TY - CONF A1 - Tache, O. T1 - Synthesis of SiO2 Nanoparticles as reference materials: Metrological measurements and in-situ kinetics in lab with Small Angle X-Ray Scattering N2 - The unambiguous correlation of possible health and sustainability risks to nanoparticle size must be enabled by reliable measurement of nanoparticle size, to ensure comparability and compatibility between results measured under different methods. The NPSIZE project funded by European Metrology Program (EMPIR) develop methods, reference materials and modelling to improve the traceability chain, comparability and compatibility of nanoparticle size measurements. In this work, we present how spherical silica nanoparticles are synthetized with controlled monomodal or bimodal dispersion to be use as reference materials and international round-robin. Improving the fabrication requires a fine understanding of synthesis (1), coupled with an expertise of in-situ or ex-situ analysis methods. This is a new challenge for the analysis : determining not only average characteristics (size, chemical composition and shape ...) but also the concentration and the distribution over the population studied (2). Small-Angle X-ray Scattering (3) allows very precise measurements of the nanoparticles size and concentration that can be directly link to the metric system (4) (metrological traceability) . We developed a SAXS laboratory instrument dedicated to the in-situ characterization of nanoparticles, which enable fast measurements, and the monitoring of the synthesis parameters. Measurement protocols and software processing chain (5) (i.e. size distribution) are also combined & optimized. T2 - CNANO2021 CY - Toulouse, France DA - 25.11.2021 KW - X-ray scattering KW - Silica particles KW - Synthesis KW - Reference materials PY - 2021 DO - https://doi.org/10.5281/zenodo.5749256 AN - OPUS4-53931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Praktische Erfahrungen zur Granulometrie von Pulvern im Submikron- und Nanobereich N2 - Der Vortrag beleuchtet insbesondere die Herausforderungen die sich bei der Dispergierung der Nanopulver aufgrund der hohen Adhäsivkräfte ergeben. Die Bewertung der Probenpräparation ist nur indirekt zugänglich, aber essentiell für die Zuverlässigkeit der Messergebnisse. Anhand von Beispielen werden Lösungsvorschläge aufgezeigt. Der Vortrag schließt mit einem Vorschlag zur Strategie der Herangehensweise bei der Partikelgrößenbestimmung von Nanopulvern. T2 - Sitzung des Fachausschusses "Material- und Prozessdiagnostik" der Deutschen Keramischen Gesellschaft: Zuverlässige granulometrische Charakterisierung von Mikro- und Nanopulvern – Voraussetzung für optimierte Keramikwerkstoffe in der Energietechnik CY - Online meeting DA - 19.11.2020 KW - Nano-powder KW - particle size determination KW - dispersion KW - sample preparation PY - 2020 AN - OPUS4-51665 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy-based Materials by Broadband Dielectric Spectroscopy and Calorimetry N2 - Although in the last decades epoxy-based nanocomposites have been successfully adopted by the marine, automotive and aerospace industries they are still rarely studied on a fundamental level. This work deals with an in-depth comparative investigation of the structure, molecular mobility and vitrification kinetics of three bisphenol A diglycidyl ether (DGEBA)-based materials with different nanofillers: I) taurine-modified layered double hydroxide (T-LDH), II) boehmite (BNPs) and III) halloysite nanotubes (HNTs). Moreover, the effect of different hardeners (diethylene triamine and methyl tetrahydrophtalic acid anhydride) on the unfilled epoxy matrix is addressed as well. The chosen methodology comprises I) small – and wide – angle X-ray scattering (SAXS/WAXS) II) calorimetry in the forms of a) conventional DSC and b) static fast scanning calorimetry (FSC), III) broadband dielectric spectroscopy (BDS), as well as IV) specific heat spectroscopy in the forms of a) temperature modulated DSC, and b) temperature modulated FSC. The combination of these techniques proved an intrinsic spatial heterogeneity of epoxy-based materials, evidenced by two separate segmental relaxation processes. Although, depending on the hardener the response of the systems to calorimetric and dielectric investigations was different, in a broader sense similar conclusions can be extracted on the structural heterogeneity. As expected from the two distinct α-processes, it was shown that, in parallel to the main glass transition, epoxy-based materials can exhibit an additional low temperature vitrification mechanism, which was not discussed in prior studies for an unfilled network former. Furthermore, the interfacial region (so-called rigid amorphous fraction) was qualitatively and quantitatively addressed, in dependence of the employed nanofiller structure. T2 - Webinar University of Southern Denmark CY - Online meeting DA - 20.01.2021 KW - BDS KW - Nanocomposites KW - Epoxy KW - Rigid amorphous fraction KW - TMDSC KW - Flash DSC PY - 2021 AN - OPUS4-52036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures: When electromagnetics drives hydrodynamics N2 - Laser-induced Periodic Surface Structures (LIPSS, ripples) are a universal phenomenon and can be generated in a contactless, single-step process on almost any material upon irradiation of solids with intense laser radiation. Nowadays processing rates of up to m^2/min are enabling new industrial applications in medicine, optics, tribology, biology, etc. Depending on the specific type of LIPSS, their structural sizes typically range from several micrometers down to less than 100 nanometers – far beyond the optical diffraction limit – while their orientations exhibit a clear correlation with the local polarization direction of the laser radiation. From a theoretical point of view, however, a vivid, controversial, and long-lasting debate has emerged during the last two decades, whether LIPSS originate from electromagnetic effects (seeded already during the laser irradiation) – or whether they emerge from matter reorganization processes (distinctly after the laser irradiation). This presentation reviews the currently existent theories of LIPSS. A focus is laid on the historic development of the fundamental ideas, their corresponding mathematical descriptions and numerical implementations, along with a comparison and critical assessment of the different approaches. T2 - 28th International Conference on Advanced Laser Technologies (ALT'21) CY - Online meeting DA - 06.09.2021 KW - Laser-induced periodic surface structures, LIPSS KW - Electromagnetic scattering KW - Matter reorganization PY - 2021 DO - https://doi.org/10.24412/cl-35039-2021-21-25-25 AN - OPUS4-53218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz T1 - Phase Behaviour and Molecular Mobility of a confined Ionic Liquid Crystal N2 - Liquid crystalline mesophases in nanoconfinement exhibit intriguing orientational order and phase transition behaviors. Here, the plastic crystal to hexagonal columnar, and hexagonal columnar to isotropic transition temperatures are studied for the guanidinium-based ionic discotic liquid crystal confined in self- ordered nanoporous alumina membranes. The phase transition temperature of the plastic crystal to hexagonal columnar phase is reduced with inverse pore diameter. The hexagonal columnar to isotropic transition is suppressed completely in all pores and a possible explanation is given. The results are of technological relevance for the design of liquid crystal-based devices such as batteries and sensors with optimum tunable properties. T2 - Interpore Konferenz CY - Online meeting DA - 31.05.2021 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2021 AN - OPUS4-53298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz T1 - Scattering is a powerful tool to follow nucleation and growth of minerals from solutions N2 - In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. The original ‘textbook’ image of these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species [e.g. 1], including solute clusters (e.g. prenucleation clusters, PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc. In general, these precursor or intermediate species constitute different, often short-lived, points along the pathway from dissolved ions to the final solids (typically crystals in this context). In this regard synchrotron-based scattering (SAXS/WAXS/HEXD) appears to be the perfect tool to follow in situ and in a time-resolved manner the crystallization pathways because of the temporal and spatial length scales that can be directly accessed with these techniques. Here, we show how we used scattering to probe the crystallization mechanisms of calcium sulfate. CaSO4 minerals (i.e. gypsum, anhydrite and bassanite) are widespread in natural and industrial environments. During the last several years, a number of studies have revealed indeed that nucleation in the CaSO4-H2O system is non-classical. Our SAXS data demonstrate that gypsum precipitation, involves formation and aggregation of sub-3 nm primary species. These species constitute building blocks of an amorphous precursor phase [2]. Further, we show how in situ high-energy X-ray diffraction experiments and molecular dynamics (MD) simulations can be combined to derive the atomic structure of the primary CaSO4 clusters seen at small-angles [3]. We fitted several plausible structures to the derived pair distribution functions and explored their dynamic properties using unbiased MD simulations based on polarizable force fields. Finally, based on combined SAXS/WAXS, broad-q-range measurements, we show that the process of formation of bassanite, a less hydrated form of CaSO4, is very similar to the formation of gypsum: it also involves the aggregation of small primary species into larger disordered aggregates [4]. Based on these recent insights we formulated a tentative general model for calcium sulfate precipitation from solution. This model involves primary species that are formed through the assembly of multiple Ca2+ and SO42- ions into nanoclusters. These nanoclusters assemble into poorly ordered (i.e. amorphous) hydrated aggregates, which in turn undergo ordering into coherent crystalline units of either gypsum or bassanite (and possibly anhydrite). Determination of the structure and (meta)stability of the primary species is important from both a fundamental, e.g. establishing a general non-classical nucleation model, and applied perspective; e.g. allow for an improved design of additives for greater control of the nucleation pathway. T2 - Annual Meeting of German Crystallographic Society (29. Jahrestagung der Deutschen Gesellschaft für Kristallographie - DGK CY - Online meeting DA - 15.03.2021 KW - Scattering KW - Calcium sulfate KW - SAXS/WAXS PY - 2021 AN - OPUS4-53619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz T1 - ILC Meeting N2 - We summarized our recent findings about the molecular dynamics investigation of bulk and finite ionic liquid crystals. We investigate the molecular dynamics and electrical conductivity for a homologous series of linear shaped guanidinium based cyclic ILCs that vary in alkyl chain length, CLCRs (R = 8, 10, 12, 14, 16) by employing broadband dielectric spectroscopy (BDS), and calorimetry comprised of Fast Scanning Calorimetry (FSC) and temperature modulated FSC (TMFSC). Besides conductivity at high temperatures, the dielectric dispersion reveals two relaxation modes: the fast γ and the slow α1 relaxation. The former is assigned to the localized fluctuations while the latter is due to segmental dynamics of the alkyl chains. The γ mode slows down for long chain length CLCs (12,14,16) compared to their shorter analogues. Calorimetric investigation reveals one process, the α2 process, for CLC12,14 and 16 and two processes, α2 and α3, for CLC8 and 10. The α2 process of all CLCRs has a similar temperature dependence as the dielectric α1 relaxation, which indicates both BDS and FSC probe the segmental dynamics of alkyl side chains, as observed for the bent shaped cyclic ILCs. We interpret the α3 process of CLC8 and 10 as the segmental dynamics of the cation core. For all CLCRs, the absolute values of DC conductivity increase by 4 orders of magnitude at the transition from the plastic crystalline to hexagonal columnar phase. This increase is due to the change in the underlying conduction mechanism from delocalized electron hopping in the crystalline phase to one dimensional ion mobility in the columnar phase. The glassy dynamics shifts to higher temperatures with increasing alkyl chain length. Conversely, the DC conductivity drops by 3 orders of magnitude from CLC8 to CLC16. T2 - ILC Project Meeting CY - Berlin, Germany DA - 14.09.2021 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2021 AN - OPUS4-53675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Nanomaterial characterisation - The long way to standardisation N2 - In 1981 the OECD published the Test Guideline on Particle size and size distribution. This TG is still a valid document for the measurement of particles all over the world. When nanomaterials gained importance, ISO set up a technical commitee for Nanotechnologies in 2005 and the OECD followed this step in 2006 with the Working Party on Manufactured Nanomaterials. In the following years ISO and OECD published several documents about nanomaterials and the systematisation developed. In 2017 it was finally clear that nanomaterials need to be adressed in another way than chemicals and in 2020 ECHA revised the REACH-Annexes accordingly and included nanomaterials. Unfortunately there is a little problem with this: Only a few applicable test guidelines exit for the measurement of the nanomaterials. Several test guidelines date from 1981 and do not address nanomaterials. The logical next step for the OECD would be to publish a series of test guidelines which are indeed currently prepared and will be shown in this talk. Finally there is an additional need for the future of NM standardisation: Digitalisation. T2 - Bilateral workshop with Uni Bermingham CY - Online meeting DA - 10.03.2021 KW - Nano KW - Standardisation KW - Test guideline KW - OECD KW - Nanomaterial PY - 2021 AN - OPUS4-53822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Size matters! - Auf dem Weg zu einer neuen OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien N2 - Vorstellung der Ergebnisse bei der Entwicklung einer neuen OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien. Ergebnisse: Ideal sphärische Partikel sind gut und verlässlich mit vielen Methoden charakterisierbar. Reale (Nicht ideale) Materialien sind gut charakterisierbar, wenn eine gewisse Homogenität und Stabilität vorliegt. Stark inhomogene und stark agglomerierende Partikel liefern deutlich unterschiedliche Ergebnisse für verschiedene Methoden. Partikel mit geringen Größenunterschieden lassen sich mit allen Methoden gut charakterisieren. Partikel mit sehr deutlichen Größenunterschieden führen häufig zu einer Unterbewertung der kleineren Partikel. Vollautomatische Partikeldetektion bei elektronenmikroskopischen Aufnahmen ist z.Zt. noch stark fehleranfällig und kann daher nicht empfohlen werden. Es hat sich gezeigt, dass alle Methoden zur Bestimmung der Partikelgrößenverteilung Vor- und Nachteile haben. Es ist dringend zu empfehlen Größenverteilungen immer mit mindestens zwei unterschiedlichen Methoden zu bestimmen: Bildgebend und mit gute Anzahlstatistik. Verschiedene Durchmesser wurden in der TG-PSD mit einem Indexsystem versehen, welches zukünftig Verwechslungen zwischen unterschiedlichen Durchmessern vermeiden soll. Wird ein bestimmter Durchmesser benötigt (z.B. hydrodynamisch, aerodynamisch), muss die Methode passend gewählt werden. Eine Umrechnung von einem Durchmesser in einen anderen ist in der Regel fehlerbehaftet. Es wurde ein einheitliches Reporting-System in der TG-PSD eingeführt. T2 - Fachseminar des Umweltbundesamtes CY - Online meeting DA - 14.04.2021 KW - Nano KW - OECD KW - Prüfrichtlinie KW - Nanomaterial KW - BMU PY - 2021 AN - OPUS4-53823 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien N2 - Abschlusspräsentation des Projektes "OECD Prüfrichtlinie zur Bestimmung der Partikelgröße und Anzahlgrößenverteilung von Nanomaterialien" - Projektteil Nanopartikel. Es hat sich gezeigt, dass alle Methoden zur Bestimmung der Partikelgrößenverteilung Vor- und Nachteile haben. Es wird dringend empfohlen Größenverteilungen immer mit mindestens zwei unterschiedlichen Methoden zu bestimmen: Bildgebend und mit gute Anzahlstatistik. Verschiedene Durchmesser wurden in der TG-PSD mit einem Indexsystem versehen, welches zukünftig Verwechslungen zwischen unterschiedlichen Durchmessern vermeiden soll. Wird ein bestimmter Durchmesser benötigt (z.B. hydrodynamisch, aerodynamisch), muss die Methode passend gewählt werden. Eine Umrechnung von einem Durchmesser in einen anderen ist in der Regel fehlerbehaftet. Es wurde ein einheitliches Reporting-System in der TG-PSD eingeführt. T2 - Fachgespräch zur OECD - TG PSD - BMU BMWi BAM BAuA UBA CY - Online meeting DA - 10.09.2021 KW - Nano KW - OECD KW - Nanopartikel KW - Prürfrichtlinie KW - Nanomaterial PY - 2021 AN - OPUS4-53825 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo T1 - Femtosecond laser-induced oxidation in the formation of periodic surface structures N2 - Laser-induced oxide graded layers may contribute to the formation of a new type of embedded low-spatial frequency LIPSS with an anomalous orientation parallel to the laser polarization. In this contribution, we explore this effect experimentally with femtosecond laser pulses and numerically by finite-difference time-domain (FDTD) calculations. T2 - 2021 Conference on Lasers and Electro-Optics/Europe – European Quantum Electronics Virtual Conferences CY - Online meeting DA - 21.06.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface oxidation KW - Femtosecond laser ablation KW - Finite-difference time-domain calculations PY - 2021 AN - OPUS4-52859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Sample Preparation of Nano-Powders for Particle Size Determination N2 - The use of increasingly finer starting powders up to nanopowders can also be observed in the field of ceramics. Their advantages consist, for example, in their lower activation energy, an increase in strength or unique optical properties. However, handling and characterization of the powders are much more difficult. The main reason for this is the very high adhesive forces between the particles and between particles and other surfaces, too. Therefore, submicron and even more so nanoparticles tend to agglomerate and their separation into primary particles during sample preparation prior to particle sizing is of particular challenge. A representative measurement sample is only obtained when it no longer contains agglomerates. The evaluation of the dispersion process and a decision on whether it was successful thus increases in importance for the reliability of the measurement results of particle sizing. The presentation uses examples to show possible approaches and provides information on possible sources of error. It is shown that successful granulometric characterisation of fine powders requires both an improved dispersion technique and very often an effective combination of two or more measurement methods. T2 - 96. Jahrestagung der Deutschen Keramischen Gesellschaft CY - Online Meeting DA - 19.04.2021 KW - Agglomerates KW - Nano-powder KW - Dispersion process PY - 2021 AN - OPUS4-52503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fiedler, Saskia T1 - Giant photon bunching of WS2 monolayer in cathodoluminescence N2 - Cathodoluminescence (CL) spectroscopy has become a powerful tool to study nanostructures due to its high spectral and spatial resolution down to sub-nanometer. More recently, CL technique has also been used for second order auto-correlation measurements (g(2)(t)) to identify different single photon emitters and photon bunching in different materials [1-2]. In this work, tungsten disulfide (WS2) monolayers encapsulated in hexagonal boron nitride (hBN) with and without monocrystalline Au nanodisks (NDs) have been studied, using CL and PL spectroscopy as well as g(2)-CL- and PL-measurements. CL and PL maps of different WS2 monolayers before/after Au ND deposition show a narrow peak at ~625 nm without any background emission. In CL, the hBN not only protects WS2 from the electron beam but also acts as a charge carrier sink which substantially increases the CL signal [3]. A further CL enhancement is achieved by Au ND deposition, exhibiting the maximum at the center of the NDs without any size dependence. The PL intensity is unaffected. This indicates that Purcell enhancement cannot be the underlying mechanism. Furthermore, a giant CL-photon bunching of the hBN-encapsulated WS2 monolayers is found which is independent of the applied voltage but highly dependent on the electron beam current. At the lowest current of ~2 pA, a CL bunching factor of up to 160 is observed. Varying thicknesses of the surrounding hBN increases the overall CL signal but does not affect the bunching factor, though it exhibits small local changes within the same flake. In contrast, there is no PL correlation (g(2)(0) = 1). Interestingly, this photon bunching can be further increased by Au NDs, resulting in the highest ever observed bunching factor of close to 2200. Once again, this enhancement is independent of the Au ND’s diameter although some disks show higher bunching factors than others. Most likely, the Au acts as shield for the incoming primary electrons, resulting in an even further decreased current, and thereby, increased bunching. In conclusion, large CL-photon bunching is found in hBN-encapsulated WS2 monolayers which can be substantially enhanced by Au NDs. References [1] M.A. Feldmann, E.F. Demitrescu, D. Bridges, M.F. Chisholm, R.B. Davidson, P.G. Evans, J.A. Hachtel, A. Hu, R.C. Pooser, R.F. Haglund, B.J. Lawrie, Phys. Rev. B, 97, 081404(R) (2018) [2] S. Meuret, L.H.G. Tizei, T. Cazimajou, R. Bourrellier, H.C. Chang, F. Treussartm M. Kociak, Phys. Rev. Letter, 114, 197401 (2015) [3] S. Zheng, J.-K. So, F. Liu, Z. Liu, N. Zheludev, H.J. Fan, Nano Lett., 17, 6475-6480 (2017) T2 - GSELOP2021 CY - Paris, France DA - 23.08.2021 KW - Cathodoluminescence KW - Photon bunching KW - 2D materials KW - TMDCs KW - Au nanodisks KW - Transition metal dichalcogenide KW - Au nanoparticles PY - 2021 AN - OPUS4-53153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo T1 - Silicon surface amorphization and re-crystallization via single femtosecond laser pulses N2 - Silicon is the material responsible for most of the technological developments during the past century, making it one of the most studied materials along different disciplines. However, there are still unturned stones regarding its superficial re-solidification after femtosecond laser-induced local melting. In this presentation, we report irradiation experiments with single femtosecond pulses (790 nm, 30 fs) with a spatially Gaussian distribution on two different types of silicon with orientations <111> and <100>. The surface modifications were studied in detail via different techniques, including optical microscopy, atomic force microscopy, spectroscopic imaging ellipsometry, energy dispersive X-ray spectroscopy and high-resolution transmission electron microscopy. We quantitatively estimate the resulting radial amorphous layer depth profiles with maximum thicknesses around some tenths of nanometers for fluences in between the melting and ablation thresholds. In particular, spectroscopic imaging ellipsometry (SIE) allowed fast data acquisition using multiple wavelengths to provide experimental measurements for calculating the nanometric radial amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. SIE proved to be capable of detecting and measuring nanometric structural and chemical modifications (oxidation) on the studied laser spots. The accuracy of the SIE-based calculations is verified experimentally by characterizing an in-depth material lamella via high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). For completeness, we present a mathematical modelling for the melt layer thickness considering different optical absorption processes including one photon absorption, two photon absorption and free-carrier absorption, highlighting the relevance of the latter one in the femtosecond laser-induced melting of silicon. T2 - 28th International Conference on Advanced Laser Technologies (ALT'21) CY - Online meeting DA - 06.09.2021 KW - Silicon KW - Femtosecond laser KW - Phase transitions KW - Spectroscopic imaging ellipsometry KW - Transmission electron microscopy PY - 2021 AN - OPUS4-53235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Hiid, Gundula A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth kinetics of the adsorbed layer of poly(bisphenol A carbonate) and its effect on the glass transition behavior in thin films N2 - The glass transition behavior of thin films of poly(bisphenol A carbonate) (PBAC) was studied employing ellipsometry. The glass transition temperature increases with the reduction of the film thickness. This result is attributed to the formation of an adsorbed layer with a reduced mobility compared to bulk PBAC. Therefore, for the first time, the growth kinetics of the adsorbed layer of PBAC was investigated, prepared by leaching samples from a 200 nm thin film which were annealed for several times at three different temperatures. The thickness of each prepared adsorbed layer was measured by multiple scans using atomic force microscopy (AFM). Additionally, an unannealed sample was measured. Comparison of the measurements of the unannealed and the annealed samples provides proof of a pre-growth regime for all annealing temperatures which was not observed for other polymers. For the lowest annealing temperature after the pre-growth stage only a growth regime with a linear time dependence is observed. For higher annealing temperatures the growth kinetics changes from a linear to a logarithmic growth regime at a critical time. At the longest annealing times the films showed signs of dewetting where segments of the adsorbed film were removed from the substrate (dewetting by desorption). The dependence of the surface roughness of the PBAC surface on annealing time also confirmed that the films annealed at highest temperatures for the longest times desorbed from the substrate. KW - Ultra thin polymer films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574531 DO - https://doi.org/10.1039/D3RA02020G SN - 2046-2069 VL - 13 IS - 21 SP - 14473 EP - 14483 PB - RSC Publishing CY - London AN - OPUS4-57453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - First of its kind: A test artifact for direct laser writing N2 - With femtosecond-laser direct writing (fs-LDW) maturing in all aspects as a manufacturing technology, a toolset for quality assurance must be developed. In this work we introduce a first of its kind test artifact. Test artifacts are standardized 3D models with specific geometric features to evaluate the performance of writing parameters. Test artifacts are already common in other 3D additive manufacturing technologies e.g. selective laser melting. The test artifact introduced in this work was developed in particular to accommodate the high geometrical resolution of fs-LDW structures and the limited possibilities to examine the resulting structure. Geometric accuracy, surface adhesion as well as confocal Raman spectroscopy results were considered when evaluating the design of the test artifact. We will explain the individual features and design considerations of our fs-LDW test artifact. The difference between two slicers, Cura and 3DPoli, and the implications on measured feature sizes and the general shape is quantified. The measured geometries are used to derive a general design guide for a specific combination of photoresists, laser power and scanning speed and to analyze the geometric accuracy of a structure produced using these guidelines. The shown test artifact is publicly available as STL file on GitHub (https://github.com/BAMresearch/2PP-TestArtifact) and in the supplement. KW - Laser direct writing KW - Multi photon lithography KW - Reference material KW - Raman spectroscopy KW - Confocal raman imaging KW - Slicers KW - Open data on zenodo PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580951 DO - https://doi.org/10.1088/1361-6501/acc47a VL - 34 IS - 7 SP - 1 EP - 14 PB - IOP Science AN - OPUS4-58095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fiedler, Saskia A1 - Ton-That, C. A1 - Phillips, M. R. T1 - Defect-free ZnO nanorods with high angular distribution for enhanced excitonic emission N2 - AbstractLow-temperature hydrothermal growth has emerged as a popular method for the fabrication of ZnO nanorods (NRs), increasing the functionality and utility of ZnO-based devices. In this work, we study the influence of growth time, temperature and seed layer on the dimensions and angular distribution of ZnO NRs. High-quality NRs with a crisscrossed 60° angular distribution have been grown with a 20–60 nm diameter and 600 nm length. We show that, within the ideal range of growth parameters, the growth time and temperature have no controllable influence on NR diameter and length, while the deposition method and size of the pre-growth deposited ZnO seeds affects diameter and NR angular alignment. We demonstrate advantages of using crisscross-aligned NRs over planar ZnO for the enhancement of ZnO excitonic emission by optical coupling with gold nanoparticles. These results can be readily adapted for applications that involve surface coating-mediated enhancement of both light emission and injection. KW - ZnO nanorod KW - Hydrothermal growth KW - Seed layer KW - Angular distribution KW - Cathodoluminescence KW - Luminescence enhancement PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618176 DO - https://doi.org/10.1557/s43578-023-00941-x SN - 0884-2914 SN - 2044-5326 VL - 38 IS - 8 SP - 2145 EP - 2155 PB - Springer CY - Berlin AN - OPUS4-61817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schardt, Annika A1 - Schmitt, Johannes A1 - Engelhard, Carsten T1 - Single particle inductively coupled plasma mass spectrometry with nanosecond time resolution N2 - In this proof-of-principle study, we present our contribution to single particle inductively coupled plasma mass spectrometry (spICP-MS) developments with a novel in-house built data acquisition system with nanosecond time resolution (nanoDAQ) and a matching data processing approach. The new system can continuously sample the secondary electron multiplier (SEM) detector signal and enables the detection of gold nanoparticles (AuNP) as small as 7.5 nm with the commercial single quadrupole ICP-MS instrument used in this study. Recording of the SEM signal by the nanoDAQ is performed with a dwell time of approximately 4 ns. A tailored method was developed to process this type of transient data, which is based on determining the temporal distance between detector events that is denoted as event gap (EG). We found that the inverse logarithm of EG is proportional to the particle size and that the number of detector events corresponding to a particle signal distribution can be used to calibrate and determine the particle number concentration (PNC) of a nanoparticle dispersion. Due to the high data acquisition frequency, a statistically significant number of data points can be obtained in 60 s or less and the main time limitation for analyses is merely the sample uptake time and rinsing step between analyte solutions. At this stage, the data processing method provides average information on complete data sets only and will be adapted to enable particle-by-particle analysis with future hardware/software revision. KW - ICP-MS KW - Nanoparticles KW - Nanosecond time resolution KW - Single particle detection PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612706 DO - https://doi.org/10.1039/d3ja00373f SN - 1364-5544 SN - 0267-9477 VL - 39 IS - 2 SP - 389 EP - 400 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-61270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezera, Marek A1 - Alamri, S. A1 - Hendriks, W. A. P. M. A1 - Hertwig, Andreas A1 - Elert, Anna Maria A1 - Bonse, Jörn A1 - Kunze, T. A1 - Lasagni, A. F. A1 - Römer, G. R. B. E. T1 - Hierarchical micro-/nano-structures on polycarbonate via UV pulsed laser processing N2 - Hierarchical micro/-nanostructures were produced on polycarbonate polymer surfaces by employing a two-step UV-laser processing strategy based on the combination of Direct Laser Interference Patterning (DLIP) of gratings and pillars on the microscale (3 ns, 266 nm, 2 kHz) and subsequently superimposing Laser-induced Periodic Surface Structures (LIPSS; 7–10 ps, 350 nm, 100 kHz) which adds nanoscale surface features. Particular emphasis was laid on the influence of the direction of the laser beam polarization on the morphology of resulting hierarchical surfaces. Scanning electron and atomic force microscopy methods were used for the characterization of the hybrid surface structures. Finite-difference time-domain (FDTD) calculations of the laser intensity distribution on the DLIP structures allowed to address the specific polarization dependence of the LIPSS formation observed in the second processing step. Complementary chemical analyzes by micro-Raman spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy provided in-depth information on the chemical and structural material modifications and material degradation imposed by the laser processing. It was found that when the linear laser polarization was set perpendicular to the DLIP ridges, LIPSS could be formed on top of various DLIP structures. FDTD calculations showed enhanced optical intensity at the topographic maxima, which can explain the dependency of the morphology of LIPSS on the polarization with respect to the orientation of the DLIP structures. It was also found that the degradation of the polymer was enhanced for increasing accumulated fluence levels. KW - Direct laser interference patterning KW - Laser-induced periodic surface structures (LIPSS) KW - Polycarbonate KW - Hierarchical structures KW - Surface functionalization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509101 DO - https://doi.org/10.3390/nano10061184 SN - 2079-4991 VL - 10(6) IS - Special issue "Laser-generated periodic nanostructures" SP - 1184-1 EP - 1184-19 PB - MDPI CY - Basel AN - OPUS4-50910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fosodeder, P. A1 - Baumgartner, W. A1 - Steinwender, C. A1 - Hassel, A. W. A1 - Florian, Camilo A1 - Bonse, Jörn A1 - Heitz, J. T1 - Repellent rings at titanium cylinders against overgrowth by fibroblasts N2 - The invention of new miniaturized and smart medical implants continues in all medical fields, including miniaturized heart pacemakers. These implants often come with a titanium (Ti) casing, which may have to be removed after several months or years and shall therefore not be completely overgrown by cells or scar tissue after implantation. Scar tissue is mainly formed by fibroblast cells and extracellular matrix proteins like collagen produced by them. Suppression of fibroblast growth at Ti surfaces could be achieved by 800 nm femtosecond laser-ablation creating self-organized sharp spikes with dimensions in the 10 μm-range which are superposed by fine sub-μm parallel ripples. On flat Ti control samples, the best results regarding suppression of cell growth were obtained on spike-structures which were additionally electrochemically anodized under acidic conditions. When Ti cylinders with a diameter of 8 mm (similar as the pacemakers) were placed upright in a culture of murine fibroblasts, a multi-layer cell growth up to a height of at least 1.5 mm occurred within 19–22 days. We have demonstrated that a laser-structured and anodized ring around the Ti cylinder surface is an effective way to create a barrier that murine fibroblasts were not able to overgrow within this time. KW - Cell-repellent surfaces KW - Femtosecond laser-processing KW - Electrochemical treatment KW - Laser-induced micro- and nanostructures KW - Medical implants PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509966 DO - https://doi.org/10.1515/aot-2019-0070 SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 3 (Topical issue: Laser micro- and nano-material processing - Part 2) SP - 113 EP - 120 PB - De Gruyter CY - Berlin AN - OPUS4-50996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -