TY - GEN A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - DACHS/MOFs/AutoMOFs_3/Synthesis N2 - The DACHS (Database for Automation, Characterization and Holistic Synthesis) project aims to create completely traceable experimental data, covering syntheses, measurements, analyses, and interpretations. DACHS_MOFs focuses on the synthesis and characterisation of metal-organic frameworks, across multiple, automation-assisted experimental series (AutoMOFs), with the overall goal of producing reproducible MOF samples through tracking of the synthesis parameters. DACHS_MOFs is simultaneously used to test the DACHS principles. This upload contain synthesis data from AutoMOFs_3 in HDF5 format (.h5). Each .h5 file contains detailed information on the chemical, experimenal, and synthesis parameters used during the synthesis of a single AutoMOF sample. KW - Synthesis KW - Automation KW - Traceability KW - Procedure PY - 2024 DO - https://doi.org/10.5281/zenodo.11237815 PB - Zenodo CY - Geneva AN - OPUS4-60633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Minenkov, Alexey A1 - Hollweger, Sophia A1 - Duchoslav, Jiri A1 - Erdene-Ochir, Otgonbayar A1 - Weise, Matthias A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Schiek, Manuela T1 - Monitoring the Electrochemical Failure of Indium Tin Oxide Electrodes via Operando Ellipsometry Complemented by Electron Microscopy and Spectroscopy N2 - Transparent conductive oxides such as indium tin oxide (ITO) are standards for thin film electrodes, providing a synergy of high optical transparency and electrical conductivity. In an electrolytic environment, the determination of an inert electrochemical potential window is crucial to maintain a stable material performance during device operation. We introduce operando ellipsometry, combining cyclic voltammetry (CV) with spectroscopic ellipsometry, as a versatile tool to monitor the evolution of both complete optical (i.e., complex refractive index) and electrical properties under wet electrochemical operational conditions. In particular, we trace the degradation of ITO electrodes caused by electrochemical reduction in a pH-neutral, water-based electrolyte environment during electrochemical cycling. With the onset of hydrogen evolution at negative bias voltages, indium and tin are irreversibly reduced to the metallic state, causing an advancing darkening, i.e., a gradual loss of transparency, with every CV cycle, while the conductivity is mostly conserved over multiple CV cycles. Post-operando analysis reveals the reductive (loss of oxygen) formation of metallic nanodroplets on the surface. The reductive disruption of the ITO electrode happens at the solid–liquid interface and proceeds gradually from the surface to the bottom of the layer, which is evidenced by cross-sectional transmission electron microscopy imaging and complemented by energy-dispersive X-ray spectroscopy mapping. As long as a continuous part of the ITO layer remains at the bottom, the conductivity is largely retained, allowing repeated CV cycling. We consider operando ellipsometry a sensitive and nondestructive tool to monitor early stage material and property changes, either by tracing failure points, controlling intentional processes, or for sensing purposes, making it suitable for various research fields involving solid–liquid interfaces and electrochemical activity. KW - General Materials Science PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597625 DO - https://doi.org/10.1021/acsami.3c17923 SN - 1944-8252 VL - 16 IS - 7 SP - 9517 EP - 9531 PB - American Chemical Society (ACS) AN - OPUS4-59762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grundmann, Jana A1 - Bodermann, Bernd A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Hertwig, Andreas A1 - Klapetek, Petr A1 - Rafighdoost, Jila A1 - Pereira, Silvania F. T1 - Optical and tactile measurements on SiC sample defects N2 - Abstract. In power electronics, compound semiconductors with large bandgaps, like silicon carbide (SiC), are increasingly being used as material instead of silicon. They have a lot of advantages over silicon but are also intolerant of nanoscale material defects, so that a defect inspection with high accuracy is needed. The different defect types on SiC samples are measured with various measurement methods, including optical and tactile methods. The defect types investigated include carrots, particles, polytype inclusions and threading dislocations, and they are analysed with imaging ellipsometry, coherent Fourier scatterometry (CFS), white light interference microscopy (WLIM) and atomic force microscopy (AFM). These different measurement methods are used to investigate which method is most sensitive for which type of defect to be able to use the measurement methods more effectively. It is important to be able to identify the defects to classify them as critical or non-critical for the functionality of the end product. Once these investigations have been completed, the measurement systems can be optimally distributed to the relevant defects in further work to realize a hybrid analysis of the defects. In addition to the identification and classification of defects, such a future hybrid analysis could also include characterizations, e.g. further evaluation of ellipsometric data by using numerical simulations. KW - Compound semiconductors KW - Hybrid metrology KW - Material defects KW - Spectroscopic Ellipsometry KW - Scanning Probe Microscopy KW - White-light Interference Microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601220 DO - https://doi.org/10.5194/jsss-13-109-2024 SN - 2194-878X VL - 13 IS - 1 SP - 109 EP - 121 PB - Copernicus GmbH AN - OPUS4-60122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Wegner, Karl David A1 - Fischer, C. A1 - Resch-Genger, Ute T1 - Exploring Simple Particle-Based Signal Amplification Strategies in a Heterogeneous Sandwich Immunoassay with Optical Detection N2 - Heterogeneous sandwich immunoassays are widely used for biomarker detection in bioanalysis and medical diagnostics. The high analyte sensitivity of the current “gold standard” enzyme-linked immunosorbent assay (ELISA) originates from the signal-generating enzymatic amplification step, yielding a high number of optically detectable reporter molecules. For future point-of-care testing (POCT) and point-of-need applications, there is an increasing interest in more simple detection strategies that circumvent time-consuming and temperature-dependent enzymatic reactions. A common concept to aim for detection limits comparable to those of enzymatic amplification reactions is the usage of polymer nanoparticles (NP) stained with a large number of chromophores. We explored different simple NP-based signal amplification strategies for heterogeneous sandwich immunoassays that rely on an extraction-triggered release step of different types of optically detectable reporters. Therefore, streptavidinfunctionalized polystyrene particles (PSP) are utilized as carriers for (i) the fluorescent dye coumarin 153 (C153) and (ii) hemin (hem) molecules catalyzing the luminol reaction enabling chemiluminescence (CL) detection. Additionally, (iii) NP labeling with hemin-based microperoxidase MP11 was assessed. For each amplification approach, the PSP was first systematically optimized regarding size, loading concentration, and surface chemistry. Then, for an immunoassay for the inflammation marker C- eactive protein (CRP), the analyte sensitivity achievable with optimized PSP ystems was compared with the established ELISA concept for photometric and CL detection. Careful optimization led to a limit of detection (LOD) of 0.1 ng/mL for MP11-labeled PSP and CL detection, performing similarly well to a photometric ELISA (0.13 ng/mL), which demonstrates the huge potential of our novel assay concept. KW - Nanoparticle KW - Fluorescence KW - Immunoassay KW - Quality assurance KW - Antibody KW - Polymer KW - Dye KW - Signal enhancement KW - CRP KW - Biosensing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597853 DO - https://doi.org/10.1021/acs.analchem.3c03691 SN - 1520-6882 VL - 96 IS - 13 SP - 5078 EP - 5085 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-59785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - New analytic ways to characterise mesoporous thin layers used in electrocatalytic water splitting N2 - Mesoporous materials are needed in many applications where a high specific surface area and adsorptive behaviour is needed. Important examples are separation techniques and barrier layers and catalysts. Electrochemical water splitting is the key technology for producing green hydrogen and there is no foreseeable alternative to this process for producing elementary hydrogen from green electrical power. Water electrolysis can be divided into the anodic Oxygen Evolution Reaction (OER) and the cathodic Hydrogen Evolution Reaction (HER). Both processes have to be heavily optimised to a large extent to avoid energy losses caused by overvoltage. The development of electrodes for these processes is especially difficult due to the many boundary conditions. Water splitting is a catalytic as well as electrochemical process. The contact area between the electrolyte and the electrode must be maximised maintaining the stability of the surface. Side reactions must be suppressed, and effective gas transport must be ensured. The whole process has to be tolerant with respect to temperature, harsh chemical conditions from the electrolyte as well as high current densities. We present a hybrid analytical method combining several analytical techniques for determining the properties of thin layers of mixed oxides of the general composition Ir:TiOx. These materials are promising candidates for electrocatalytical top coatings of OER electrodes. To lower the costs of the electrolysers, the main goal is to lower the Ir content retaining the system efficiency. The main properties which are hard to determine are the porous volume fraction and the Ir:Ti element ratio. By a combination of electron microscopy, spectroscopic operando ellipsometry, ellipsometric porosimetry, and other techniques, we can determine key features of mesoporous thin layer materials. We aim to develop operando capable techniques used in process monitoring as well as measurement techniques optimised for accuracy. By developing reference materials, we support long term uptake of our methodology. This work can directly be used for optimising electrocatalytic layers and is a good example for the power of hybrid metrology for improving materials design. T2 - International Conference on Resource Chemistry CY - Alzenau, Germany DA - 11.03.2024 KW - Ellipsometry KW - Electrocatalytic Water Splitting KW - Mesoporous Materials KW - Electron Probe Microanalysis KW - Hydrogen Generation PY - 2024 AN - OPUS4-59764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth Kinetics and Molecular Mobility of the Adsorbed Layer of Poly(bisphenol-A Carbonate) (PBAC), Polysulfone (PSU), and Poly (2-Vinyl Pyridine) (P2VP) N2 - Interactions between a polymer and a substrate interface play a vital role in understanding the improvement in thin film material properties as well as serving as a model for nanocomposites. For any non-repulsive polymer-substrate interactions, polymer segments form an irreversibly adsorbed layer and show a slowdown in the glassy dynamics and thus an increase in the thermal glass transition temperature compared to the bulk-like values. The growth kinetics of the adsorbed layer showed a deviation for both poly (bisphenol-A carbonate) (PBAC) and polysulfone (PSU), two bulky polymers containing a functional group (phenyl ring) in the backbone, compared to conventional polymers previously studied like poly-2-vinyl pyridine (P2VP). This deviation was attributed to the bulkiness of the phenyl rings. . Further investigations into the influence of the adsorbed layer on glassy dynamics were conducted. The molecular mobility and glass transition for thin films of PBAC and PSU were compared to bulk samples of each polymer. Broadband dielectric spectroscopy, atomic force microscopy, and ellipsometry were primarily used and additionally supported by sum frequency generation spectroscopy. T2 - Deutsche Physikalische Gesellschaft (DPG) Tagung CY - Berlin, Germany DA - 17.03.2024 KW - Thin films KW - Adsorbed Layer KW - Atomic Force Microscopy KW - Ellipsometry KW - Dielectric Spectroscopy PY - 2024 AN - OPUS4-59821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schusterbauer, Robert A1 - Sahre, Mario A1 - Mrkwitschka, Paul A1 - John, Elisabeth A1 - Lange, Thorid A1 - Zurutuza, A. A1 - Jones, E. A1 - Donskyi, I. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Correlative chemical imaging to reveal the nature of different commercial graphene materials N2 - Since the original report in 2004 by Novoselov and Geim, Graphene gained incredible attention due to its fascinating properties. In the past 20 years, the synthesis and functionalization of graphene has evolved significantly[3]. Different synthesis techniques were developed which led to other graphenerelated materials such as graphene oxide (GO) or elemental-doped graphene. Further chemical functionalization can enhance but also alter or reduce specific properties of the graphene. To reveal the nature of these materials a proper physico‑chemical characterization with different analytical techniques is crucial. Single-layer GO flakes kindly provided by Graphenea (Spain) were prepared for systematic image analysis. These flakes were disposed on an alignment-marked SiO2 substrate and correlatively imaged by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Raman spectroscopy. The high lateral resolution and/ or extreme surface sensitivity of the mentioned techniques is necessary to explore monolayers. The ToF-SIMS images match well with the SEM and AFM images and provide information about the chemistry. With 2D Raman spectroscopy it is possible to differentiate between the number of stacked single-layer flakes. This is visualized in a 3D image (Figure b). Well-defined GO flakes could be used as a reference material for imaging of graphene-like structures but also of other types of 2D materials. In addition to these monolayer GO flakes, commercial graphene-containing inks (Haydale) with a more complex morphology were also correlatively imaged. ToF-SIMS and SEM images were merged to identify the origin of different chemical fragments. The findings correlate closely with the expectation that the specific functionalizations (with fluorine and nitrogen as marker elements) are present only on the graphene flakes as presumed from the SEM images. Energy-dispersive X-ray spectroscopy (EDX) supports these results, yet with a much lower sensitivity compared to ToF-SIMS. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Graphene oxide flakes KW - ToF-SIMS KW - SEM KW - Raman KW - Correlative imaging PY - 2024 AN - OPUS4-60681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schusterbauer, Robert A1 - Sahre, Mario A1 - Mrkwitschka, Paul A1 - John, Elisabeth A1 - Lange, Thorid A1 - Zurutuza, A. A1 - Jones, E. A1 - Donskyi, I. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Correlative chemical imaging to reveal the nature of different commercial graphene materials N2 - Since the original report in 2004 by Novoselov and Geim, Graphene gained incredible attention due to its fascinating properties. In the past 20 years, the synthesis and functionalization of graphene has evolved significantly[3]. Different synthesis techniques were developed which led to other graphenerelated materials such as graphene oxide (GO) or elemental-doped graphene. Further chemical functionalization can enhance but also alter or reduce specific properties of the graphene. To reveal the nature of these materials a proper physico‑chemical characterization with different analytical techniques is crucial. Single-layer GO flakes kindly provided by Graphenea (Spain) were prepared for systematic image analysis. These flakes were disposed on an alignment-marked SiO2 substrate and correlatively imaged by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Raman spectroscopy. The high lateral resolution and/ or extreme surface sensitivity of the mentioned techniques is necessary to explore monolayers. The ToF-SIMS images match well with the SEM and AFM images and provide information about the chemistry. With 2D Raman spectroscopy it is possible to differentiate between the number of stacked single-layer flakes. This is visualized in a 3D image (Figure b). Well-defined GO flakes could be used as a reference material for imaging of graphene-like structures but also of other types of 2D materials. In addition to these monolayer GO flakes, commercial graphene-containing inks (Haydale) with a more complex morphology were also correlatively imaged. ToF-SIMS and SEM images were merged to identify the origin of different chemical fragments. The findings correlate closely with the expectation that the specific functionalizations (with fluorine and nitrogen as marker elements) are present only on the graphene flakes as presumed from the SEM images. Energy-dispersive X-ray spectroscopy (EDX) supports these results, yet with a much lower sensitivity compared to ToF-SIMS. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Correlative imaging KW - ToF-SIMS KW - SEM KW - Graphene oxide flakes KW - Raman PY - 2024 AN - OPUS4-60680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Radnik, Jörg A1 - Ermilova, Elena A1 - Hodoroaba, Vasile-Dan T1 - Accuracy on all scales: Hybrid metrology for micro- and nanomanufacturing N2 - In this presentation, we discuss hybrid metrology and correlative imaging. These techniques are used to improve the design and quality monitoring of nanomaterials used in energy technology and for referencing the properties of nanoparticles. T2 - EMN for Advanced Manufacturing workshop CY - Berlin, Germany DA - 22.05.2024 KW - Nanotechnology KW - Nanoanalytics KW - Correlative Spectroscopy KW - Correlative Imaging PY - 2024 AN - OPUS4-60240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hertwig, Andreas A1 - Ermilova, Elena T1 - Optical constants of a single AlN layer on Si N2 - Spectroscopic ellipsometry was used to determine the thickness and dielectric function of a Aluminium Nitride (AlN) layer on a Si wafer. The layer was determined to be 170 nm thick. The layer was provided by AIXTRON and manufactured by means of MOVPE. The data was created using a M2000DI spectroscopic ellipsometer from Woollam Co. Inc. Analysis was done using the CompleteEASE software. The model used is a multi-peak oscillator model for the AlN layer. The data resembles common database values for the material AlN. KW - Aluminium nitride KW - Thin solid layers KW - Spectroscopic ellipsometry KW - Compund semiconductors KW - MOVPE PY - 2024 UR - https://zenodo.org/records/12743500 DO - https://doi.org/10.5281/zenodo.12743499 PB - Zenodo CY - Geneva AN - OPUS4-60661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Sokolowski‐Tinten, Klaus T1 - Probing Laser‐Driven Structure Formation at Extreme Scales in Space and Time N2 - Irradiation of solid surfaces with high intensity, ultrashort laser pulses triggers a variety of secondary processes that can lead to the formation of transient and permanent structures over a large range of length scales from mm down to the nano‐range. One of the most prominent examples are LIPSS – Laser‐Induced Periodic Surface Structures. While LIPSS have been a scientific evergreen for of almost 60 years, experimental methods that combine ultrafast temporal with the required nm spatial resolution have become available only recently with the advent of short pulse, short wavelength free electron lasers. Here, the current status and future perspectives in this field are discussed by exploiting the unique possibilities of these 4th‐generation light sources to address by time‐domain experimental techniques the fundamental LIPSS‐question, namely why and how laser irradiation can initiate the transition of a “chaotic” (rough) surface from an aperiodic into a periodic structure. KW - Laser-induced periodic surface structures (LIPSS) KW - Free electron laser KW - Pump-probe experiments KW - Time-resolved scattering KW - Capillary waves PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595048 DO - https://doi.org/10.1002/lpor.202300912 SN - 1863-8899 VL - 18 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-59504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elert, Anna Maria A1 - Chen, Yong-Cin A1 - Smales, Glen J. A1 - Topolniak, Ievgeniia A1 - Sturm, Heinz A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Effects of the charge density of nanopapers based on carboxymethylated cellulose nanofibrils investigated by complementary techniques N2 - Cellulose nanofibrils (CNFs) with different charge densities were prepared and investigated by a combination of different complementary techniques sensitive to the structure and molecular dynamics of the system. The morphology of the materials was investigated by scanning electron microscopy (SEM) and X-ray scattering (SAXS/WAXS). The latter measurements were quantitatively analyzed yielding to molecular parameters in dependence of the charge density like the diameter of the fibrils, the distance between the fibrils, and the dimension of bundles of nanofibrils, including pores. The influence of water on the properties and the charge density is studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and broadband dielectric spectroscopy. The TGA measurements reveal two mass loss processes. The one at lower temperatures was related to the loss of water, and the second process at higher temperatures was related to the chemical decomposition. The resulting char yield could be correlated to the distance between the microfibrils. The DSC investigation for hydrated CNFs revealed three glass transitions due to the cellulose segments surrounded by water molecules in different states. In the second heating scan, only one broad glass transition is observed. The dielectric spectra reveal two relaxation processes. At low temperatures or higher frequencies, the β-relaxation is observed, which is assigned to localized fluctuation of the glycosidic linkage. At higher temperatures and lower frequencies, the α-relaxation takes places. This relaxation is due to cooperative fluctuations in the cellulose segments. Both processes were quantitatively analyzed. The obtained parameters such as the relaxation rates were related to both the morphological data, the charge density, and the content of water for the first time. KW - Cellulose nanofibrils PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600528 DO - https://doi.org/https://doi.org/10.1021/acsomega.4c00255 SN - 2470-1343 VL - 9 SP - 20152 EP - 20166 PB - ACS AN - OPUS4-60052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Multiphoton lithography of interpenetrating polymer networks for tailored microstructure thermal and micromechanical properties N2 - Multiphoton lithography (MPL), an emerging truly 3D microfabrication technique, exhibits substantial potential in biomedical applications, including drug delivery and tissue engineering. Fabricated micro-objects are often expected to undergo shape morphing or bending of the entire structure or its parts. Furthermore, ensuring precise property tuning is detrimental to the realization of the functionality of MPL microstructures. Herein, novel MPL materials based on interpenetrating polymer networks (IPNs) are presented that effectively combine the advantages of acrylate and epoxy systems. IPNs with varying component ratios are investigated for their microfabrication performance and structural integrity with respect to thermal and micromechanical properties. A variety of high-resolution techniques is applied to comprehensively evaluate IPN properties at the bulk, micron, and segmental levels. This study shows that the MPL laser scanning velocity and power, photoinitiator content, and multi-step exposure can be used to tune the morphology and properties of the IPN. As a result, a library of 3D MPL IPN microstructures with high 3D structural stability and tailored thermal and micromechanical properties is achieved. New IPN microstructures with Young’s moduli of 3–4 MPa demonstrate high-to-fully elastic responses to deformations, making them promising for applications in morphable microsystems, soft micro-robotics, and cell engineering. KW - Interpenetrating polymer network KW - Multiphoton lithography KW - Atomic force microscopy KW - Intermodulation AFM KW - Fast scanning calorimetry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600593 DO - https://doi.org/10.1002/smll.202310580 SN - 1613-6810 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-60059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, Heike A1 - Knigge, Xenia A1 - Knapic, D. A1 - Weise, Matthias A1 - Sahre, Mario A1 - Hertwig, Andreas A1 - Sacco, A. A1 - Rossi, A. M. A1 - Radnik, Jörg A1 - Müller, Kai A1 - Wasmuth, Karsten A1 - Krüger, Jörg A1 - Hassel, A. W. A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Picosecond laser processing of hierarchical micro–nanostructures on titanium alloy upon pre- and postanodization: morphological, structural, and chemical effects N2 - Recent publications indicate that the order of electrochemical anodization (before or after the laser processing step) plays an important role for the response of bone-forming osteoblasts—an effect that can be utilized for improving permanent dental or removable bone implants. For exploring these different surface functionalities, multimethod morphological, structural, and chemical characterizations are performed in combination with electrochemical pre- and postanodization for two different characteristic microspikes covered by nanometric laser-induced periodic surface structures on Ti–6Al–4V upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ≈1 ps pulse duration, 67 and 80 kHz pulse repetition frequency) at two distinct sets of laser fluence and beam scanning parameters. This work involves morphological and topographical investigations by scanning electron microscopy and white light interference microscopy, structural material examinations via X-ray diffraction, and micro-Raman spectroscopy, as well as near-surface chemical analyses by X-ray photoelectron spectroscopy and hard X-ray photoelectron spectroscopy. The results allow to qualify the mean laser ablation depth, assess the spike geometry and surface roughness parameters, and provide new detailed insights into the near-surface oxidation that may affect the different cell growth behavior for pre- or postanodized medical implants. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Hierarchical micro-nanostructures KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Ti-6Al-4V alloy KW - X-ray photoelectron spectroscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601962 DO - https://doi.org/10.1002/pssa.202300920 SN - 1862-6319 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-60196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emamverdi, Farnaz A1 - Huang, J. A1 - Szymoniak, Paulina A1 - Bojdys, M. J. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Structure and molecular mobility of phosphinine-based covalent organic frameworks – glass transition of amorphous COFs N2 - Two-dimensional covalent organic frameworks (COFs) based on phosphinine and thiophene building blocks have been synthesized with two different side groups. The materials are denoted as CPSF-MeO and CPSF-EtO where CxxF correspond to the covalent framework, whereas P and S are related to heteroatoms phosphorous and sulfur. MeO and EtO indicate the substituents, i.e. methoxy and ethoxy. Their morphologies were studied by scanning electron microcopy and X-ray scattering. The absence of crystalline reflexes in the X-ray pattern reveal that both materials are amorphous and can be considered as glasses. Furthermore, N2 adsorption measurements indicate substantial Brunauer–Emmett–Teller (BET) surface area values pointing to the formation of three-dimensional pores by stacking of the aromatic 2D layer. An analysis of the porosity of both COFs showed a mean radius of the pores to be of ca. 4 nm, consistent with their chemical structure. The COFs form nanoparticles with a radius of around 100 nm. The thermal behavior of the COFs was further investigated by fast scanning calorimetry. These investigations showed that both COFs undergo a glass transition. The glass transition temperature of CPSF-EtO is found to be ca. 100 K higher than that for CPSF-MeO. This large difference in the glass transition is discussed to be due to a change in the interaction of the COF sheets induced by the longer ethoxy group. It might be assumed that for CPSF-EtO more individual COF sheets assemble to larger stacks than for CPSF-MeO. This agrees with the much larger surface area value found for CPSF-EtO compared to CPSF-MeO. To corroborate the results obtained be fast scanning calorimetry dielectric measurements were conducted which confirm the occurrence of a dynamic glass transition. The estimated temperature dependence of the relaxation rates of the dielectric relaxation and their absolute values agrees well with the data obtained by fast scanning calorimetry. Considering the fragility approach to the glass transition, it was further found that CPSF-MeO is a fragile glass former whereas CPSF-EtO behaves as a strong glass forming material. This difference in the fragility points also to distinct differences in the interaction between the 2D COF molecules in both materials. KW - Covalent Organic frameworks PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596770 DO - https://doi.org/10.1039/d3ma01123b SP - 1 EP - 10 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed Aejaz A1 - Malpass-Evans, R. A1 - McKeown, N. A1 - Jalarvo, N. A1 - Tyagi, M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Microscopic molecular mobility of high-performance polymers of intrinsic microporosity revealed by neutron scattering – bend fluctuations and signature of methyl group rotation N2 - Polymers of intrinsic microporosity exhibit a combination of high gas permeability and reasonable permselectivity, which makes them attractive candidates for gas separation membrane materials. The diffusional selective gas transport properties are connected to the molecular mobility of these polymers in the condensed state. Incoherent quasielastic neutron scattering was carried out on two polymers of intrinsic microporosity, PIM-EA-TB(CH3) and its demethylated counterpart PIM-EA-TB(H2), which have high Brunauer–Emmett–Teller surface area values of 1030 m2 g-1 and 836 m2 g-1, respectively. As these two polymers only differ in the presence of two methyl groups at the ethanoanthracene unit, the effect of methyl group rotation can be investigated solely. To cover a broad dynamic range, neutron time-of-flight was combined with neutron backscattering. The demethylated PIM-EA-TB(H2) exhibits a relaxation process with a weak intensity at short times. As the backbone is rigid and stiff this process was assigned to bendand-flex fluctuations. This process was also observed for the PIM-EA-TB(CH3). A further relaxation process is found for PIM-EA-TB(CH3), which is the methyl group rotation. It was analyzed by a jump-diffusion in a three-fold potential considering also the fact that only a fraction of the present hydrogens in PIM-EATB(CH3) participate in the methyl group rotation. This analysis can quantitatively describe the q dependence of the elastic incoherent structure factor. Furthermore, a relaxation time for the methyl group rotation can be extracted. A high activation energy of 35 kJ mol-1 was deduced. This high activation energy evidences a strong hindrance of the methyl group rotation in the bridged PIM-EA-TB(CH3) structure. KW - Polymers of Intrinsic Microporosity KW - Neutron Scattering PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604114 DO - https://doi.org/10.1039/d4sm00520a SP - 1 EP - 11 PB - RSC AN - OPUS4-60411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - DACHS/MOFs/AutoMOFs_2/Synthesis N2 - The DACHS (Database for Automation, Characterization and Holistic Synthesis) project aims to create completely traceable experimental data, covering syntheses, measurements, analyses, and interpretations. DACHS_MOFs focuses on the synthesis and characterisation of metal-organic frameworks, across multiple, automation-assisted experimental series (AutoMOFs), with the overall goal of producing reproducible MOF samples through tracking of the synthesis parameters. DACHS_MOFs is simultaneously used to test the DACHS principles. This upload contain synthesis data from AutoMOFs_2 in HDF5 format (.h5). Each .h5 file contains detailed information on the chemical, experimenal, and synthesis parameters used during the synthesis of a single AutoMOF sample. KW - Automation KW - Procedure KW - Synthesis KW - Traceability PY - 2024 DO - https://doi.org/10.5281/zenodo.11236074 PB - Zenodo CY - Geneva AN - OPUS4-60611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren A1 - Sahre, Mario A1 - Hesse, R. A1 - Schusterbauer, Robert A1 - Grant, M. A1 - Agudo Jácome, Leonardo A1 - Albrecht, T. A1 - Hodoroaba, Vasile-Dan T1 - Approaches to Surface Analysis of Modified Quartz Nanopipettes N2 - Nanopipettes are a type of solid-state nanopore with needle-like geometry. Their applications range from imaging, sensing, diagnostics, and use as injectors. The response of nanopipette sensors is highly dependent on the size, geometry and chemical properties of the sensing region. As nanopipettes are increasingly tuned and modified for specific analytes, a better understanding of the surface chemistry and morphology of the inner channel is necessary. For exploring these effects, quartz nanopipettes were modified by gas phase silanization, a well-utilised technique in the field to enhance performance of nanopipettes, and further functionalised with a metal bis thiolate complex, to aid in chemical analysis. The inner channel of the sensing region was exposed with focused ion beam (FIB) milling as a dedicated sample preparation method for nanoscale surface analysis. The sample characterisation involved scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and low-energy energy dispersive x-ray spectroscopy (EDX). The results demonstrate the first steps towards full characterisation of nanopipettes at the nanoscale, notably with access to the inner channel. The methods used here can be applied to gain further understanding of the response of these sensors to complex analytes, and allow for the study of different surface functionalisation at the all-important sensing region. T2 - 2024 Spring Meeting of the European Materials Research Society (E-MRS) CY - Strasbourg, France DA - 27.05.2024 KW - Nanopipettes KW - FIB KW - Surface analysis KW - Surface modification KW - Silanisation PY - 2024 AN - OPUS4-60449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feng, Wen A1 - Gemming, Thomas A1 - Giebeler, Lars A1 - Qu, Jiang A1 - Weinel, Kristina A1 - Agudo Jácome, Leonardo A1 - Büchner, Bernd A1 - González-Martínez, Ignacio T1 - Influence of magnetic field on electron beam-induced Coulomb explosion of gold microparticles in transmission electron microscopy N2 - In this work we instigated the fragmentation of Au microparticles supported on a thin amorphous carbon film by irradiating them with a gradually convergent electron beam inside the Transmission Electron Microscope. This phenomenon has been generically labeled as “electron beam-induced fragmentation” or EBIF and its physical origin remains contested. On the one hand, EBIF has been primarily characterized as a consequence of beam-induced heating. On the other, EBIF has been attributed to beam-induced charging eventually leading to Coulomb explosion. To test the feasibility of the charging framework for EBIF, we instigated the fragmentation of Au particles under two different experimental conditions. First, with the magnetic objective lens of the microscope operating at full capacity, i.e. background magnetic field B = 2 T, and with the magnetic objective lens switched off (Lorenz mode), i.e. B = 0 T. We observe that the presence or absence of the magnetic field noticeably affects the critical current density at which EBIF occurs. This strongly suggests that magnetic field effects play a crucial role in instigating EBIF on the microparticles. The dependence of the value of the critical current density on the absence or presence of an ambient magnetic field cannot be accounted for by the beam-induced heating model. Consequently, this work presents robust experimental evidence suggesting that Coulomb explosion driven by electrostatic charging is the root cause of EBIF. KW - Electron beam-induced fragmentation KW - Coulomb explosion KW - X-ray diffraction KW - Lorenz transmission electron microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600247 DO - https://doi.org/10.1016/j.ultramic.2024.113978 SN - 0304-3991 VL - 262 SP - 1 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-60024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schiek, Manuela A1 - Minenkov, Alexey A1 - Hollweger, Sophia A1 - Duchoslav, Jiri A1 - Erdene-Ochir, Otgonbayar A1 - Weise, Matthias A1 - Ermilova, Elena A1 - Hertwig, Andreas T1 - Optical constants of In2O3-SnO2 (Indium tin oxide, ITO) N2 - Optical constants of In2O3-SnO2 (Indium tin oxide, ITO) Minenkov et al. 2024: on glass; n,k 0.191–1.69 µm Optical constants of In2O3-SnO2 (Indium tin oxide, ITO) Minenkov et al. 2024: on Si wafer, top; n,k 0.191–1.69 µm Optical constants of In2O3-SnO2 (Indium tin oxide, ITO) Minenkov et al. 2024: on Si wafer, bottom; n,k 0.191–1.69 µm KW - Indium Tin Oxide KW - Optical constants KW - Magnetron Sputtering KW - Electrochemical Degradation KW - Spectroscopic Ellipsometry PY - 2024 UR - https://refractiveindex.info/?shelf=other&book=In2O3-SnO2&page=Minenkov-glass UR - https://refractiveindex.info/?shelf=other&book=In2O3-SnO2&page=Minenkov-wafer-top UR - https://refractiveindex.info/?shelf=other&book=In2O3-SnO2&page=Minenkov-wafer-bottom PB - Refractiveindex.info AN - OPUS4-59766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -