TY - VIDEO A1 - Schwibbert, Karin A1 - Richter, Anja A1 - Bonse, Jörn T1 - BioCombs4Nanofibers: From nanofibers over spiders to bacteria N2 - This 6 minute long MP4-video presents some key results of the European research project "BioCombs4Nanofibers" to the broader public. Inspired by nature, some concepts of certain types of spiders are transferred to technology in order to develop bacteria-repellent surfaces through laser surface nanostructuring. Funding notice: This study was funded by the European Union's research and innovation program under the FET Open grant agreement No. 862016 (BioCombs4Nanofibers, http://biocombs4nanofibers.eu). KW - Antiadhesive surfaces KW - Laser-induced periodic surface structures (LIPSS) KW - Cribellate spiders KW - Bacterial adhesion tests KW - Bacteria-repellent surfaces PY - 2022 UR - https://download.jku.at/org/7kM/xyU/BioCombs4Nanofibers/D5.6_video%20for%20the%20broader%20public_23.03.2022.mp4 UR - https://www.jku.at/en/biocombs4nanofibers/dissemination/ DO - https://doi.org/10.26272/opus4-54939 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Hsiao, I-L. A1 - Ebisch, Maximilian A1 - Vidmar, J. A1 - Dreiack, N. A1 - Böhmert, L. A1 - Stock, V. A1 - Braeuning, A. A1 - Loeschner, K. A1 - Laux, P. A1 - Thünemann, Andreas A1 - Lampen, A. A1 - Sieg, H. T1 - The presence of iron oxide nanoparticles in the food pigment E172 N2 - Iron oxides used as food colorants are listed in the European Union with the number E172. However, there are no specifications concerning the fraction of nanoparticles in these pigments. Here, seven E172 products were thoroughly characterized. Samples of all colors were analyzed with a Broad spectrum of methods to assess their physico-chemical properties. Small-Angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), zeta-potential, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), X-ray diffraction (XRD), Brunauer-Emmett-Teller analysis (BET), Asymmetric Flow Field-Flow Fractionation (AF4) and in vitro cell viability measurements were used. Nanoparticles were detected in all E172 samples by TEM or SAXS measurements. Quantitative results from both methods were comparable. Five pigments were evaluated by TEM, of which four had a size median below 100 nm, while SAXS showed a size median below 100 nm for six evaluated pigments. Therefore, consumers May be exposed to iron oxide nanoparticles through the consumption of food pigments. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1016/j.foodchem.2020.127000 VL - 327 SP - 127000 PB - Elsevier Ltd. AN - OPUS4-50810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana T1 - Preparation of polypropylene and polyethylene nanoplastics in water N2 - Considering the huge amount of plastics, that is produced and thrown away all over the world every day, an increasing part of the society became aware of microplastic and its possible impact on the environment. Polymer particles smaller than 1 µm are called nanoplastic. Due to their small size they form a special group within particulate waste. Their high specific surface makes it easier for them to penetrate tissue and pose potential harm. On the other hand, the size and the chemical structure make it difficult to detect and analyze nanoplastics in nature. Furthermore, the concentrations in environmental samples are very low. Therefore, there is a need for a well-characterized nanoplastic material, that serves as a reference for nanoplastic found in nature. T2 - 101 years of Macromolecular Chemistry CY - Online meeting DA - 13.09.2021 KW - Nanoplastic PY - 2021 AN - OPUS4-53773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - Development of Reference Materials for Determination of Nanoplastics in Aqueous Media N2 - A lack of harmonised terminology hinders accurate description of many nano-object properties. An overview on nanoscale reference materials for environmental , health and safety measurements has been provided by Stefaniak et al. Since then several nanoscale reference materials were produced as finely dispersed nanoparticles, including catalytic active silver nanoparticles and iron oxide nanocubes. Polymeric nanoparticles made of polypropylene (PP), polyethylene (PE) and poly(ethylene terephthalate) (PET) are ongoing reference materials projects. A first study on PP has shown that mechanical breakdown of macroscopic PP towards nano PP is possible. Hereby the nano PP is stabilized by a strongly negative zeta potential of – 44 mV. This provides a long-term stability of the nanoparticles at ambient conditions in cases of low ionic strength. Since this nano PP has no added colloidal stabilizers, we suggest this as a potential reference materials candidate for reliable determination PP nanoplastics. Moreover, the nano PP may function as a reference for the estimation of possible toxic effects of nanoplastics. Efforts in producing nano PP labeled with ultra-small gold nanoparticles are reported. T2 - 22nd European Symposium on Polymer Spectroscopy CY - Berlin, Germany DA - 08.09.2024 KW - Nanoparticles KW - Nanoplastics PY - 2024 AN - OPUS4-61006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - del Rocío Silva-Calpa, Leydi A1 - de Souza Bernardes, Andrelaine A1 - de Avillez, Roberto Ribeiro A1 - Smales, Glen J. A1 - Camarena, Mariella Alzamora A1 - Ramos Moreira, Carla A1 - Zaitsev, Volodymyr A1 - Archanjo, Braulio Soares A1 - Letichevsky, Sonia T1 - From support to shell: An innovative design of air-stable nano zero-valent iron–nickel catalysts via structural self-assembly N2 - This work presents the design of air-stable core–shell zero-valent iron–nickel nanofilaments supported on silica and zeolite, developed to overcome the oxidation limitations of nano zero-valent iron in environmental catalysis. The nanofilaments feature ∼ 100 nm iron–nickel cores surrounded by ultrafine iron-rich threads embedded with aluminates and silicates, originating from partial support dissolution during synthesis. By varying the iron reduction time, three catalysts were prepared: one on silica reduced for 30 min, and two on zeolite reduced for 30 and 15 min. They were thoroughly characterized using nitrogen physisorption, X-ray diffraction, electron microscopy with elemental analysis, Mössbauer spectroscopy, and small-angle X-ray scattering. The zeolite-supported catalyst reduced for 15 min showed the highest activity for hexavalent chromium reduction (rate constant 8.054 min−1), attributed to a higher fraction of reactive iron–nickel phases formed under shorter reduction. Its tailored core–shell structure improves air stability and surface reactivity, highlighting its potential as a next-generation zero-valent iron nanocatalyst for aqueous remediation KW - nanofilaments KW - Core–shell nanostructures KW - Air-stable nanomaterials KW - Structure-controlled FeNi nanoparticles KW - Hexavalent chromium reduction KW - X-ray scattering KW - MOUSE PY - 2025 DO - https://doi.org/10.1016/j.mtcomm.2025.114142 SN - 2352-4928 VL - 49 SP - 1 EP - 15677 PB - Elsevier Ltd. AN - OPUS4-65087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Berry, Charlotte A. A1 - Reinart, Katre A1 - Smales, Glen J. A1 - Wilkinson, Holly N. A1 - Hardman, Matthew J. A1 - Marchesini, Sofia A1 - Lee, William A1 - Nery, Eveliny Tomás A1 - Moghaddam, Zarrin A1 - Hoxha, Agron A1 - Felipe-Sotelo, Mónica A1 - Gutierrez-Merino, Jorge A1 - Carta, Daniela T1 - Hierarchically porous copper and gallium loaded sol–gel phosphate glasses for enhancement of wound closure N2 - In this work, we have developed hierarchically porous phosphate-based glasses (PPGs) as novel materials capable of promoting wound closure and simultaneously delivering antibacterial effects at the glass-biological tissue interface. PPGs are characterised by extended porosity, which enhances the controlled release of therapeutic ions, whilst facilitating cell infiltration and tissue growth. Two series of PPGs in the systems P2O5–CaO–Na2O–CuO and P2O5–CaO–Na2O–Ga2O3 with (CuO and Ga2O3 0, 1, 5 and 10 mol%) were manufactured using a supramolecular sol–gel synthesis strategy. Significant wound healing promotion (up to 97%) was demonstrated using a human ex vivo wound model. A statistically significant reduction of the bacterial strains Staphylococcus aureus and Escherichia coli was observed in both series of PPGs, particularly those containing copper. All PPGs exhibited good cytocompatibility on keratinocytes (HaCaTs), and analysis of PPG dissolution products over a 7-day period demonstrated controlled release of phosphate anions and Ca, Na, Cu, and Ga cations. These findings indicate that Cu- and Ga-loaded PPGs are promising materials for applications in soft tissue regeneration given their antibacterial capabilities, in vitro biocompatibility with keratinocytes and ex vivo wound healing properties at the biomaterial-human tissue interface. KW - Porous glass KW - Phosphates KW - Wound healing materials KW - Antibacterial KW - X-ray scattering KW - MOUSE PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650867 DO - https://doi.org/10.1039/d5tb01945a SN - 2050-750X VL - 13 IS - 48 SP - 15662 EP - 15677 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Krause, B.-C. A1 - Kästner, Claudia A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Laux, P. A1 - Braeuning, A. A1 - Fessard, V. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Cellular Effects of In Vitro-Digested Aluminum Nanomaterials on Human Intestinal Cells N2 - Aluminum (Al) can be taken up from food, packaging, or the environment and thus reaches the human gastrointestinal tract. Its toxic potential after oral uptake is still discussed. The fate of different solid and ionic Al species during the passage through the digestive tract is the focus of this research, as well as the cellular effects caused by these different Al species. The present study combines the physicochemical processing of three recently studied Al species (metallic Al0, mineral Al2O3, and soluble AlCl3) in artificial digestion fluids with in vitro cell systems for the human intestinal barrier. Inductively coupled plasma mass spectrometry (ICP-MS) and small-angle X-ray scattering (SAXS) methods were used to characterize the Al species in the artificial digestion fluids and in cell culture medium for proliferating and differentiated intestinal Caco-2 cells. Cytotoxicity testing and cellular impedance measurements were applied to address the effects of digested Al species on cell viability and cell proliferation. Microarray-based transcriptome analyses and quantitative real-time PCR were conducted to obtain a deeper insight into cellular mechanisms of action and generated indications for cellular oxidative stress and an influence on xenobiotic metabolism, connected with alterations in associated signaling pathways. These cellular responses, which were predominantly caused by formerly ionic Al species and only at very high concentrations, were not impacted by artificial digestion. A two-directional conversion of Al between ionic species and solid particles occurred throughout all segments of the gastrointestinal tract, as evidenced by the presence of nanoscaled particles. Nevertheless, this presence did not increase the toxicity of the respective Al species. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1021/acsanm.9b02354 VL - 3 IS - 3 SP - 2246 EP - 2256 PB - American Chemical Society AN - OPUS4-50632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - Nanoplastics Aqueous Dispersions as Polymer Reference Materials for a Sustainable Future N2 - The undesirable presence of micro and nanoplastics in our environment and in food is now common knowledge. However, it is unclear whether serious dangers and risks are posed by nanoplastics. A scientifically based reliable determination of the type and quantity of nanoplastics in complex matrices is of considerable importance for the future sustainable use of polymers. Here, reference materials help in the determination of nanoplastics. In particular, colloidally stable aqueous dispersions of nanoplastics appear suitable for this purpose. We report on the current status of the development of nanoplastics as reference materials. A detailed example of reference materials for characterizing nanoplastics is provided in the form of aqueous dispersion of polypropylene. The nanoplastics samples are colloidal stable for at least two years at ambient conditions. A low zeta potential of -35 mV at a neutral pH value provides stability. An overview of their colloidal properties in different environmental conditions is presented. Next, polyethylene nanoplastics will be compared to polypropylene nanoplastics. Nanoplastics consisting of poly(ethylene terephthalate) will be discussed and finally, we report on poly(L-lactic acid) as a typical and important representative of biodegradable polymers. T2 - POLYMERS FOR A SUSTAINABLE FUTURE: Biennial Meeting of the GDCh-Division of Macromolecular Chemistry CY - Dresden, Germany DA - 16.09.2024 KW - Reference Material PY - 2024 AN - OPUS4-61079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Pérez-Padilla, Víctor A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Ratiometric detection of perfluoroalkyl carboxylic acids using dual fluorescent nanoparticles and a miniaturised microfluidic platform N2 - The widespread contamination of soil and water with perfluoroalkyl substances (PFAS) has caused considerable societal and scientific concern. Legislative measures and an increased need for remediation require effective on-site analytical methods for PFAS management. Here we report on the development of a green-fluorescent guanidine-BODIPY indicator monomer incorporated into a molecularly imprinted polymer (MIP) for the selective detection of perfluorooctanoic acid (PFOA). Complexation of PFOA by the indicator, which is mediated by concerted protonation-induced ion pairing-assisted hydrogen bonding, significantly enhances fluorescence in polar organic solvents. The MIP forms as a thin layer on silica nanoparticles doped with tris(bipyridine)ruthenium(II) chloride, which provides an orange emission signal as internal reference, resulting in low measurement uncertainties. Using a liquid-liquid extraction protocol, this assay enables the direct detection of PFOA in environmental water samples and achieves a detection limit of 0.11 µM. Integration into an opto-microfluidic system enables a compact and user-friendly system for detecting PFOA in less than 15 minutes. KW - PFAS KW - Molecular imprinting KW - Microfluidics KW - Fluorescence KW - Onsite assay PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650270 DO - https://doi.org/10.1038/s41467-025-66872-9 SN - 2041-1723 VL - 16 IS - 1 SP - 1 EP - 16 PB - Springer Science and Business Media LLC AN - OPUS4-65027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana T1 - PP and PE nanoplastics in water N2 - Plastic debris in micron and nanometer scale pollutes the nature all over the world. The potential dangers of these pollutants remain unpredictable. While risk assessment studies on microplastics are already popular, nanoplastic has not yet reached the same focus of investigation. The reason for this difference is simple: There is a "methodological gap" in the analytics of plastic particles with a diameter smaller than 1 μm. Submicron and nanoplastic particles are currently not detectable in environmental matrices. Therefore, it is important for researchers to have a well-characterized nanoplastic material, that serves as a reference for nanoplastics found in nature. Our aim was to synthesize nanoplastics made from the most common used plastics such as polypropylene (PP) and polyethylene (PE). We found an easy way to form nanoparticles consisting of PP and PE (nano-PP/PE). Herein, nano-PP/PE was formed via a top-down method where the polymer was dispersed to acetone and then transferred to water. No surfactant is needed to obtain a dispersion which is stable for more than 35 weeks. The success of forming nanoplastics and their size was detected via scattering methods, predominantly dynamic light scattering. The chemical analysis of the nanoplastics was performed via Fourier Transform Infrared spectroscopy. Furthermore, electron microscopy was used to complement the results. To examine the good stability of the nanoparticles, zeta potential measurements were performed, which revealed zeta potentials of -30 to -40 mV. T2 - IUPAC-MACRO2020+ CY - Online meeting DA - 17.05.2021 KW - Nanoplastic PY - 2021 AN - OPUS4-53774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Tim A1 - Huber, Norbert T1 - Microstructure and orientation effects on microcompression-induced plasticity in nanoporous gold N2 - Understanding the plastic deformation of nanoporous metals requires a detailed examination of their small-scale microstructural features. In this work, we present a computational study of micropillar compression in single crystal nanoporous gold (NPG) using crystal plasticity. This approach enables a systematic investigation of three key microstructural effects, including ligament size (50 ≤ 𝑙 ≤ 400 nm), solid fraction (0.2 ≤ 𝜑 ≤ 0.3), and initial crystal orientation ([001] and [111] ̄ ), on the plastic response far beyond yielding. After validation against experimental data, the study reveals that, in line with the ’smaller is stronger’ trend, besides the yield strength, the strain hardening rate also increases as ligament size decreases. Moreover, the strain hardening rate follows a power-law scaling with solid fraction, similar to the yield strength. The analysis of two distinct crystal orientations presents findings contrasting with previous assumptions. While the yielding onset remains orientation-independent, as expected, an increase in the strain hardening rate emerges for the harder [11-1] orientation with continued compression. An effect that becomes more pronounced with increasing solid fraction and decreasing ligament size. Under these conditions, harder orientations also amplify local stress heterogeneity. Notably, the stress distribution in NPG is nearly twice as wide as that observed in the single crystal bulk material (𝜑 = 1.0). Compared to the crystal plasticity approach, traditional isotropic plasticity predicts more uniform local stress fields. KW - Nanoporous gold KW - Microcompression KW - Plasticity KW - Size effect KW - Micromechanics PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650137 DO - https://doi.org/10.1016/j.actamat.2025.121798 SN - 1359-6454 VL - 304 SP - 1 EP - 13 PB - Elsevier Inc. AN - OPUS4-65013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kostenko, Yevgen T1 - Harmonizing Viscoplastic Material Model Application within the BMBF-Project “DigitalModelling” of the Platform Material Digital- Basic Idea, General Strategy and Current Status N2 - For decades, Germany stands for excellent cutting-edge research in the field of so-called higher-value constitutive visco-plastic material models and can draw on a large and globally unique pool of material data. However, both the data and the model structure are extremely heterogeneous and sometimes fundamentally different from research center to research center and from industrial partner to industrial partner. To address the heterogeneity in the material model landscape appropriately, an adaptable material model for the specific application and the specific material is required. The relevant parameters for the adapted material model must be identified as objectively and automatically as possible. To achieve a potentially real-time capable implementation, the material model equation system should be abstracted. The “DigitalModeling” project, organized within the German Platform initiative Material Digital, aims to create a standard and an interface that harmonize the scientific and technical development of constitutive, visco-plastic material models, increase their visibility and maximize the productivity of future research funding. This presentation summarizes the basic idea, the strategy behind it as well as the current status of the project, which was started beginning of 2024. T2 - vgbe Workshop with Technical Exhibition Materials & Quality Assurance CY - Bergen, Norway DA - 07.05.2025 KW - Visco-plastic Material Model KW - Simulation Workflows KW - Ontologies KW - Digitalization PY - 2025 AN - OPUS4-64043 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Henning, L. M. A1 - Müller, J. T. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Schmidt, J. A1 - Bekheet, M. F. A1 - Gurlo, A. A1 - Simon, U. T1 - Hierarchically porous and mechanically stable monoliths from ordered mesoporous silica and their water filtration potential N2 - Mechanically stable structures with interconnected hierarchical porosity combine the benefits of both small and large pores, such as high surface area, pore volume, and good mass transport capabilities. Hence, lightweight micro-/meso-/macroporous monoliths are prepared from ordered mesoporous silica COK-12 by means of spark plasma sintering (SPS, S-sintering) and compared to conventionally (C-) sintered monoliths. A multi-scale model is developed to fit the small angle X-ray scattering data and obtain information on the hexagonal lattice parameters, pore sizes from the macro to the micro range, as well as the dimensions of the silica population. For both sintering techniques, the overall mesoporosity, hexagonal pore ordering, and amorphous character are preserved. The monoliths' porosity (77–49%), mesopore size (6.2–5.2 nm), pore volume (0.50–0.22 g cm-3 ), and specific surface area (451–180 m2 g-1) decrease with increasing processing temperature and pressure. While the difference in porosity is enhanced, the structural parameters between the C-and S-sintered monoliths are largely converging at 900 C, except for the mesopore size and lattice parameter, whose dimensions are more extensively preserved in the S-sintered monoliths, however, coming along with larger deviations from the theoretical lattice. Their higher mechanical properties (biaxial strength up to 49 MPa, 724 MPa HV 9.807 N) at comparable porosities and ability to withstand ultrasonic treatment and dead-end filtration up to 7 bar allow S-sintered monoliths to reach a high permeance (2634 L m-2 h-1 bar-1), permeability (1.25 x 10^-14 m2), and ability to reduce the chemical oxygen demand by 90% during filtration of a surfactant-stabilized oil in water emulsion, while indicating reasonable resistance towards fouling. KW - SAXS KW - Hierarchically porous KW - Silica KW - Water filtration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555928 DO - https://doi.org/10.1039/D2NA00368F SN - 2516-0230 SP - 1 EP - 17 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-55592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - VIDEO A1 - Pauw, Brian Richard T1 - "Ultima Ratio": Multi-scale, high-resolution 3D-FFT scattering pattern simulations N2 - This talk highlights a proof-of-concept that demonstrates the ability to calculate high-resolution Fourier transforms. These can be combined with multi-scale modeling to simulate scattering over a wide range, from small-angle scattering to XRD and PDF. The preprint documenting this is available on the ArXiv here: https://doi.org/10.48550/arXiv.2303.13435 The Jupyter notebook, VASP calculation details and MOUSE measured scattering patterns are available from this Zenodo repository: https://dx.doi.org/10.5281/zenodo.7764045 T2 - Shapespyer/MuSSIC Launch Workshop CY - Didcot, UK DA - 20.02.2023 KW - Video KW - Simulation KW - High-resolution KW - Fourier Transform KW - 3D FFT KW - Nanomaterial KW - Metal organic framework KW - MOF KW - SAXS KW - XRD KW - PDF KW - X-ray diffraction KW - Pair distribution function KW - Small-angle X-ray scattering PY - 2023 UR - https://www.youtube.com/watch?v=lEApkOqR5e8 DO - https://doi.org/10.26272/opus4-57212 PB - YouTube, LLC CY - San Bruno, CA, USA AN - OPUS4-57212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - VIDEO A1 - Pauw, Brian Richard T1 - How to run a (lab) SAXS instrument efficiently N2 - Here I talk about our holistic approach to X-ray scattering, and what improvements we made to our methodology to make measuring with us a very streamlined process. KW - Laboratory management KW - MOUSE KW - X-ray scattering KW - Instrument utilization KW - Research efficiency KW - Automation KW - Metadata collection KW - Laboratory automation PY - 2022 UR - https://www.youtube.com/watch?v=ncadUQ43Uwc DO - https://doi.org/10.26272/opus4-55761 PB - YouTube, LLC CY - San Bruno, CA, USA AN - OPUS4-55761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Bridging Structure and Electronic State: Real-time XES–XRD Fusion for Functional Alloys N2 - We present a unified X-ray Emission Spectroscopy (XES) and X-ray Diffraction (XRD) approach for real-time, in situ characterization of materials, demonstrated on Co₂FeSi Heusler alloys under varied heat treatments. The combination of XES and XRD is particularly well-suited to Heusler alloys, where subtle changes in atomic ordering and electronic structure (e.g. site occupancy, hybridization, and spin state) are tightly interdependent and critical for their magnetic and transport properties. In addition, this method enables more efficient materials design by reducing experimental iterations through comprehensive structural and electronic analysis. Developed at the mySpot beamline at BESSY-II, the platform integrates (a) digital twin-based experiment planning, (b) open-source XES spectral simulations, (c) an optimized single-shot, two-element XES setup with sub-pixel resolution for enhanced energy precision, and (d) result-driven beamtime utilization. With an unprecedented synchronized XES-XRD platform, we aim to shed light on how diffusion-controlled processes in Heusler alloys and double perovskites at elevated temperatures establish the formation of specific phases with distinct structure types in real time. This, in turn, strongly impacts the functional properties of the materials under scrutiny. T2 - XLIV Colloquium Spectroscopicum Internationale CY - Ulm, Germany DA - 27.07.2025 KW - Multimodal KW - X-ray spectroscopy KW - X-ray diffraction KW - Functional alloys PY - 2025 AN - OPUS4-63991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Durlo Tambara, Luís Urbano A1 - Matos, P. R. de A1 - Lima, G. T. S. A1 - Silvestro, L. A1 - Rocha, J.C. A1 - Campos, C. E. M. de A1 - Gleize, P. J. P. T1 - Influence of Nanosilica and Superplasticizer Incorporation on the Hydration, Strength, and Microstructure of Calcium Sulfoaluminate Cement Pastes N2 - This study investigated the effect of incorporating three types of nanosilica (NS), two powders, and one colloidal suspension on the hydration, strength, and microstructure of calcium sulfoaluminate (CSA) cement pastes prepared with and without a superplasticizer (SP). X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and compressive strength tests were performed after 2, 5, and 28 days of hydration. The results showed that both NS powders delayed cement hydration at an early age, which was attributed to particle agglomeration (confirmed by dynamic light scattering). Whereas well-dispersed colloidal NS did not significantly affect the hydration of CSA at the investigated ages. SP incorporation improved the dispersion of CSA cement particles, resulting in a 10% increase in the degree of hydration of ye’elimite at 28 days for the system without NS. Conversely, when the SP was incorporated in NS-containing mixtures, it hindered cement hydration of the systems with powdered NS, but did not significantly affect the cement hydration of the system containing colloidal NS. The SEM images suggested that the SP changed the ettringite morphology, thereby negatively affecting the mechanical strength of the CSA pastes. KW - Calcium sulfoaluminate (CSA) cement KW - Nanosilica (NS) KW - Hydration KW - Microstructure PY - 2023 DO - https://doi.org/10.1061/JMCEE7.MTENG-15570 SN - 0899-1561 VL - 35 IS - 7 SP - 04023216 PB - ASCE AN - OPUS4-57404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lutz, C. A1 - Hampel, S. A1 - Ke, X. A1 - Beuermann, S. A1 - Turek, T. A1 - Kunz, U. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Fittschen, U. T1 - Evidence for redox reactions during vanadium crossover inside the nanoscopic water-body of Nafion 117 using X-ray absorption near edge structure spectroscopy N2 - A major source of capacity fade of the common vanadium redox flow battery (VRFB) is the vanadium ion transport through the separator. However, different transport models disagree significantly in the diffusion coefficient for the different V species and the influence of different transport mechanisms. The underlying hypothesis of this work is that reactions inside the membrane are partly responsible for these discrepancies. Accordingly, it was investigated if redox reactions inside the nanoscopic water body of Nafion 117 can occur. X-ray absorption near edge structure spectroscopy (XANES) was used to distinguish between the different V species inside hydrated Nafion 117 and novel PVDF-based membranes. It was validated that the speciation of vanadium can be performed using the pre-edge peak energy and intensity. The experiments were performed as follows: strips of the membrane were exposed from one site to a V3+ solution (green) and from the other site to a VO2+ solution (yellow). The ions could diffuse into the membrane from both sides. A change of color of the membrane strip was observed. The blue color in the middle of the strip indicated that VO2+ was formed where V3+ and VO2+ got in contact. Using XANES this reaction inside Nafion was proven. KW - PVDF-Based membrane KW - VRFB KW - Vanadium speciation KW - XANES KW - Nafion 117 PY - 2020 DO - https://doi.org/10.1016/j.jpowsour.2020.229176 VL - 483 SP - 229176 PB - Elsevier B.V. AN - OPUS4-51719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Risse, Kerstin A1 - Nikiforidis, Constantinos V. A1 - Morris, Imogen A1 - Thünemann, Andreas A1 - Drusch, Stephan T1 - Regulating the heat stability of protein-phospholipid stabilised oil-water emulsions by changing the phospholipid headgroup or fatty acyl chain N2 - Stabilising oil–water emulsions remains a central challenge across food, pharmaceutical and cosmetic applications. β-lactoglobulin (β-LG) and phospholipids (PLs) can act synergistically at oil-water interfaces: PLs adsorb rapidly, while β-LG forms a viscoelastic protein network that enhances long-term stability. However, competitive adsorption between proteins and PLs can disrupt interfacial structure. In addition, for commercial production, emulsions are often exposed to heat treatment during or after manufacture, for instance due to food safety requirements. Yet, the combined effects of PL structure and heat treatment on interfacial organisation and emulsion stability remain poorly understood. Here we show that PL saturation and processing temperature jointly determine interfacial organisation, protein-PL interactions and emulsion stability. Using β-LG-PL emulsions, we combined ζ-potential measurements, small-angle X-ray scattering (SAXS), micro-differential scanning calorimetry (μDSC), X-ray diffraction and confocal laser scanning microscopy (CLSM) to link interfacial composition with functional stability. Below the β-LG denaturation temperature (≤75 °C), saturated PLs promoted partial unfolding of β-LG at the interface without displacement, producing mixed protein-PL networks with enhanced viscoelasticity and stability. Unsaturated PLs displaced β-LG, yielding less elastic interfaces and promoting protein aggregation in the bulk. At ≥75 °C, increased hydrophobicity intensified protein-protein interactions irrespective of PL type. Our findings reveal that saturated PLs shift the β-LG denaturation temperature upward by restricting molecular mobility, without preventing quaternary-level protein-protein interactions. Thermal denaturation, regardless of PL type, promoted interfacial multilayer formation at 90 °C. These results provide a mechanistic framework for tailoring emulsion stability via lipid saturation and processing temperature. KW - Small-angle X-ray scattering KW - SAXS KW - Nanostructure KW - Reference Method KW - Colloid KW - Nanoparticle PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-648956 DO - https://doi.org/10.1016/j.jcis.2025.139530 SN - 0021-9797 VL - 705 SP - 1 EP - 25 PB - Elsevier Inc. AN - OPUS4-64895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thünemann, Andreas A1 - Gruber, Alexandra A1 - Klinger, Daniel T1 - Amphiphilic Nanogels: Fuzzy Spheres with a Pseudo-Periodic Internal Structure N2 - Amphiphilic polymer nanogels (NGs) are promising drug delivery vehicles that extend the application of conventional hydrophilic NGs to hydrophobic cargoes. By randomly introducing hydrophobic groups into a hydrophilic polymer network, loading and release profiles as well as surface characteristics of these colloids can be tuned. However, very little is known about the underlying internal structure of such complex colloidal architectures. Of special interest is the question how the amphiphilic network composition influences the internal morphology and the “fuzzy” surface structure. To shine light into the influence of varying network amphiphilicity on these structural features, we investigated a small library of water-swollen amphiphilic NGs using small-angle X-ray scattering (SAXS). It was found that overall hydrophilic NGs, consisting of pure poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA), display a disordered internal structure as indicated by the absence of a SAXS peak. In contrast, a SAXS peak is present for amphiphilic NGs with various amounts of incorporated hydrophobic groups such as cholesteryl (CHOLA) or dodecyl (DODA). The internal composition of the NGs is considered structurally homologous to microgels. Application of the Teubner–Strey model reveals that hydrophilic PHPMA NGs have a disordered internal structure (positive amphiphilicity factor) while CHOLA and DODA samples have an ordered internal structure (negative amphiphilicity factor). From the SAXS data it can be derived that the internal structure of the amphiphilic NGs consists of regularly alternating hydrophilic and hydrophobic domains with repeat distances of 3.45–5.83 nm. KW - Polymer KW - Nanoparticle KW - SAXS PY - 2020 DO - https://doi.org/10.1021/acs.langmuir.0c01812 VL - 36 IS - 37 SP - 10979 EP - 10988 PB - American Chemical Society AN - OPUS4-51302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -