TY - JOUR A1 - Hildebrand, G. A1 - Sänger, Johanna Christiane A1 - Schirmer, U. A1 - Mantei, W. A1 - Dupuis, Y. A1 - Houbertz, R. A1 - Liefeith, K. T1 - Process Development for Additive Manufacturing of Alumina Toughened Zirconia for 3D Structures by Means of Two-Photon Absorption Technique N2 - Additive manufacturing is well established for plastics and metals, and it gets more and more implemented in a variety of industrial processes. Beside these well-established material platforms, additive manufacturing processes are highly interesting for ceramics, especially regarding resource conservation and for the production of complex three-dimensional shapes and structures with specific feature sizes in the µm and mm range with high accuracy. The usage of ceramics in 3D printing is, however, just at the beginning of a technical implementation in a continuously and fast rising field of research and development. The flexible fabrication of highly complex and precise 3D structures by means of light-induced photopolymerization that are difficult to realize using traditional ceramic fabrication methods such as casting and machining is of high importance. Generally, slurry-based ceramic 3D printing technologies involve liquid or semi-liquid polymeric systems dispersed with ceramic particles as feedstock (inks or pastes), depending on the solid loading and viscosity of the system. This paper includes all types of photo-curable polymer-ceramic-mixtures (feedstock), while demonstrating our own work on 3D printed alumina toughened zirconia based ceramic slurries with light induced polymerization on the basis of two-photon absorption (TPA) for the first time. As a proven exemplary on cuboids with varying edge length and double pyramids in the µm-range we state that real 3D micro-stereolithographic fabrication of ceramic products will be generally possible in the near future by means of TPA. This technology enables the fabrication of 3D structures with high accuracy in comparison to ceramic technologies that apply single-photon excitation. In sum, our work is intended to contribute to the fundamental development of this technology for the representation of oxide-ceramic components (proof-of-principle) and helps to exploit the high potential of additive processes in the field of bio-ceramics in the medium to long-term future. KW - Additive manufacturing KW - Ceramics 3D printing KW - Two-photon adsorption KW - Polymer-ceramic mixtures KW - Bio-ceramic engineering PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526672 DO - https://doi.org/10.3390/ceramics4020017 VL - 4 IS - 2 SP - 224 EP - 239 PB - MDPI CY - Basel AN - OPUS4-52667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Smales, Glen Jacob A1 - Henning, S. A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Calorimetric and Dielectric Investigations of Epoxy-Based Nanocomposites with Halloysite Nanotubes as Nanofillers N2 - Epoxy nanocomposites are promising materials for industrial applications (i.e., aerospace, marine and automotive industry) due to their extraordinary mechanical and thermal properties. Here, the effect of hollow halloysite nanotubes (HNT) on an epoxy matrix (Ep) was the focus of the study. The structure and molecular mobility of the nanocomposites were investigated using a combination of X-ray scattering, calorimetry (differential (DSC) and fast scanning calorimetry (FSC)) and dielectric spectroscopy. Additionally, the effect of surface modification of HNT (polydopamine (PDA) and Fe(OH)3 nanodots) was considered. For Ep/HNT, the glass transition temperature (Tg) is was de-creased due to a nanoparticle-related decrease of the crosslinking density. For the modified system, Ep/m-HNT, the surface modification resulted in enhanced filler–matrix interactions leading to higher Tg values than the pure epoxy in some cases. For Ep/m-HNT, the amount of interface formed between the nanoparticles and the matrix ranged from 5% to 15%. Through BDS measurements, localized fluctuations were detected as a β- and γ-relaxation, related to rotational fluctuations of phenyl rings and local reorientations of unreacted components. A combination of calorimetry and BDS dielectric spectroscopy revealed a dynamic and structural heterogeneity of the matrix, as confirmed by two glassy dynamics in both systems, related to regions with different crosslinking densities. KW - Rigid amorphous fraction KW - Epoxy nanocomposites KW - Halloysite nanotubes KW - X-ray scattering KW - Differential scanning calorimetry KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526668 DO - https://doi.org/10.3390/polym13101634 VL - 13 IS - 10 SP - 1634 PB - MDPI AN - OPUS4-52666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Drobne, D. A1 - Novak, S. A1 - Kranjc, E. A1 - Bohmer, N. A1 - Hodoroaba, Vasile-Dan T1 - Data quality for Nanorisk Governance N2 - Nanomaterials bring various benefits and have become a part of our daily lives. However, the risks emerging from nanotechnology need to be minimized and controlled at the regulatory level and therefore, there is a need for nanorisk governance. One of the prerequisites for successful nanorisk governance is the availability of high-quality data on nanomaterials and their impact with the human body and the environment. In recent decades, a countless number of publications and studies on nanomaterials and their properties have been produced due to the fast development of nanotechnology. Despite such a vast amount of data and information, there are certain knowledge gaps hindering an efficient nanorisk governance process. Knowing the state of the available data and information is an important requirement for any decision maker in dealing with risks. In the specific case of nanotechnology, where most of the risks are complex, ambiguous, and uncertain in nature, it is essential to obtain complete data and metadata, to fill knowledge gaps, and to transform the available knowledge into functional knowledge. This can become possible using a novel approach developed within the NANORIGO project (Grant agreement No. 814530) – the Knowledge Readiness Level (KaRL). In analogy to NASA’s Technology Readiness Levels (TRLs), we define KaRLs as a categorization system of data, information, and knowledge which enables transformation of data and information into functional knowledge for nanorisk governance. Our approach goes beyond the technical curation of data and metadata and involves quality and completeness filters, regulatory compliance requirements, nanorisk-related tools, and most importantly, human input (inclusion of all stakeholder groups). With the KaRL approach we also address key issues in nanotechnology such as societal and ethical concerns, circular economies and sustainability, the Green Deal, and the traceability of data, knowledge, and decisions. The KaRL approach could be used for nanorisk governance by a nanorisk governance council (NRGC), which is currently under development by three EU projects (NANORIGO, GOV4NANO, and RISKGONE). T2 - Nanosafety Training School: From Basic Science To Risk Governance CY - Online meeting DA - 20.06.2021 KW - Data KW - Knowledge KW - Risk Governance KW - Knowledge Readiness Level PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529255 AN - OPUS4-52925 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mezera, Marek A1 - Mirabella, Francesca A1 - Wasmuth, Karsten A1 - Richter, Anja A1 - Schwibbert, Karin A1 - Bennet, Francesca A1 - Krüger, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Influence of the pulse repetition rate on the chemical and morphological properties of laser generated surface structures N2 - Inter-pulse accumulation of heat could affect the chemical and morphological properties of the laser processed material surface. Hence, the laser pulse repetition rate may restrict the processing parameters for specific laser-induced surface structures. In this study, the evolution of various types of laser-induced micro- and nanostructures at various laser fluence levels, effective number of pulses and at different pulse repetition rates (1 – 400 kHz) are studied for common metals/alloys (e.g. steel or titanium alloy) irradiated by near-infrared ultrashort laser pulses (925 fs, 1030 nm) in air environment. The processed surfaces were characterized by optical and scanning electron microscopy (OM, SEM), energy dispersive X-ray spectroscopy (EDX) as well as time of flight secondary ion mass spectrometry (TOF-SIMS). The results show that not only the surface morphology could change at different laser pulse repetition rates and comparable laser fluence levels and effective number of pulses, but also the surface chemistry is altered. Consequences for medical applications are outlined. T2 - European Materials Research Society Spring 2021 Meeting CY - Online meeting DA - 31.05.2021 KW - Laser-induced pariodic surface structures KW - LIPSS PY - 2021 AN - OPUS4-52778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Drobne, D. A1 - Novak, S. A1 - Kranjc, E. A1 - Bohmer, N. A1 - Hodoroaba, Vasile-Dan T1 - Knowledge Readiness for Nanorisk Governance N2 - Nanomaterials bring various benefits and have become a part of our daily lives. However, the risks emerging from nanotechnology need to be minimized and controlled at the regulatory level and therefore, there is a need for nanorisk governance. One of the prerequisites for successful nanorisk governance is the availability of high-quality data on nanomaterials and their impact with the human body and the environment. In recent decades, a countless number of publications and studies on nanomaterials and their properties have been produced due to the fast development of nanotechnology. Despite such a vast amount of data and information, there are certain knowledge gaps hindering an efficient nanorisk governance process. Knowing the state of the available data and information is an important requirement for any decision maker in dealing with risks. In the specific case of nanotechnology, where most of the risks are complex, ambiguous, and uncertain in nature, it is essential to obtain complete data and metadata, to fill knowledge gaps, and to transform the available knowledge into functional knowledge. This can become possible using a novel approach developed within the NANORIGO project (Grant agreement No. 814530) – the Knowledge Readiness Level (KaRL). In analogy to NASA’s Technology Readiness Levels (TRLs), we define KaRLs as a categorization system of data, information, and knowledge which enables transformation of data and information into functional knowledge for nanorisk governance. Our approach goes beyond the technical curation of data and metadata and involves quality and completeness filters, regulatory compliance requirements, nanorisk-related tools, and most importantly, human input (inclusion of all stakeholder groups). With the KaRL approach we also address key issues in nanotechnology such as societal and ethical concerns, circular economies and sustainability, the Green Deal, and the traceability of data, knowledge, and decisions. The KaRL approach could be used for nanorisk governance by a nanorisk governance council (NRGC), which is currently under development by three EU projects (NANORIGO, GOV4NANO, and RISKGONE). T2 - Gov4Nano: data management core group CY - Online meeting DA - 05.07.2021 KW - Data Management KW - Knowledge Readiness Level KW - Nanorisk Governance KW - Participatory Approach KW - Sustainability PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529264 AN - OPUS4-52926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichelt, Manuel A1 - Cappella, Brunero T1 - Micro- and nanowear of self-mated steel generated and studied with an AFM at the single asperity level N2 - We show for the first time tribotests performed with self-mated 100Cr6 steel, taking advantage of an AFM, employed as a tribometer for the tribotests as well as for the inspection of wear of both tribopartners. Emphasis is put on the morphology of the scars, on wear particles, and on wear of the “colloidal” particles glued on the AFM cantilever. Measurements demonstrate the possibility of characterizing single asperity events leading to very small wear. We highlight several phenomena, which are elementary key constituents of tribological processes. Such phenomena, probably occurring also at the macroscale, can be detected, identified, and characterized with high spatial and time resolution only at the nanoscale, thus giving insight into conditions and causes of their emergence. KW - Nanowear KW - Atomic force microscope KW - 100Cr6 (AISI 52100) steel KW - Wear particles KW - Single asperity contact KW - Particle transfer KW - Zero wear PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531389 DO - https://doi.org/10.3389/fmech.2021.722434 SN - 2297-3079 VL - 7 SP - 1 EP - 16 PB - Frontiers Media CY - Lausanne AN - OPUS4-53138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Fischer, Daniel A1 - Freiberg, K. A1 - Duwe, M. A1 - Sahre, Mario A1 - Schneider, S. A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Rettenmayr, M. A1 - Beck, Uwe A1 - Undisz, A. A1 - Bonse, Jörn T1 - Silicon surface amorphization and re-crystallization via single femtosecond laser pulses N2 - Silicon is the material responsible for most of the technological developments during the past century, making it one of the most studied materials along different disciplines. However, there are still unturned stones regarding its superficial re-solidification after femtosecond laser-induced local melting. In this presentation, we report irradiation experiments with single femtosecond pulses (790 nm, 30 fs) with a spatially Gaussian distribution on two different types of silicon with orientations <111> and <100>. The surface modifications were studied in detail via different techniques, including optical microscopy, atomic force microscopy, spectroscopic imaging ellipsometry, energy dispersive X-ray spectroscopy and high-resolution transmission electron microscopy. We quantitatively estimate the resulting radial amorphous layer depth profiles with maximum thicknesses around some tenths of nanometers for fluences in between the melting and ablation thresholds. In particular, spectroscopic imaging ellipsometry (SIE) allowed fast data acquisition using multiple wavelengths to provide experimental measurements for calculating the nanometric radial amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. SIE proved to be capable of detecting and measuring nanometric structural and chemical modifications (oxidation) on the studied laser spots. The accuracy of the SIE-based calculations is verified experimentally by characterizing an in-depth material lamella via high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). For completeness, we present a mathematical modelling for the melt layer thickness considering different optical absorption processes including one photon absorption, two photon absorption and free-carrier absorption, highlighting the relevance of the latter one in the femtosecond laser-induced melting of silicon. T2 - 28th International Conference on Advanced Laser Technologies (ALT'21) CY - Online meeting DA - 06.09.2021 KW - Silicon KW - Femtosecond laser KW - Phase transitions KW - Spectroscopic imaging ellipsometry KW - Transmission electron microscopy PY - 2021 AN - OPUS4-53235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - VAMAS TWA 37 - Quantitative Microstructural Analysis & Liaison with ISO/TC 202 Microbeam Analysis, Liaison with ISO N2 - The progress in activities on Microbeam Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 is presented and discussed with respect to the possibility of identifying and launching related VAMAS projects. Need of more promotion for the engagement of more participants from industry and academia at national, European and international level is highlighted. Also, the competition with the other technical working areas (on 'nano' or materials-related) is critically discussed. Further, a short overview of the VAMAS areas of activities is given where Germany is involved. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 46th Steering Committee Meeting CY - Online meeting DA - 08.09.2021 KW - VAMAS KW - Nanoparticles KW - Standardisation KW - Inter-laboratory comparison KW - ISO/TC 202 KW - ISO/TC 229 KW - ISO/TC 201 KW - Microstructure KW - EBSD PY - 2021 UR - http://www.vamas.org/twa/ AN - OPUS4-53237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Anja A1 - Mezera, Marek A1 - Buchberger, G. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Heitz, J. A1 - Schwibbert, Karin T1 - Laser-processing – a tool to direct biofilm formation N2 - Using nanofiber-like cell appendages, secreted proteins and sugars, bacteria can establish initial surface contact followed by irreversible adhesion and the formation of multicellular biofilms, often with enhanced resistance towards antimicrobial treatment and established cleaning procedures. On e.g. medical implants, in water supply networks or food-processing industry, biofilms can be a fertile source of bacterial pathogens and are repeatedly associated with persisting, nosocomial and foodborne infections. Nowadays, the emergence of resistances because of extensive usage of antibiotics and biocides in medicine, agriculture and private households have become one of the most important medical challenges with considerable economic consequences. In addition, aggravated biofilm eradication and prolonged cell-surface interaction can lead to increased biodeterioration and undesired modification of industrial and medical surface materials. Various strategies are currently developed, tested, and improved to realize anti-bacterial surface properties through surface functionalization steps avoiding antibiotics. In this study, contact-less and aseptic large-area short or ultrashort laser processing is employed to generate different surface structures in the nanometer- to micrometer-scale on technical materials such as titanium-alloy and polyethylene terephthalate (PET). The laser processed surfaces were subjected to bacterial colonization studies with Escherichia coli test strains and analyzed with reflected-light and epi-fluorescence microscopy. Depending on the investigated surfaces, different bacterial adhesion patterns were found, ranging from bacterial-repellent to bacterial-attractant effects. The results suggest an influence of size, shape and cell appendages of the bacteria and – above all – the laser-processed nanostructure of the surface itself, emphasizing the potential of laser-processing as a versatile tool to control bacterial surface adhesion. T2 - International Biodeterioration & Biodegradation Symposium 2021 CY - Online meeting DA - 06.09.2021 KW - Bacterial adhesion KW - Biofilm formation KW - Laser-induced periodic surface structueres (LIPPS) KW - Laser processing PY - 2021 UR - https://www.ibbs18.org/programme AN - OPUS4-53223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fiedler, Saskia A1 - Mortensen, N. A. A1 - Wolff, C. A1 - Morozov, S. A1 - Illiushyn, L. A1 - Booth, T. J. A1 - Stenger, N. A1 - Tserkezis, C. T1 - Giant photon bunching of WS2 monolayer in cathodoluminescence N2 - Cathodoluminescence (CL) spectroscopy has become a powerful tool to study nanostructures due to its high spectral and spatial resolution down to sub-nanometer. More recently, CL technique has also been used for second order auto-correlation measurements (g(2)(t)) to identify different single photon emitters and photon bunching in different materials [1-2]. In this work, tungsten disulfide (WS2) monolayers encapsulated in hexagonal boron nitride (hBN) with and without monocrystalline Au nanodisks (NDs) have been studied, using CL and PL spectroscopy as well as g(2)-CL- and PL-measurements. CL and PL maps of different WS2 monolayers before/after Au ND deposition show a narrow peak at ~625 nm without any background emission. In CL, the hBN not only protects WS2 from the electron beam but also acts as a charge carrier sink which substantially increases the CL signal [3]. A further CL enhancement is achieved by Au ND deposition, exhibiting the maximum at the center of the NDs without any size dependence. The PL intensity is unaffected. This indicates that Purcell enhancement cannot be the underlying mechanism. Furthermore, a giant CL-photon bunching of the hBN-encapsulated WS2 monolayers is found which is independent of the applied voltage but highly dependent on the electron beam current. At the lowest current of ~2 pA, a CL bunching factor of up to 160 is observed. Varying thicknesses of the surrounding hBN increases the overall CL signal but does not affect the bunching factor, though it exhibits small local changes within the same flake. In contrast, there is no PL correlation (g(2)(0) = 1). Interestingly, this photon bunching can be further increased by Au NDs, resulting in the highest ever observed bunching factor of close to 2200. Once again, this enhancement is independent of the Au ND’s diameter although some disks show higher bunching factors than others. Most likely, the Au acts as shield for the incoming primary electrons, resulting in an even further decreased current, and thereby, increased bunching. In conclusion, large CL-photon bunching is found in hBN-encapsulated WS2 monolayers which can be substantially enhanced by Au NDs. References [1] M.A. Feldmann, E.F. Demitrescu, D. Bridges, M.F. Chisholm, R.B. Davidson, P.G. Evans, J.A. Hachtel, A. Hu, R.C. Pooser, R.F. Haglund, B.J. Lawrie, Phys. Rev. B, 97, 081404(R) (2018) [2] S. Meuret, L.H.G. Tizei, T. Cazimajou, R. Bourrellier, H.C. Chang, F. Treussartm M. Kociak, Phys. Rev. Letter, 114, 197401 (2015) [3] S. Zheng, J.-K. So, F. Liu, Z. Liu, N. Zheludev, H.J. Fan, Nano Lett., 17, 6475-6480 (2017) T2 - GSELOP2021 CY - Paris, France DA - 23.08.2021 KW - Cathodoluminescence KW - Photon bunching KW - 2D materials KW - TMDCs KW - Au nanodisks KW - Transition metal dichalcogenide KW - Au nanoparticles PY - 2021 AN - OPUS4-53153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Haase, Oskar A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald A1 - Resch-Genger, Ute T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Monodisperse iron oxide nanoparticles as reference material candidate for particle size measurements N2 - In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important, especially with respect to the assessment of their environmental or biological impact. Furthermore, the European Commission’s REACH Regulations require the registration of nanomaterials traded in quantities of at least 1 ton. Powders or dispersions where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as nanomaterials. This creates a need for industrial manufacturers and research or analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution and will also target other key parameters like shape, structure, porosity or functional properties. In this respect, materials like iron oxide or titanium dioxide are considered as candidates to complement the already available silica, Au, Ag, and polystyrene reference nanoparticles. The thermal decomposition of iron oleate precursors in high boiling organic solvents can provide large quantities of iron oxide nanoparticles that can be varied in size and shape.[1, 2] The presence of oleic acid or other hydrophobic ligands as capping agents ensures stable dispersion in nonpolar solvents. Such monodisperse, spherical particles were synthesized at BAM and pre-characterized by electron microscopy (TEM, SEM including the transmission mode STEM-in-SEM) and dynamic light scattering comparing cumulants analysis and frequency power spectrum. 1. REACH regulations and nanosafety concerns create a strong need for nano reference materials with diverse properties. 2. Iron oxide nanoparticles are under development as new candidate reference material at BAM. 3. Narrow particle size distribution confirmed by light scattering and electron microscopy. T2 - Nanosafety 2020 CY - Online meeting DA - 05.10.2020 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Electron microscopy KW - Nanoplattform PY - 2020 AN - OPUS4-52774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Schönhals, Andreas T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy-based Materials N2 - This work deals with an in-depth comparative investigation of the structure, molecular mobility and vitrification kinetics of three bisphenol A diglycidyl ether (DGEBA)-based materials with different nanofillers: taurine-modified layered double hydroxide (T-LDH) and halloysite nanotubes (HNTs). The chosen methodology comprises I) small – and wide – angle X-ray scattering (SAXS/WAXS) II) calorimetry in the forms of a) conventional DSC and b) static fast scanning calorimetry (FSC), III) broadband dielectric spectroscopy (BDS), as well as IV) specific heat spectroscopy in the forms of a) temperature modulated DSC, and b) temperature modulated FSC. T2 - Abteilungsseminar 6. - FB 6.6 CY - Online meeting DA - 06.05.2021 KW - Broadband dielectric spectroscopy KW - Epoxy nanocomposites KW - Halloysite nanotubes KW - X-ray scattering KW - Differential scanning calorimetry KW - Rigid amorphous fraction KW - Flash DSC PY - 2021 AN - OPUS4-52697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Déziel, J.-L. A1 - Kirner, Sabrina V. A1 - Siegel, J. A1 - Bonse, Jörn T1 - Femtosecond laser-induced oxidation in the formation of periodic surface structures N2 - Laser-induced oxide graded layers may contribute to the formation of a new type of embedded low-spatial frequency LIPSS with an anomalous orientation parallel to the laser polarization. In this contribution, we explore this effect experimentally with femtosecond laser pulses and numerically by finite-difference time-domain (FDTD) calculations. T2 - 2021 Conference on Lasers and Electro-Optics/Europe – European Quantum Electronics Virtual Conferences CY - Online meeting DA - 21.06.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface oxidation KW - Femtosecond laser ablation KW - Finite-difference time-domain calculations PY - 2021 AN - OPUS4-52859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Burr, L. A1 - Schmid, D. A1 - Hodoroaba, Vasile-Dan T1 - Towards a method for quantitative evaluation of nanoparticle from suspensions via microarray printing and SEM analysis N2 - As part of the development of a library of accurate and efficient methods for measurement of nanoparticle properties, we develop and optimize a method for the efficient analysis of nanoparticle size distribution from suspensions via microprinting and digital analysis of electron microscopy (SEM and TEM) images, with the ultimate aim of automated quantitative concentration analysis (calculated from drop volume). A series of different nanoparticle suspensions (gold, latex, and SiO2 in varying sizes and concentrations) were printed onto TEM grids in a 4 x 4 array in the concentration range 7x10^8 to 1x10^11 nanoparticles/mL and imaged with SEM. Concentrations and printing conditions (temperature, relative humidity) were varied in order to minimize the coffee-ring effect. KW - Nanoparticles KW - Particle size distribution KW - Electron microscopy KW - Microarray printing KW - Sample preparation KW - Nanoparticle concentration PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528455 DO - https://doi.org/10.1088/1742-6596/1953/1/012002 VL - 1953 SP - 012002 PB - IOP Publishing AN - OPUS4-52845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - BAM reference data - EDS raw data of Al-coated titania nanoparticles (JRCNM62001a and JRCNM62002a) N2 - EDS spectra of Al-coated titania nanoparticles (JRCNM62001 and JRCNM62002a) provided by the JRC repository are provided. KW - EDS KW - Titania nanoparticles KW - BAM reference data PY - 2021 DO - https://doi.org/10.5281/zenodo.4986420 PB - Zenodo CY - Geneva AN - OPUS4-52833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bennet, Francesca A1 - Hodoroaba, Vasile-Dan T1 - BAM reference data - SEM raw data for the particles size distribution of Al-coated titania nanoparticles (JRCNM62001a and JRCNM62002a) N2 - SEM raw images of Al-coated titania nanoparticles (JRCNM62001 and JRCNM62002a) provided by the JRC repository are provided together with the particle size distribution of the minimum Feret Diameter extracted from the given images. KW - SEM KW - Titania nanoparticles KW - Particle size distribution KW - BAM reference data PY - 2021 DO - https://doi.org/10.5281/zenodo.5007367 PB - Zenodo CY - Geneva AN - OPUS4-52836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Wonneberger, R. A1 - Undisz, A. A1 - Kirner, Sabrina V. A1 - Wasmuth, Karsten A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Surface oxidation accompanying the formation of various types of femtosecond laser-generated surface structures on titanium alloy N2 - Different types of laser-generated surface structures, i.e., Laser-induced Periodic Surface Structures (LIPSS, ripples), Grooves, and Spikes are generated on titanium and Ti6Al4V surfaces by means of femtosecond (fs) laser scan processing (790 nm, 30 fs, 1 kHz) in ambient air. Morphological, chemical and structural properties of the different surface structures are characterized by various surface analytical techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Glow discharge optical emission spectroscopy (GD-OES), and depth-profiling Auger electron spectroscopy (AES). It is revealed that the formation of near-wavelength sized LIPSS is accompanied by the formation of a graded oxide extending several tens to a few hundreds of nanometers into depth. GD-OES performed on other superficial fs-laser generated structures produced at higher fluences and effective number of pulses per spot area such as periodic Grooves and irregular Spikes indicate even thicker graded oxide layers. These graded layers may be suitable for applications in prosthetics or tribology. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Titanium alloy KW - Oxidation KW - Glow-discharge optical emission spectroscopy PY - 2021 AN - OPUS4-52749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rudenko, A. A1 - Déziel, J.-L. A1 - Florian, Camilo A1 - Krüger, Jörg A1 - Siegel, J. A1 - Colombier, J.-P. T1 - The role of electromagnetic scattering in the formation of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon that is accompanying laser materials processing. These surface nanostructures pave a simple way for surface functionalization with numerous applications in optics, fluidics, tribology, medicine, etc. During the last decade remarkable experimental and theoretical improvements in understanding of their formation mechanisms were obtained - all pointing toward polarization-dependent energy deposition by absorption of optical radiation that is scattered at the surface roughness and interfering with the laser beam. This contribution reviews the current state-of-the-art on the role of electromagnetic scattering in the formation of LIPSS by ultrashort laser pulses. Special attention is drawn to recent finite-difference time-domain (FDTD) calculations that allow to visualize the radiation patterns formed in the vicinity of the sample surface and to the impact of a thin superficial laser-induced oxidation layer. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Optical scattering KW - Oxidation KW - Femtosecond laser PY - 2021 AN - OPUS4-52729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Angurel, L.A. A1 - Cubero, A. A1 - Martínez, E. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Effects of laser surface processing under different atmospheres on the superconducting properties of pure niobium N2 - Niobium metal is the pure element with the highest superconducting critical temperature (T_c = 9.2 K), which is present in many applications. Particularly, in superconducting radio frequency (SRF) cavities of particle accelerators, the control of the surface characteristics of pure Nb is crucial, as the presence of defects may generate magnetic flux pinning that can increase by more than two orders of magnitude the surface critical current, ic. Several procedures such as chemical- or electro-polishing have been used aiming at cleaning surface contamination and decreasing its roughness. Sub-nanosecond lasers can be applied to generate a broad range of micro and nanostructures (e.g. Laser-Induced Periodic Surface Structures, LIPSS) that strongly modify the materials properties - as wettability, color, oxidation resistance or antibacterial behavior. In this work, we analyze a variety of surface structures generated on pure Nb sheets with different laser systems (UV, Vis and n-IR, fs and ps) by exploring a range of processing parameters. These include pulse overlap, irradiance or the effective number of pulses, under different atmospheres (air, N2, Ar, vacuum). The effects on Tc, critical currents and critical fields (Bc1, Bc2 and Bc3) have been obtained from magnetization, ac susceptibility and heat capacity measurements, revealing their dependence with the different surface nanostructures and the chemical changes generated with these laser treatments. T2 - E-MRS Spring Meeting 2021 CY - Online meeting DA - 31.05.2021 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Niobium KW - Superconductivity PY - 2021 AN - OPUS4-52730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -