (FRs) and fillers are mixed into rubbers. High loadings of aluminum trihydroxide (ATH) and carbon black (CB) are the most used FRs and reinforcing additive, respectively, in rubbers. To reduce loading without losing mechanical properties, partial substitution of ATH as well as CB by low amounts of multilayer graphene (MLG) nanoparticles is investigated. The high aspect ratio MLG is made of ten graphene sheets. In polybutadiene/chloroprene (BR/CR) nanocomposites 3 phr MLG replaced 15 phr CB and/or 3 phr ATH. Material and mechanical properties as well as fire behavior of the nanocomposites are compared to BR/CR with 20 phr CB both with and without 50 phr ATH. MLG appears as a promising nanofiller to improve the functional properties: replacement of CB improved rheological, curing, and mechanical properties; substitution of ATH improved nanocomposite properties without affecting flame retardancy. KW - Nanocomposites KW - Rubber KW - Multilayer graphene KW - Carbon black KW - Polybutadiene/chloroprene KW - Graphene PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523468 DO - https://doi.org/10.1515/epoly-2021-0026 SN - 1618-7229 VL - 21 IS - 1 SP - 244 EP - 262 PB - De Gruyter AN - OPUS4-52346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, S. A1 - Voss, L. A1 - Stephan, Ina A1 - Hübert, Thomas A1 - Kemnitz, E. T1 - Improved Durability of Wood Treated with Nano Metal Fluorides against Brown-Rot and White-Rot Fungi N2 - Low-water soluble metal fluorides such as magnesium fluoride (MgF2) and calcium Fluoride (CaF2) were evaluated for decay protection of wood. Initially, the biocidal efficacy of nano metal fluorides (NMFs) against wood destroying fungi was assessed with an in-vitro agar test. The results from the test showed that agar medium containing MgF2 and CaF2 was more efficient in preventing fungal decay than stand-alone MgF2 or CaF2. These metal fluorides, in their nanoscopic form synthesized using fluorolytic sol-gel synthesis, were introduced into the sapwood of Scots pine and beech wood and then subjected to accelerated ageing by leaching (EN 84). MAS 19F NMR and X-ray micro CT images showed that metal fluorides were present in treated wood, unleached and leached. Decay resistance of Scots pine and beech wood treated with NMFs was tested against Wood destroying fungi Rhodonia placenta and Trametes versicolor in accordance with EN 113. Results revealed that mass losses were reduced to below 3% in wood treated with the combination of MgF2 and CaF2. It is concluded that NMFs provide full protection to wood even after it has been leached and can be used as wood preservatives in outdoor environments. KW - Nanoparticles KW - Fluoride KW - Wood protection KW - Fluorolytic sol-gel synthesis KW - Brown-rot fungi KW - White-rot fungi KW - Basidiomycetes PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543877 DO - https://doi.org/10.3390/app12031727 VL - 12 IS - 3 SP - 1 EP - 11 PB - MDPI AN - OPUS4-54387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grundmann, Jana A1 - Bodermann, Bernd A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Hertwig, Andreas A1 - Klapetek, Petr A1 - Rafighdoost, Jila A1 - Pereira, Silvania F. T1 - Optical and tactile measurements on SiC sample defects N2 - Abstract. In power electronics, compound semiconductors with large bandgaps, like silicon carbide (SiC), are increasingly being used as material instead of silicon. They have a lot of advantages over silicon but are also intolerant of nanoscale material defects, so that a defect inspection with high accuracy is needed. The different defect types on SiC samples are measured with various measurement methods, including optical and tactile methods. The defect types investigated include carrots, particles, polytype inclusions and threading dislocations, and they are analysed with imaging ellipsometry, coherent Fourier scatterometry (CFS), white light interference microscopy (WLIM) and atomic force microscopy (AFM). These different measurement methods are used to investigate which method is most sensitive for which type of defect to be able to use the measurement methods more effectively. It is important to be able to identify the defects to classify them as critical or non-critical for the functionality of the end product. Once these investigations have been completed, the measurement systems can be optimally distributed to the relevant defects in further work to realize a hybrid analysis of the defects. In addition to the identification and classification of defects, such a future hybrid analysis could also include characterizations, e.g. further evaluation of ellipsometric data by using numerical simulations. KW - Compound semiconductors KW - Hybrid metrology KW - Material defects KW - Spectroscopic Ellipsometry KW - Scanning Probe Microscopy KW - White-light Interference Microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601220 DO - https://doi.org/10.5194/jsss-13-109-2024 SN - 2194-878X VL - 13 IS - 1 SP - 109 EP - 121 PB - Copernicus GmbH AN - OPUS4-60122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - López-Iglesias, C. A1 - Markovina, A. A1 - Nirmalananthan-Budau, N. A1 - Resch-Genger, Ute A1 - Klinger, D. T1 - Optically monitoring the microenvironment of a hydrophobic cargo in amphiphilic nanogels: influence of network composition on loading and release N2 - Amphiphilic nanogels (ANGs) are promising carriers for hydrophobic cargos such as drugs, dyes, and catalysts. Loading content and release kinetics of these compounds are controlled by type and number of hydrophobic groups in the amphiphilic copolymer network. Thus, understanding the interactions between cargo and colloidal carrier is mandatory for a tailor-made and cargo-specific ANG design. To systematically explore the influence of the network composition on these interactions, we prepared a set of ANGs of different amphiphilicity and loaded these ANGs with varying concentrations of the solvatochromic dye Nile Red (NR). Here, NR acts as a hydrophobic model cargo to optically probe the polarity of its microenvironment. Analysis of the NR emission spectra as well as measurements of the fluorescence quantum yields and decay kinetics revealed a decrease in the polarity of the NR microenvironment with increasing hydrophobicity of the hydrophobic groups in the ANG network and dye–dye interactions at higher loading concentrations. At low NR concentrations, the hydrophobic cargo NR is encapsulated in the hydrophobic domains. Increasing NR concentrations resulted in probe molecules located in a more hydrophilic environment, i.e., at the nanodomain border, and favored dye–dye interactions and NR aggregation. These results correlate well with release experiments, indicating first NR release from more hydrophilic network locations. Overall, our findings demonstrate the importance to understand carrier–drug interactions for efficient loading and controlled release profiles in amphiphilic nanogels. KW - Particle KW - Energy transfer KW - Limit of detection KW - Polymer KW - Luminescence KW - Quantitative spectroscopy KW - Nano KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Dye KW - Probe KW - Sensor KW - Nile Red PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601603 DO - https://doi.org/10.1039/d4nr00051j SN - 2040-3364 IS - 16 SP - 9525 EP - 9535 PB - The Royal Society of Chemistry AN - OPUS4-60160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -