TY - JOUR A1 - Bennet, Francesca A1 - Opitz, R. A1 - Ghoreishi, N. A1 - Plate, K. A1 - Barnes, J.-P. A1 - Bellew, A. A1 - Bellu, A. A1 - Ceccone, G. A1 - de Vito, E. A1 - Delcorte, A. A1 - Franquet, A. A1 - Fumageli, F. A1 - Gilliland, D. A1 - Jungnickel, H. A1 - Lee, T.G. A1 - Poleunis, C. A1 - Rading, D. A1 - Shon, H.K. A1 - Spampinato, V. A1 - Son, J.G. A1 - Wang, F. A1 - Wang, Y.-C. A. A1 - Zhao, Y. A1 - Roloff, A. A1 - Tentschert, J. A1 - Radnik, Jörg T1 - VAMAS TWA2 interlaboratory comparison: Surface analysis of TiO2 nanoparticles using ToF-SIMS N2 - Due to the extremely high specific surface area of nanoparticles and corresponding potential for adsorption, the results of surface analysis can be highly dependent on the history of the particles, particularly regarding sample preparation and storage. The sample preparation method has, therefore, the potential to have a significant influence on the results. This report describes an interlaboratory comparison (ILC) with the aim of assessing which sample preparation methods for ToF-SIMS analysis of nanoparticles provided the most intra- and interlaboratory consistency and the least amount of sample contamination. The BAM reference material BAM-P110 (TiO2 nanoparticles with a mean Feret diameter of 19 nm) was used as a sample representing typical nanoparticles. A total of 11 participants returned ToF-SIMS data,in positive and (optionally) negative polarity, using sample preparation methods of “stick-and-go” as well as optionally “drop-dry” and “spin-coat.” The results showed that the largest sources of variation within the entire data set were caused by adventitious hydrocarbon contamination or insufficient sample coverage, with the spin-coating protocol applied in this ILC showing a tendency toward insufficient sample coverage; the sample preparation method or the participant had a lesser influence on results. KW - Secondary Ion Mass Spectrometry KW - VMAAS KW - Titania KW - Interlaboratory comparison KW - Reproducibility PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582290 DO - https://doi.org/10.1116/6.0002814 SN - 0734-2101 VL - 41 IS - 5 SP - 053210-1 EP - 053210-13 PB - AIP (American Institute of Physics) AN - OPUS4-58229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Hahn, Marc Benjamin T1 - Inside back cover for the article "Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine" N2 - Showcasing research from the Federal Institute for Material Research and Testing Berlin and Fraunhofer Institute for Celltherapy and Immunology Branch Bioanalytics and Bioprocesses Potsdam. Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine. We aimed to increase the possible undisturbed exposure time during bio-SAXS measurements of single-stranded DNA-binding proteins. Therefore small angle X-ray scattering was performed on Gene-V Protein (G5P/GVP), which is involved in DNA repair processes. To achieve this, irradiations were performed in presence and absence of the hydroxyl-radical scavenger and osmolyte Ectoine, which showed efficient radiation protection and prevented protein aggregation, thus allows for a non-disturbing way to improve structure-determination of biomolecules. KW - Bio-SAXS KW - BioSAXS KW - Cosolute KW - DNA KW - Dosimetry KW - Ectoin KW - Ectoine KW - G5P KW - GVP KW - Geant4 KW - Geant4-DNA KW - Ionizing radiation damage KW - LEE KW - McSAS3 KW - Microdosimetry KW - Monte-Carlo simulations KW - OH Radical KW - OH radical scavenger KW - Protein KW - Protein unfolding KW - Radiation damage KW - Radical Scavenger KW - SAXS KW - Single-stranded DNA-binding proteins KW - Small-angle xray scattering KW - Topas-MC KW - Topas-nBio KW - TopasMC KW - X-ray scattering KW - Particle scatterin simulations KW - ssDNA PY - 2023 DO - https://doi.org/10.1039/D3CP90056H SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 7 SP - 5889 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-57006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Xps/Haxpes at (core shell) nanoparticles N2 - The principles of (Hard) X-ray photoelectron spectroscopy and some application in the field of (core-shell) nanoparticles will be presented. The presentation should answer hoe to get reliable results. Furthermore, examples of the correlation between physical-chemical measurments and toxicological results are given which are crucial for the risk assessment of nanoparticles. T2 - Training Course Metrological Determination of Micro and Nano Contaminants in Food CY - Berne, Switzerland DA - 05.09.2023 KW - X-ray photoelectron spectroscopy KW - Core-shell nanoparticles KW - Reliabiilty KW - Risk assessment PY - 2023 AN - OPUS4-59496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juds, Carmen A1 - Schmidt, J. A1 - Weller, Michael G. A1 - Lange, Thorid A1 - Beck, Uwe A1 - Conrad, T. A1 - Boerner, H. G. T1 - Combining phage display and next-generation sequencing for materials sciences: A case study on probing polypropylene surfaces N2 - Phage display biopanning with Illumina next-generation sequencing (NGS) is applied to reveal insights into peptide-based adhesion domains for polypropylene (PP). One biopanning round followed by NGS selects robust PP-binding peptides that are not evident by Sanger sequencing. NGS provides a significant statistical base that enables motif analysis, statistics on positional residue depletion/enrichment, and data analysis to suppress false-positive sequences from amplification bias. The selected sequences are employed as water-based primers for PP-metal adhesion to condition PP surfaces and increase adhesive strength by 100% relative to nonprimed PP. KW - Polymers KW - Polypropylene KW - Glue KW - Plastics KW - Surface Activation KW - Primer KW - Peptide Library KW - Epoxy KW - Solid-binding Peptides KW - Functionalization KW - Polymer-binding Peptides KW - Adhesion KW - Material-binding Peptides KW - Adhesives PY - 2020 DO - https://doi.org/10.1021/jacs.0c03482 SN - 0002-7863 SN - 1520-5126 VL - 142 IS - 24 SP - 10624 EP - 10628 PB - ACS CY - Washington, DC, USA AN - OPUS4-51123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Ciornii, Dmitri A1 - Kersting, R. A1 - Hagenhoff, B. A1 - Hodoroaba, Vasile-Dan T1 - Reliable, and reproducible physico-chemical data of nanomaterials for risk assessment N2 - Nanoforms with at least one dimension below 100 nm have an important part to play in more and more areas of our daily life. Therefore, risk assessment of these materials is becoming increasingly important. In this context, the European Chemical Agency (ECHA) considered eleven physico-chemical properties as relevant, of which the following six are essential for the registration: chemical composition, crystallinity, particle size, particle shape, surface chemistry and specific surface area. Four of these priority properties can be obtained with electron microscopy and surface analytics like XPS and ToF-SIMS. The reliability of this data must be ensured, especially for their use for grouping and read across approaches. On the other hand, the “reproducibility” crisis has revealed major shortcomings in the reliability of published data. In a case study, we show how the quality of the data can be ensured by using existing standards and protocols of each step in the workflow of sample characterization. As exemplary samples, two Al-coated TiO2 samples as nanopowders were selected from the JRC repository, capped either with a hydrophilic or a hydrophobic organic ultrathin shell. SEM results provided the size and shape of the nanoparticles, a first overview about the composition was obtained with EDS. XPS and ToF-SIMS supplied the surface chemistry, especially information about the shell and the coating of the particles. Standards and protocols of all steps of the analytical workflow including preparation and data reduction are discussed regarding reliable and reproducible data. Additionally, uncertainties for the different steps are specified. Only such a detailed description of all these factors allows a comprehensive physico-chemical characterization of the nanoparticles with understanding of their potential risk assessment. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Reference data KW - Risk assessment KW - Nanomaterials KW - Titania PY - 2022 AN - OPUS4-54961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Pellegrino, F. A1 - Maurino, V. T1 - Morpho-Chemical Characterisation of Me-TiO2 Nanoparticles for Enhanced Photocatalytical Activity N2 - The conversion of solar energy into electricity and solar fuels is of crucial importance for a green and sustainable future. Water splitting using semiconductor photo-catalysts is considered a sustainable method to produce clean hydrogen (H2) fuel. Nevertheless, H2 photo-production efficiency remains still low, although extensive research works to understand better the mechanisms of the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) are being carried out. In this respect, TiO2 is a key photoactive material, usually employed with a co-catalyst deposited onto the surface to enhance charge carriers’ separation and catalyze surface charge transfer reactions. The deposition of a co-catalyst on the TiO2 nanoparticle surface represents one successful way to enhance the activity of the photocatalyst through a modification of its surface and redox properties. In this context, high-resolution scanning electron microscopy coupled with elemental analysis by energy-dispersive X-ray spectroscopy (EDS) is fundamental for studying and understanding the effect of the nanoparticle morphology on the functional properties of shape-controlled TiO2 crystals (bipyramides, platelets, and elongated particles). Different types of metal-semiconductor combinations, TiO2 shapes and dopant metals (Ag, Pt, etc) and metal concentrations will be discussed. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Titania nanoparticles KW - Photocatalysis KW - Scanning electron microscopy KW - Energy dispersive X-ray spectroscopy PY - 2022 AN - OPUS4-54977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - ISO-G-Scope Standardisation of structural and chemical properties of graphene N2 - The objectives and tasks of the EMPIR project ISO-G-Scope are presented. The last results was shown. Esspecially, the interlaboratory comparison about XPS of functionalized graphene is presented. T2 - DIN NA062-08-16 Oberflächenanalytik Frühjahrstreffen CY - Berlin, Germany DA - 11.05.2022 KW - Graphene KW - Standardization KW - Structural characterisation KW - Chemical composition PY - 2022 AN - OPUS4-54834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habibimarkani, Heydar A1 - John, Elisabeth A1 - Schusterbauer, Robert A1 - Abram, Sarah-Luise A1 - Prinz, Carsten A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Investigating the Synergistic Effects of FeNi-Oxide Nanoparticles as Water Electrolysis Catalysts: A Multi-Technique Characterization Approach N2 - Electrocatalysis is and will continue to play a central role in the development of a new and modern sustainable economy, especially for chemicals and fuels. The storage of excess electrical energy into chemical energy by splitting water into hydrogen and oxygen is a feasible solution in this economic sector. A major drawback of electrical energy lies in the storage. Therefore, hydrogen is discussed as promising alternative. Fortunately, this issue can be effectively addressed through the implementation of chemical storage mechanisms. Due to their abundance on Earth and inherent stability in alkaline solutions, transition-metal oxides have become one of several viable alternatives to conventional noble-metal catalysts. Since FeNi oxide is one of the most active oxygen evolution reaction (OER) electrocatalysts for alkaline water electrolysis, it has been the subject of extensive research. A series of different types of FeNi oxide nanoparticles (NPs) with atomic ratios covering a broad range, and various sizes with specific stoichiometric and non-stoichiometric iron and nickel ratios was synthesized and characterized by the combination of surface analysis techniques, such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The morphology was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed the coexistence of mixed and unmixed iron and nickel NPs with comparable sizes in the range of 30–40 nm across all ratios. The synthesis technique displayed control over the iron-nickel ratio, as evidenced by energy dispersive X-ray spectroscopy (EDS) data. The presence of magnetite (Fe3O4) was detected in all samples investigated by X-ray diffraction (XRD). Furthermore, the existence of nickel ferrite (NiFe2O4) was shown in the Fe2Ni by XRD analysis. For the cyclic voltammetry (CV) measurements, the NPs were deposited onto glassy carbon electrodes using Nafion® as an ionomer, and 1 M KOH was employed as the electrolyte. Subsequently, the NPs/Nafion® electrode was transferred into the ToF-SIMS chamber to allow surface analysis and depth profiling. The ToF-SIMS analysis revealed distinct peaks corresponding to Fe, Ni, and other peaks associated with Nafion®, whereas a straightforward correlation between the Ni.Fe ratio and the SIMS peak pattern is not possible. The catalytic activity towards OER was evaluated through CV measurements, where the Fe2Ni3 ratio exhibited the most favorable performance, displaying a lower overpotential. T2 - European Materials Research Society (E-MRS) Fall 2023 CY - Warsaw, Poland DA - 18.09.2023 KW - FeNi-Oxide NPs KW - ToF-SIMS KW - Catalysts KW - OER PY - 2023 AN - OPUS4-59139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habibimarkani, Heydar A1 - John, Elisabeth A1 - Schusterbauer, Robert A1 - Abram, Sarah-Luise A1 - Prinz, Carsten A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Complementary Characterization of FeNi-Oxide Nanoparticles as Catalysts for Water Electrolysis combining Electron Microscopy, EDS, XRD, ToF-SIMS and Electrochemical Analysis N2 - Electrocatalysis is and will continue to play a central role in the development of a new and modern sustainable economy, especially for chemicals and fuels. The storage of excess electrical energy into chemical energy by splitting water into hydrogen and oxygen is a feasible solution in this economic sector. A major drawback of electrical energy lies in the storage. Therefore, hydrogen is discussed as promising alternative. Fortunately, this issue can be effectively addressed through the implementation of chemical storage mechanisms. Due to their abundance on Earth and inherent stability in alkaline solutions, transition-metal oxides have become one of several viable alternatives to conventional noble-metal catalysts. Since FeNi oxide is one of the most active oxygen evolution reaction (OER) electrocatalysts for alkaline water electrolysis, it has been the subject of extensive research. A series of different types of FeNi oxide nanoparticles (NPs) with atomic ratios covering a broad range, and various sizes with specific stoichiometric and non-stoichiometric iron and nickel ratios was synthesized and characterized by the combination of surface analysis techniques, such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The morphology was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed the coexistence of mixed and unmixed iron and nickel NPs with comparable sizes in the range of 30–40 nm across all ratios. The synthesis technique displayed control over the iron-nickel ratio, as evidenced by energy dispersive X-ray spectroscopy (EDS) data. The presence of magnetite (Fe3O4) was detected in all samples investigated by X-ray diffraction (XRD). Furthermore, the existence of nickel ferrite (NiFe2O4) was shown in the Fe2Ni by XRD analysis. For the cyclic voltammetry (CV) measurements, the NPs were deposited onto glassy carbon electrodes using Nafion® as an ionomer, and 1 M KOH was employed as the electrolyte. Subsequently, the NPs/Nafion® electrode was transferred into the ToF-SIMS chamber to allow surface analysis and depth profiling. The ToF-SIMS analysis revealed distinct peaks corresponding to Fe, Ni, and other peaks associated with Nafion®, whereas a straightforward correlation between the Ni.Fe ratio and the SIMS peak pattern is not possible. The catalytic activity towards OER was evaluated through CV measurements, where the Fe2Ni3 ratio exhibited the most favorable performance, displaying a lower overpotential. T2 - SIMS Europe 2023 CY - Nottingham, England DA - 02.09.2023 KW - FeNi-Oxide NPs KW - ToF-SIMS KW - Catalysts KW - OER PY - 2023 AN - OPUS4-59143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Božičević, Lucija A1 - Altmann, Korinna A1 - Hildebrandt, Jana A1 - Knigge, Xenia A1 - Vrček, Valerije A1 - Peranić, Nikolina A1 - Kalcec, Nikolina A1 - Vinkovic Vrcek, Ivana T1 - Estrogenic activity of plastic nanoparticles mixture under in vitro settings N2 - The plastic value chain, central part of modern living, caused environmental pollution and bioaccumulation of plastic nanoparticles (PNPs). Their ubiquitous presence in different environmental and biological compartments has become a serious threat to human health and ecosystems. Frequently used plastic materials such as polypropylene (PP), polystyrene (PS) and polyethylene (PE) have been detected in the form of PNPs in the food chain, soil, water and air, as well as in human feces and blood. In this study, we aimed to provide novel insights in endocrine disrupting properties of PNPs using in vitro estrogen receptor (ER) transactivation assay. The effects of PP-NPs, PE-NPs and PS-NPs and their mixture on T47D-KBluc cell line stably transfected with luciferase as reporter enzyme was evaluated by means of cytotoxicity, cellular uptake and ER activation. Tested dose range for PNPs was 0.001 – 10 mg/L. Both cellular uptake and cytotoxicity for all PNPs was found to be dose-dependent. Only the highest dose of PP-NPs and PE-NPs induced apoptosis and cell death, while PS-NPs were not cytotoxic in tested dose range. For tested concentrations, PP-NPs and PE-NPs showed significant agonistic activity on ER, while PS-NPs cannot be considered ER active. When, applied as mixture, PNP demonstrated additive toxicity effects compared to the effect of each individual PNPs. Additivity was also observed for ER agonistic effect of PNPs mixture according to the benchmark dose-addition modelling approach. This study provides missing science-based evidence on endocrine disrupting effects of PE-NPs, PP-NPs, PS-NPs and their mixtures and highlights the importance of considering unintentional, aggregate and combined exposure to different PNPs in risk management. KW - Risk assessment KW - Nanoplastics KW - Estrogenic activity of plastic nanoparticles PY - 2024 DO - https://doi.org/10.1039/D3EN00883E SN - 2051-8153 VL - 11 IS - 5 SP - 2112 EP - 2126 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Graphene Flagship - Achievements and the way forward N2 - The activities of the Graphene in the field of standardization will be summarized. The future activities of the Graphene Flagship CSA which was established recently will be presented with the focus on future challenges in standardization and regulation of graphene and other 2D materials. T2 - Harmonisation & Standardisation of Test Methods for Nano- and Advanced Materials CY - Online meeting DA - 22.11.2023 KW - 2D materials KW - Regulation KW - Standardization PY - 2023 UR - https://macrame-project.eu/macrame-meetings-workshops/ws_hamonisation_standardisation_2023/ AN - OPUS4-59497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Z. A1 - Raab, A. A1 - Kolmangadi, Mohamed Aejaz A1 - Busch, M. A1 - Grunwald, M. A1 - Demel, F. A1 - Bertram, F. A1 - Kityk, A. V. A1 - Schönhals, Andreas A1 - Laschat, S. A1 - Huber, P. T1 - Self-Assembly of Ionic Superdiscs in Nanopores N2 - Discotic ionic liquid crystals (DILCs) consist of self-assembled superdiscs of cations and anions that spontaneously stack in linear columns with high one-dimensional ionic and electronic charge mobility, making them prominent model systems for functional soft matter. Compared to classical nonionic discotic liquid crystals, many liquid crystalline structures with a combination of electronic and ionic conductivity have been reported, which are of interest for separation membranes, artificial ion/proton conducting membranes, and optoelectronics. Unfortunately, a homogeneous alignment of the DILCs on the macroscale is often not achievable, which significantly limits the applicability of DILCs. Infiltration into nanoporous solid scaffolds can, in principle, overcome this drawback. However, due to the experimental challenges to scrutinize liquid crystalline order in extreme spatial confinement, little is known about the structures of DILCs in nanopores. Here, we present temperaturedependent high-resolution optical birefringence measurement and 3D reciprocal space mapping based on synchrotron X-ray scattering to investigate the thermotropic phase behavior of dopamine-based ionic liquid crystals confined in cylindrical channels of 180 nm diameter in macroscopic anodic aluminum oxide membranes. As a function of the membranes’ hydrophilicity and thus the molecular anchoring to the pore walls (edge-on or face-on) and the variation of the hydrophilic−hydrophobic balance between the aromatic cores and the alkyl side chain motifs of the superdiscs by tailored chemical synthesis, we find a particularly rich phase behavior, which is not present in the bulk state. It is governed by a complex interplay of liquid crystalline elastic energies (bending and splay deformations), polar interactions, and pure geometric confinement and includes textural transitions between radial and axial alignment of the columns with respect to the long nanochannel axis. Furthermore, confinement-induced continuous order formation is observed in contrast to discontinuous first-order phase transitions, which can be quantitatively described by Landau-de Gennes free energy models for liquid crystalline order transitions in confinement. Our observations suggest that the infiltration of DILCs into nanoporous solids allows tailoring their nanoscale texture and ion channel formation and thus their electrical and optical functionalities over an even wider range than in the bulk state in a homogeneous manner on the centimeter scale as controlled by the monolithic nanoporous scaffolds. KW - Ionic Liquid Crystals KW - Nanopropous materials KW - Landau de-Gennes analysis KW - X-ray scattering KW - Optical birefringence PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600797 DO - https://doi.org/10.1021/acsnano.4c01062 SN - 1936-0851 VL - 18 IS - 22 SP - 14414 EP - 14426 PB - ACS AN - OPUS4-60079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as CRM for Size and Shape N2 - Due to their unique physico-chemical properties, nanoparticles are well established in research and industrial applications. A reliable characterization of their size, shape, and size distribution is not only mandatory to fully understand and exploit their potential and develop reproducible syntheses, but also to manage environmental and health risks related to their exposure and for regulatory requirements. To validate and standardize methods for the accurate and reliable particle size determination nanoscale reference materials (nanoRMs) are necessary. However, there is only a very small number of nanoRMs for particle size offered by key distributors such as the National Institute of Standards and Technology (NIST) and the Joint Research Centre (JRC) and, moreover, few provide certified values. In addition, these materials are currently restricted to polymers, silica, titanium dioxide, gold and silver, which have a spherical shape except for titania nanorods. To expand this list with other relevant nanomaterials of different shapes and elemental composition, that can be used for more than one sizing technique, we are currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance for the material and life sciences. T2 - Microscopy and Microanalysis 2022 CY - Online meeting DA - 31.07.2022 KW - Certified Referencematerial KW - Cubical Iron Oxide KW - Nanoparticles KW - Electron Microscopy KW - Small-Angle X-ray Scattering PY - 2022 AN - OPUS4-57035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - Temperature effects in the Object Oriented Micromagnetic Framework (OOMMF) - OOMMF input parameter files for Tc determination N2 - To simulate the movement of the macroscopic magnetic moment in ferromagnetic systems under the influence of elevated temperatures, the stochastic version of the Landau-Lifshitz (LL) or the Landau-Lifshitz-Gilbert equation with a spin density of one per unit cell has to be used. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion has to be performed. OOMMF sample files MIF) are provided which can be used to determine the Curie temperature for the classical bulk magnets, iron, nickel and cobalt. KW - OOMMF KW - Temperature KW - Micromagnetism KW - Thetaevolve KW - Ferromagnetism KW - Exchange interaction KW - LLG KW - Landau Lifshitz equation KW - Magnetic moment KW - Magnetic nanoparticles KW - Object oriented micromagnetic framework KW - Stochastic Landau Lifshitz Gilbert equation KW - Temperature scaling PY - 2020 DO - https://doi.org/10.26272/opus4-51169 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-51169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - TOPAS cell model with nanoparticles N2 - These files contain cell models for TOPAS/Geant4 and the inclusion of nano particles in particle scattering simulations. A simple spherical cell with nanoparticles can be generated in a fast manner. The user has the option to include the following organelles: nucleus, mitochondria, cell membrane. Additionally nanoparticles can be included in the cytosol and at the surface of the nucleus and/or the mitochondria. The C++ classes in this repository extend the functionality of the TOPAS (http://www.topasmc.org/) Monte-Carlo program, which is itself a wrapper of the Geant4 MCS Toolkit (http://geant4.org). The sourcecode together with examples and scorers are provided. "If you use this extension please cite the following literature: Hahn, M.B., Zutta Villate, J.M. "Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles." Sci Rep 11, 6721 (2021). https://doi.org/10.1038/s41598-021-85964-2 " KW - Monte-Carlo simulation KW - MCS KW - Geant4 KW - TOPAS KW - TOPAS-nBio KW - Dosimetry KW - Nanoparticles KW - Nanoparticle KW - AuNP KW - Gold KW - Microdosimetry KW - Targeted nanoparticle KW - Simulation KW - Particle scattering KW - Cell KW - Nucleus KW - Mitochondria KW - Cancer therapy KW - Radiation therapy PY - 2020 UR - https://github.com/BAMresearch/TOPAS-CellModels UR - https://github.com/MarcBHahn/TOPAS-CellModels DO - https://doi.org/10.26272/opus4-51150 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-51150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pellegrino, F. A1 - Rossi, A. A1 - Sordello, A. A1 - Sordello, F. A1 - Alladio, E. A1 - Santalucia, R. A1 - Primieri, A. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Maurino, V. T1 - Safe-by-Design Synthesis of 2D Materials N2 - The use of a dedicated approach: DoE for synthesis + characterization + Chemometric Analysis, is a valuable method for the safe-by-design synthesis of several types of materials for large-scale application in catalysis, energy harvesting, biomedical and environmental applications, etc. This approach is not only related to the material synthesis, but can be expanded to any type of molecules/material, with relevant saving of solvents, energy and times. T2 - Congress of the Environment and Cultural Heritage - Section of Italian Chemistry Society CY - Ischia, Italy DA - 28.09.2023 KW - Safe-by-design KW - 2D materials KW - Synthesis KW - Chemometric analysis PY - 2023 UR - https://www.congressodabc.it/ AN - OPUS4-59780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peters, R. A1 - Elbers, I. A1 - Undas, A. A1 - Sijtsma, E. A1 - Briffa, S. A1 - Carnell-Morris, P. A1 - Siupa, A. A1 - Yoon, T.-H. A1 - Burr, L. A1 - Schmid, D. A1 - Tentschert, J. A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Luch, A. A1 - Meier, F. A1 - Kocic, J. A1 - Kim, J. A1 - Park, B. C. A1 - Hardy, B. A1 - Johnston, C. A1 - Jurkschat, K. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Lynch, I. A1 - Valsami-Jones, E. T1 - Benchmarking the ACEnano toolbox for characterisation of nanoparticle size and concentration by interlaboratory comparisons N2 - ACEnano is an EU-funded project which aims at developing, optimising and validating methods for the detection and characterisation of nanomaterials (NMs) in increasingly complex matrices to improve confidence in the results and support their use in regulation. Within this project, several interlaboratory comparisons (ILCs) for the determination of particle size and concentration have been organised to benchmark existing analytical methods. In this paper the results of a number of these ILCs for the characterisation of NMs are presented and discussed. The results of the analyses of pristine well-defined particles such as 60 nm Au NMs in a simple aqueous suspension showed that laboratories are well capable of determining the sizes of these particles. The analysis of particles in complex matrices or formulations such as consumer products resulted in larger variations in particle sizes within technologies and clear differences in capability between techniques. Sunscreen lotion sample analysis by laboratories using spICP-MS and TEM/SEM identified and confirmed the TiO2 particles as being nanoscale and compliant with the EU definition of an NM for regulatory purposes. In a toothpaste sample orthogonal results by PTA, spICP-MS and TEM/SEM agreed and stated the TiO2 particles as not fitting the EU definition of an NM. In general, from the results of these ILCs we conclude that laboratories are well capable of determining particle sizes of NM, even in fairly complex formulations. KW - Nanomaterials KW - Benchmarking KW - Inter-laboratory comparison KW - ACEnano KW - Characterisation KW - Size KW - Concentration PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531852 DO - https://doi.org/10.3390/molecules26175315 SN - 1420-3049 VL - 26 IS - 17 SP - 1 EP - 23 PB - MDPI CY - Basel AN - OPUS4-53185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fortes Martin, R. A1 - Thünemann, Andreas A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Koetz, J. T1 - From Nanoparticle Heteroclusters to Filament Networks by Self-Assembly at the Water–Oil Interface of Reverse Microemulsions N2 - Surface self-assembly of spherical nanoparticles of sizes below 10 nm into hierarchical heterostructures is under arising development despite the inherent difficulties of obtaining complex ordering patterns on a larger scale. Due to template-mediated interactions between oil-dispersible superparamagnetic nanoparticles (MNPs) and polyethylenimine-stabilized gold nanoparticles (Au(PEI)NPs) at the water–oil interface of microemulsions, complex nanostructured films can be formed. Characterization of the reverse microemulsion phase by UV–vis absorption revealed the formation of heteroclusters from Winsor type II phases (WPII) using Aerosol-OT (AOT) as the surfactant. SAXS measurements verify the mechanism of initial nanoparticle clustering in defined dimensions. XPS suggested an influence of AOT at the MNP surface. Further, cryo-SEM and TEM visualization demonstrated the elongation of the reverse microemulsions into cylindrical, wormlike structures, which subsequently build up larger nanoparticle superstructure arrangements. Such WPII phases are thus proven to be a new form of soft template, mediating the self-assembly of different nanoparticles in hierarchical network-like filaments over a substrate during solvent evaporation. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Nano structure PY - 2021 DO - https://doi.org/10.1021/acs.langmuir.1c01348 VL - 37 IS - 29 SP - 8876 EP - 8885 PB - American Chemical Society AN - OPUS4-53034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sordello, F. A1 - Prozzi, M. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Pellegrino, F. T1 - Increasing the HER efficiency of photodeposited metal nanoparticles over TiO2 using controlled periodic illumination N2 - Although the use of noble metal catalysts can increase the efficiency of hydrogen evolution reaction, the process is still limited by the characteristics of the metal-hydrogen (M−H) bond, which can be too strong or too weak, depending on the metal employed. Studies revealed that the hydrogen affinity for the metal surface (i.e. H absorption/desorption) is regulated also by the potential at the metal nanoparticles. Through controlled periodic illumination (CPI) of a series of metal/TiO2 suspensions, here we demonstrated that an increase of the HER efficiency is possible for those photodeposited metals which have a Tafel slope below 125 mV. Two possible explanations are here reported, in both of them the M−H interaction and the metal covering level play a prominent role, which also depend on the prevailing HER mechanism (Volmer-Heyrovsky or Volmer-Tafel). KW - Controlled periodic illumination KW - Hydrogen evolution reaction KW - Titanium dioxide KW - Photoreforming KW - Volcano plot KW - Sabatier KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589875 DO - https://doi.org/10.1016/j.jcat.2023.115215 VL - 429 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-58987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulka, M.W. A1 - Nie, C. A1 - Nickl, P. A1 - Kerkhoff, Y. A1 - Garg, A. A1 - Salz, D. A1 - Radnik, Jörg A1 - Grunwald, I. A1 - Haag, R. T1 - Surface-Initiated Grafting of Dendritic Polyglycerol from Mussel-Inspired Adhesion-Layers for the Creation of Cell-Repelling Coatings N2 - Biofouling is a major challenge in the application of textiles, biosensors, and biomedical implants. In the current work, a straightforward method for the solvent-free polymerization of antifouling dendritic polyglycerol (dPG) from mussel-inspired dendritic polyglycerol (MI-dPG) coatings on hydrophilic titanium dioxide (TiO2) and hydrophobic polydimethylsiloxane (PDMS) is reported. Surface characterization is performed by static water contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Significant lower CA values are obtained after dPG grafting from MI-dPG-coated TiO2 and MI-dPG coated PDMS. Furthermore, XPS shows a time-dependent increase of the CO bond content upon dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. Analysis of the surface morphology by SEM shows a clear time-dependent increase in the surface roughness upon dPG grafting from MI-dPG-coated TiO2 and MIdPG-coated PDMS. When the viability of two adhesive cell types is studied via LIVE/DEAD staining, a strong reduction in the cell density is observed after the dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS (a decrease of >95% in all cases). The combined results show that biocompatible but highly cell-repelling surfaces are efficiently constructed via the grafting of dPG from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. KW - Repelling surface coatings KW - Dendritic polyglycerol KW - Mussel-inspired adhesives KW - Surface-initated grafting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516590 DO - https://doi.org/10.1002/admi.202000931 SN - 2196-7350 VL - 7 IS - 24 SP - 931 PB - Wiley VCH AN - OPUS4-51659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -