TY - JOUR A1 - Scholtz, Lena A1 - Eckert, J. G. A1 - Graf, Rebecca T. A1 - Kunst, A. A1 - Wegner, Karl David A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Correlating semiconductor nanoparticle architecture and applicability for the controlled encoding of luminescent polymer microparticles N2 - Luminophore stained micro- and nanobeads made from organic polymers like polystyrene (PS) are broadly used in the life and material sciences as luminescent reporters, for bead-based assays, sensor arrays, printable barcodes, security inks, and the calibration of fluorescence microscopes and flow cytometers. Initially mostly prepared with organic dyes, meanwhile luminescent core/shell nanoparticles (NPs) like spherical semiconductor quantum dots (QDs) are increasingly employed for bead encoding. This is related to their narrower emission spectra, tuneability of emission color, broad wavelength excitability, and better photostability. However, correlations between particle architecture, morphology, and photoluminescence (PL) of the luminescent nanocrystals used for encoding and the optical properties of the NP-stained beads have been rarely explored. This encouraged us to perform a screening study on the incorporation of different types of luminescent core/shell semiconductor nanocrystals into polymer microparticles (PMPs) by a radical-induced polymerization reaction. Nanocrystals explored include CdSe/CdS QDs of varying CdS shell thickness, a CdSe/ZnS core/shell QD, CdSe/CdS quantum rods (QRs), and CdSe/CdS nanoplatelets (NPLs). Thereby, we focused on the applicability of these NPs for the polymerization synthesis approach used and quantified the preservation of the initial NP luminescence. The spectroscopic characterization of the resulting PMPs revealed the successful staining of the PMPs with luminescent CdSe/CdS QDs and CdSe/CdS NPLs. In contrast, usage of CdSe/CdS QRs and CdSe QDs with a ZnS shell did not yield luminescent PMPs. The results of this study provide new insights into structure–property relationships between NP stained PMPs and the initial luminescent NPs applied for staining and underline the importance of such studies for the performance optimization of NP-stained beads. KW - Quantitative spectroscopy KW - Energy transfer KW - Synthesis KW - Surface chemistry KW - Semiconductor quantum dot KW - Luminescence KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Polymer particle KW - Quantum rod KW - Nanoplatelet PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602206 DO - https://doi.org/10.1038/s41598-024-62591-1 VL - 14 SP - 1 EP - 16 AN - OPUS4-60220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reiber, T. A1 - Hübner, Oskar A1 - Dose, C. A1 - Yushchenko, D. A. A1 - Resch-Genger, Ute T1 - Fluorophore multimerization on a PEG backbone as a concept for signal amplification and lifetime modulation N2 - Fluorescent labels have strongly contributed to many advancements in bioanalysis, molecular biology, molecular imaging, and medical diagnostics. Despite a large toolbox of molecular and nanoscale fluorophores to choose from, there is still a need for brighter labels, e.g., for flow cytometry and fluorescence microscopy, that are preferably of molecular nature. This requires versatile concepts for fluorophore multimerization, which involves the shielding of dyes from other chromophores and possible quenchers in their neighborhood. In addition, to increase the number of readout parameters for fluorescence microscopy and eventually also flow cytometry, control and tuning of the labels’ fluorescence lifetimes is desired. Searching for bright multi-chromophoric or multimeric labels, we developed PEGylated dyes bearing functional groups for their bioconjugation and explored their spectroscopic properties and photostability in comparison to those of the respective monomeric dyes for two exemplarily chosen fluorophores excitable at 488 nm. Subsequently, these dyes were conjugated with anti-CD4 and anti-CD8 immunoglobulins to obtain fluorescent conjugates suitable for the labeling of cells and beads. Finally, the suitability of these novel labels for fluorescence lifetime imaging and target discrimination based upon lifetime measurements was assessed. Based upon the results of our spectroscopic studies including measurements of fluorescence quantum yields (QY) and fluorescence decay kinetics we could demonstrate the absence of significant dye-dye interactions and self-quenching in these multimeric labels. Moreover, in a first fluorescence lifetime imaging (FLIM) study, we could show the future potential of this multimerization concept for lifetime discrimination and multiplexing. KW - Imaging KW - Quantum yield KW - Quality assurance KW - Antibody KW - Conjugate KW - Cell KW - FLIM KW - PEG KW - Flow cytometry KW - Lifetime KW - Energy transfer KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Fluorescence KW - Dye KW - Amplification KW - Microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602197 DO - https://doi.org/10.1038/s41598-024-62548-4 VL - 14 IS - 1 SP - 1 EP - 11 AN - OPUS4-60219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Radnik, Jörg A1 - Ermilova, Elena A1 - Hodoroaba, Vasile-Dan T1 - Accuracy on all scales: Hybrid metrology for micro- and nanomanufacturing N2 - In this presentation, we discuss hybrid metrology and correlative imaging. These techniques are used to improve the design and quality monitoring of nanomaterials used in energy technology and for referencing the properties of nanoparticles. T2 - EMN for Advanced Manufacturing workshop CY - Berlin, Germany DA - 22.05.2024 KW - Nanotechnology KW - Nanoanalytics KW - Correlative Spectroscopy KW - Correlative Imaging PY - 2024 AN - OPUS4-60240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elert, Anna Maria A1 - Chen, Yong-Cin A1 - Smales, Glen J. A1 - Topolniak, Ievgeniia A1 - Sturm, Heinz A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Effects of the charge density of nanopapers based on carboxymethylated cellulose nanofibrils investigated by complementary techniques N2 - Cellulose nanofibrils (CNFs) with different charge densities were prepared and investigated by a combination of different complementary techniques sensitive to the structure and molecular dynamics of the system. The morphology of the materials was investigated by scanning electron microscopy (SEM) and X-ray scattering (SAXS/WAXS). The latter measurements were quantitatively analyzed yielding to molecular parameters in dependence of the charge density like the diameter of the fibrils, the distance between the fibrils, and the dimension of bundles of nanofibrils, including pores. The influence of water on the properties and the charge density is studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and broadband dielectric spectroscopy. The TGA measurements reveal two mass loss processes. The one at lower temperatures was related to the loss of water, and the second process at higher temperatures was related to the chemical decomposition. The resulting char yield could be correlated to the distance between the microfibrils. The DSC investigation for hydrated CNFs revealed three glass transitions due to the cellulose segments surrounded by water molecules in different states. In the second heating scan, only one broad glass transition is observed. The dielectric spectra reveal two relaxation processes. At low temperatures or higher frequencies, the β-relaxation is observed, which is assigned to localized fluctuation of the glycosidic linkage. At higher temperatures and lower frequencies, the α-relaxation takes places. This relaxation is due to cooperative fluctuations in the cellulose segments. Both processes were quantitatively analyzed. The obtained parameters such as the relaxation rates were related to both the morphological data, the charge density, and the content of water for the first time. KW - Cellulose nanofibrils PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600528 DO - https://doi.org/https://doi.org/10.1021/acsomega.4c00255 SN - 2470-1343 VL - 9 SP - 20152 EP - 20166 PB - ACS AN - OPUS4-60052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Multiphoton Lithography of Interpenetrating Polymer Networks for Tailored Microstructure Thermal and Micromechanical Properties N2 - Multiphoton lithography (MPL), an emerging truly 3D microfabrication technique, exhibits substantial potential in biomedical applications, including drug delivery and tissue engineering. Fabricated micro-objects are often expected to undergo shape morphing or bending of the entire structure or its parts. Furthermore, ensuring precise property tuning is detrimental to the realization of the functionality of MPL microstructures. Herein, novel MPL materials based on interpenetrating polymer networks (IPNs) are presented that effectively combine the advantages of acrylate and epoxy systems. IPNs with varying component ratios are investigated for their microfabrication performance and structural integrity with respect to thermal and micromechanical properties. A variety of high-resolution techniques is applied to comprehensively evaluate IPN properties at the bulk, micron, and segmental levels. This study shows that the MPL laser scanning velocity and power, photoinitiator content, and multi-step exposure can be used to tune the morphology and properties of the IPN. As a result, a library of 3D MPL IPN microstructures with high 3D structural stability and tailored thermal and micromechanical properties is achieved. New IPN microstructures with Young’s moduli of 3–4 MPa demonstrate high-to-fully elastic responses to deformations, making them promising for applications in morphable microsystems, soft micro-robotics, and cell engineering. KW - Interpenetrating polymer network KW - Multiphoton lithography KW - Atomic force microscopy KW - Intermodulation AFM KW - Fast scanning calorimetry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600593 DO - https://doi.org/10.1002/smll.202310580 SN - 1613-6810 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-60059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - How to perform reliable xps-measurements? N2 - Reliable measurements are a great challenge in X-ray photoelectron spectroscopy. It will be shown, how to check the performance and calibration of the instrument, the charge compensation, quantification, fitting, and depth profiling. T2 - Course for PhD students at SFB 1073 CY - Göttingen, Germany DA - 23.02.2024 KW - X-ray photoelectron spectroscopy KW - Reproducibility crisis KW - Reliability PY - 2024 AN - OPUS4-59590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Stockmann, Jörg Manfred A1 - Knigge, Xenia A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute A1 - Madkour, S. A1 - Schönhals, Andreas A1 - Reed, B. A1 - Clifford, C. A1 - Shard, A. T1 - (hard) x ray photoelectron spectroscopy as tool in nano-analytics N2 - Selected samples are used to show, that photoelectron spectroscopy is an important tool for measuring nano-objects, especially for determing the chemical composition and structure on the nanosacle. XPS with different energies offers new possibilities in depth-profiling. T2 - SFB 1073 Colloquium CY - Göttingen, Germany DA - 22.02.2024 KW - X-ray photoelectron spectroscopy KW - Core-shell nanoparticle KW - Graphene related 2D materials PY - 2024 AN - OPUS4-59589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Waitelonis, Jörg A1 - v. Hartrott, Phillip A1 - Hanke, Thomas A1 - Birkholz, Henk A1 - Lau, June A1 - Skrotzki, Birgit T1 - Adapting FAIR Practices in Materials Science: Digital Representation of Material-Specific Characterization Methods N2 - Age-hardenable aluminum alloys undergo precise heat treatments to yield nanometer-sized precipitates that increase their strength and durability by hindering the dislocation mobility. Tensile tests provide mechanical properties, while microstructure evaluation relies on transmission electron microscopy (TEM), specifically the use of dark-field TEM images for precise dimensional analysis of the precipitates. However, this manual process is time consuming, skill dependent, and prone to errors and reproducibility issues. Our primary goal is to digitally represent these processes while adhering to FAIR principles. Ontologies play a critical role in facilitating semantic annotation of (meta)data and form the basis for advanced data management. Publishing raw data, digital workflows, and ontologies ensures reproducibility. This work introduces innovative solutions to traditional bottlenecks and offers new perspectives on digitalization challenges in materials science. We support advanced data management by leveraging knowledge graphs and foster collaborative and open data ecosystems that potentially revolutionize materials research and discovery. T2 - TMS - Specialty Congress 2024 CY - Cleveland, Ohio, US DA - 16.06.2024 KW - FAIR KW - Research Data Management KW - Semantic Interoperability KW - Ontologies KW - Materials and Processes Data Reusability PY - 2024 AN - OPUS4-60375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kozdras, Mark A1 - Ruehle, Bastian T1 - Towards a Self-driving Lab for Nanoparticle Research N2 - Society is currently confronted with two global challenges, climate change and sustainable development. This reality reverberates amongst the leading nations of the world and is articulated as a priority by the United Nations through the Framework Convention on Climate Change and its seventeen Sustainable Development Goals. In 2016, under the Paris Accord, Mission Innovation, MI, emerged as a global response to climate change and developed eight innovation challenges to mitigate its effect, including Clean Energy Materials, IC6. This innovation challenge focused its efforts on accelerating the development and deployment of clean energy materials by more than a factor of ten through Materials Acceleration Platforms, MAPs – autonomous, self-driving materials laboratories and renewed itself under the current mandate as Materials for Energy, M4E. Self-driving labs deploy artificial intelligence, robotic automation and high-performance simulation and modeling in a closed loop system of material synthesis and characterization. An international ecosystem for accelerated materials discovery has been established and finds applications in many enabling materials technologies, including nanomaterials. The importance of nanomaterials to catalysis for hydrogen production and carbon dioxide conversion as well as energy storage in batteries is well known. In this work, the international efforts under Materials for Energy will be elaborated including the development of MINERVA - MAP for Intelligent Nanomaterial synthesis Enabled by Robotics for Versatile Applications. MINERVA was specifically built to include the specialized equipment required for the synthesis, characterization and closed-loop optimization of various nano- and advanced materials, ranging from simple inorganic (silica, metal, metal oxide) or polymeric nanoparticles to more complex core-shell architectures and materials with well-defined porosity or surface chemistry. Currently, we are investigating materials for applications in antimicrobial and antibiofouling surface coatings, sensor materials, as well as the reproducible synthesis of reference materials with this platform. T2 - Nanotek 2024 CY - Barcelona, Spain DA - 25.03.2024 KW - Self-driving Labs KW - SDLs KW - Advanced Materials KW - Autonomous Materials Discovery KW - Nanoparticles Synthesis and Characterization PY - 2024 AN - OPUS4-60382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed Aejaz A1 - Malpass-Evans, R. A1 - McKeown, N. A1 - Jalarvo, N. A1 - Tyagi, M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Microscopic molecular mobility of high-performance polymers of intrinsic microporosity revealed by neutron scattering – bend fluctuations and signature of methyl group rotation N2 - Polymers of intrinsic microporosity exhibit a combination of high gas permeability and reasonable permselectivity, which makes them attractive candidates for gas separation membrane materials. The diffusional selective gas transport properties are connected to the molecular mobility of these polymers in the condensed state. Incoherent quasielastic neutron scattering was carried out on two polymers of intrinsic microporosity, PIM-EA-TB(CH3) and its demethylated counterpart PIM-EA-TB(H2), which have high Brunauer–Emmett–Teller surface area values of 1030 m2 g-1 and 836 m2 g-1, respectively. As these two polymers only differ in the presence of two methyl groups at the ethanoanthracene unit, the effect of methyl group rotation can be investigated solely. To cover a broad dynamic range, neutron time-of-flight was combined with neutron backscattering. The demethylated PIM-EA-TB(H2) exhibits a relaxation process with a weak intensity at short times. As the backbone is rigid and stiff this process was assigned to bendand-flex fluctuations. This process was also observed for the PIM-EA-TB(CH3). A further relaxation process is found for PIM-EA-TB(CH3), which is the methyl group rotation. It was analyzed by a jump-diffusion in a three-fold potential considering also the fact that only a fraction of the present hydrogens in PIM-EATB(CH3) participate in the methyl group rotation. This analysis can quantitatively describe the q dependence of the elastic incoherent structure factor. Furthermore, a relaxation time for the methyl group rotation can be extracted. A high activation energy of 35 kJ mol-1 was deduced. This high activation energy evidences a strong hindrance of the methyl group rotation in the bridged PIM-EA-TB(CH3) structure. KW - Polymers of Intrinsic Microporosity KW - Neutron Scattering PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604114 DO - https://doi.org/10.1039/d4sm00520a SP - 1 EP - 11 PB - RSC AN - OPUS4-60411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auxillos, J. A1 - Crouigneau, R. A1 - Li, Y.-F. A1 - Dai, Y. A1 - Stigliani, A. A1 - Tavernaro, Isabella A1 - Resch-Genger, Ute A1 - Sandelin, A. A1 - Marie, R. A1 - Pedersen, S. F. T1 - Spatially resolved analysis of microenvironmental gradient impact on cancer cell phenotypes N2 - Despite the physiological and pathophysiological significance of microenvironmental gradients, e.g., for diseases such as cancer, tools for generating such gradients and analyzing their impact are lacking. Here, we present an integrated microfluidic-based workflow that mimics extracellular pH gradients characteristic of solid tumors while enabling high-resolution live imaging of, e.g., cell motility and chemotaxis, and preserving the capacity to capture the spatial transcriptome. Our microfluidic device generates a pH gradient that can be rapidly controlled to mimic spatiotemporal microenvironmental changes over cancer cells embedded in a 3D matrix. The device can be reopened allowing immunofluorescence analysis of selected phenotypes, as well as the transfer of cells and matrix to a Visium slide for spatially resolved analysis of transcriptional changes across the pH gradient. This workflow is easily adaptable to other gradients and multiple cell types and can therefore prove invaluable for integrated analysis of roles of microenvironmental gradients in biology. KW - Bioimaging KW - Fluorescence KW - Cell KW - Cancer KW - Method KW - Microfluids KW - Model KW - Calibration KW - Sensor KW - Ph KW - Probe KW - Workflow PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604631 DO - https://doi.org/10.1126/sciadv.adn3448 VL - 19 IS - 18 SP - 1 EP - 17 AN - OPUS4-60463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Tavernaro, Isabella A1 - Würth, Christian A1 - Grüne, M. A1 - Schweizer, S. A1 - Engel, A. T1 - Absolute Determination of Photoluminescence Quantum Yields of Scattering LED Converter Materials – How to Get it Right N2 - Optical measurements of scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders play an important role in fundamental research and industry. Typical examples are luminescent nano- and microparticles and phosphors of different composition in different matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter for the performance of these materials is the photoluminescence quantum yield QY, i.e., the number of emitted photons per number of absorbed photons. QY of transparent luminophore solutions can be determined relatively to a fluorescence quantum yield standard of known QY. Such standards are meanwhile available as certified reference materials.[1] The determination of QY of scattering liquid and solid samples like dispersions of luminescent nanoparticles, solid phosphors, and optoceramics requires, however, absolute measurements with an integrating sphere setup. Although the importance of reliable absolute QY measurements has been recognized, no interlaboratory comparisons (ILCs) on measurement uncertainties and the identification of typical sources of uncertainty have been yet reported. Also, no scattering reference materials with known QY are available. We present here the results of a first ILC of 3 laboratories from academia and industry performed to identify and quantify sources of uncertainty of absolute QY measurements of scattering samples. Thereby, two types of commercial stand-alone integrating sphere setups with different illumination and detection geometries were utilized for measuring QY of transparent and scattering dye solutions and solid phosphors. As representative and industrially relevant solid and scattering samples, YAG:Ce optoceramics of varying surface roughness were chosen, applied, e.g., as converter materials for blue light emitting diodes. Special emphasis was dedicated to the influence of the measurement geometry, the optical properties of the blank, utilized to determine the number of photons of the incident excitation light absorbed by the sample, and the sample-specific surface roughness. While matching QY values could be obtained for transparent dye solutions and scattering dispersions, here using a blank with scattering properties closely matching those of the sample, QY measurements of optoceramic samples with different blanks revealed substantial differences, with the blank's optical properties accounting for measurement uncertainties of more than 20 %. Based upon the ILC results, we recommend non-absorbing blank materials with a high reflectivity (>95 %) such as a 2 mm-thick PTFE target placed on the sample holder which reveals a near-Lambertian light scattering behavior, yielding a homogeneous light distribution within the integrating sphere. T2 - e-MRS 2024 CY - Strasbourg, France DA - 27.05.2024 KW - Luminescence KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Phosphor KW - Converter marterial KW - Fluorescence KW - Interlaboratory KW - Comparison KW - Method KW - Uncertainty KW - Reference material PY - 2024 AN - OPUS4-60490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Tavernaro, Isabella A1 - Radnik, Jörg A1 - Kunc, F. A1 - Brinkmann, A. A1 - Lopinski, G. A1 - Johnston, L. J. T1 - Characterization and quantification of functional groups and coatings on nanoobjects an overview N2 - Characterization of Nanoparticles – Questions to Ask, Functional Nanoparticles (NPs) – Organic, Inorganic, and Hybrid Nanoparticles Nanomaterial Characterization Standardization – Addressing Remaining Gaps Surface FGs Particle Surface Chemistry - Why is it Important? Particle Surface Chemistry - A Key Driver for Performance, Applications, and Safety Aspects Method Development for Quantifying FGs and Ligands on Particle Surfaces FG Quantification – Method Choice & Criteria Relevant for Data Interpretation Quantifying the Amount of Total and Accessible FGs on Aminated Silica Nanoparticles (SiO2-NH2) Comparing the Total and Accessible –NH2 Content on Aminated Silica NPs of Different Size Characterization of Nanoparticles Standardization Standardized Measurements of Surface FGs on Nanoparticles EMP Project SMURFnano EMP Project SMURFnano Work Packages & Goals Certified Reference Materials from BAM T2 - e-MRS 2024 (Spring Meeting of the European Materials Research Society, Altech Symposium) CY - Strasbourg, France DA - 27.05.2024 KW - Luminescence KW - Nano KW - Particle KW - Quantum yield KW - Quality assurance KW - Interlaboratory comparison KW - Method KW - Uncertainty KW - Reference material KW - Surface analysis KW - Optical assay KW - NMR KW - Silica KW - Ligand PY - 2024 AN - OPUS4-60495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Buchholz, Michelle A1 - Gawlitza, Kornelia A1 - Gersdorf, Anna A1 - Gradzielksi, Michael A1 - Rurack, Knut T1 - Dual Fluorescent Molecularly Imprinted Polymers (MIPs) for Detection of the Prevalent Anti-Inflammatory Drug Diclofenac N2 - Ensuring the purity of air and water is essential for the overall well-being of life on earth and the sustainability of the planet's diverse ecosystems. To achieve the goal of zero pollution, as outlined in the 2020 European Green Deal by the European Commission,[1] significant efforts are in progress. A key aspect of this commitment involves advancing more efficient and economically viable methods for treating wastewater. This includes the systematic monitoring of harmful pollutants such as heavy metals, microplastics, pesticides, and pharmaceuticals. One example is the presence of the anti-inflammatory drug diclofenac in water systems, primarily originating from its use as a gel or lotion for joint pain treatment. Diclofenac contamination in surface waters has been detected at approximately 10 μg L-1 (0.03 μM)[2] which is not solely due to widespread usage but also because of the drug's resistance to microbial degradation. Conventional wastewater treatment plants (WWTPs), which rely on biodegradation, sludge sorption, ozone oxidation, and powdered activated carbon treatment, struggle to efficiently remove diclofenac from wastewater.[3],[4] For instance, to enable WWTPs to efficiently monitor and optimize their processes, it would be advantageous to develop on-site detection and extraction methods for persistent pharmaceutical residues in aqueous samples. In this work, a sol-gel process was used to prepare Nile blue-doped silica nanoparticles (dSiO2-NPs) with a diameter of ca. 30 nm that were further functionalized to enable reversible-addition-fragmentation chain-transfer (RAFT) polymerization. To achieve fluorescence detection, a fluorescent monomer was used as a probe for diclofenac in ethyl acetate, generating stable complexes through hydrogen bond formation. The diclofenac/fluorescent monomer complexes were imprinted into thin molecularly imprinted polymer (MIP) shells on the surface of the dSiO2-NPs. Thus, the MIP binding behaviour could be easily evaluated by fluorescence titrations to monitor the spectral changes upon addition of the analyte. Doping the core substrate with Nile blue generates effective dual fluorescent signal transduction. This approach does not solely depend on a single fluorescence emission band in response to analyte recognition. Instead, it enables the fluorescent core to function as an internal reference, minimizing analyte-independent factors such as background fluorescence, instrumental fluctuation, and operational parameters.[5] Rebinding studies showed that the MIP particles have excellent selectivity towards the imprinted template and good discrimination against the competitor ibuprofen, with a discrimination factor of 2.5. Additionally, the limit of detection was determined to be 0.6 μM. Thus, with further optimization of the MIP, there is potential for the development of a MIP-based biphasic extract-&-detect fluorescence assay for simple, sensitive and specific sensing of diclofenac in aqueous samples down to the required concentrations of 0.03 μM. T2 - MIP2024: The 12th International Conference on Molecular Imprinting CY - Verona, Italy DA - 18.06.2024 KW - Sensor KW - Diclofenac KW - Molecularly Imprinted Polymers KW - Fluorescence KW - Pollutant PY - 2024 AN - OPUS4-60439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Pérez-Padilla, Víctor A1 - Sun, Yijuan A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Rurack, Knut T1 - On-Site Detection of PFAAs with Dual Fluorescent MIPs Coupled to a Miniaturized Microfluidics Platform N2 - Per- and polyfluoroalkyl substances (PFAS) represent a class of synthetic organofluorine chemicals extensively utilized in the manufacturing of various materials such as firefighting foams, adhesives, and stain- and oil-resistant coatings. In recent years, PFAS have been considered as emerging environmental contaminants, with particular focus on perfluoroalkyl carboxylic acids (PFCAs), the most prevalent type among PFAS. PFCAs are characterized by a fully fluorinated carbon backbone and a charged carboxylic acid headgroup. Notably, they have been designated as Substances of Very High Concern and added to the REACH Candidate List due to their persistence in the environment, non-biodegradability and toxicological effects. Conventional techniques for the analysis of PFCA, such as GC-MS, HRMS and HPLC-based methods, are laborious, not portable, costly and require skilled personnel. In contrast, fluorescence assays can be designed as easy-to-operate, portable and cost-effective methods with high sensitivity and fast response, especially when analyte binding leads to a specific increase of a probe’s emission. Integration of such probes with a carrier platform and a miniaturized optofluidic device affords a promising alternative for PFCA monitoring. Here, a novel guanidine BODIPY fluorescent indicator monomer has been synthesized, characterized, and incorporated into a molecularly imprinted polymer (MIP) for the specific detection of perfluorooctanoic acid (PFOA). The MIP layer was formed on tris(bipyridine)ruthenium(II) chloride doped silica core particles for optical internal reference and calibration-free assays. Such system allows selective and reliable detection of PFCA from surface water samples, with minimum interference by competitors, matrix effects and other factors. Integration of the assay into an opto-microfluidic setup resulted in a miniaturized and easy-to-operate detection system allowing for micromolar detection of PFOA in less than 15 minutes from surface water sample. T2 - MIP2024: The 12th International Conference on Molecular Imprinting CY - Verona, Italy DA - 18.06.2024 KW - Sensor KW - PFAS KW - Molecularly imprinted polymers KW - Guanidine receptor KW - BODIPY PY - 2024 AN - OPUS4-60438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madbouly, Loay Akmal A1 - Mrkwitschka, Paul A1 - Schusterbauer, Robert A1 - Stockmann, Jörg Manfred A1 - Jones, E. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Chemical Analysis of Functionalized Graphene along the Production Chain N2 - Graphene has been commercialized for over a decade. It is usually used in the form of suspensions or inks. In this study, we analyze the starting material for commercial functionalized graphene (FG) solutions and inks as well as their starting material (FG powders) using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), energy-dispersive X-Ray spectroscopy (EDX), time of flight secondary ion mass spectrometry (ToF-SIMS) and Auger electron spectroscopy (AES). Graphene was functionalized with fluorine, oxygen, ammonia, and carboxylic acid. Our results suggest a significant effect of water and commercial resins on the presence as well as the morphological behavior of graphene and associated functionalized group. For example, XPS analysis shows some significant differences between the solutions and the starting materials (powders). These changes can be explained by the location of the functionalization at the outer most surface as indicated by Chemello et al. T2 - European Conference on Applications of Surface and Interface Analysis (ECASIA 2024) CY - Gothenburg, Sweden DA - 09.06.2024 KW - Functionalized graphene KW - Commercial graphene KW - Graphene inks PY - 2024 AN - OPUS4-60446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madbouly, Loay Akmal A1 - Mrkwitschka, Paul A1 - Schusterbauer, Robert A1 - Schusterbauer, Jörg Manfred A1 - Jones,, E. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Chemical Analysis of Functionalized Graphene along the Production Chain N2 - Graphene has been commercialized for over a decade. It is usually used in the form of suspensions or inks. In this study, we analyze the starting material for commercial functionalized graphene (FG) solutions and inks as well as their starting material (FG powders) using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), energy-dispersive X-Ray spectroscopy (EDX), time of flight secondary ion mass spectrometry (ToF-SIMS) and Auger electron spectroscopy (AES). Graphene was functionalized with fluorine, oxygen, ammonia, and carboxylic acid. Our results suggest a significant effect of water and commercial resins on the presence as well as the morphological behavior of graphene and associated functionalized group. For example, XPS analysis shows some significant differences between the solutions and the starting materials (powders). These changes can be explained by the location of the functionalization at the outer most surface as indicated by Chemello et al. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Functionalized graphene KW - Commercial graphene KW - Graphene inks PY - 2024 AN - OPUS4-60448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Correlative analysis with electron microscopy applied in different operating modes (SEM, STEM-in-SEM and TEM) for the accurate morphological characterisation of non-spherical fine nanoparticles N2 - Electron microscopy applied in different operating modes, e.g., SEM, TEM or STEM-in-SEM, is the gold standard method to investigate the exact size and shape of individual nanoparticles. However, when fine nanoparticles with a non-monodisperse size distribution and non-spherical shapes are analysed, achieving an accurate result is challenging. Deviations in size measurements of more than 10% may occur. Understanding of the contrasts and sensitivities characteristic to the individual operating modes of an electron microscope is key in interpreting and evaluating quantitatively the measurement uncertainties needed for an eventual certification of specific nanoparticles via traceable results. Further, beyond the pure measurement, the other components in the analysis workflow with significant impact on the overall measurement uncertainties are the sample preparation and the image segmentation. In the present study the same areas of selected iron oxide fine nanoparticles (<25 nm) as reference nanomaterial (candidate) prepared on substrate for electron microscopy imaging are analysed correlatively with SEM, STEM-in-SEM and TEM with respect to their size and shape distribution. Individual significant measurement uncertainties are discussed, e.g., the sensitivity of secondary electron detectors of InLens-type to the surface morphology, particularly to the presence of an ultrathin organic coating or signal saturation effects on the particle edges, to electron beam exposure, to surface contamination, or the selection of the threshold for image segmentation. Another goal of this study is to establish a basis of analysis conditions which shall guarantee accurate results when both manual and particularly (semi-)automated segmentation approaches are applied. Advantages as well as limitations of the use of different electron microscopy operating modes, applied individually and correlatively, are highlighted. T2 - E-MRS 2024 Spring Meeting CY - Strasbourg, France DA - 27.05.2024 KW - Nanoparticles KW - Electron Microscopy KW - Metrology KW - Imaging KW - Reference materials PY - 2024 AN - OPUS4-60436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Hodoroaba, Vasile-Dan A1 - Pellegrino, Francesco A1 - Rossi, Andrea A1 - Jones, Elliot T1 - Towards automated analysis of the lateral dimensions of graphene oxide flakes N2 - Graphene and graphene-oxide (GO) are advanced materials which – similar to other graphene-related 2D materials (GR-2M) - are already used for instance in catalysis processes, biomedical applications, in inks and resins, or as composite materials for the aviation industry. The lateral/structural characterization of graphene oxide (GO) flakes is a challenging task, with steps like sample preparation, representative image selection and exact determination of the particle size distribution of well-defined size and shape descriptors being crucial for an accurate analysis. To ensure that safe-by-design principles are met within the various application fields, the commercial material must be thoroughly characterized and specified through well-known and standardized procedures. GO flakes with different degrees of complexity were selected to assess the requirements for an accurate evaluation of their physico-chemical properties. These samples show inherent features with complex nanoscale characteristics such as porosity and edge roughness; further, the lateral size (quantified via equivalent circular diameter (ECD), minimum Feret and maximum Feret) of isolated and overlapping particles deposited on a substrate span over several orders of magnitude (nano to micron scale). The samples showed different degrees of agglomeration (and possible aggregation) with sizes ranging between submicron to a few tens of micrometers. One focus is the automated segmentation and evaluation of images obtained by electron microscopy. The GO samples appear translucent with well-defined contrast between single and overlapping flakes both with the secondary electron detector of type InLens as well as with SEM in the transmission mode (STEM) utilizing a dedicated sample holder. To this end it is of utmost importance for the accurate image segmentation to carefully select thresholds both manually and through semi-automatic approaches using well-known threshold algorithms such as “IsoData” and pre-defined segmentation applications such as the ParticleSizer software package. Further specific challenges in identifying and extracting key features of selected graphene oxide flakes are being discussed and approaches towards accurate and representative characterization are presented. T2 - E-MRS 2024 Spring Meeting CY - Strasbourg, France DA - 27.05.2024 KW - Graphene /-oxide KW - Morphology KW - Electron microscopy KW - Imaging KW - Advanced materials PY - 2024 AN - OPUS4-60435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren A1 - Sahre, Mario A1 - Hesse, R. A1 - Schusterbauer, Robert A1 - Grant, M. A1 - Agudo Jacome, Leonardo A1 - Albrecht, T. A1 - Hodoroaba, Vasile-Dan T1 - Approaches to Surface Analysis of Modified Quartz Nanopipettes N2 - Nanopipettes are a type of solid-state nanopore with needle-like geometry. Their applications range from imaging, sensing, diagnostics, and use as injectors. The response of nanopipette sensors is highly dependent on the size, geometry and chemical properties of the sensing region. As they are increasingly tuned and modified for specific analytes, a better understanding of the surface chemistry and morphology of the inner channel is necessary. With the aim of developing a comprehensive approach for characterisation of such nanopipettes, this research focuses on combining surface-sensitive analysis methods with advanced sample preparation techniques. Quartz substrates were modified by gas phase silanization, a well-utilised technique in the field to enhance performance of nanopipettes, and further functionalised with a metal bis thiolate complex, to aid in chemical analysis. The sample characterisation involved scanning electron microscopy (SEM), low-energy dispersive x-ray spectroscopy (EDX), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Auger electron spectroscopy (AES). Using focused ion beam (FIB) milling under gentle conditions, the inner surface of quartz nanopipettes was exposed whilst preserving the integrity of the overall structure (see figure). Owing to the challenging analysis conditions, modification and analysis of flat quartz substrates has been performed in parallel for optimisation purposes. The results demonstrate the first steps towards full characterisation of nanopipettes at the nanoscale, notably with access to the inner channel. The methods used here can be applied to gain further understanding of the response of these sensors to complex analytes and allow for the study of different surface functionalisations at the all-important sensing region. T2 - European Conference on Applications of Surface and Interface Analysis (ECASIA 2024) CY - Gothenburg, Sweden DA - 09.06.2024 KW - Quartz nanopipettes KW - Nanopipette modification KW - Silanization KW - Surface analysis KW - Focussed ion beam PY - 2024 AN - OPUS4-60447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -