TY - JOUR A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Svetlov, I. L. A1 - Nolze, Gert T1 - Model for Forecasting Temperature Dependence of γ/γ' Misfit in Heat-Resistant Nickel Alloys N2 - An analytical model for forecasting the temperature dependence of γ/γ' misfit in heat-resistant nickel alloys is proposed. The model accounts for the concentration dependences of the periods of crystalline lattices of the γ and γ' phases (Vegard law), thermal expansion of the γ and γ' lattices, and dissolution of the γ' phase at high temperatures. Adequacy of calculations of misfit is confirmed by comparison with the results of measurements using methods of X-ray and neutron diffraction. The model is applied for development of a nickel alloy with positive misfit. KW - Heat-resistant nickel alloys KW - Dimensional mismatch of crystalline lattice periods (misfit) KW - Microstructure evolution PY - 2022 DO - https://doi.org/10.1134/S2075113322010105 SN - 2075-1133 VL - 13 IS - 1 SP - 7 EP - 16 PB - Springer AN - OPUS4-54379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt-Grund, R. A1 - Sturm, C. A1 - Hertwig, Andreas T1 - Ellipsometry and polarimetry - Classical measurement techniques with always new developments, concepts, and applications N2 - Ellipsometry is a matured experimental method, whose roots reach back into the early phase of modern optics itself. It is often attributed to be invented by Paul Drude in the last decade of the 19th century, but similar techniques had already been applied for years before Drude started his work. With this Special Issue about ellipsometry and related techniques, we hope to bring more attention to this method and advance and propagate it to be used by a broader community. We have collected a good mixture of articles: some texts are more in the line of users’ tutorial and best practice guides; others are intended to show recent developments of the method. With this collection, we also hope to show the generally rapidly expanding possibilities of ellipsometry and polarimetry to draw attention of new users and previously unrelated communities to this valuable tool. KW - Ellipsometry KW - Polarimetry KW - Surfaces KW - Thin films KW - Optical analysis PY - 2022 DO - https://doi.org/10.1515/aot-2022-0025 SN - 2192-8584 SN - 2192-8576 VL - 11 IS - 3-4 (Topical issue: Ellipsometry) SP - 57 EP - 58 PB - De Gruyter CY - Berlin AN - OPUS4-55467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement by Monte-Carlo based particle scattering Simulations N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined.[1] Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. [2] These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for ongoing experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au. T2 - NALS 2022 CY - Santander, Spain DA - 27.04.2022 KW - AuNP KW - Beta decay KW - beta particle KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - particle scattering KW - Penelope model KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio PY - 2022 AN - OPUS4-54775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Schmidt-Grund, R. ED - Sturm, C. ED - Hertwig, Andreas T1 - Topical issue: Ellipsometry N2 - Ellipsometry is a matured experimental method, whose roots reach back into the early phase of modern optics itself. It is often attributed to be invented by Paul Drude in the last decade of the 19th century, but similar techniques had already been applied for years before Drude started his work. With this Special Issue about ellipsometry and related techniques, we hope to bring more attention to this method and advance and propagate it to be used by a broader community. KW - Spectroscopy KW - Ellipsometry KW - Surfaces KW - Thin films KW - Advanced optics KW - Optical measurement technology PY - 2022 UR - https://www.degruyter.com/journal/key/aot/11/3-4/html#contents SN - 2192-8584 SN - 2192-8576 VL - 11 IS - 3-4 SP - 47 EP - 147 PB - De Gruyter CY - Berlin AN - OPUS4-55468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Luminescent multifunctional nanostructures for sensing and theranostics applications N2 - An overview of the work carried out at LEMAF - Laboratory of Spectroscopy of Functional Materials at IFSC/USP was given. The work presented focus on the design, production and functional characterization of multifunctional nanoparticles. T2 - NANOANDES - Latin American School on Nanomaterials and Appllications CY - Araraquara, SP, Brazil DA - 10.10.2023 KW - Multifunctional nanoparticles KW - Upconversion nanoparticles KW - Quantum dots KW - Noble metal nanoparticles PY - 2023 AN - OPUS4-60363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Luminescent multifunctional nanostructures for sensing and theranostics applications N2 - The research carried out at the Laboratory of Spectroscopy of Functional Materials at IFSC/USP, in Brazil, is focused on the synthesis and structural-property correlation of luminescent materials including rare-earth (RE) doped glasses, ceramics and hybrid host-guest materials. For the past five years, we have been particularly interested in the development of single- and multifunctional nanosystems based on core-shell upconversion nanoparticles (UCNP) associated with dyes, organometallic complexes and other organic molecules, for biophotonic and sensing applications. In these systems, we take advantage of energy transfer between the UCNPs and the molecules to either supress or enhance luminescent response. Examples include the possibility of bioimaging and photodynamic therapy of bacteria and cancer cells, simultaneous magnetothermia and thermometry, localized O2 sensing, fast detection and quantification of biological markers (e.g. kidney disease) and microorganisms. On what concerns the development of luminescent sensors - a recently started project, our aim is to develop paper-based platforms for point-of-care devices. In this presentation, an overview of our contributions for the past years and our future aims will be presented with several examples. T2 - ICL2023 - 20th International Conference on Luminescence CY - Paris, France DA - 27.08.2023 KW - Upconversion KW - Sensing KW - Theranostics KW - Nanoparticles KW - Photodynamic therapy PY - 2023 AN - OPUS4-60362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena T1 - Ellipsometry as optical metrology method for analysis of reference materials for nanoelectronics N2 - Electrical properties of materials at the nanoscale can be characterized using scanning microwave microscopes (SMM) and conductive atomic force microscopes (C AFM). However, the measurement results are difficult to compare since different setups and different reference standards are used. The development of new “out-of-lab” reference standards can contribute to the traceability and reliability of these scanning probe microscopy methods (SPM) and facilitate their broader industrial application. In this study, we discuss the capability of optical methods such as ellipsometry for the characterization of existing and the development of new reference calibration samples for scanning microwave microscopy. Ellipsometry is a fast and non-destructive method, which enables very accurate determination of the layer thickness and the dielectric functions of the materials. Imaging ellipsometry is suitable for spatially resolved measurements when analyzing thin layers in microstructured samples. We show how the electrical resistivity of indium tin oxide (ITO) layers in newly designed resistive calibration samples can be obtained from spectroscopic ellipsometric measurements. The extension of the measurement range into the mid-infrared region was necessary when analyzing ITO layers with low conductivity. This parameter was obtained by fitting a Drude function describing the absorption of the free carriers. The impact of the coating process conditions on the layer properties is discussed. Imaging ellipsometry was applied for the characterisation of thin ITO and SiO2 layers in microstructured resistive and capacitance calibration kits. The uncertainties of determined layer thicknesses were specified according to standardized practice guides used in ellipsometry. We show how statistical fingerprint analysis of the measured ellipsometric transfer quantities can be used to validate the quality of potential reference materials for nano-electronics and to monitor the processing of structured samples. T2 - L. ALTECH 2024 - Analytical techniques for accurate nanoscale characterization of advanced materials CY - Strasbourg, France DA - 27.05.2024 KW - Ellipsometry KW - Reference materials KW - Transparent conductive Oxides KW - Scannig probe microscope KW - Metrology KW - Nanoelectronics PY - 2024 AN - OPUS4-60268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - Determining Material Properties with Spectroscopic Ellipsometry N2 - In this lecture, an introduction will be given on Spectroscopic Ellipsometry, what quantities can be obtained with it, and how we use it in ELENA and other projects to determine functional parameters of thin layers at the nanoscale. T2 - Summer school ELENAM : metrology at the nanoscale CY - Fréjus, France DA - 02.06.2024 KW - Thin Layers KW - Ellipsometry KW - Nanotechnology KW - Electrical Paramters PY - 2024 AN - OPUS4-60247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Würth, Christian T1 - Time resolved spectroscopy of upconverting lanthanide based upconversion nanocrystals N2 - This presentation gives an overview of time correlated population and depopulation processes of the electronic states of lanthanide doped nanoparticles. The fundamental principles of sensitized photon upconversion are explained. Theoretical principles and the correlation to experimental results are shown. Examples are given for particle growth, dissolution as well as influences of size, doping concentration and microenvironment. T2 - Principles and Applications of Time-resolved Fluorescence Spectroscopy CY - Berlin, Germany DA - 12.11.2024 KW - Upconversion KW - Time domain PY - 2024 AN - OPUS4-61652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - On the use of spectroscopic imaging ellipsometry for quantification and characterisation of defects in thin films for power electronics N2 - Compound semiconductors (CS) are promising materials for the development of high-power electrical applications. They have low losses, can withstand high temperatures and can operate at very high voltages and currents. This makes them a key technology for the electrification of many high energy applications, especially electromobility and HVDC power lines. The challenge with CS technology is that most of the process technology has to be developed anew to the high standards required by electronic applications. Today, compound semiconductors can be produced in thin layers on top of substrates fabricated from classical crystal growth processes that are already well established. A promising method for this is metal organic vapour phase epitaxy (MOVPE). With this method, many different compounds with semiconducting properties can be synthesized. Additionally, this process technology is a direct thin layer deposition method. Therefore, complex multilayer systems can be generated directly by the deposition process and without the need of doping after growing. There are a number of critical defects that can originate from the deposition process of these thin film devices. Within this project, we intend to develop new correlative imaging and analysis techniques to determine defect types, to quantify defect size and number density, as well as to characterise defects for process optimisation. We report here on the use of spectroscopic ellipsometry and imaging ellipsometry to investigate defects in several different compound semiconductor materials used in high-power electronic devices. The materials we investigated are β-Ga2O3, SiC, GaN, AlN, and AlGaN materials as well as oxidised SiC surfaces. All of these materials have their typical defects and require optimised measurement and analysis schemes for reliable detection and analysis. Spectroscopic ellipsometry is a highly sensitive method for determining the thicknesses and dielectric function of thin layers, yielding potentially a high number of microscopic properties. The combined method between ellipsometry and optical microscopy is called imaging ellipsometry and is especially powerful for the large amount of data it produces. We have analysed defects in SiC- and AlN-based thin film semiconductors as well as characterised the properties of different types of SiO2 layers created on top of SiC monocrystals. We developed ellipsometric models for the data analysis of the different semiconductor materials. If the defects have geometric features, it is useful to combine the ellipsometric analysis with topometry method like interference microscopy and scanning probe microscopy. We have successfully characterised function-critical defects in MOVPE SiC layers and correlated the findings with topography from WLIM measurements. We have developed an imaging ellipsometric measurement methodology that allows to estimate the relative defect area on a surface by a statistical raw data analysis. Compound semiconductors (CS) are promising materials for the development of high-power electrical applications. They have low losses, can withstand high temperatures and can operate at very high voltages and currents. This makes them a key technology for the electrification of many high energy applications, especially electromobility and HVDC power lines. The challenge is that most of the process technology has to be developed specifically and tailored to the high standards required by electronic applications. Today, many different CS materials can be produced in thin layers on top of substrates fabricated from classical crystal growth processes that are already well established. A promising method for this is metal organic vapour phase epitaxy (MOVPE). This technology is a direct thin layer deposition method capable of producing complex multilayer systems directly from one deposition process without the need of doping after growing. There are a number of critical defects that can originate from the deposition process when targeting electronic thin film devices. Within this project, we intend to develop new correlative imaging and analysis techniques to determine defect types, to quantify defect size and density, as well as to characterise defects for further process optimisation. We report here on the use of spectroscopic and multispectral imaging ellipsometry to investigate defects in several different compound semiconductor materials used in high-power electronic devices. The materials we investigated are β-Ga2O3, SiC, GaN, AlN, and AlGaN as well as oxidised SiC. All of these materials have their typical defects and require optimised measurement and analysis schemes for reliable detection and analysis. Spectroscopic ellipsometry is a highly sensitive method for determining the thicknesses and dielectric function of thin layers, yielding potentially a high number of microscopic properties. The combined method between ellipsometry and optical microscopy is known as imaging ellipsometry and is especially powerful for the large amount of data it produces. We have analysed defects in SiC- and AlN-based thin film semiconductors as well as characterised the properties of different types of SiO2 layers created on top of SiC monocrystals. We developed ellipsometric models for the data analysis of the different semiconductor materials. If the defects have geometric features, it is useful to combine the ellipsometric analysis with topometry methods like interference microscopy and scanning probe microscopy. We have successfully characterised function-critical defects in MOVPE SiC layers and correlated the findings with topography from WLIM measurements. We have developed an imaging ellipsometric measurement methodology that allows to estimate the relative defect area on a surface by a statistical raw data analysis. T2 - EMRS Spring Meeting 2024 - ALTECH 2024 CY - Strasbourg, France DA - 27.05.2024 KW - Ellipsometry KW - Power Electronics KW - Layer Materials KW - Defect Analysis PY - 2024 AN - OPUS4-60266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kozdras, Mark T1 - Towards a Self-driving Lab for Nanoparticle Research N2 - Society is currently confronted with two global challenges, climate change and sustainable development. This reality reverberates amongst the leading nations of the world and is articulated as a priority by the United Nations through the Framework Convention on Climate Change and its seventeen Sustainable Development Goals. In 2016, under the Paris Accord, Mission Innovation, MI, emerged as a global response to climate change and developed eight innovation challenges to mitigate its effect, including Clean Energy Materials, IC6. This innovation challenge focused its efforts on accelerating the development and deployment of clean energy materials by more than a factor of ten through Materials Acceleration Platforms, MAPs – autonomous, self-driving materials laboratories and renewed itself under the current mandate as Materials for Energy, M4E. Self-driving labs deploy artificial intelligence, robotic automation and high-performance simulation and modeling in a closed loop system of material synthesis and characterization. An international ecosystem for accelerated materials discovery has been established and finds applications in many enabling materials technologies, including nanomaterials. The importance of nanomaterials to catalysis for hydrogen production and carbon dioxide conversion as well as energy storage in batteries is well known. In this work, the international efforts under Materials for Energy will be elaborated including the development of MINERVA - MAP for Intelligent Nanomaterial synthesis Enabled by Robotics for Versatile Applications. MINERVA was specifically built to include the specialized equipment required for the synthesis, characterization and closed-loop optimization of various nano- and advanced materials, ranging from simple inorganic (silica, metal, metal oxide) or polymeric nanoparticles to more complex core-shell architectures and materials with well-defined porosity or surface chemistry. Currently, we are investigating materials for applications in antimicrobial and antibiofouling surface coatings, sensor materials, as well as the reproducible synthesis of reference materials with this platform. T2 - Nanotek 2024 CY - Barcelona, Spain DA - 25.03.2024 KW - Self-driving Labs KW - SDLs KW - Advanced Materials KW - Autonomous Materials Discovery KW - Nanoparticles Synthesis and Characterization PY - 2024 AN - OPUS4-60382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Besselink, R. A1 - Chatzipanagis, K. A1 - Hövelmann, J. A1 - Benning, L. G. A1 - Van Driessche, E. S. T1 - Nucleation Pathway of Calcium Sulfate Hemihydrate (Bassanite) from Solution: Implications for Calcium Sulfates on Mars N2 - CaSO4 minerals (i.e., gypsum, anhydrite, and bassanite) are widespread in natural and industrial environments. During the last several years, a number of studies have revealed that nucleation in the CaSO4–H2O system is nonclassical, where the formation of crystalline phases involves several steps. Based on these recent insights, we have formulated a tentative general model for calcium sulfate precipitation from solution. This model involves primary species that are formed through the assembly of multiple Ca2+ and SO42– ions into nanoclusters. These nanoclusters assemble into poorly ordered (i.e., amorphous) hydrated aggregates, which in turn undergo ordering into coherent crystalline units. The thermodynamic (meta)stability of any of the three CaSO4 phases is regulated by temperature, pressure, and ionic strength, with gypsum being the stable form at low temperatures and low-to-medium ionic strengths and anhydrite being the stable phase at high temperatures and at lower temperature for high salinities. Bassanite is metastable across the entire phase diagram but readily forms as the primary phase at high ionic strengths across a wide range of temperatures and can persist up to several months. Although the physicochemical conditions leading to bassanite formation in aqueous systems are relatively well established, nanoscale insights into the nucleation mechanisms and pathways are still lacking. To fill this gap and to further improve our general model for calcium sulfate precipitation, we conducted in situ scattering measurements at small-angle X-ray scattering and wide-angle X-ray scattering and complemented these with in situ Raman spectroscopic characterization. Based on these experiments, we show that the process of formation of bassanite from aqueous solutions is very similar to the formation of gypsum: it involves the aggregation of small primary species into larger disordered aggregates, only from which the crystalline phase develops. These data thus confirm our general model of CaSO4 nucleation and provide clues to explain the abundant occurrence of bassanite on the surface of Mars (and not on the surface of Earth). KW - Gypsum' SAXS KW - Calcium sulfate KW - Bassanite KW - Nucleation PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.0c01041 VL - 124 IS - 15 SP - 8411 EP - 8422 PB - American Chemical Society AN - OPUS4-50849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pleskunov, P. A1 - Nikitin, D. A1 - Tafiichuk, R. A1 - Shlemin, A. A1 - Hanus, J. A1 - Kousal, J. A1 - Krtous, Z. A1 - Khalakhan, I. A1 - Kus, P. A1 - Nasu, T. A1 - Nagahama, T. A1 - Funaki, C. A1 - Sato, H. A1 - Gawek, Marcel A1 - Schönhals, Andreas A1 - Choukourov, A. T1 - Plasma polymerization of acrylic acid for the tunable synthesis of glassy abd carboxylated nanoparticle N2 - Polymer nanoparticles (NPs) can be highly attractive in numerous applications including biomedicine where the use of inorganic matter may be detrimental for living tissues. In conventional wet chemistry, polymerization and functionalization of NPs with specific chemical groups involves complex and often numerous reactions. Here, we report on a solvent-free, single-step, low temperature plasma-based synthesis of carboxylated NPs produced by polymerization of acrylic acid under the conditions of a glow discharge. In a monomer-deficient regime, strong fragmentation of the monomer molecules by electron impact results in the formation of 15 nm-sized NPs with <1% retention of the carboxyl groups. In an energy-deficient regime, larger 90 nm-sized NPs are formed with better retention of the carboxyls that reaches 16 %. All types of the NPs exhibit the glass transition above the room temperature which makes them highly stable under aqueous environment with no dissolution or swelling. They are also found to degrade thermally when heated above 150 °C with a decrease of the mean NP size, yet with the retention of the chemical composition. Thus, plasma polymerization proves to be a versatile approach for the production of polymer NPs with tuneable size distribution, chemical composition and physical properties. KW - Nanoparticles PY - 2020 DO - https://doi.org/10.1021/acs.jpcb.9b08960 VL - 124 SP - 668 EP - 678 PB - ACS AN - OPUS4-50351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörmann, Anja Franziska T1 - GISAXS and XRR for STOP - M30 update N2 - With a representative set of samples measured in reflection geometry at the MOUSE we lead through our recent advances in this talk. A thin polystyrene film serves as an example for X-ray reflectivity and we show the effect of polishing on the reflectivity of stainless steel. Polystyrene spheres spin-coated onto different substrates including the polished stainless steel are demonstrated to show the characteristic scattering of spherical particles in GISAXS. We conclude with the first GISAXS data from laser-induced periodic surface structures (LIPSS) recorded at the MOUSE. T2 - M30 project meeting Surface Transfer of Pathogens (STOP) CY - Sofia, Bulgaria DA - 27.02.2025 KW - X-ray reflectivity KW - Substrate roughness KW - Grazing incidence KW - Particle-based coating PY - 2025 AN - OPUS4-62777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Besselink, R. A1 - Stawski, Tomasz A1 - Freeman, H. M. A1 - Hovelmann, J. A1 - Tobler, D. J. A1 - Benning, L. G. T1 - Mechanism of Saponite Crystallization from a Rapidly Formed Amorphous Intermediate N2 - Clays are crucial mineral phases in Earth’s weathering engine, but we do not know how they form in surface environments under (near-)ambient pressures and temperatures. Most synthesis routes, attempting to give insights into the plausible mechanisms, rely on hydrothermal conditions, yet many geological studies showed that clays may actually form at moderate temperatures (<100 °C) in most terrestrial settings. Here, we combined high-energy X-ray diffraction, infrared spectroscopy, and transmission electron microscopy to derive the mechanistic pathways of the low-temperature (25–95 °C) crystallization of a synthetic Mg-clay, saponite. Our results reveal that saponite crystallizes via a two stage process: (1) a rapid (several minutes) coprecipitation where ∼20% of the available magnesium becomes incorporated into an aluminosilicate network, followed by (2) a much slower crystallization mechanism (several hours to days) where the remaining magnesium becomes gradually incorporated into the growing saponite sheet structure. KW - Saponite KW - FTIR KW - PDF KW - Diffraction PY - 2020 DO - https://doi.org/10.1021/acs.cgd.0c00151 VL - 20 IS - 5 SP - 3365 EP - 3373 PB - American Chemical Society AN - OPUS4-50917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Battig, Alexander A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Huth, Christian A1 - Böhning, Martin A1 - Schartel, Bernhard T1 - Multifunctional Property Improvements by Combining Graphene and Conventional Fillers in Chlorosulfonated Polyethylene Rubber Composites N2 - The incorporation of nanoparticles like multilayer graphene (MLG) into elastomeric composites boosts their technical performance, such as their mechanical behavior and electrical conductivity. Common filler types (carbon black (CB) and aluminum trihydroxide (ATH)) generally fulfill single, specific purposes and are often used in high loadings. CB typically reinforces rubber mechanically, while ATH increases flame retardancy. Small amounts of MLG reduce these high filler contents and maintain the multifunctional characteristics of rubber composites. In chlorosulfonated polyethylene (CSM) + ATH, an intrinsically flame-retardant rubber was designed to achieve the highest standards such as maximum average of heat emission (MARHE) <90 kW m−2, 3 phrMLG was substituted for 15 phr CB and/or 3 phr ATH via an industrially applicable processing approach. Replacing either CB or ATH resulted in a property profile that was multifunctionally improved in terms of features such as mechanical performance, reduced sorption, and flame retardance. MLG nanocomposites are reported to show promise as an industrially utilizable route to obtain multifunctional high-performance rubbers. KW - Nanocomposites KW - Rubber KW - Multilayer graphene KW - Flame retardancy KW - Synergy KW - Nanoparticles KW - Elastomers PY - 2022 DO - https://doi.org/10.1021/acsapm.1c01469 SN - 2637-6105 VL - 4 IS - 2 SP - 1021 EP - 1034 PB - ACS Publ. CY - Washington, DC AN - OPUS4-54330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strommer, Bettina T1 - Natural Rubber Nanocomposites via Optimized Latex Premixing and Conventional Technical Processing N2 - Creation of highly functional materials and replacement of high amounts of conventional fillers are driving forces for the development of nanocomposites. Besides the type and properties of nanoparticles, their dispersing in the elastomeric matrix and the stability of this dispersion through all processing steps are the main factors for the resulting performance of the produced material. Therefore, a preparation chain via latex premixing to a highly filled masterbatch, followed by conventional technical processing is to be developed. Three types of carbon-based particles are characterized as such (SEM, Raman Spectroscopy, BET specific surface area) and in combination with natural rubber, as nanocomposites (TEM. Hardness, Abrasion resistance, Compression set, Cone calorimetry). All of the studied particles lead to an improvement in the investigated mechanical properties, the extent of reinforcement depends strongly on the specific surface of the particle interacting with the elastomeric matrix in combination with their shape. T2 - DKG Elastomer Symposium CY - Online meeting DA - 28.06.2021 KW - Processing KW - Elastomers KW - Nanocomposites KW - Graphene KW - Nanoparticles KW - Latex KW - Natural rubber PY - 2021 AN - OPUS4-53106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Battig, Alexander T1 - Multifunctional Graphene in Flame Retarded Polybutadiene/ Chloroprene/ Carbon Black Composites N2 - Multilayer graphene is investigated as a multifunctional nanofiller to polybutadiene/ chloroprene rubbers (BR/CR) that partially substitutes carbon black (CB) and aluminum trihydroxide (ATH). Loadings of only 3 parts per hundred rubber (phr) MLG replaced 15 phr of CB and/or 3 phr of ATH in BR/CR nanocomposites. Mechanical and fire behavior were investigated, and results point to improved rheological, curing and mechanical properties of MLG-containing rubber composites. T2 - 18th European Meeting on Fire Retardant Polymeric Materials, FRPM21 CY - Budapest, Hungary DA - 29.08.2021 KW - Graphene KW - Rubber KW - Fire Retardant KW - Nanofiller KW - Nanocomposite KW - ATH PY - 2021 AN - OPUS4-53202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Anwendungen von maschinellem Lernen und KI an der BAM N2 - Im Austausch mit den anderen Bundesoberbehörden wurden die KI-Ansätze der verschiedenen Bundesoberbehörden zu spezifischen Themen der Nanowissenschaften präsentiert. Der Vortrag der BAM fokusiert sich auf die Themen "Self driving lab", semantische Segmentierung und Auswertung von elektronenmikroskopischen Bildern sowie die Generierung von ausführbaren Machineninstruktionen aus natürlicher Sprache. Abschließend wird der neue BAM DataStore vorgestellt. T2 - Nano-Behördenklausur 2024 CY - Berlin, Germany DA - 03.07.02024 KW - Nano KW - Bundesoberbehörden KW - Künstliche Intelligenz KW - Neuronale Netzwerke KW - Elektronisches Laborbuch PY - 2024 AN - OPUS4-61819 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Hu, Y. ED - Wang, X. T1 - Influence of the Size and Dispersion State of Two-Dimensional Nanomaterials on the Fire Safety of Polymers N2 - Only the nano-scaled structure of the nanocomposite and the dispersion of nanoparticles within the polymer matrix harbor multifunctional potential including superior fire retardancy. Thus, this chapter focuses on the dispersion of nanoplates, based mainly on studies of layered silicates and graphene/graphene-related nanoplates. The nanostructure and properties of the nanocomposites are dependent mainly on thermodynamic and kinetic factors during preparation. Improving nano-dispersion often directly improves flame retardancy. Therefore, the modification of the nanoplates as well as the preparation of nanocomposites becomes very important to control this dispersion. The dispersion of nanoplates functions as a prerequisite for the formation of an efficient protective layer, changing the melt flow and dripping behavior, or the improvement of the char properties. KW - Nanocomposite KW - Flame retardancy KW - 2D nanoparticle KW - Exfoliation KW - Dispersion KW - Flammability PY - 2023 SN - 978-1-032-35268-8 SN - 978-1-032-35502-3 SN - 978-1-003-32715-8 DO - https://doi.org/10.1201/9781003327158-2 SP - 23 EP - 58 PB - CRC Press CY - Boca Raton AN - OPUS4-58290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -