TY - CONF A1 - Nicolai, Marcel T1 - Investigating Lamb wave mode repulsion with a spring-based model N2 - Lamb waves are widely utilized in material characterization, non-destructive testing (NDT), and structural health monitoring (SHM). A unique feature of Lamb waves is mode repulsion, where dispersion curves approach each other but do not cross. This phenomenon is observed in both single and multilayer plates and is influenced by wave coupling. While mode repulsion in single plates has been linked to symmetry-breaking effects, its underlying mechanism in multilayer systems remains unclear. This study investigates mode repulsion in a coupled aluminum-polycarbonate plate system using a spring-based interface model. Dispersion curves are computed via the Scaled Boundary Finite Element Method, and time-domain simulations are used to analyze the interface dynamics. Results indicate that repulsion depends on interface stiffness, distinguishing between opening and closing repulsion regions. The study further reveals that mode repulsion corresponds to distinct oscillatory behaviors in the interface, where certain wave modes induce increased coupling spring elongation, leading to localized strain. A coupled harmonic oscillator model effectively explains opening repulsion regions but does not fully capture closing regions. Findings suggest that mode repulsion could be leveraged for non-destructive evaluation of adhesive interfaces, offering insights into bond strength characterization. This research contributes to a deeper understanding of wave interactions in multilayer structures and provides a theoretical foundation for advancing NDT and SHM techniques. T2 - ICU2025 - International Congress on Ultrasonics 2025 CY - Paderborn, Germany DA - 21.09.2025 KW - Lamb waves KW - Mode repulsion KW - Coupled plates KW - Dispersion curves KW - Elastic Interfaces PY - 2025 AN - OPUS4-64225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Azimzada, Agil A1 - Meermann, Björn T1 - AF4/ICP-ToF-MS for the investigation of species-specific adsorption of organometallic contaminants on natural colloidal particles N2 - Organotin (OT) compounds, while crucial in many industrial applications, pose substantial risks to the environment and human health. The toxicity and environmental behaviour of OTs depend on their chemical form, i.e., the type and number of organic substituents. Each species thus exhibits distinct toxicity profiles and varying binding affinities to environmental colloids, which influence their mobility, bioavailability, and environmental impacts. To date, however, most studies addressed speciation and colloidal characterization separately, leaving the combined determinations of organometallics along with their carrier colloids largely elusive. Here, we develop and validate an on-line measurement system to quantify the adsorption dynamics of 10 OT species on natural colloidal particles (<500 nm). The approach integrates a versatile fractionation technique (AF4), with a state-of-the-art multi-element analyzer (ICP-ToF-MS), achieving Sn detection limits as low as 6.0 ng/L. The method separates colloid-free OT species from those bound to colloids and enables the determination of OT interactions with distinct colloidal fractions. Validated in both fractionation and detection, the method provides reliable data that could elucidate the species-specific and temporal aspects of species-colloids adsorption processes. The results feature comparative studies of 10 OT species, offering critical insights into OT mobility and distribution in environmental systems. KW - Fractionation KW - Speciation KW - Adsorption KW - Colloids KW - Organotin KW - AF4 KW - Nanoparticle characterization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625244 DO - https://doi.org/10.1016/j.jhazmat.2025.137320 SN - 1873-3336 VL - 488 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-62524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wimmer, L A1 - Hoang, M V N A1 - Schwarzinger, J A1 - Jovanovic, V A1 - Adelkovic, B A1 - Velickovic, T C A1 - Meisel, T C A1 - Waniek, T A1 - Weimann, Christiane A1 - Altmann, Korinna A1 - Dailey, L A T1 - A quality-by-design inspired approach to develop PET and PP nanoplastic test materials for use in in vitro and in vivo biological assays N2 - Micro- and nanoplastics have become environmental pollutants of concern, receiving increased attention from consumers, scientists, and policymakers. The lack of knowledge about possible impacts on wildlife and human health requires further research, for which well-characterized testmaterials are needed. A quality-bydesign (QbD) driven approachwas used to produce sterile, endotoxinmonitored nanoplastics of polyethylene terephthalate (PET) and polypropylene (PP) with a size fraction of >90% below 1 μm and high yield of >90%. Glycerol was used as a versatile and biocompatible liquid storage medium which requires no further exogenous dispersing agent andmaintained colloidal stability, sterility (0 CFU mL−1), and low endotoxin levels (<0.1 EU mL−1) for more than one year of storage at room temperature. Further, the glycerol vehicle showed no biological effect on the tested human bronchial cell line Calu-3 up to 0.8% (w/v). Given the concentration of 40 mg g−1 nanoplastics in the glycerol stock, this corresponds to a nanoplastic concentration of 320 μg mL−1. The surfactant-free nanoplastics are dispersible in bio-relevant media from the glycerol stock without changing size characteristics and are suitable for in vitro and in vivo research. KW - Microplastics KW - Reference materials KW - Nanoplastics KW - Polymer 3R KW - Glycerol PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-629934 DO - https://doi.org/10.1039/D4EN01186D SN - 2051-8161 VL - 12 IS - 5 SP - 2667 EP - 2686 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-62993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelhard, Carsten T1 - On ICP-MS with Nanosecond Time Resolution: From Nanoparticles to Microplastics N2 - In this presentation, recent developments in inductively coupled plasma mass spectrometry (ICP-MS) instrumentation for particle characterization in complex mixtures will be reviewed. The current state-of-the-art in single-particle (sp) ICP-MS instrumentation for the detection and characterization of nanoparticles (NP) and microplastics (MPs) as well as remaining challenges will be discussed. While millisecond dwell times were used in the advent of spICP-MS, the use of microsecond dwell times helped to improve nanoparticle data quality and particle size detection limits. We could show that a custom-built high-speed data acquisition unit with microsecond time resolution (μsDAQ) can be used to successfully address issues of split-particle events and particle coincidence, to study the temporal profile of individual ion clouds, and to extend the linear dynamic range by compensating for dead time related count losses. Our latest development is an in-house built data acquisition system with nanosecond time resolution (nanoDAQ). Recording of the SEM signal by the nanoDAQ is performed on the nanosecond time scale with a dwell time of approximately 2 ns and enables detection of gold nanoparticles (AuNP) as small as 7.5 nm with a commercial single quadrupole ICP-MS instrument. [1] Analysis of acquired transient data is based on the temporal distance between detector events and a derived ion event density. It was shown that the inverse logarithm of the distance between detector events is proportional to particle size. Also, the number of detector events per particle can be used to calibrate and determine the particle number concentration (PNC) of a nanoparticle dispersion. In addition to inorganic nanoparticles, first results on the detection of microplastics with spICP-MS will be discussed. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Nano KW - Microplastics KW - Nanoparticle Characterization KW - ICP-MS KW - Instrumentation PY - 2025 AN - OPUS4-63580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelhard, Carsten T1 - From Particles to PFAS: Recent Advances in Plasma-based Instrumentation Development N2 - In this presentation, recent advances in plasma spectrochemistry with hot and cold plasma sources for the direct detection of nanoparticles as well as per- and polyfluoroalkyl substances (PFAS) will be discussed. In the first part, single-particle inductively coupled plasma mass spectrometry (spICP-MS) with an in-house built data acquisition system with nanosecond time resolution (nanoDAQ) will be presented. In the second part, we turn to a cooler plasma source. Specifically, a flowing atmospheric-pressure afterglow source (FAPA) and its application for the direct mass spectrometric analysis of PFAS will be discussed. T2 - 20th European Winter Conference on Plasma Spectrochemistry CY - Berlin, Germany DA - 02.03.2025 KW - ICP-MS KW - Instrumentation KW - Nano KW - Nanoparticle Characterization KW - PFAS PY - 2025 AN - OPUS4-63581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmitt, Johannes T1 - Data acquisition system for single particle inductively coupled plasma mass spectrometry (spICP-MS) with nanosecond time resolution N2 - This study presents our data acquisition system prototype for single particle inductively coupled plasma mass spectrometry (spICP-MS) with nanosecond time resolution (nanoDAQ) and a matching data processing approach for time-resolved data in the nanosecond range. The system continuously samples the secondary electron multiplier (SEM) detector signal with a dwell time of approximately 2 ns and enables detection of gold nanoparticles (AuNP) as small as 7.5 nm with a commercial single quadrupole ICP-MS instrument. [1] Analysis of acquired transient data is based on the temporal distance between detector events and a derived ion event density. It was shown that the inverse logarithm of the distance between detector events is proportional to particle size. Also, the number of detector events per particle can be used to calibrate and determine the particle number concentration (PNC) of a nanoparticle dispersion. [1] Particle-by-particle-based analysis of ion event density and other parameters derived from nanosecond time resolution show promising results. High data acquisition frequency of the systems allows recording of a statistically significant number of data points in 60 s or less, which leaves only the sample uptake and rinsing steps as remaining factors for limiting the total measurement time. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - ICP-MS KW - Instrumentation KW - Nano KW - Nanoparticle Characterization PY - 2025 AN - OPUS4-63603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Characterization of hydrogen trapping in a CoCrFeMnNi high-entropy alloy charged up to 1000 bar high-pressure hydrogen N2 - First studies on the mechanical behavior of high-entropy alloys (HEAs) in high-pressure hydrogen environment are available. In contrast, the underlying hydrogen absorption, diffusion and trapping in these HEAs like the Cantor-alloy was less in the scientific scope so far. For that reason, the CoCrFeMnNi-HEA was compared to a conventional AISI 316L austenitic steel, by exposing to high-pressure hydrogen charging at 200 bar and very-high pressure at 1,000 bar. Thermal desorption analysis (TDA) was applied with different heating rates (0.125 K/s to 0.500 K/s), see Fig. 1a to d. The underlying TDA spectra were analyzed in terms of a reasonable peak deconvolution to into a defined number of peaks and the calculation of the activation energies for the respective and predominant hydrogen trap sites. Both materials show a comparable hydrogen diffusivity. The obtained activation energies suggest that in case of the CoCrFeMnNi-HEAs an interaction of the austenitic phase as well as the direct atomic bonding of hydrogen to the metal atoms are the dominant traps, since “impurities” such as carbides or inclusions are only present in trace amounts. Available literature suggests that the Cr and Mn-content is here of special interest for the direct hydrogen bonding at solute atoms. In addition, the trap occupancy rate must be considered in terms of a pressure-related hydrogen absorption. The derived apparent hydrogen solubility was in the order: 316L < CoCrFeMnNi-HEA for both charging pressures. Especially, the 1,000 bar values lead to noteworthy results with > 70 wt.ppm for the AISI 316L and >130 wt.ppm for the CoCrFeMnNi. In fact, both the hydrogen diffusion and trapping data on gaseous high-pressure hydrogen charged HEAs are rare so far. The results of the present study allow a deeper understanding of hydrogen trapping in the regarded CoCrFeMnNi-system. T2 - 78th IIW Annual Assembly and International Conference CY - Genoa, Italy DA - 26.06.2025 KW - Hydrogen KW - Thermal desorption analysis KW - High-pressure charging KW - Trapping KW - Diffusion PY - 2025 AN - OPUS4-63542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Data-Driven Materials Science: Reproducibility and Standardization N2 - Advancing development and digitalization in materials science requires to focus on quality assurance, interoperability, and compliance with FAIR principles. Semantic technologies offer effective solutions for these challenges by enabling the storage, processing, and contextualization of data in machine-actionable and human-readable formats – essential for robust data management. This presentation highlights the PMD Core Ontology 3.0 (PMDco 3.0), developed specifically for the field of materials science and engineering, and its implementation within generic knowledge representation frameworks. Demonstrators such as standardized mechanical testing, material processing workflows, and the Orowan Demonstrator exemplify the ontology’s practical applications. The use of graph patterns, able to be compiled into rule-based semantic shapes, supports a unified and automated approach to managing heterogeneous experimental data across domains. T2 - Persson Group Seminar CY - Berkeley, CA, USA DA - 23.06.2025 KW - Semantic Data KW - Data Integration KW - Digitalization KW - Data Interoperability KW - PMD Core Ontology KW - Graph Patterns PY - 2025 AN - OPUS4-63484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - A place for everything: traceable science using metadata from syntheses and characterisation N2 - In our laboratory, we rely heavily on automation for synthesis and measurement. Done right, automation can deliver reliable quantities of excruciatingly detailed data, produced in a reproducible and traceable way. This data then needs sorting and organising, and a good structure of metadata is a good start to long-lasting data. This metadata collection is an essential part of our “holistic experimentation”-approach. In this approach, we try to ensure that all aspects of the experimental chain are performed to a high standard, so that experimental integrity is maintained. In other words: as a failure in one of the components of the chain can make an entire experiment worthless, we must ensure each component is done (and documented) well. In this talk, we show how we 1) synthesise well-documented sample series, 2) apply a complete end-to-end X-ray scattering characterisation methodology to those samples, and 3) can link the data from the synthesis to the structural details obtained from the scattering experiments in a visual dashboard. Furthermore, we will show examples on how data can be organised in hierarchical structures in HDF5-based datafiles, and how this helps move towards more trustworthy, traceable science. About the speaker: Brian Pauw is a full-stack X-ray scattering expert with over 15 years of experience in materials science. After earning a Ph.D. in Chemical Engineering from the Technical University of Denmark in 2009, Brian advanced scattering techniques at Japan’s National Institute for Materials Science before joining BAM (Federal Institute for Materials Research and Testing) in Germany as a permanent researcher. At BAM, Brian focuses on small-angle scattering of polymers, metals, catalysts, and more – developing precise methodologies for data collection, correction, and analysis. They also lead efforts in laboratory automation, including robotic systems for reproducible sample preparation, aiming to enhance the efficiency and reliability of experimental workflows. T2 - Helmholtz Metadata Collaboration: FAIR Friday Lecture Series CY - Online meeting DA - 09.05.2025 KW - Methodology KW - X-ray scattering KW - Traceability KW - Data provenance KW - Metadata KW - Lab automation KW - Holistic science PY - 2025 AN - OPUS4-63078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Holistic Experimentation in the HExX-Lab N2 - Through bottom-up, comprehensive digitalisation of all aspects of an experiment, the HEX-lab improves the trustworthiness (traceability, reproducibility, quality) of scientific findings. The five main parts that make up a materials science experiment, i.e. Sample preparation, Measurements, Processing, Analysis, and Interpretation, each have been addressed in thorough and unique ways in this lab, building up a foundation for a wide range of materials science collaborations. Improvements span the spectrum. Hardware developments include new sample environments and stages, such as grazing incidence motion towers, electrochemistry cells and flow-through holders, electronic components such as safety interlocks and multipurpose I/O controllers, and liquid handling systems such as coolant flow cross-over systems. Software developments include: 1) a new comprehensive control system operating on both the RoWaN as well as the MOUSE allowing for full Python control and sequencing of all experimentation, 2) Automated scripts for instrument optimization, sample alignments and measurements, 3) revamped data pipelines and analysis software, standalone or launched as part of operations sequencing dashboards on servers, and 4) meticulously structured archival datafiles, fully documenting sample preparation, measurements, processing and analyses. These allow for holistic databases and dashboards to be constructed to investigate the links between synthesis parameters and resulting morphology. This poster will highlight some of the tools and techniques developed and available in the HEX-lab over the years, from sample environments to overarching experiment and data organisation structures. T2 - Materials Science Core Facility Synergy Forum 2025 CY - Bremen, Germany DA - 26.02.2025 KW - Digitalization KW - Holistic experiments KW - Traceability KW - Data provenance PY - 2025 AN - OPUS4-62675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - NeXus at the core of the HExX-lab N2 - Through bottom-up, comprehensive digitalisation of all aspects of an experiment, the HEX-lab improves the trustworthiness (traceability, reproducibility, quality) of scientific findings. The five main parts that make up a materials science experiment, i.e. Sample preparation, Measurements, Processing, Analysis, and Interpretation, each have been addressed in thorough and unique ways in this lab, building up a foundation for a wide range of materials science collaborations. Improvements span the spectrum. Hardware developments include new sample environments and stages, such as grazing incidence motion towers, electrochemistry cells and flow-through holders, electronic components such as safety interlocks and multipurpose I/O controllers, and liquid handling systems such as coolant flow cross-over systems. Software developments include: 1) a new comprehensive control system operating on both the RoWaN as well as the MOUSE allowing for full Python control and sequencing of all experimentation, 2) Automated scripts for instrument optimization, sample alignments and measurements, 3) revamped data pipelines and analysis software, standalone or launched as part of operations sequencing dashboards on servers, and 4) meticulously structured archival datafiles, fully documenting sample preparation, measurements, processing and analyses. These allow for holistic databases and dashboards to be constructed to investigate the links between synthesis parameters and resulting morphology. This presentation will highlight some of the tools and techniques developed and available in the HEX-lab over the years, from sample environments to overarching experiment and data organisation structures. T2 - Materials Science Core Facility Synergy Forum 2025 CY - Bremen, Germany DA - 26.02.2025 KW - Digitalization KW - Automation KW - HDF5 KW - Traceability KW - Data stewardship KW - Lab automation KW - Holistic science KW - Methodology PY - 2025 AN - OPUS4-62676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Reimagining user-driven science N2 - The materials scientists we work with do not want (or need) to learn the ways of the scatterer; they are primarily interested in obtaining trustworthy, authoritative answers. In particular, they need structural understanding in light of the wider framework of their experiment(s). Our interest, therefore, lies in helping them attain this this interconnected understanding, while using such investigations to further hone our methodology to approximate perfection. While perfection is by definition an unattainable goal, we have spent the last 15+ years exploring and expanding on many of its constituent aspects (often together with likeminded people) [1]. These aspects include: developing various visualization and simulation tools, deconstructing data corrections and uncertainty estimation, advancing analysis methods, quantifying questions on traceability, documentation, reproducible automation of synthesis-, measurement- and data pipelines, data visualization, exploration and education, and many more… As we explored these individual aspects, it has become clear that high quality output demands involving ourselves in the entire experimental workflow, with all associated aspects. This allows you to establish trustworthy links between parameters, structure, and performance. Through multiple cross-checks and validations, we can furthermore assign a degree of confidence to our findings. This is what we call the holistic approach. This talk will briefly define perfection in scattering experiments, expand on the holistic approach, and show examples to demonstrate its benefits. T2 - Invited talk - special event CY - Trieste, Italy DA - 15.05.2025 KW - X-ray scattering KW - Holistic experiments KW - Laboratory management KW - Laboratory automation KW - Data stewardship KW - User support PY - 2025 AN - OPUS4-63372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - and now it's bigger…: setting up for large scale experimentation N2 - In our laboratory, we rely heavily on automation for synthesis and measurement. Done right, automation can deliver reliable quantities of excruciatingly detailed data, produced in a reproducible and traceable way. This data then needs sorting and organising, and a good structure of metadata is a good start to long-lasting data. This metadata collection is an essential part of our “holistic experimentation”-approach. In this approach, we try to ensure that all aspects of the experimental chain are performed to a high standard, so that experimental integrity is maintained. In other words: as a failure in one of the components of the chain can make an entire experiment worthless, we must ensure each component is done (and documented) well. In this talk, we show how we 1) synthesise well-documented sample series, 2) apply a complete end-to-end X-ray scattering characterisation methodology to those samples, and 3) can link the data from the synthesis to the structural details obtained from the scattering experiments in a visual dashboard. Furthermore, we will show examples on how data can be organised in hierarchical structures in HDF5-based datafiles, and how this helps move towards more trustworthy, traceable science. T2 - Future Labs Live 2025 CY - Basel, Switzerland DA - 27.05.2025 KW - Lab automation KW - Holistic experiments KW - Synthesis KW - Traceability KW - Data stewardship PY - 2025 AN - OPUS4-63373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Monroy, José del Refugio A1 - Deshpande, Tejas A1 - Schlecht, Joël A1 - Douglas, Clara A1 - Stirling, Robbie A1 - Grabicki, Niklas A1 - Smales, Glen Jacob A1 - Kochovski, Zdravko A1 - Fabozzi, Filippo Giovanni A1 - Hecht, Stefan A1 - Feldmann, Sascha A1 - Dumele, Oliver T1 - Homochiral versus racemic 2D covalent organic frameworks N2 - The synthesis of homochiral two-dimensional covalent organic frameworks (2D COFs) from chiral π-conjugated building blocks is challenging, as chiral units often lead to misaligned stacking interactions. In this work, we introduce helical chirality into 2D COFs using configurationally stable enantiopure and racemic [5]helicenes as linkers in the backbone of 2D [5]HeliCOFs as powders and films. Through condensation with 1,3,5-triformylbenzene (TFB) or 1,3,5-triformylphloroglucinol (TFP), our approach enables the efficient formation of a set of homochiral and racemic 2D [5]HeliCOFs. The resulting carbon-based crystalline and porous frameworks exhibit distinct structural features and different properties between homochiral and racemic counterparts. Propagation of helical chirality into the backbone of the crystalline frameworks leads to the observation of advanced chiroptical properties in the far-red visible spectrum, along with a less compact structure compared with the racemic frameworks. Homogeneous thin films of [5]HeliCOFs disclosed photoluminescent properties arising from the controlled growth of highly ordered π-conjugated lattices. The present study offers insight into general chiral framework formation and extends the Liebisch−Wallach rule to 2D COFs. KW - Chirality KW - Covalent organic frameworks KW - Diffraction KW - Lattices KW - Thin films PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-633755 DO - https://doi.org/10.1021/jacs.5c01004 SN - 0002-7863 VL - 147 IS - 21 SP - 17750 EP - 17763 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-63375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Khropost, Diana A1 - Riethmüller, Franziska A1 - Döhring, Thorsten A1 - Flachs, Dennis A1 - Hülagü, Deniz A1 - Hertwig, Andreas A1 - Cotroneo, Vincenzo A1 - gibertini, eugenio T1 - Polydopamine – a bio-inspired polymer for X-ray mirror coatings and other technical applications N2 - Although the organic molecule dopamine (3,4-dihydroxyphenethylamine) is commonly known as one of the “hormones of happiness”, thin polymer films of polydopamine (PDA) also have interesting technical properties. PDA is a very strong glue that sticks on almost everything, even under water. In nature, PDA is found in the byssal thread cuticles of mussels. When produced by dip-coating, the self-organizing PDA layers grow in a reproducible thickness of single or multiple molecule monolayers of a few nanometres thickness only. Here we present an optimized preparation regime as derived from polymerization analysis through absorption spectroscopy. One application is the use of thin PDA overcoatings to increase the soft X-ray reflectivity of astronomical X-ray mirrors. Furthermore, we give an outlook to other technical applications for this interesting material, presenting this bio-inspired organic polymer as an innovative technical solution for the future, with applications such as PDA-based super-capacitors and its promising role in enhancing separator materials for batteries. T2 - SPIE Optics + Optoelectronics 2025 CY - Prague, Czech Republic DA - 07.04.2025 KW - X-ray mirrors KW - Reflectivity KW - Polydopamine KW - Ellipsometry PY - 2025 DO - https://doi.org/10.1117/12.3056298 VL - 13531 SP - 1 EP - 11 PB - SPIE AN - OPUS4-63630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Khropost, Diana A1 - Riethmüller, Franziska A1 - Stanik, Eva A1 - Döhring, Thorsten A1 - Hertwig, Andreas A1 - Hülagü, Deniz T1 - Polydopamine -a bionic material and its potential applications for batteries N2 - Polydopamine (PDA) recently came into focus as an innovative material for applications in various technical fields. It is a very strong glue that sticks on almost everything, even under water: In nature, PDA is found in the byssal thread cuticles of mussels. In 2007, Lee et al. first showed that dipping substrates into a solution of dopamine results in the formation of thin PDA films on numerous materials. The simple preparation and the high durability of these coatings have stimulated growing research interest and a wide variety of applications in energy, biomedical and environmental science, and other fields. We have investigated thin layers of PDA with different methods including ellipsometry, tactile measurements of the layer thickness and in situ absorption measurements during the polymerization process. During polymerization the dopamine solution shows a progressive colour change from transparent to brown that has been monitored by spectrometric measurements. The increasing absorption of the cuvette with dopamine solution can be seen in figure 1. The absorption levels off after approximately 2,5 h of polymerization time, thus indicating termination of the primary formation of the PDA film. This data shows that for homogeneous layer growth it is advantageous to interrupt the process after two hours. To generate a higher layer thickness, the samples need to be cleaned and immersed in a fresh dopamine solution subsequently. In addition, ellipsometry measurements on polydopamine layers could determine the corresponding coating thickness as well as its complex refractive index over a broad wavelength range. T2 - Materials Week 2025 CY - Frankfurt am Main, Germany DA - 02.04.2025 KW - Polydopamine KW - Ellipsometry KW - Leyer thickness PY - 2025 AN - OPUS4-63636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mangarova, Dilyana B. A1 - Kaufmann, Jan O. A1 - Brangsch, Julia A1 - Kader, Avan A1 - Möckel, Jana A1 - Heyl, Jennifer L. A1 - Verlemann, Christine A1 - Adams, Lisa C. A1 - Ludwig, Antje A1 - Reimann, Carolin A1 - Poller, Wolfram C. A1 - Niehaus, Peter A1 - Karst, Uwe A1 - Taupitz, Matthias A1 - Hamm, Bernd A1 - Weller, Michael G. A1 - Makowski, Marcus R. T1 - ADAMTS4-Specific MR Peptide Probe for the Assessment of Atherosclerotic Plaque Burden in a Mouse Model N2 - Introduction Atherosclerosis is the underlying cause of multiple cardiovascular pathologies. The present-day clinical imaging modalities do not offer sufficient information on plaque composition or rupture risk. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a strongly upregulated proteoglycan-cleaving enzyme that is specific to cardiovascular diseases, inter alia, atherosclerosis. Materials and Methods Male apolipoprotein E-deficient mice received a high-fat diet for 2 (n = 11) or 4 months (n = 11). Additionally, a group (n = 11) receiving pravastatin by drinking water for 4 months alongside the high-fat diet was examined. The control group (n = 10) consisted of C57BL/6J mice on standard chow. Molecular magnetic resonance imaging was performed prior to and after administration of the gadolinium (Gd)-based ADAMTS4-specific probe, followed by ex vivo analyses of the aortic arch, brachiocephalic arteries, and carotid arteries. A P value <0.05 was considered to indicate a statistically significant difference. Results With advancing atherosclerosis, a significant increase in the contrast-to-noise ratio was measured after intravenous application of the probe (mean precontrast = 2.25; mean postcontrast = 11.47, P < 0.001 in the 4-month group). The pravastatin group presented decreased ADAMTS4 expression. A strong correlation between ADAMTS4 content measured via immunofluorescence staining and an increase in the contrast-to-noise ratio was detected (R2 = 0.69). Microdissection analysis revealed that ADAMTS4 gene expression in the plaque area was significantly greater than that in the arterial wall of a control mouse (P < 0.001). Laser ablation–inductively coupled plasma–mass spectrometry confirmed strong colocalization of areas positive for ADAMTS4 and Gd. Conclusions Magnetic resonance imaging using an ADAMTS4-specific agent is a promising method for characterizing atherosclerotic plaques and could improve plaque assessment in the diagnosis and treatment of atherosclerosis. N2 - Einleitung Atherosklerose ist die Ursache für zahlreiche Herz-Kreislauf-Erkrankungen. Die derzeitigen klinischen Bildgebungsverfahren liefern keine ausreichenden Informationen über die Zusammensetzung von Plaques oder das Risiko einer Ruptur. A Disintegrin and Metalloproteinase with Thrombospondin Motifs 4 (ADAMTS4) ist ein stark hochreguliertes Proteoglykan-spaltendes Enzym, das unter anderem bei Herz-Kreislauf-Erkrankungen wie Atherosklerose spezifisch auftritt. Materialien und Methoden Männliche Apolipoprotein-E-defiziente Mäuse erhielten 2 (n = 11) oder 4 Monate lang (n = 11) eine fettreiche Ernährung. Zusätzlich wurde eine Gruppe (n = 11) untersucht, die 4 Monate lang neben der fettreichen Ernährung Pravastatin über das Trinkwasser erhielt. Die Kontrollgruppe (n = 10) bestand aus C57BL/6J-Mäusen, die mit Standardfutter ernährt wurden. Vor und nach der Verabreichung der gadolinium (Gd)-basierten ADAMTS4-spezifischen Sonde wurde eine molekulare Magnetresonanztomographie durchgeführt, gefolgt von Ex-vivo-Analysen des Aortenbogens, der Arteria brachiocephalica und der Arteria carotis. Ein P-Wert < 0,05 wurde als statistisch signifikanter Unterschied gewertet. Ergebnisse Mit fortschreitender Atherosklerose wurde nach intravenöser Anwendung der Sonde ein signifikanter Anstieg des Kontrast-Rausch-Verhältnisses gemessen (Mittelwert vor Kontrastmittelgabe = 2,25; Mittelwert nach Kontrastmittelgabe = 11,47, P < 0,001 in der 4-Monats-Gruppe). Die Pravastatin-Gruppe zeigte eine verminderte ADAMTS4-Expression. Es wurde eine starke Korrelation zwischen dem mittels Immunfluoreszenzfärbung gemessenen ADAMTS4-Gehalt und einem Anstieg des Kontrast-Rausch-Verhältnisses festgestellt (R2 = 0,69). Die Mikrodissektionsanalyse ergab, dass die ADAMTS4-Genexpression im Plaque-Bereich signifikant höher war als in der Arterienwand einer Kontrollmaus (P < 0,001). Laserablation-induktiv gekoppelte Plasma-Massenspektrometrie bestätigte eine starke Kolokalisierung von ADAMTS4- und Gd-positiven Bereichen. Schlussfolgerungen Die Magnetresonanztomographie mit einem ADAMTS4-spezifischen Kontrastmittel ist eine vielversprechende Methode zur Charakterisierung atherosklerotischer Plaques und könnte die Plaquebewertung in der Diagnose und Behandlung von Atherosklerose verbessern. KW - Peptide Aptamer KW - MRI Probe KW - Magnetic resonance imaging (MRI) KW - Peptide libraries KW - Laser ablation–inductively coupled plasma–mass spectrometry KW - ICP MS KW - Imaging PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-635832 DO - https://doi.org/10.1097/RLI.0000000000001152 SN - 1536-0210 VL - 60 IS - 8 SP - 499 EP - 507 PB - Ovid Technologies (Wolters Kluwer Health) CY - Philadelphia, Pennsylvania, USA AN - OPUS4-63583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nikitin, D. A1 - Biliak, K. A1 - Protsak, M. A1 - Adejube, B. A1 - Ali-Ogly, S. A1 - Škorvanková, K. A1 - Červenková, V. A1 - Katuta, R. A1 - Tosco, M. A1 - Hanuš, J. A1 - Černochová, Z. A1 - Černoch, P. A1 - Štěpánek, P. A1 - Boiko, O. A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Faupel, F. A1 - Biedermann, H. A1 - Vahl, A. A1 - Choukourov, A. T1 - Unveiling the Fundamental Principles of Reconfigurable Resistance States in Silver/Poly(ethylene glycol) Nanofluids N2 - Developing novel memristive systems aims to implement key principles of biological neuron assemblies – plasticity, adaptivity, and self-organization – into artificial devices for parallel, energy-efficient computing. Solid-state memristive devices, such as crossbar arrays and percolated nanoparticle (NP) networks, already demonstrate these properties. However, closer similarity to neural networks is expected from liquid-state systems, including polymer melts, which remain largely unexplored. Here, the resistive switching in silver/poly(ethylene glycol) (Ag/PEG) nanofluids, prepared by depositing gas-aggregated Ag NPs into PEGs of varying molecular mass, is investigated. These systems form long-range conductive NP bridges with reconfigurable resistance states in response to an electric field. The zeta-potential of Ag NPs and molecular mobility of PEG determine the prevalence of low resistance (ohmic) state, high resistance states (poor conductance) or intermediate transition states governed by space-charge-limited conduction or electron tunneling. The occurrence of these states is given by the interparticle gaps, which are determined by the conformation of PEG molecules adsorbed on the NPs. It is presented, for the first time, an equivalent circuit model for the Ag/PEG system. These findings pave the way to adopt polymer melts as matrices for neuromorphic engineering and bio-inspired electronics. KW - Nanofluids PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-635351 DO - https://doi.org/10.1002/advs.202505103 VL - 12 SP - 1 EP - 14 PB - Wiley AN - OPUS4-63535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlögl, Johanna A1 - Krappe, Alexander R. A1 - Fürstenwerth, Paul C. A1 - Brosius, Amelie L. A1 - Fasting, Carlo A1 - Hoffmann, Kurt F. A1 - Resch-Genger, Ute A1 - Eigler, Siegfried A1 - Steinhauer, Simon A1 - Riedel, Sebastian T1 - Luminescent Perhalofluoro Trityl Radicals N2 - In this proof-of-concept study, we show that polyfluorinated trityl radicals with the, to this date, highest fluorination grade can be accessed in quantitative yields in a straightforward manner starting from the perfluorinated trityl cation. The trityl skeleton is functionalized with trimethylsilyl halides to yield perhalofluoro trityl cations, which are subsequently reduced using commercial zinc powder. In this way, we prepare three perhalofluoro trityl radicals and analyze the impact of the fluorine ligands on their electro-optical properties, revealing some interesting trends. In comparison to literature-known polychlorinated trityl radicals, the new polyfluorinated derivatives exhibit substantially higher fluorescence quantum yields, longer luminescence lifetimes, and an expanded emission range that extends into the yellow spectral region. They further display enhanced photostability under light irradiation. In radical-stained polystyrene nanoparticles, an additional broad emission band in the red−NIR wavelength region is observed, which is attributed to excimer formation. Finally, the stability of the new radicals is investigated under ambient conditions, showing the slow conversion with atmospheric oxygen yielding the respective peroxides, which are characterized by single-crystal X-ray diffraction. All in all, our study extends the present scope of luminescent trityl radicals, as the functionalization of the perfluorinated cationic precursor unlocks the path toward a vast variety of polyfluorinated trityl radicals. KW - Dye KW - Fluorescence KW - Radical KW - Synthesis KW - Mechanism KW - Signal enhancement KW - Nano KW - Particle KW - Characterization KW - Quantum yield KW - Photophysics KW - Lifetime KW - Polarity KW - Polymer KW - Solvatchromism KW - Excimer PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647973 DO - https://doi.org/10.1021/jacs.5c16418 SN - 0002-7863 VL - 147 IS - 46 SP - 1 EP - 8 PB - American Chemical Society (ACS) AN - OPUS4-64797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Resch-Genger, Ute A1 - Abram, Sarah-Luise A1 - Tavernaro, Isabella A1 - Zou, Shan A1 - Johnston, Linda T1 - Behind the Paper: Nanoscale Reference and Test Materials for the Validation of Characterization Methods for Engineered Nanomaterials – Current State, Limitations and Needs N2 - Engineered nanomaterials (NMs) of different material composition, morphology, and surface chemistry are widely used in material and life sciences. For NM quality control and risk assessment, NM key properties must be characterized with validated methods, requiring reference materials (RMs). KW - Engineered Nanomaterials KW - Nanoscale reference materials KW - Interlaboratory comparisons KW - Traceability KW - Standardization and Regulation KW - Nano KW - Particle KW - Quality assurance KW - Surface chemistry PY - 2025 UR - https://communities.springernature.com/posts/nanoscale-reference-and-test-materials-for-the-validation-of-characterization-methods-for-engineered-nanomaterials-current-state-limitations-and-needs SP - 1 EP - 3 PB - Springer Nature CY - Online AN - OPUS4-62572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -