TY - CONF A1 - Heilmann, Maria A1 - Hodoroaba, Vasile-Dan T1 - Project 16 Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension N2 - The progress of the VAMAS Project 16 "Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension" in TWA 34 Nanoparticle Populations is presented. Follwowing points are discusssed: - Validate the performance of imaging methods to measure the relative number concentration • electron microscopy (SEM, TEM) and atomic force microscopy (AFM) • two modes of bimodal (30 and 60 nm) silica nanoparticles - Validate the performance of small angle X-ray scattering (SAXS) for the traceable measurement of the number concentration of the two modes. T2 - VAMAS Regional Workshop 2023 - What can pre-normative research do for industry? CY - Online meeting DA - 24.01.2023 KW - Nanoparticles KW - VAMAS KW - Inter-laboratory comparison KW - SiO2 KW - Electron microscopy KW - AFM PY - 2023 UR - https://www.bam.de/Content/EN/Events/2023/2023-01-24-vamas-regional-workshop.html AN - OPUS4-57221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Schönhals, Andreas T1 - Suppressed Transition and Dynamic self-asembly of ionic superdiscs in cylindrical nanochannels N2 - Liquid crystalline mesophases in nanoconfinement exhibit intriguing phase transition behaviors and relaxation dynamics. Here, we investigate the molecular mobility and electrical conductivity of a columnar ionic liquid crystal confined in self-ordered nanoporous alumina oxide membranes of pore size ranging from 180 nm down to 25 nm. We use nano-broadband dielectric spectroscopy (BDS) and calorimetry to study the dynamics and phase behavior. Calorimetric investigation reveals a complete suppression of the columnar – isotropic transition, while the plastic crystalline – columnar transition temperature decreases with inverse pore size and deviates from the Gibbs – Thomson equation. For the bulk case, BDS detects two relaxation modes in the crystalline phase, the γ relaxation and the α1 relaxation, and two relaxation modes in the columnar phase, the α2 and α3 relaxation. All relaxation modes slow down for the confined case compared to the bulk. However, a new relaxation mode reflecting the interfacial layer emerges for the 80 and 25 nm. We discuss the possible molecular origins of the different relaxation modes observed. For the bulk ILC, a clear jump of 4 orders of magnitude in the absolute values of DC conductivity occurs at the transition from the plastic crystalline to hexagonal columnar phase, for the confined ILC, this transition is smooth. DC conductivity is reduced for the confined case, except for the 25nm, where the values are similar to the bulk. T2 - APS March Meeting 2023 CY - Las Vegas, NV, USA DA - 05.03.2023 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2023 AN - OPUS4-57342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Smales, Glen Jacob A1 - Böhning, Martin T1 - Molecular Dynamics of Janus Polynorbornenes: Glass Transitions and Nanophase separation N2 - We report the dielectric and calorimetric investigations of an homologous series of Janus polynorbornenes with rigid main backbone and flexible -Si(OR)3 side groups, of differing length alkyl chains (R = Propyl, Butyl, Hexyl, Octyl, Decyl). Dielectric dispersion reveals two active processes at low temperatures, denoted as β- and α- relaxation. The former can be assigned to localized fluctuations, whilst the latter relates to the glassy dynamics of the flexible -Si(OR)3 side groups, that creates a nanophase separation in both the alkyl chain rich and backbone rich domains. Temperature modulated DSC measurements and X-ray scattering experiment confirm the nanophase separation. Fast Scanning Calorimetry employing both fast heating and cooling rates detects the glass transition temperatures of the backbone rich domains, which are beyond or near to their degradation temperatures in terms of conventional DSC. The cooperative length scale of glass transition and the size of the alkyl chain rich domains increases with chain length. Alongside these results, a significant conductivity contribution was observed for all Poly(tricyclononenes) with Si(OR)3 side groups, which is interpreted in terms of a percolation model. T2 - Chemical Engg Seminar CY - Columbia University, NY, USA DA - 14.03.2023 KW - Glass transition KW - Conductivity KW - Fast Scanning Calorimetry KW - Dynamics PY - 2023 AN - OPUS4-57343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Schönhals, Andreas A1 - Li, Z. A1 - Huber, P. T1 - Suppressed Transition and Dynamic self-asembly of ionic superdiscs in cylindrical nanochannels N2 - Liquid crystalline mesophases in nanoconfinement exhibit intriguing phase transition behaviors and relaxation dynamics. Here, we investigate the molecular mobility and electrical conductivity of a columnar ionic liquid crystal confined in self-ordered nanoporous alumina oxide membranes of pore size ranging from 180 nm down to 25 nm. We use nano-broadband dielectric spectroscopy (BDS) and calorimetry to study the dynamics and phase behavior. Calorimetric investigation reveals a complete suppression of the columnar – isotropic transition, while the plastic crystalline – columnar transition temperature decreases with inverse pore size and deviates from the Gibbs – Thomson equation. For the bulk case, BDS detects two relaxation modes in the crystalline phase, the γ relaxation and the α1 relaxation, and two relaxation modes in the columnar phase, the α2 and α3 relaxation. All relaxation modes slow down for the confined case compared to the bulk. However, a new relaxation mode reflecting the interfacial layer emerges for the 80 and 25 nm. We discuss the possible molecular origins of the different relaxation modes observed. For the bulk ILC, a clear jump of 4 orders of magnitude in the absolute values of DC conductivity occurs at the transition from the plastic crystalline to hexagonal columnar phase, for the confined ILC, this transition is smooth. DC conductivity is reduced for the confined case, except for the 25nm, where the values are similar to the bulk. T2 - DPG Spring Meet 2023 CY - Dresden, Germany DA - 26.03.2023 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2023 AN - OPUS4-57345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feltin, N. A1 - Crouzier, L. A1 - Delvallée, A. A1 - Pellegrino, F A1 - Maurino, V. A1 - Bartczak, D. A1 - Goenaga-Infante, H. A1 - Taché, O. A1 - Marguet, S. A1 - Testard, F. A1 - Artous, S. A1 - Saint-Antonin, F. A1 - Salzmann, Christoph A1 - Deumer, J. A1 - Gollwitzer, C. A1 - Koops, R. A1 - Sebaïhi, N. A1 - Fontanges, R. A1 - Neuwirth, M. A1 - Bergmann, D. A1 - Hüser, D. A1 - Klein, T. A1 - Hodoroaba, Vasile-Dan T1 - Metrological Protocols for Reaching Reliable and SI-Traceable Size Results for Multi-Modal and Complexly Shaped Reference Nanoparticles N2 - The study described in this paper was conducted in the framework of the European nPSize project (EMPIR program) with the main objective of proposing new reference certified nanomaterials for the market in order to improve the reliability and traceability of nanoparticle size measurements. For this purpose, bimodal populations as well as complexly shaped nanoparticles (bipyramids, cubes, and rods) were synthesized. An inter-laboratory comparison was organized for comparing the size measurements of the selected nanoparticle samples performed with electron microscopy (TEM, SEM, and TSEM), scanning probe microscopy (AFM), or small-angle X-ray scattering (SAXS). The results demonstrate good consistency of the measured size by the different techniques in cases where special care was taken for sample preparation, instrument calibration, and the clear definition of the measurand. For each characterization method, the calibration process is described and a semi-quantitative table grouping the main error sources is proposed for estimating the uncertainties associated with the measurements. Regarding microscopy-based techniques applied to complexly shaped nanoparticles, data dispersion can be observed when the size measurements are affected by the orientation of the nanoparticles on the substrate. For the most complex materials, hybrid approaches combining several complementary techniques were tested, with the outcome being that the reliability of the size results was improved. KW - Certified reference nanomaterials KW - Traceable nanoparticle size measurements; KW - Hybrid metrology KW - Scanning probe microscopy KW - Small-angle X-ray scattering KW - Electron microscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571902 DO - https://doi.org/10.3390/nano13060993 SN - 2079-4991 VL - 13 IS - 6 - Special Issue "Identification and Quantification of Nanomaterials" SP - 1 EP - 25 PB - MDPI CY - Basel, CH AN - OPUS4-57190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Probing Nanoscale Relaxation Behavior in Thin Polymer Films N2 - The investigations into the complicated effects of film thickness on bulk properties of thin polymer films has yielded conflicting results. The reduction in molecular mobility, and with it an increase in the glass transition temperature, for thin films of poly (bisphenol A carbonate) (PBAC) was assigned to the formation of an adsorbed layer. The adsorbed layer was obtained by washing away the loosely bounded chains using a good solvent. Next, using atomic force microscopy (AFM), the thickness of each sample was measured after annealing for various times at three different annealing temperatures. The growth of this adsorbed layer was shown to deviate from the previously reported 2-step mechanism seen for other polymers. For PBAC, after very long annealing times at high temperatures the thin films were dewetted, where segments of the adsorbed layer were removed from the substrate. T2 - Royal Society of Chemistry (RSC) Poster CY - Online meeting DA - 28.02.2023 KW - Thin films KW - Adsorbed Layer KW - Broadband dielectric spectroscopy KW - Atomic force microscopy KW - Growth Kinetics PY - 2023 AN - OPUS4-57196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - VIDEO A1 - Pauw, Brian Richard T1 - "Ultima Ratio": Multi-scale, high-resolution 3D-FFT scattering pattern simulations N2 - This talk highlights a proof-of-concept that demonstrates the ability to calculate high-resolution Fourier transforms. These can be combined with multi-scale modeling to simulate scattering over a wide range, from small-angle scattering to XRD and PDF. The preprint documenting this is available on the ArXiv here: https://doi.org/10.48550/arXiv.2303.13435 The Jupyter notebook, VASP calculation details and MOUSE measured scattering patterns are available from this Zenodo repository: https://dx.doi.org/10.5281/zenodo.7764045 KW - Video KW - Simulation KW - High-resolution KW - Fourier Transform KW - 3D FFT KW - Nanomaterial KW - Metal organic framework KW - MOF KW - SAXS KW - XRD KW - PDF KW - X-ray diffraction KW - Pair distribution function KW - Small-angle X-ray scattering PY - 2023 UR - https://www.youtube.com/watch?v=lEApkOqR5e8 PB - YouTube, LLC CY - San Bruno, CA, USA AN - OPUS4-57212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Electric Safety Interlock N2 - This interlock is designed to prevent electrical shock from high voltage (>60V) equipment. While the general safety interlock can be generically applied, this particular example employs an external vacuum-activated switch. It is for safeguarding human operations inside a vacuum sample chamber while the chamber doors are open. The circuit is closed (output is active) when a sufficient level of vacuum is reached, i.e. when all accessible openings are necessarily closed. The initial application is to interrupt power to a 220V, 250W heating cartridge (itself mounted inside a small sample holder with potentially exposed contacts) when the sample chamber is open. The external circuit can be modified to use different interlock mechanisms as needed. Note that the external interlock circuit is only a single circuit (with two signal lines) and thus is not protected against external shorts. To accomodate a range of safety interlocks, the 4-pin M12 connector is wired as follows: Pin 1 (Brown): +24V for power supply, max current 0.6A Pin 2 (White): Safety interlock system signal 1 (0 or 24V) Pin 3 (Blue) : Safety interlock system signal 2 (0 or 24V) Pin 4 (Black): 0V for power supply The safety is interlocked (output active) when both signal pins are set high (24V), with sufficient current to activate the two relays. Pin 1 and 4 can be used to power safety hardware (such as light curtains or proximity detectors) with 24VDC up to a current of 0.6A. A larger power supply can be installed when higher currents are needed, while staying within the current limits imposed by the wiring cross-section. KW - Electric Safety Interlock KW - MOUSE KW - 60-230V PY - 2023 DO - https://doi.org/10.6084/m9.figshare.22265920.v1 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-57138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Altmann, Korinna A1 - Hodoroaba, Vasile-Dan T1 - Getting reliable data on microplastic detection methods by means of ILC N2 - There is an urgent demand for reliable data on microplastic analysis, particularly on its physico-chemical properties as well as validated methodology to obtain such data. Through interlaboratory comparisons (ILCs) it becomes possible to assess accuracy and precision of methods by involving many laboratories around the world. At BAM, my tasks focused around organisation of an ILC on physico-chemical characterisation of microplastic detection methods under the international pre-standardisation platform VAMAS (www.vamas.org/twa45/) as Project 2 “Development of standardized methodologies for characterisation of microplastics with microscopy and spectroscopy methods” under the Technical Working Area TWA 45 “Micro and Nano Plastics in the Environment”. With a proud number of 84 participants this ILC is able to provide superior statistical results. Thermoanalytical (Py-GC/MS and TED-GC/MS) and vibrational (µ-IR and µ-Raman) methods were asked for identification and quantification of microplastic test samples according to mass or particle number. Preliminary results indicate which methods show a higher accuracy and precision and reveal some sample preparation ideas which work best for microplastics characterisation. At the end of the ILC an overall plausibility of the results will be assessed. T2 - CUSP Early Career Researchers Meeting CY - Online meeting DA - 21.11.2023 KW - Micro- and Nanoplastics KW - Interlaboratory comparison KW - Microplastic reference materials PY - 2023 AN - OPUS4-59056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burkert, Andreas A1 - Müller, Thoralf A1 - Lehmann, Jens T1 - Bedeutung der Wirksumme bei Nichtrostenden Stählen N2 - Anhand der Wirksumme ist eine Abschätzung des legierungsabhängigen Einflusses auf den Korrosionswiderstand gegen chloridhaltige Medien möglich. Die berechneten Werte sind nur bei optimaler Wärmebehandlung und Verarbeitung zutreffend. Die Anwendung einer einfachen Formel unter Berücksichtigung von Chrom, Molybdän und Stickstoff ist in der Regel völlig ausreichend. Das daraus abgeleitete Ranking von Werkstoffen ist für diverse technische Regelwerke und zur Unterstützung der Werkstoffauswahl geeignet. Für die Warenein-/Ausgangskontrolle ist die alleinige Feststellung der Wirksumme unzureichend. Ergänzende Korrosionsuntersuchungen/-prüfungen zur Beschreibung des Korrosionswiderstandes sind dafür notwendig. Gleiches gilt für die Beurteilung von Schadensfällen. Hier sind Verarbeitung, Einsatzbedingungen und die Konstruktion von ausschlaggebender Bedeutung. T2 - Fortbildung Kursleiter Kompetenzzentren Edelstahl Rostfrei CY - Trier, Germany DA - 25.09.2023 KW - Nichtrostender Stahl KW - Korrosion KW - Wirksumme PY - 2023 AN - OPUS4-58453 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Hu, Y. ED - Wang, X. T1 - Influence of the Size and Dispersion State of Two-Dimensional Nanomaterials on the Fire Safety of Polymers N2 - Only the nano-scaled structure of the nanocomposite and the dispersion of nanoparticles within the polymer matrix harbor multifunctional potential including superior fire retardancy. Thus, this chapter focuses on the dispersion of nanoplates, based mainly on studies of layered silicates and graphene/graphene-related nanoplates. The nanostructure and properties of the nanocomposites are dependent mainly on thermodynamic and kinetic factors during preparation. Improving nano-dispersion often directly improves flame retardancy. Therefore, the modification of the nanoplates as well as the preparation of nanocomposites becomes very important to control this dispersion. The dispersion of nanoplates functions as a prerequisite for the formation of an efficient protective layer, changing the melt flow and dripping behavior, or the improvement of the char properties. KW - Nanocomposite KW - Flame retardancy KW - 2D nanoparticle KW - Exfoliation KW - Dispersion KW - Flammability PY - 2023 SN - 978-1-032-35268-8 SN - 978-1-032-35502-3 SN - 978-1-003-32715-8 DO - https://doi.org/10.1201/9781003327158-2 SP - 23 EP - 58 PB - CRC Press CY - Boca Raton AN - OPUS4-58290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fritzsche, S. A1 - Weimann, Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz T1 - 2PP-TestArtifact N2 - This repository contains a test artifact (TA), also called test structure, designed for two-photon polymerization (also known as Direct Laser Writing (DLW) or Two/Multi-photon lithography (2PA/MPA)). Test artifacts can be used to compare structures, to check options used by the slicer, check the state of the 2PP machine itself or to get a construction guidelines for a certain combination of power, velocity and settings. The associated paper can be found here: https://dx.doi.org/10.1088/1361-6501/acc47a General ideas behind the test artifact: 1. optimized for 2PP-DLW 2. should be fast and easy to analyse with optical microscopy or 3. scanning electron microscopy without tilt. 3. short time to fabricate 4. include a reasonable amount of different features 5. bulk and small structures on the substrate KW - Reference structure KW - Calibration structure KW - Test structure KW - Laser writing KW - Two-photon polymerization KW - 3D printing KW - Additive manufacturing KW - Microprinting KW - Multi-photon light structuring PY - 2023 DO - https://doi.org/10.6084/m9.figshare.22285204.v2 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-57165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Opitz, R. A1 - Ghoreishi, N. A1 - Plate, K. A1 - Barnes, J.-P. A1 - Bellew, A. A1 - Bellu, A. A1 - Ceccone, G. A1 - de Vito, E. A1 - Delcorte, A. A1 - Franquet, A. A1 - Fumageli, F. A1 - Gilliland, D. A1 - Jungnickel, H. A1 - Lee, T.G. A1 - Poleunis, C. A1 - Rading, D. A1 - Shon, H.K. A1 - Spampinato, V. A1 - Son, J.G. A1 - Wang, F. A1 - Wang, Y.-C. A. A1 - Zhao, Y. A1 - Roloff, A. A1 - Tentschert, J. A1 - Radnik, Jörg T1 - VAMAS TWA2 interlaboratory comparison: Surface analysis of TiO2 nanoparticles using ToF-SIMS N2 - Due to the extremely high specific surface area of nanoparticles and corresponding potential for adsorption, the results of surface analysis can be highly dependent on the history of the particles, particularly regarding sample preparation and storage. The sample preparation method has, therefore, the potential to have a significant influence on the results. This report describes an interlaboratory comparison (ILC) with the aim of assessing which sample preparation methods for ToF-SIMS analysis of nanoparticles provided the most intra- and interlaboratory consistency and the least amount of sample contamination. The BAM reference material BAM-P110 (TiO2 nanoparticles with a mean Feret diameter of 19 nm) was used as a sample representing typical nanoparticles. A total of 11 participants returned ToF-SIMS data,in positive and (optionally) negative polarity, using sample preparation methods of “stick-and-go” as well as optionally “drop-dry” and “spin-coat.” The results showed that the largest sources of variation within the entire data set were caused by adventitious hydrocarbon contamination or insufficient sample coverage, with the spin-coating protocol applied in this ILC showing a tendency toward insufficient sample coverage; the sample preparation method or the participant had a lesser influence on results. KW - Secondary Ion Mass Spectrometry KW - VMAAS KW - Titania KW - Interlaboratory comparison KW - Reproducibility PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582290 DO - https://doi.org/10.1116/6.0002814 SN - 0734-2101 VL - 41 IS - 5 SP - 053210-1 EP - 053210-13 PB - AIP (American Institute of Physics) AN - OPUS4-58229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Hahn, Marc Benjamin A1 - Hallier, Dorothea C. A1 - Seitz, H. T1 - X-ray scattering datasets and simulations associated with the publication "Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine" N2 - This dataset contains the processed and analysed small-angle X-ray scattering data associated with all samples from the publications "Bio-SAXS of Single-Stranded DNA-Binding Proteins: Radiation Protection by the Compatible Solute Ectoine" (https://doi.org/10.1039/D2CP05053F). Files associated with McSAS3 analyses are included, alongside the relevant SAXS data, with datasets labelled in accordance to the protein (G5P), its concentration (1, 2 or 4 mg/mL), and if Ectoine is present (Ect) or absent (Pure). PEPSIsaxs simulations of the GVP monomer (PDB structure: 1GV5 ) and dimer are also included. TOPAS-bioSAXS-dosimetry extension for TOPAS-nBio based particle scattering simulations can be obtained from https://github.com/MarcBHahn/TOPAS-bioSAXS-dosimetry which is further described in https://doi.org/10.26272/opus4-55751. This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant number 442240902 (HA 8528/2-1 and SE 2999/2-1). We acknowledge Diamond Light Source for time on Beamline B21 under Proposal SM29806. This work has been supported by iNEXT-Discovery, grant number 871037, funded by the Horizon 2020 program of the European Commission. KW - SAXS KW - Radiation protection KW - Microdosimetry KW - G5P KW - Ectoine KW - DNA-Binding protein PY - 2023 DO - https://doi.org/10.5281/zenodo.7515394 PB - Zenodo CY - Geneva AN - OPUS4-56811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Knigge, Xenia A1 - Mezera, Marek A1 - Weise, Matthias A1 - Sahre, Mario A1 - Wasmuth, Karsten A1 - Voss, Heike A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Chemical and topographical changes upon sub-100-nm laser-induced periodic surface structure formation on titanium alloy: the influence of laser pulse repetition rate and number of over-scans N2 - Titanium and its alloys are known to allow the straightforward laser-based manufacturing of ordered surface nanostructures, so-called high spatial frequency laser-induced periodic surface structures (HSFL). These structures exhibit sub-100 nm spatial periods – far below the optical diffraction limit. The resulting surface functionalities are usually enabled by both, topographic and chemical alterations of the nanostructured surfaces. For exploring these effects, multi-method characterizations were performed here for HSFL processed on Ti–6Al–4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm, ≈1 ps pulse duration, 1–400 kHz) under different laser scan processing conditions, i.e., by systematically varying the pulse repetition frequency and the number of laser irradiation passes. The sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), tactile stylus profilometry, as well as near-surface chemical analyses hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (ToF-SIMS). This provides a quantification of the laser ablation depth, the geometrical HSFL characteristics and enables new insights into the depth extent and the nature of the non-ablative laser-induced near-surface oxidation accompanying these nanostructures. This allows to answer the questions how the processing of HSFL can be industrially scaled up, and whether the latter is limited by heat-accumulation effects. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Laser processing KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Time-of-flight secondary ion mass spectrometry (ToF-SIMS) PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589902 UR - https://onlinelibrary.wiley.com/doi/full/10.1002/pssa.202300719 DO - https://doi.org/10.1002/pssa.202300719 SN - 1862-6319 VL - 220 SP - 1 EP - 12 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. T1 - Extending Bio-SAXS measurements of Single-Stranded DNA-Binding Proteins: Radiation Protection of G5P by Cosolutes N2 - Small-angle X-ray scattering (SAXS) can be used for structural de- termination of biological macromolecules and polymers in their na- tive states. To improve the reliability of such experiments, the re- duction of radiation damage occurring from exposure to X-rays is needed.One method, is the use of scavenger molecules that protect macromolecules against radicals produced by radiation exposure.In this study we investigate the feasibility to apply the compatible solute, osmolyte and radiation protector Ectoine (THP(B)) as a scavenger throughout SAXS measurements of single-stranded DNA-binding protein Gene-V Protein (G5P/GVP). Therefore we monitor the radiation induced changes of G5P during bio-SAXS. The resulting microscopic energy-damage relation was determined by particle scattering simu- lations with TOPAS/Geant4. The results are interpreted in terms of radical scavenging as well as post-irradiation effects, related to preferential-exclusion from the protein surface. Thus, Ectoine provides an non-disturbing way to improve structure-determination of proteins via bio-SAXS in future studies. T2 - MultiChem Conference 2023 CY - Prague, Czech Republic DA - 26.04.2023 KW - Bio-SAXS KW - BioSAXS KW - Compatible solute KW - Cosolute KW - DNA KW - Dosimetry KW - Ectoin KW - Ectoine KW - Ectoin KW - G5P KW - GVP KW - Geant4 KW - Geant4-DNA KW - Gene five protein KW - Hydroxyectoine KW - Ionizing radiation damage KW - LEE KW - McSAS3 KW - Microdosimetry KW - Monte-Carlo simulations KW - OH Radical KW - OH radical scavenger KW - Osmolyte KW - Particle scattering simulations KW - Protein KW - Protein unfolding KW - Proteins KW - ROS KW - Radiation damage KW - Radical Scavenger KW - Radical scavenger KW - SAXS KW - Single-stranded DNA-binding proteins KW - Small-angle xray scattering KW - Topas KW - Topas-MC KW - Topas-nBio KW - X-ray scattering KW - ssDNA KW - Median lethal energy deposit PY - 2023 AN - OPUS4-57407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Breßler, Ingo A1 - Hahn, Marc Benjamin T1 - McSAS3: live demo of a Monte Carlo data analyis package for scattering studies N2 - McSAS3 is a refactored software package for fitting large batches of (X-ray or Neutron) scattering data. It uses a Monte-Carlo acceptance-rejection algorithm to optimize model parameters - ideal for analysis of size-disperse scatterers. The refactored code can exploit multiprocessing, traceably stores (multiple) results in the output file, and allows for re-histogramming of previous optimizations. Besides analysis of large batches, it can also be integrated in automated data processing pipelines. The live demonstration will show how to use the software, what its limitations are, and what outcomes can look like for batches of results. T2 - SAS Analysis Course 2023 CY - Didcot, UK DA - 05.06.2023 KW - Scattering KW - Software KW - Analysis KW - Demonstration KW - McSAS3 KW - MOUSE KW - Monte Carlo KW - Automated analysis PY - 2023 AN - OPUS4-57630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reed, B.P. A1 - Marchesini, S. A1 - Chemello, Giovanni A1 - Morgan, D.J. A1 - Vyas, N. A1 - Howe, T. A1 - Radnik, Jörg A1 - Clifford, C,A. A1 - Pollard, A.J. T1 - The influence of sample preparation on XPS quantification of oxygen-functionalised graphene nanoplatelets N2 - X-ray photoelectron spectroscopy (XPS) is widely used for characterising the chemistry of graphene-related two-dimensional materials (GR2M), however the careful preparation of the sample for analysis is important in obtaining representative quantifications. We report an investigation by three laboratories showing that the preparation method for oxygen-functionalised graphene nanoplatelet (GNP) powders has a significant effect on the homogeneous-equivalent elemental composition measured in XPS. We show that pressing GNP powders onto adhesive tapes, into recesses, or into solid pellets results in inconsistencies in the XPS quantification. The measured oxygen-to-carbon atomic ratio from GNP pellets depends upon the die pressure used to form them and the morphology of the GNPs themselves. We recommend that powder samples of GR2Ms are pelletised prior to XPS analysis to improve repeatability and reproducibility of measurements. KW - X-ray photoelectron spectroscopy KW - Graphene related two-dimensional materials (GR2M) KW - Pelletization KW - Powder PY - 2023 DO - https://doi.org/10.1016/j.carbon.2023.118054 SN - 0008-6223 VL - 211 SP - 1 EP - 6 PB - Elsevier Ltd. AN - OPUS4-57694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Hahn, Marc Benjamin T1 - Inside back cover for the article "Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine" N2 - Showcasing research from the Federal Institute for Material Research and Testing Berlin and Fraunhofer Institute for Celltherapy and Immunology Branch Bioanalytics and Bioprocesses Potsdam. Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine. We aimed to increase the possible undisturbed exposure time during bio-SAXS measurements of single-stranded DNA-binding proteins. Therefore small angle X-ray scattering was performed on Gene-V Protein (G5P/GVP), which is involved in DNA repair processes. To achieve this, irradiations were performed in presence and absence of the hydroxyl-radical scavenger and osmolyte Ectoine, which showed efficient radiation protection and prevented protein aggregation, thus allows for a non-disturbing way to improve structure-determination of biomolecules. KW - Bio-SAXS KW - BioSAXS KW - Cosolute KW - DNA KW - Dosimetry KW - Ectoin KW - Ectoine KW - G5P KW - GVP KW - Geant4 KW - Geant4-DNA KW - Ionizing radiation damage KW - LEE KW - McSAS3 KW - Microdosimetry KW - Monte-Carlo simulations KW - OH Radical KW - OH radical scavenger KW - Protein KW - Protein unfolding KW - Radiation damage KW - Radical Scavenger KW - SAXS KW - Single-stranded DNA-binding proteins KW - Small-angle xray scattering KW - Topas-MC KW - Topas-nBio KW - TopasMC KW - X-ray scattering KW - Particle scatterin simulations KW - ssDNA PY - 2023 DO - https://doi.org/10.1039/D3CP90056H SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 7 SP - 5889 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-57006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating Polymer Networks with Tuned Thermal and Mechanical Properties by Multiphoton Lithography N2 - Multiphoton lithography (MPL) has recently attracted significant research interest as a versatile tool capable of fabricating 2D and 3D micro- and nanoscopic features with high spatial resolution. The integrity of MPL microstructures, or their ability to respond to external stimuli, is of critical importance. Often, the mechanically flexible micro-objects are expected to be capable of shape morphing, bending, or other motion to ensure their functionality. However, achieving the desired properties of MPL-manufactured micro components for a specific application still remains challenging. In this work, we present new MPL materials based on epoxy-acrylate interpenetrating networks (IPNs). We aim at fabrication 3D microstructures, whose properties can be easily tuned by varying the ratio of the IPN components and fabrication parameters. The studied mixtures consist of polyethylene glycol diacrylate (PEGDA) and cycloaliphatic epoxide functional groups. Consequently, tryarylsylfonium salt and cyclopentanone photoinitiator tailored for MPL were used to ensure cationic and radical polymerization, respectively. The resulting library of 3D microstructures was investigated for their thermal and mechanical properties using highly sensitive space-resolved methods. For the first time, we were able to evaluate the glass transition behavior of 3D MPL microstructures using fast scanning calorimetry. The influence of both IPN composition and fabrication parameters on glass transition temperature and material fragility was demonstrated. AFM force-distance curve and intermodulation methods were used to characterize the micromechanical properties with lateral resolution of the techniques in the range of 1 micron and 4 nm, respectively. The elastic-plastic behavior of the microarchitectures was evaluated and explained in terms of IPN morphology and thermal properties. The fabricated 3D IPN microstructures exhibit higher structural strength and integrity compared to PEGDA. In addition, IPNs exhibit high to full elastic recovery (up to 100%) with bulk modulus in the range of 4 to 6 MPa. This makes IPNs a good base material for modeling microstructures with intricate 3D designs for biomimetics and scaffold engineering. The effects of composition and MPL microfabrication parameters on the resulting IPN properties give us a better understanding of the underlying mechanisms and microfabrication-structure-property relationships. Moreover, our funding supports the further development of IPN systems as versatile and easily tunable MPL materials. T2 - Material Research Society Meeting CY - Boston, Massachusetts, USA DA - 26.11.2023 KW - Multiphoton Lithography KW - Two-photon polymerisatio KW - Interpenetrating polymer network PY - 2023 SP - 1 AN - OPUS4-59382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -