TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized TiO2 PVP nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized TiO2 PVP nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Nanoparticles KW - TiO2 PVP PY - 2023 DO - https://doi.org/10.5281/zenodo.7966354 PB - Zenodo CY - Geneva AN - OPUS4-57761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterile ZnO nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of ZnO nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Nanoparticles KW - ZnO PY - 2023 DO - https://doi.org/10.5281/zenodo.7990213 PB - Zenodo CY - Geneva AN - OPUS4-57762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterile citrated stabilized Au nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of Au nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Au Nanoparticles KW - NanoSolveIT PY - 2023 DO - https://doi.org/10.5281/zenodo.7990250 PB - Zenodo CY - Geneva AN - OPUS4-57763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterile Fe3O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterile Fe3O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Fe3O4 KW - Nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7990301 PB - Zenodo CY - Geneva AN - OPUS4-57764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arinchtein, A. A1 - Schnack, R. A1 - Kraffert, K. A1 - Radnik, Jörg A1 - Dietrich, P. A1 - Sachse, René A1 - Krähnert, R. T1 - Role of Water in Phase Transformations and Crystallization of Ferrihydrite and Hematite N2 - The oxides, hydroxides, and oxo-hydroxides of iron belong to the most abundant materials on earth. They also feature a wide range of practical applications. In many environments, they can undergo facile phase transformations and crystallization processes. Water appears to play a critical role in many of these processes. Despite numerous attempts, the role of water has not been fully revealed yet. We present a new approach to study the influence of water in the crystallization and phase transformations of iron oxides. The approach employs model-type iron oxide films that comprise a defined homogeneous nanostructure. The films are exposed to air containing different amounts of water reaching up to pressures of 10 bar. Ex situ analysis via scanning electron microscopy, Transmission electron microscopy, selected area electron diffraction, and X-ray diffraction is combined with operando near-ambient pressure X-ray photoelectron spectroscopy to follow water-induced changes in hematite nd ferrihydrite. Water proves to be critical for the nucleation of ematite domains in ferrihydrite, the resulting crystallite orientation, and the underlying crystallization mechanism. KW - Iron oxide KW - Ferrihydrite KW - Hematite KW - Water KW - NAP-XPS KW - High pressure PY - 2020 DO - https://doi.org/10.1021/acsami.0c05253 VL - 12 SP - 38714 EP - 38722 PB - ACS Publication AN - OPUS4-51201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Kersting, R. A1 - Hagenhoff, B. A1 - Bennet, Francesca A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan T1 - MinimUm Information Requirements for Electron Microscopy and Surface analysis Data For Risk Assessment of Nanoforms N2 - The European legislation has responded to the wide use of nanomaterials in our daily life and defined the term “nanoform” in the Annexes to the REACH (Registration, Evaluation, Authorization of Chemicals) Regulation. Now specific information of the nanomaterials is required from the companies when registering the appropriate materials in a dossier. In the context of REACH eleven physicochemical properties were considered as relevant, of which the following six are essential for registration of nanoforms (priority properties): chemical composition, crystallinity, particle size, particle shape, chemical nature of the surface (“surface chemistry”), and specific surface area (SSA). A key role is the reliable, reproduceable and traceable character of the data of these priority properties. In this context, we want to discuss which ‘analytical’ information is exactly required to fulfill these conditions. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS) were chosen as the most popular surface analytical methods. Both methods allow a detailed understanding of the surface chemistry with an information depth below ten nanometers. As a rather bulk method for the analysis of nanoforms, Electron Probe Microanalysis (EPMA) in the version with energy dispersive X-ray spectroscopy (EDS) is considered for the quick identification of the main chemical elements present in the sample. Furthermore, Scanning Electron Microscopy (SEM) results are discussed which provide results on particle size and shape. Thus, four of the six priority properties can be obtained with these methods. T2 - Nanosafe 2020 CY - Online meeting DA - 17.11.2020 KW - Risk assessment KW - Nanomaterials KW - Standardization KW - Regulation PY - 2020 AN - OPUS4-51612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Analytical & Characterisation Excellence in nanomaterial risk assessment: A tiered approach N2 - The work packages of the EU H2020 project ACEnano are presented and their activities in standardization and guidance for regulators and SMEs. T2 - ISO/TC 229 Strategy meeting CY - Online meeting DA - 10.11.2020 KW - Nanomaterials KW - Standardization KW - Risk assessment PY - 2020 AN - OPUS4-51611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Analysis of Industrial Graphene-Based Flakes – First Results on Morphological Characterization, Sample Preparation and Chemical Composition N2 - In order to bridge the gap between lab-scale and industrial-scale production of graphene it is necessary to develop processes, equipment and measurement procedures to control the material features. One of the crucial reasons of graphene’s limited commercialization is the lack of standard procedures to properly characterize and define the material chemical and structural properties down to the nanometer level. This leads to many issues regarding material synthesis repeatability, inappropriateness choice of measurands and measurement reproducibility which heavily affect the consistency of the material performance. In our study, a comparative analysis is performed on two different series (G5 and G6) of industrial graphene powders, each series produced with four types of functionalization: raw graphene, oxygen-functionalized, nitrogen-functionalized and fluorine-functionalized. All the 8 sample variants were analyzed from a chemical and morphological point of view in the form of powders prepared as slightly pressed in metallic sample holders. The results of the comparative chemical analyses XPS and EDS show a good agreement in the concentration values for all the elements present in the samples, despite the different analysis volumes addressed by the two techniques. For this reason, the samples can be considered homogeneous in both lateral and vertical direction. A clear influence of the morphology on the composition is evident. Therefore, such correlative measurements of morphology and composition are necessary for a comprehensive characterization of industrial graphene flakes. KW - Graphene powder KW - XPS KW - HAXPES KW - SEM KW - EDS KW - Functionalized graphene PY - 2022 DO - https://doi.org/10.1017/S1431927622004342 SN - 1435-8115 VL - 28 IS - Suppl 1 SP - 1006 EP - 1008 PB - Cambridge University Press CY - New York, NY AN - OPUS4-55512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - ToF-SIMS at advanced materials - from nano to energy N2 - The basic principles of ToF-SIMS will be explained. Examples of the use of ToF-SIMS for the investigation of titania and core-shell nanoplastic will be given. Furhtermore, 3d reconstruction is explained for nanoparticle research and energy-related materials. T2 - BUA Summer School Mass Spectrometry CY - Berlin, Germany DA - 04.10.2022 KW - ToF-SIMS KW - Nanomaterials KW - Imaging PY - 2022 AN - OPUS4-55897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Normung in der Oberflächen-und Schichttechnik N2 - Report über Normungsaktivitäten im Bereich der Messtechnk an Oberflächen und dünnen Schichten. Übersicht über Methoden und Vorstellung von laufenden Projekten mit Bezug zur Normung T2 - PlasmaGermany Herbstmeeting 2022 CY - Bielefeld, Germany DA - 07.11.2022 KW - Oberflächenmesstechnik KW - Spektroskopie KW - Ellipsometrie KW - XPS KW - Dünne Schichten PY - 2022 AN - OPUS4-56483 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Reed, B.P. A1 - Pollard, A. A1 - Clifford, C. A1 - Chemello, Giovanni T1 - XPS of GR2M N2 - The activities of ISO-G-Scope are presented. The influence of the sample preparation and the results of XPS/HAXPES measurements are discussed. T2 - Graphene Workshop @ ISO TC 229 Meeting CY - Teddington, UK DA - 16.11.2022 KW - Graphene related materials KW - X-ray photoelectron spectroscopy KW - Sample preparation KW - Hard X-ray photoelectron spectroscopy PY - 2022 AN - OPUS4-56434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habibimarkani, Heydar A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Time-of-flight secondary ion mass spectrometry (ToF-SIMS) for in situ investigation on FeNi nanoparticles N2 - The modern economy is dependent on catalysis, which is main efforts to create environmentally and energy-friendly technologies. The storage of excess electrical energy into chemical energy by splitting water into hydrogen and oxygen is a feasible solution to this energy demand. Due to their abundance on Earth and inherent stability in alkaline solution, transition-metal oxides have become one of several viable alternatives to noble-metal catalysts. Since NiFe oxide is one of the most active oxygen evolution reaction (OER) electrocatalysts for alkaline water electrolysis, it has been the subject of extensive research. In this work, NiFe2O4 nanoparticles (NPs) of various sizes, specific stoichiometric and non-stoichiometric Fe:Ni surface ratios are synthesized. we will use a combination of ultra-high vacuum surface analysis techniques, such as time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS), to obtain the detailed characterization of the OER electrocatalysts top-surface layer, which is required to identify the rate-limiting step intermediates, and surface morphological changes at the electrolyte/catalyst. T2 - SALSA Make&Measure 2022 CY - Berlin, Germany DA - 15.09.2022 KW - ToF-SIMS KW - FeNi nanoparticles PY - 2022 AN - OPUS4-56157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Knigge, Xenia A1 - Valsami-Jones, E. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Complementary Analysis of Sterilized Nanoparticles with SEM/EDS And XPS/HAXPES N2 - Since there is a lack of knowledge about the effects of nanomaterials on human health and the environment, and in order to get safe- and sustainable-by-design nanomaterials, it is necessary to find an easy way to assess their properties, without having to perform time-consuming experiments each time. In the European project NanoSolveIT, the behavior of nanoparticles is to be derived from a nanomaterial fingerprint database with standardized physico-chemical properties of nanomaterials. The key element for these grouping and reading across approaches is the collection of standardized information about nanomaterials in combination with modelling and simulations. As parameters the particle size, particle shape, chemical composition and surface chemistry are discussed here. Measurements of the shape and size were performed using scanning electron microscopy (SEM). For the chemical composition energy dispersive X-ray spectroscopy (EDS) and for the surface chemistry X-ray photoelectron spectroscopy (XPS) were used. As an additional method hard X-ray photoelectron spectroscopy (HAXPES) with a higher information depth than XPS was used, thus we were able to include information not only from the top surface, but also from deeper regions of about 30 nm. Therefore, this method is complementary to EDS. All these methods have been correlatively used to study nanoparticles of different chemical composition that have been treated differently by sterilization. Such a sterilization step is common, before testing for toxicity. To date, the sterilization step has not been considered in establishing the structure-activity relationship of the nanomaterial. The effects of sterilization are discussed on exemplary samples. The results demonstrate the influence of sterilization on all investigated properties, indicating a restructuring of the nanoparticles. This implies that samples that have been sterilized after synthesis, may show different toxicity from those used in applications without a sterilization step. Acknowledgement: This research is part of the project “NanoSolveIT”, which has received funding from European Union Horizon 2020 Programme (H2020) under grant agreement no 814572. (https://nanosolveit.eu/) T2 - nanoSAFE'23 CY - Grenoble, France DA - 04.06.2023 KW - XPS KW - HAXPES KW - Characterization KW - Nanoparticles KW - NanoSolveIT PY - 2023 AN - OPUS4-57658 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Knigge, Xenia A1 - Hodoroaba, Vasile-Dan T1 - Characterization of functionalized graphene particles with comparative XPS/HAXPES investigations N2 - The different chmemistry of graphitic nanoplatelets between the outermost surface and the bulk of the samples was investigated with comparative XPS/HAXPES measurements. T2 - PHI User Meeting CY - Grenoble, France DA - 18.04.2023 KW - X-ray photoelectron spectroscopy KW - Hard-energy X-ray photoelectron spectroscopy KW - graphene related 2D materials PY - 2023 AN - OPUS4-57649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Co3O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Co3O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Co3O4 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7941248 PB - Zenodo CY - Geneva AN - OPUS4-57666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Co1.5Fe1.5O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Co1.5Fe1.5O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Co1.5Fe1.5O4 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7940271 PB - Zenodo CY - Geneva AN - OPUS4-57662 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Fe2O3 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Fe2O3 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Fe2O3 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7941001 PB - Zenodo CY - Geneva AN - OPUS4-57665 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized TiO2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized TiO2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - TiO2 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7941566 PB - Zenodo CY - Geneva AN - OPUS4-57668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized ZnO nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized ZnO nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - ZnO nanoparticles KW - NanoSolveIT PY - 2023 DO - https://doi.org/10.5281/zenodo.7990301 PB - Zenodo CY - Geneva AN - OPUS4-57661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Božičević, Lucija A1 - Altmann, Korinna A1 - Hildebrandt, Jana A1 - Knigge, Xenia A1 - Vrček, Valerije A1 - Peranić, Nikolina A1 - Kalcec, Nikolina A1 - Vinkovic Vrcek, Ivana T1 - Estrogenic activity of plastic nanoparticles mixture under in vitro settings N2 - The plastic value chain, central part of modern living, caused environmental pollution and bioaccumulation of plastic nanoparticles (PNPs). Their ubiquitous presence in different environmental and biological compartments has become a serious threat to human health and ecosystems. Frequently used plastic materials such as polypropylene (PP), polystyrene (PS) and polyethylene (PE) have been detected in the form of PNPs in the food chain, soil, water and air, as well as in human feces and blood. In this study, we aimed to provide novel insights in endocrine disrupting properties of PNPs using in vitro estrogen receptor (ER) transactivation assay. The effects of PP-NPs, PE-NPs and PS-NPs and their mixture on T47D-KBluc cell line stably transfected with luciferase as reporter enzyme was evaluated by means of cytotoxicity, cellular uptake and ER activation. Tested dose range for PNPs was 0.001 – 10 mg/L. Both cellular uptake and cytotoxicity for all PNPs was found to be dose-dependent. Only the highest dose of PP-NPs and PE-NPs induced apoptosis and cell death, while PS-NPs were not cytotoxic in tested dose range. For tested concentrations, PP-NPs and PE-NPs showed significant agonistic activity on ER, while PS-NPs cannot be considered ER active. When, applied as mixture, PNP demonstrated additive toxicity effects compared to the effect of each individual PNPs. Additivity was also observed for ER agonistic effect of PNPs mixture according to the benchmark dose-addition modelling approach. This study provides missing science-based evidence on endocrine disrupting effects of PE-NPs, PP-NPs, PS-NPs and their mixtures and highlights the importance of considering unintentional, aggregate and combined exposure to different PNPs in risk management. KW - Risk assessment KW - Nanoplastics KW - Estrogenic activity of plastic nanoparticles PY - 2024 DO - https://doi.org/10.1039/D3EN00883E SN - 2051-8153 VL - 11 IS - 5 SP - 2112 EP - 2126 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Graphene Flagship - Achievements and the way forward N2 - The activities of the Graphene in the field of standardization will be summarized. The future activities of the Graphene Flagship CSA which was established recently will be presented with the focus on future challenges in standardization and regulation of graphene and other 2D materials. T2 - Harmonisation & Standardisation of Test Methods for Nano- and Advanced Materials CY - Online meeting DA - 22.11.2023 KW - 2D materials KW - Regulation KW - Standardization PY - 2023 UR - https://macrame-project.eu/macrame-meetings-workshops/ws_hamonisation_standardisation_2023/ AN - OPUS4-59497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strommer, Bettina A1 - Böhning, Martin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Natural Rubber Nanocomposites via Optimized Latex Premixing and Conventional Technical Processing N2 - Creation of highly functional materials and replacement of high amounts of conventional fillers are driving forces for the development of nanocomposites. Besides the type and properties of nanoparticles, their dispersing in the elastomeric matrix and the stability of this dispersion through all processing steps are the main factors for the resulting performance of the produced material. Therefore, a preparation chain via latex premixing to a highly filled masterbatch, followed by conventional technical processing is to be developed. Three types of carbon-based particles are characterized as such (SEM, Raman Spectroscopy, BET specific surface area) and in combination with natural rubber, as nanocomposites (TEM. Hardness, Abrasion resistance, Compression set, Cone calorimetry). All of the studied particles lead to an improvement in the investigated mechanical properties, the extent of reinforcement depends strongly on the specific surface of the particle interacting with the elastomeric matrix in combination with their shape. T2 - DKG Elastomer Symposium CY - Online meeting DA - 28.06.2021 KW - Processing KW - Elastomers KW - Nanocomposites KW - Graphene KW - Nanoparticles KW - Latex KW - Natural rubber PY - 2021 AN - OPUS4-53106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strommer, Bettina A1 - Böhning, Martin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Networking Skills: The Effect of Graphene on Crosslinking N2 - 2D layered nanoparticles enable a distinct reduction of filler loadings in rubber compounds combined with a boost in performance due to their high surface to volume ratio. They often enable unique property profiles providing a great potential as effective fillers in rubber, especially by enhancing mechanical and barrier properties. As the best possible incorporation into the elastomer matrix is crucial for the efficiency of the nanofiller, dispersing and exfoliation of the nanoparticles without formation of agglomerates usually constitutes an outstanding challenge - especially when using conventional processing methods. Laboratory-scale approaches for highly dispersed nanocomposites sometimes solve this problem, but these are often too energy and time consuming and provide no scale up possibility for real applications. Therefore, a latex premixing process was established to produce highly filled masterbatches, enabling the processing with conventional techniques. The presence of nanoparticles greatly impacts the behavior of elastomeric compounds, besides affecting the properties of the final product also the processing is influenced (rheology, crosslinking). In this study, nanocomposites of natural rubber and multilayer graphene (MLG) were prepared via a latex masterbatch route. Different strategies for masterbatch premixing are compared (stirring vs. ultrasonication, coagulation vs. drying). Dispersion and exfoliation of MLG were determined by transmission electron microscopy. The reinforcing effect of MLG affects the viscosity while the dispersed graphene layers may also act as diffusion barrier/absorbent for the crosslinking agents. In contrast to that, MLG forms physical crosslinks in the final product. Swelling measurements and differential scanning calorimetry allow a differentiation between chemical and physical network links. Different technical properties of the nanocomposites were measured with respect to mechanical and application relevant behavior. T2 - PPS 37 CY - Online meeting DA - 12.04.2022 KW - Elastomers KW - Nanocomposites KW - Graphene KW - Nanoparticles KW - Latex KW - Natural rubber KW - Processing PY - 2022 AN - OPUS4-54696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Battig, Alexander A1 - Böhning, Martin A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Strommer, Bettina A1 - Tabaka, Weronika A1 - Wachtendorf, Volker T1 - Small but Great – Multifunctional Graphene in Rubber Nanocomposites N2 - A few layer/multilayer graphene (MLG) with a specific surface area of BET ≥ 250 m2/g is proposed as an efficient multifunctional nanofiller for rubbers. The preparation method, i.e., ultrasonically-assisted solution or latex premixing of master batches followed by conventional two-roll milling, strongly influences the dispersion in the elastomeric matrix and is fundamental for the final properties. When homogenously dispersed, single stacks of only approximately 10 graphene sheets, with an aspect ratio of ca. 35, work at low loadings, enabling the replacement of large amounts of carbon black (CB), an increase in efficiency, and a reduction in filler load. The appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing, gas barrier properties, electrical and thermal conductivity, as well as mechanical properties of different rubbers, as shown for chlorine-Isobutylene-Isoprene rubber (CIIR), nitrile-butadiene rubber (NBR), natural rubber (NR), and styrene-butadiene rubber (SBR).[1-5] 3 phr of MLG tripled the Young’s modulus of CIIR, an effect equivalent to 20 phr of CB. The stronger interactions between MLG and NR or SBR also resulted in a reduction in the elongation at break by 20% and 50%, respectively, while the same parameter was hardly changed for CIIR/MLG and NBR/MLG. CIIR/MLG and NBR/MLG were stiffer but just as defomable than CIIR and NBR. The strong reinforcing effect of 3 phr MLG was confirmed by the increase of greater than 10 Shore A in hardness. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards flammability. We investigated MLG also as a synergist for reducing the aluminium trihydrate loading in flame retardant hydrogenated acrylonitrile-butadiene (HNBR), polybutadiene chloroprene (BR/CR), and chlorosulfonated polyethylene rubber(CSM).[6-8] The higher the nanofiller concentration is, the greater the improvement in the properties. For instance, the permeability decreased by 30% at 3 phr of MLG, 50% at 5 phr and 60% at 10 phr, respectively. Moreover, the MLG nanocomposites improve stability of mechanical properties against the effects of weathering. In key experiments an increase in UV-absorption and a pronounced radical scavenging were proved as stabilizing mechanisms. In a nutshell, MLG is an efficient multifunctional nanofiller ready to be used for innovative rubber development. T2 - 34th PDDG Conference CY - Dubrovnik, Croatia DA - 11.06.2023 KW - Graphene KW - Nanocomposites KW - Reinforcement KW - Antioxydant KW - Flame retardant KW - Durability PY - 2023 AN - OPUS4-57693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Battig, Alexander A1 - Böhning, Martin A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Strommer, Bettina A1 - Tabaka, Weronika A1 - Wachtendorf, Volker T1 - Multifunctional Elastomer/Graphene Nanocomposites N2 - A few layer/multilayer graphene (MLG) with a specific surface area of BET=250 m2/g is proposed as an efficient multifunctional nanofiller for rubbers. The preparation method, i.e., ultrasonically-assisted solution mixing of master batches followed by two-roll milling, strongly influences the dispersion in the elastomeric matrix and is fundamental for the final properties. When homogenously dispersed, single stacks of only approximately 10 graphene sheets, with an aspect ratio of 34, work at low loadings, enabling the replacement of large amounts of carbon black (CB), an increase in efficiency, and a reduction in filler load. The appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing, gas barrier properties, electrical and thermal conductivity, as well as mechanical properties of different rubbers, as shown for chlorine-Isobutylene-Isoprene rubber (CIIR), nitrile-butadiene rubber (NBR), natural rubber (NR), and styrene-butadiene rubber (SBR). 3 phr of MLG tripled the Young’s modulus of CIIR, an effect equivalent to 20 phr of CB. The stronger interactions between MLG and NR or SBR also resulted in a reduction in the elongation at break by 20% and 50%, respectively, while the same parameter was hardly changed for CIIR/MLG and NBR/MLG. CIIR/MLG and NBR/MLG were stiffer but just as defomable than CIIR and NBR. The strong reinforcing effect of 3 phr MLG was confirmed by the increase of greater than 10 Shore A in hardness. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards flammability, the latter shown by the reduction in heat release rate in the cone calorimeter. We investigated MLG also as a synergist for reducing the aluminium trihydrate loading in flame retardant hydrogenated acrylonitrile-butadiene (HNBR), polybutadiene chloroprene (BR/CR), and chlorosulfonated polyethylene rubber(CSM). The higher the nanofiller concentration is, the greater the improvement in the properties. For instance, the permeability decreased by 30% at 3 phr of MLG, 50% at 5 phr and 60% at 10 phr, respectively. Moreover, the MLG nanocomposites improve stability of mechanical properties against the effects of weathering. In key experiments an increase in UV-absorption and a pronounced radical scavenging were proved as stabilizing mechanisms. In a nutshell, MLG is an efficient multifunctional nanofiller ready to be used for innovative rubber development. T2 - 19th European Polymer Congress, EPF 2022 CY - Prague, Czech Republic DA - 26.06.2022 KW - Graphene KW - Nanocomposite KW - Rubber KW - Elastomer PY - 2022 AN - OPUS4-55196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strommer, Bettina A1 - Böhning, Martin A1 - Schulze, Dietmar A1 - Schartel, Bernhard A1 - Agudo Jácome, Leonardo T1 - Anisotropy in natural rubber / graphene nanocomposites N2 - The incorporation of nanoscale particles into elastomers enable a boost in performance and/or a distinct reduction of conventional filler loadings due to their high surface to volume ratio. 2D layered nanoparticles like graphene and graphene-related materials provide a great potential as effective fillers in rubber, especially by enhancing mechanical and barrier properties. The type and properties of the nanoparticles, their interface and the elastomeric matrix materials influence the technical behavior, and therefore the potential application fields of such rubber nanocomposites. Especially crucial for the efficiency of the nanofiller, however, is its best possible incorporation into the elastomer. The dispersing of nanoparticles without agglomerates usually constitutes a challenge when using conventional two-roll milling or internal mixing. Academic approaches for highly dispersed nanocomposites solve this problem but are often energy and time consuming with no feasible scale up possibility. Therefore, an ultrasonic assisted NR latex premixing process was established to produce highly filled masterbatches, enabling the main processing with conventional rubber processing techniques. Two carbon-based nanoparticles with similar specific surface areas were investigated and incorporated in natural rubber as nanocomposites: A commercially available multilayer graphene (MLG) and a nanoscale carbon black (nCB). The mentioned premixed masterbatches were further processed to nanocomposites by the addition of matrix NR, two-roll milling, and hot pressing (vulcanization). By this procedure an increase in Young’s modulus of 157% (MLG) and 71% (nCB) could be obtained at a concentration level of 3 phr. As anisotropic material behavior was observable for the nanocomposites containing MLG, different measurement methods were investigated to quantify the orientation of the nanoparticles in the nanocomposites: Sorption measurements (swelling in 2 dimensions), hardness and dynamical mechanical analysis (in-plane vs. cross-plane), X-Ray diffraction and transmission and scanning electron microscopy. T2 - DKT IRC 21 CY - Nuremberg, Germany DA - 27.06.2022 KW - Processing KW - Elastomers KW - Nanocomposites KW - Graphene KW - Orientation KW - Anisotropy PY - 2022 AN - OPUS4-55205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - Particle size determination of a commercially available CeO2 nano powder - SOPs and reference data N2 - Compilation of detailed SOPs for characterization of a commercially available CeO2 nano powder including - suspension preparation (indirect and direct sonication), - particle size determination (Dynamic Light Scattering DLS and Centrifugal Liquid Sedimentation CLS) with reference data, respectively. For sample preparation and analysis by Scanning Electron Microscopy (SEM) of this powder see related works (submitted, coming soon). KW - Wet dispersion KW - Nano powder KW - Particle size KW - CeO2 KW - Ceria KW - DLS KW - CLS PY - 2023 DO - https://doi.org/10.5281/zenodo.10061079 PB - Zenodo CY - Geneva AN - OPUS4-58785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Z. A1 - Raab, A. A1 - Kolmangadi, Mohamed Aejaz A1 - Busch, M. A1 - Grunwald, M. A1 - Demel, F. A1 - Bertram, F. A1 - Kityk, A. V. A1 - Schönhals, Andreas A1 - Laschat, S. A1 - Huber, P. T1 - Self-Assembly of Ionic Superdiscs in Nanopores N2 - Discotic ionic liquid crystals (DILCs) consist of self-assembled superdiscs of cations and anions that spontaneously stack in linear columns with high one-dimensional ionic and electronic charge mobility, making them prominent model systems for functional soft matter. Compared to classical nonionic discotic liquid crystals, many liquid crystalline structures with a combination of electronic and ionic conductivity have been reported, which are of interest for separation membranes, artificial ion/proton conducting membranes, and optoelectronics. Unfortunately, a homogeneous alignment of the DILCs on the macroscale is often not achievable, which significantly limits the applicability of DILCs. Infiltration into nanoporous solid scaffolds can, in principle, overcome this drawback. However, due to the experimental challenges to scrutinize liquid crystalline order in extreme spatial confinement, little is known about the structures of DILCs in nanopores. Here, we present temperaturedependent high-resolution optical birefringence measurement and 3D reciprocal space mapping based on synchrotron X-ray scattering to investigate the thermotropic phase behavior of dopamine-based ionic liquid crystals confined in cylindrical channels of 180 nm diameter in macroscopic anodic aluminum oxide membranes. As a function of the membranes’ hydrophilicity and thus the molecular anchoring to the pore walls (edge-on or face-on) and the variation of the hydrophilic−hydrophobic balance between the aromatic cores and the alkyl side chain motifs of the superdiscs by tailored chemical synthesis, we find a particularly rich phase behavior, which is not present in the bulk state. It is governed by a complex interplay of liquid crystalline elastic energies (bending and splay deformations), polar interactions, and pure geometric confinement and includes textural transitions between radial and axial alignment of the columns with respect to the long nanochannel axis. Furthermore, confinement-induced continuous order formation is observed in contrast to discontinuous first-order phase transitions, which can be quantitatively described by Landau-de Gennes free energy models for liquid crystalline order transitions in confinement. Our observations suggest that the infiltration of DILCs into nanoporous solids allows tailoring their nanoscale texture and ion channel formation and thus their electrical and optical functionalities over an even wider range than in the bulk state in a homogeneous manner on the centimeter scale as controlled by the monolithic nanoporous scaffolds. KW - Ionic Liquid Crystals KW - Nanopropous materials KW - Landau de-Gennes analysis KW - X-ray scattering KW - Optical birefringence PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600797 DO - https://doi.org/10.1021/acsnano.4c01062 SN - 1936-0851 VL - 18 IS - 22 SP - 14414 EP - 14426 PB - ACS AN - OPUS4-60079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, Heike A1 - Knigge, Xenia A1 - Knapic, D. A1 - Weise, Matthias A1 - Sahre, Mario A1 - Hertwig, Andreas A1 - Sacco, A. A1 - Rossi, A. M. A1 - Radnik, Jörg A1 - Müller, Kai A1 - Wasmuth, Karsten A1 - Krüger, Jörg A1 - Hassel, A. W. A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Picosecond laser processing of hierarchical micro–nanostructures on titanium alloy upon pre- and postanodization: morphological, structural, and chemical effects N2 - Recent publications indicate that the order of electrochemical anodization (before or after the laser processing step) plays an important role for the response of bone-forming osteoblasts—an effect that can be utilized for improving permanent dental or removable bone implants. For exploring these different surface functionalities, multimethod morphological, structural, and chemical characterizations are performed in combination with electrochemical pre- and postanodization for two different characteristic microspikes covered by nanometric laser-induced periodic surface structures on Ti–6Al–4V upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ≈1 ps pulse duration, 67 and 80 kHz pulse repetition frequency) at two distinct sets of laser fluence and beam scanning parameters. This work involves morphological and topographical investigations by scanning electron microscopy and white light interference microscopy, structural material examinations via X-ray diffraction, and micro-Raman spectroscopy, as well as near-surface chemical analyses by X-ray photoelectron spectroscopy and hard X-ray photoelectron spectroscopy. The results allow to qualify the mean laser ablation depth, assess the spike geometry and surface roughness parameters, and provide new detailed insights into the near-surface oxidation that may affect the different cell growth behavior for pre- or postanodized medical implants. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Hierarchical micro-nanostructures KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Ti-6Al-4V alloy KW - X-ray photoelectron spectroscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601962 DO - https://doi.org/10.1002/pssa.202300920 SN - 1862-6319 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-60196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan A1 - Seeger, Stefan A1 - Resch-Genger, Ute A1 - Braun, Ulrike A1 - Jann, Oliver A1 - Wilke, Olaf A1 - Geißler, Daniel A1 - Schmidt, Alexandra A1 - Unger, Wolfgang A1 - Sturm, Heinz T1 - Stand der Aktivitäten zur gemeinsamen Forschungsstrategie N2 - Die gemeinsame Forschungsstrategie der Bundesoberbehörden zur Nanotechnologie wurde 2016 veröffentlicht. Die darin enthaltenen Aufgaben wurden von den Bundesoberbehörden vielfältig bearbeitet. Diese Präsentation gibt einen Überblick über die Projekte, die von der BAM bis 2019 bearbeitet wurden/werden und sich in den Rahmen der Forschungsstrategie einordnen. T2 - Workshop zur gemeinsamen Forschungsstrategie der Bundesoberbehörden „Nanomaterialien und andere innovative Werkstoffe: anwendungssicher und umweltverträglich“ CY - Berlin, Germany DA - 02.09.2019 KW - Nano KW - Bundesoberbehörden KW - Forschungsstrategie KW - Nanomaterialien KW - Nanotechnologie PY - 2019 AN - OPUS4-49586 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as CRM for Size and Shape N2 - Due to their unique physico-chemical properties, nanoparticles are well established in research and industrial applications. A reliable characterization of their size, shape, and size distribution is not only mandatory to fully understand and exploit their potential and develop reproducible syntheses, but also to manage environmental and health risks related to their exposure and for regulatory requirements. To validate and standardize methods for the accurate and reliable particle size determination nanoscale reference materials (nanoRMs) are necessary. However, there is only a very small number of nanoRMs for particle size offered by key distributors such as the National Institute of Standards and Technology (NIST) and the Joint Research Centre (JRC) and, moreover, few provide certified values. In addition, these materials are currently restricted to polymers, silica, titanium dioxide, gold and silver, which have a spherical shape except for titania nanorods. To expand this list with other relevant nanomaterials of different shapes and elemental composition, that can be used for more than one sizing technique, we are currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance for the material and life sciences. T2 - Microscopy and Microanalysis 2022 CY - Online meeting DA - 31.07.2022 KW - Certified Referencematerial KW - Cubical Iron Oxide KW - Nanoparticles KW - Electron Microscopy KW - Small-Angle X-ray Scattering PY - 2022 AN - OPUS4-57035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Knigge, Xenia A1 - Weise, Matthias A1 - Sahre, Mario A1 - Wasmuth, Karsten A1 - Voss, Heike A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Chemical and topographical changes upon sub-100-nm LIPSS formation on titanium alloy N2 - Laser-induced periodic surface structures (LIPSS) have gained remarkable attention as they represent a universal phenomenon that is often accompanying laser-processing. Such LIPSS enable a large variety of different surface functionalizations for applications in the fields of optics, fluidics, tribology, or medicine. Moreover, so-called “high spatial frequency LIPSS” (HSFL) provide an appealing and straightforward way for surface nanostructuring featuring spatial periods even below 100 nm – far beyond the optical diffraction limit. However, the imposed surface functionalities are usually caused by both, topographic and chemical surface alterations. For exploring these effects in detail, multi-method characterizations were performed here for HSFL on processed Ti- 6Al- 4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ~1 ps pulse duration, 1 – 400 kHz pulse repetition rate) under different laser and scan processing conditions. The sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), stylus profilometry (SP), and white light interference microscopy (WLIM), as well as near-surface chemical analyses by X-ray photoelectron spectroscopy (XPS), hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (TOF-SIMS). The results allow to qualify the laser ablation depth, the geometrical HSFL characteristics and provide detailed insights into the depth extent and the nature of the ps-laser-induced near-surface oxidation. Significance for medical applications will be outlined. T2 - E-MRS Spring Meeting 2023 CY - Strasbourg, France DA - 29.05.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser processing KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Time-offlight secondary ion mass spectrometry (ToF-SIMS) KW - Ti6Al4V alloy PY - 2023 AN - OPUS4-58531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating networks with tuned thermal and mechanical properties N2 - Multiphoton lithography (MPL), an emerging microfabrication technique, shows great potential in a variety of applications ranging from tissue engineering to soft micro-robotics. Fabricated micro-objects often are expected to undergo shape morphing or bending. Furthermore, ensuring precise property tuning becomes detrimental for the functionality of MPL microstructures. Herein, we present novel MPL materials based on interpenetrating networks (IPNs), which effectively combine the advantages of acrylate and epoxy thermoset systems. A library of 3D MPL IPN microstructures with high 3D structural stability and tailored thermal and micromechanical properties is achieved. MPL laser velocity and fabrication power can be used to tune the morphology and therefore properties of IPN. New IPN microstructures with materials Young's moduli of 4 to 6 MPa demonstrate susceptibility to deformation with high to fully elastic response. Such soft elastic materials hold immense promise within morphable microsystems, soft micro-robotics and cell engineering applications. T2 - RSC Poster conference CY - Online meeting DA - 05.03.2024 KW - Multiphoton lithography KW - Interpenetrating polymer networks KW - AFM PY - 2024 AN - OPUS4-60060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Pauw, Brian Richard A1 - Riechers, Birte A1 - Zocca, Andrea A1 - Rosalie, Julian A1 - Maaß, Robert A1 - Sturm, Heinz A1 - Günster, Jens T1 - Entering a new dimension in powder processing for advanced ceramics shaping N2 - Filigree structures can be manufactured via two-photon-polymerization (2PP) operating in the regime of non-linear light absorption. For the first time it is possible to apply this technique to the powder processing of ceramic structures with a feature size in the range of the critical defect size responsible for brittle fracture and, thus, affecting fracture toughness of high-performance ceramics. In this way, tailoring of advanced properties can be achieved already in the shaping process. Traditionally, 2PP relies on transparent polymerizable resins, which is diametrically opposed to the usually completely opaque ceramic resins and slurries. Here we present a transparent and photocurable suspension of nanoparticles (resin) with very high mass fractions of yttria-stabilized zirconia particles (YSZ). Due to the extremely well dispersed nanoparticles, scattering of light can be effectively suppressed at the process-relevant wavelength of 800 nm. Sintered ceramic structures with a resolution of down to 500 nm were obtained. Even at reduced densities of 1 to 4 g/cm³, the resulting compressive strength with 4,5 GPa is equivalent or even exceeding bulk monolithic yttria stabilized zirconia. A ceramic metamaterial is born, where the mechanical properties of yttria stabilized zirconia are altered by changing geometrical parameters and gives access to a new class of ceramic materials. KW - Two-photon-polymerization KW - Ceramics KW - Powder processing KW - Transparency KW - Meta material KW - Yttria stabilized zirconia PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564598 DO - https://doi.org/10.1002/adma.202208653 SN - 1521-4095 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Chemello, Giovanni A1 - Radnik, Jörg T1 - Measurement of Lateral Size of Graphene Oxide Flakes by SEM - An Update of the VAMAS TWA 41 Project P13 N2 - The progress of the VAMAS interlaboratory comparison Project P13 "Lateral size of graphene oxide flakes by SEM" within the Technical Working Area 41 "Graphene and Related 2D Materials" is presented. The challenges at sample preparation on substrates for accurate measurement and image analysis as well as two different analysis approaches, containing exact guidance how to measure the main descriptors for the lateral size measurement of the imaged graphene oxide flakes with Scanning Electron Microscopy are highlighted. The implementation of the results into the corresponding ISO technical specification AWI/TS 23879 is also discussed and planned, in relation with the AFM part. T2 - The 32nd ISO/TC 229 IEC/TC 113 JWG2 General Meeting CY - Berlin, Germany DA - 06.11.2023 KW - VAMAS KW - ISO/TC 229 Nanotechnologies KW - Interlaboratory comparison KW - Graphene oxide flakes KW - SEM PY - 2023 AN - OPUS4-58813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chemello, Giovanni A1 - Knigge, Xenia A1 - Ciornii, Dmitri A1 - Reed, B.P. A1 - Pollard, A.J. A1 - Clifford, C.A. A1 - Howe, T. A1 - Vyas, N. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Influence of the Morphology on the Functionalization of Graphene Nanoplatelets Analyzed by Comparative Photoelectron Spectroscopy with Soft and Hard X-Rays N2 - Since its isolation, graphene has received growing attention from academia and industry due to its unique properties. However, the “what is my material” barrier hinders further commercialization. X-ray photoelectron spectroscopy (XPS) is considered as a method of choice for the determination of the elemental and chemical composition. In this work the influence of the morphology of graphene particles on the XPS results is studied and investigated as a function of X-ray energy, using conventional XPS with Al K𝜶 radiation and hard X-ray photoemission spectroscopy (HAXPES) using Cr K𝜶 radiation. Thereby, the information depth is varied between 10 and 30 nm. For this purpose, two commercial powders containing graphene nanoplatelets with lateral dimensions of either ≈100 nm or in the micrometer range are compared. These larger ones exist as stack of graphene layers which is inspected with scanning electron microscopy. Both kinds of particles are then functionalized with either oxygen or fluorine. The size of the graphene particles is found to influence the degree of functionalization. Only the combination of XPS and HAXPES allows to detect the functionalization at the outermost surface of the particles or even of the stacks and to provide new insights into the functionalization process. KW - Functionalized graphene KW - Hard-energy X-ray photoelectron spectroscopy KW - X-ray photoelectron spectroscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578860 DO - https://doi.org/10.1002/admi.202300116 SN - 2196-7350 SP - 1 EP - 8 PB - Wiley VCH AN - OPUS4-57886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Analysis of industrial graphene-based flakes – first results on morphological characterization, sample preparation and chemical composition N2 - Before industrial grade graphene could reach comparable quality to the controlled laboratory scale material, many challenges must be overcome. In order to bridge the gap between lab-scale and industrial-scale production is necessary to develop processes, equipment and measurement procedures to control the material features. One of the most crucial reasons of graphene’s limited commercialization is the lack of standard procedures to properly characterize and define the material chemical and structural properties down to the nanometer level. This leads to many issues regarding material synthesis repeatability, inappropriateness choice of measurands and measurement reproducibility which heavily affect the consistency of the material performance. For example, among all the different industrially produced real-world graphene, it is crucial to determine how many layers of graphene build the material. Products that are built by more than 10 layers should be more correctly referred as nanosized graphite, a problem that is often regarded as the “fake graphene” issue. In our study, a comparative analysis is performed on two different series (G5 and G6) of industrial graphene powders, each series produced with four types of functionalization: raw graphene, oxygen-functionalized, nitrogen-functionalized and fluorine-functionalized. All the 8 sample variants were analyzed from a chemical and morphological point of view in the form of powders prepared as slightly pressed in metallic sample holders. The results of the comparative chemical analyses XPS and EDS show a good agreement in the concentration values for all the elements present in the samples, despite the different analysis volumes addressed by the two techniques. For this reason, the samples can be considered homogeneous in both lateral and vertical direction. A clear influence of the morphology on the composition is evident. Therefore, such correlative measurements of morphology and composition are necessary for a comprehensive characterization of industrial graphene flakes. Protocols for reliable characterization of industrial graphene flakes are in progress. T2 - Microscopy and Microanalysis 2022 CY - Portland, OR, USA DA - 31.07.2022 KW - Graphene powder KW - Functionalized graphene KW - XPS KW - SEM KW - EDS PY - 2022 AN - OPUS4-55479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Knigge, Xenia A1 - Guo, Zhiling A1 - Valsami-Jones, Eugenia A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Influence of Sterilization on the Surface of Nanoparticles Studied with XPS / HAXPES in Comparison to SEM / EDS N2 - Nanosafety is becoming increasingly important as nanomaterials are widely used in industrial processes and consumer products. For nanotoxicity measurements prior sterilization of the samples is necessary, but as structure activity relationships are made with properties of pristine particles, the question arises, if the sterilization process has an impact on the physico-chemical properties of nanoparticles and thus on the biological behavior. This question will be addressed in this talk. For this purpose, results from SEM and EDS measurements are combined with those of a novel lab-based HAXPES spectrometer in order to obtain a more complete picture. At the end, an influence of sterilization will be evident, which indicates a restructuring of the nanoparticles owing to sterilization. T2 - Microscopy & Microanalysis 2022 CY - Online meeting DA - 31.07.2022 KW - XPS KW - HAXPES KW - SEM KW - EDS KW - Nanoparticles PY - 2022 AN - OPUS4-55353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Simulational tools in nanoparticle research: Micromagnetics and particle scattering N2 - Simulational tools are applied to investigate the physical properties of nanoparticles. For the description of radioactive gold nanoparticles, particles scattering simulations are performed with the Geant4 monte carlo simulation toolkit. The temperature dependent behaviour of the magnetization dynamics of different magnetic nanoparticles are simulated with the object oriented micormagnetic framework (OOMMF). T2 - NanoBioAp CY - LLanes, Spain DA - 23.05.2019 KW - Monte Carlo KW - Monte-Carlo simulation KW - MCS KW - Nanoparticle KW - AuNP KW - Dosimetry KW - Radioactive NP KW - Microdosimetry KW - Geant4 KW - OOMMF KW - Micromagnetism KW - Simulation KW - Magnetic nanoparticle KW - LLG PY - 2019 AN - OPUS4-48110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Z. A1 - Perez, J. P. H. A1 - Smales, Glen Jacob A1 - Blukis, R. A1 - Pauw, Brian Richard A1 - Stammeier, J. A. A1 - Radnik, Jörg A1 - Smith, A. J. A1 - Benning, L. G. T1 - Impact of organic phosphates on the structure and composition of short-range ordered iron nanophases N2 - Organic phosphates (OP) are important nutrient components for living cells in natural environments, where they readily interact with ubiquitous iron phases such as hydrous ferric oxide, ferrihydrite (FHY). FHY partakes in many key bio(geo)chemical reactions including iron-mediated carbon storage in soils, or iron-storage in living organisms. However, it is still unknown how OP affects the formation, structure and properties of FHY. Here, we document how β-glycerophosphate (GP), a model OP ligand, affects the structure and properties of GP–FHY nanoparticles synthesized by coprecipitation at variable nominal molar P/Fe ratios (0.01 to 0.5). All GP–FHY precipitates were characterized by a maximum solid P/Fe ratio of 0.22, irrespective of the nominal P/Fe ratio. With increasing nominal P/Fe ratio, the specific surface area of the GP–FHY precipitates decreased sharply from 290 to 3 m2 g−1, accompanied by the collapse of their pore structure. The Fe–P local bonding environment gradually transitioned from a bidentate binuclear geometry at low P/Fe ratios to monodentate mononuclear geometry at high P/Fe ratios. This transition was accompanied by a decrease in coordination number of edge-sharing Fe polyhedra, and the loss of the corner-sharing Fe polyhedra. We show that Fe(III) polymerization is impeded by GP, and that the GP–FHY structure is highly dependent on the P/Fe ratio. We discuss the role that natural OP-bearing Fe(III) nanophases have in biogeochemical reactions between Fe–P and C species in aquatic systems. KW - Organic phosphates KW - Iron nanophases KW - Scattering KW - Diffraction KW - Nanomaterials KW - Coprecipitation KW - Carbon storage PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599399 DO - https://doi.org/10.1039/d3na01045g SN - 2516-0230 SP - 1 EP - 13 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-59939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zou, T. A1 - Nonappa, N. A1 - Khavani, M. A1 - Vuorte, M. A1 - Penttilä, P. A1 - Zitting, A. A1 - Valle-Delgado, J. J. A1 - Elert, Anna Maria A1 - Silbernagl, Dorothee A1 - Balakshin, M. A1 - Sammalkorpi, M. A1 - Österberg, M. T1 - Experimental and Simulation Study of the Solvent Effects on the Intrinsic Properties of Spherical Lignin Nanoparticles N2 - Spherical lignin nanoparticles (LNPs) fabricated via nanoprecipitation of dissolved lignin are among the most attractive biomass-derived nanomaterials. Despite various studies exploring the methods to improve the uniformity of LNPs or seeking more application opportunities for LNPs, little attention has been given to the fundamental aspects of the solvent effects on the intrinsic properties of LNPs. In this study, we employed a variety of experimental techniques and molecular dynamics (MD) simulations to investigate the solvent effects on the intrinsic properties of LNPs. The LNPs were prepared from softwood Kraft lignin (SKL) using the binary solvents of aqueous acetone or aqueous tetrahydrofuran (THF) via nanoprecipitation. The internal morphology, porosity, and mechanical properties of the LNPs were analyzed with electron tomography (ET), small-angle X-ray scattering (SAXS), atomic force microscopy (AFM), and intermodulation AFM (ImAFM). We found that aqueous acetone resulted in smaller LNPs with higher uniformity compared to aqueous THF, mainly ascribing to stronger solvent−lignin interactions as suggested by MD simulation results and confirmed with aqueous 1,4-dioxane (DXN) and aqueous dimethyl sulfoxide (DMSO). More importantly, we report that both LNPs were compact particles with relatively homogeneous density distribution and very low porosity in the internal structure. The stiffness of the particles was independent of the size, and the Young’s modulus was in the range of 0.3−4 GPa. Overall, the fundamental understandings of LNPs gained in this study are essential for the design of LNPs with optimal performance in applications. KW - Lignin KW - Electron tomography KW - Intermodulation AFM KW - Modulus KW - SAXS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546948 DO - https://doi.org/10.1021/acs.jpcb.1c05319 SN - 1520-5207 VL - 125 IS - 44 SP - 12315 EP - 12328 PB - ACS AN - OPUS4-54694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Müller, Anja A1 - Radnik, Jörg A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Laue, P. A1 - Luch, A. A1 - Tentschert, J. T1 - Preparation of Nanoparticles for ToF-SIMS and XPS Analysis N2 - Nanoparticles have gained increasing attention in recent years due to their potential and application in different fields including medicine, cosmetics, chemistry, and their potential to enable advanced materials. To effectively understand and regulate the physico-chemical properties and potential adverse effects of nanoparticles, validated measurement procedures for the various properties of nanoparticles need to be developed. While procedures for measuring nanoparticle size and size Distribution are already established, standardized methods for analysis of their surface chemistry are not yet in place, although the influence of the surface chemistry on nanoparticle properties is undisputed. In particular, storage and preparation of nanoparticles for surface analysis strongly influences the analytical results from various methods, and in order to obtain consistent results, sample preparation must be both optimized and standardized. In this contribution, we present, in detail, some standard procedures for preparing nanoparticles for surface analytics. In principle, nanoparticles can be deposited on a suitable substrate from suspension or as a powder. Silicon (Si) Wafers are commonly used as substrate, however, their cleaning is critical to the process. For sample preparation from suspension, we will discuss drop-casting and spin-coating, where not only the cleanliness of the substrate and purity of the suspension but also its concentration play important roles for the success of the preparation methodology. For nanoparticles with sensitive ligand shells or coatings, deposition as powders is more suitable, although this method requires particular care in fixing the sample. KW - Titania nanoparticles KW - X-ray photoelectron spectroscopy KW - Secondary ion mass spectrometry KW - Surface chemisttry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520103 UR - https://www.jove.com/video/61758 DO - https://doi.org/10.3791/61758 VL - 163 SP - e61758 AN - OPUS4-52010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz A1 - Günster, Jens T1 - First time additively manufactured advanced ceramics by using two-photon polymerization for powder processing N2 - Methods and materials are presented here, which enable the manufacturing of fine structures using a 3D-printing method known as two-photon polymerization (2PP). As traditional photolithography methods for structuring ceramic slurries do not function with 2PP, due to light scattering on ceramic particles, a novel water-based photoresist with high ceramic loading of extremely well dispersed ceramic nano particles was developed. This photoresist is basically a ceramic slurry containing a photocurable agent and a photoinitiator to be crosslinkable with the 780 nm wavelength femtosecond laser light source of the 2PP machine. It is demonstrated that it is possible to gain a highly transparent and low viscous slurry suitable for 2PP processing. This work shows the development of the slurry, first printing results and the post-printing processes required to form three dimensional ceramic microstructures consisting of alumina toughened zirconia (ATZ). KW - 3D-printing KW - Two-photon polymerization KW - 2PP KW - Ceramic nano particles KW - Slurry KW - Alumina toughened zirconia KW - ATZ KW - Additive manufacturing KW - SchwarzP cells KW - Nano-ceramic-additive-manufacturing photoresin KW - NanoCAM PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517441 DO - https://doi.org/10.1016/j.oceram.2020.100040 VL - 4 SP - 100040 PB - Elsevier Ltd. AN - OPUS4-51744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of Fe3O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of Fe3O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Fe3O4 KW - Nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7990085 PB - Zenodo CY - Geneva AN - OPUS4-57759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. T1 - Ejemplos de simulaciónes de Montecarlo La desintegración radioactiva N2 - A walkthrough how to setup radioactive sources in monte-carlo particle scattering simulations and perform different types of scorings. N2 - En esta presentación desarrollaremos un ejemplo de aplicación para la dispersión de partículas utilizando el método de simulación de Monte- Carlo. Se discutirá el caso de las nanopartículas de oro radiactivo y los diferentes tipos del scoring. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Columbia DA - 27.02.2020 KW - MCS KW - Geant4-DNA KW - Geant4 KW - Radioactive nanoparticle KW - Radioactive decay KW - Particle scattering simulations KW - Particle scattering simulation KW - Topas KW - Monte-Carlo simulations KW - Desintegracion radioactiva KW - Método de Montecarlo KW - Geant4 KW - nanoparticula PY - 2020 AN - OPUS4-50472 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Simulaciónes de Montecarlo II: El scoring en las superficies N2 - En esta presentación desarrollaremos un ejemplo de aplicación para la dispersión de partículas utilizando el método de simulación de Monte- Carlo. Se discutirá el caso de las nanopartículas de oro radiactivo y como obtener informacions sobre diferente tipos de particulas pasando las superfices. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Colombia DA - 16.03.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Particle scattering simulation KW - Particle scattering simulations KW - Radioactive decay KW - Radioactive nanoparticle KW - Desintegracion radioactiva KW - Geant4 KW - Monte-Carlo simulations KW - Método de Montecarlo KW - Topas KW - nanoparticula PY - 2020 AN - OPUS4-50564 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - Temperature effects in the Object Oriented Micromagnetic Framework (OOMMF) - OOMMF input parameter files for Tc determination N2 - To simulate the movement of the macroscopic magnetic moment in ferromagnetic systems under the influence of elevated temperatures, the stochastic version of the Landau-Lifshitz (LL) or the Landau-Lifshitz-Gilbert equation with a spin density of one per unit cell has to be used. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion has to be performed. OOMMF sample files MIF) are provided which can be used to determine the Curie temperature for the classical bulk magnets, iron, nickel and cobalt. KW - OOMMF KW - Temperature KW - Micromagnetism KW - Thetaevolve KW - Ferromagnetism KW - Exchange interaction KW - LLG KW - Landau Lifshitz equation KW - Magnetic moment KW - Magnetic nanoparticles KW - Object oriented micromagnetic framework KW - Stochastic Landau Lifshitz Gilbert equation KW - Temperature scaling PY - 2020 DO - https://doi.org/10.26272/opus4-51169 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-51169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Setup of a Particle Scattering Simulation environment N2 - A step by step introduction to the setup of a particle scattering simulation is given. Followed by an installation session. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Columbia DA - 12.02.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Monte-Carlo simulations KW - Particle scattering simulations KW - Scattering KW - Simulations KW - Debian KW - Linux KW - Topas KW - C++ KW - Topas-nbio KW - Git KW - Cmake PY - 2020 AN - OPUS4-50366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Reed, B. P. A1 - Pollard, A. A1 - Clifford, C. T1 - VAMAS Project A33: Chemical composition of functionalized graphene with X ray photoelectron spectroscopy (XPS) N2 - The results of the interlaboratory comparison about the chemical composition of functionalized graphene are presented. T2 - DIN Meeting NA 062-08-16 AA CY - Berlin, Germany DA - 25.05.2023 KW - X-ray photoelectron spectroscopy KW - Functionalized graphene KW - Interlaboratory comparison KW - VAMAS PY - 2023 AN - OPUS4-57650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - TOPAS cell model with nanoparticles N2 - These files contain cell models for TOPAS/Geant4 and the inclusion of nano particles in particle scattering simulations. A simple spherical cell with nanoparticles can be generated in a fast manner. The user has the option to include the following organelles: nucleus, mitochondria, cell membrane. Additionally nanoparticles can be included in the cytosol and at the surface of the nucleus and/or the mitochondria. The C++ classes in this repository extend the functionality of the TOPAS (http://www.topasmc.org/) Monte-Carlo program, which is itself a wrapper of the Geant4 MCS Toolkit (http://geant4.org). The sourcecode together with examples and scorers are provided. "If you use this extension please cite the following literature: Hahn, M.B., Zutta Villate, J.M. "Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles." Sci Rep 11, 6721 (2021). https://doi.org/10.1038/s41598-021-85964-2 " KW - Monte-Carlo simulation KW - MCS KW - Geant4 KW - TOPAS KW - TOPAS-nBio KW - Dosimetry KW - Nanoparticles KW - Nanoparticle KW - AuNP KW - Gold KW - Microdosimetry KW - Targeted nanoparticle KW - Simulation KW - Particle scattering KW - Cell KW - Nucleus KW - Mitochondria KW - Cancer therapy KW - Radiation therapy PY - 2020 UR - https://github.com/BAMresearch/TOPAS-CellModels UR - https://github.com/MarcBHahn/TOPAS-CellModels DO - https://doi.org/10.26272/opus4-51150 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-51150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pellegrino, F. A1 - Rossi, A. A1 - Sordello, A. A1 - Sordello, F. A1 - Alladio, E. A1 - Santalucia, R. A1 - Primieri, A. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Maurino, V. T1 - Safe-by-Design Synthesis of 2D Materials N2 - The use of a dedicated approach: DoE for synthesis + characterization + Chemometric Analysis, is a valuable method for the safe-by-design synthesis of several types of materials for large-scale application in catalysis, energy harvesting, biomedical and environmental applications, etc. This approach is not only related to the material synthesis, but can be expanded to any type of molecules/material, with relevant saving of solvents, energy and times. T2 - Congress of the Environment and Cultural Heritage - Section of Italian Chemistry Society CY - Ischia, Italy DA - 28.09.2023 KW - Safe-by-design KW - 2D materials KW - Synthesis KW - Chemometric analysis PY - 2023 UR - https://www.congressodabc.it/ AN - OPUS4-59780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peters, R. A1 - Elbers, I. A1 - Undas, A. A1 - Sijtsma, E. A1 - Briffa, S. A1 - Carnell-Morris, P. A1 - Siupa, A. A1 - Yoon, T.-H. A1 - Burr, L. A1 - Schmid, D. A1 - Tentschert, J. A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Luch, A. A1 - Meier, F. A1 - Kocic, J. A1 - Kim, J. A1 - Park, B. C. A1 - Hardy, B. A1 - Johnston, C. A1 - Jurkschat, K. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Lynch, I. A1 - Valsami-Jones, E. T1 - Benchmarking the ACEnano toolbox for characterisation of nanoparticle size and concentration by interlaboratory comparisons N2 - ACEnano is an EU-funded project which aims at developing, optimising and validating methods for the detection and characterisation of nanomaterials (NMs) in increasingly complex matrices to improve confidence in the results and support their use in regulation. Within this project, several interlaboratory comparisons (ILCs) for the determination of particle size and concentration have been organised to benchmark existing analytical methods. In this paper the results of a number of these ILCs for the characterisation of NMs are presented and discussed. The results of the analyses of pristine well-defined particles such as 60 nm Au NMs in a simple aqueous suspension showed that laboratories are well capable of determining the sizes of these particles. The analysis of particles in complex matrices or formulations such as consumer products resulted in larger variations in particle sizes within technologies and clear differences in capability between techniques. Sunscreen lotion sample analysis by laboratories using spICP-MS and TEM/SEM identified and confirmed the TiO2 particles as being nanoscale and compliant with the EU definition of an NM for regulatory purposes. In a toothpaste sample orthogonal results by PTA, spICP-MS and TEM/SEM agreed and stated the TiO2 particles as not fitting the EU definition of an NM. In general, from the results of these ILCs we conclude that laboratories are well capable of determining particle sizes of NM, even in fairly complex formulations. KW - Nanomaterials KW - Benchmarking KW - Inter-laboratory comparison KW - ACEnano KW - Characterisation KW - Size KW - Concentration PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531852 DO - https://doi.org/10.3390/molecules26175315 SN - 1420-3049 VL - 26 IS - 17 SP - 1 EP - 23 PB - MDPI CY - Basel AN - OPUS4-53185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fortes Martin, R. A1 - Thünemann, Andreas A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Koetz, J. T1 - From Nanoparticle Heteroclusters to Filament Networks by Self-Assembly at the Water–Oil Interface of Reverse Microemulsions N2 - Surface self-assembly of spherical nanoparticles of sizes below 10 nm into hierarchical heterostructures is under arising development despite the inherent difficulties of obtaining complex ordering patterns on a larger scale. Due to template-mediated interactions between oil-dispersible superparamagnetic nanoparticles (MNPs) and polyethylenimine-stabilized gold nanoparticles (Au(PEI)NPs) at the water–oil interface of microemulsions, complex nanostructured films can be formed. Characterization of the reverse microemulsion phase by UV–vis absorption revealed the formation of heteroclusters from Winsor type II phases (WPII) using Aerosol-OT (AOT) as the surfactant. SAXS measurements verify the mechanism of initial nanoparticle clustering in defined dimensions. XPS suggested an influence of AOT at the MNP surface. Further, cryo-SEM and TEM visualization demonstrated the elongation of the reverse microemulsions into cylindrical, wormlike structures, which subsequently build up larger nanoparticle superstructure arrangements. Such WPII phases are thus proven to be a new form of soft template, mediating the self-assembly of different nanoparticles in hierarchical network-like filaments over a substrate during solvent evaporation. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Nano structure PY - 2021 DO - https://doi.org/10.1021/acs.langmuir.1c01348 VL - 37 IS - 29 SP - 8876 EP - 8885 PB - American Chemical Society AN - OPUS4-53034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as Certified Reference Material for Size and Shape N2 - BAM is currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance to the material and life sciences. As a first candidate of this series, we present cubic iron oxide nanoparticles with a nominal edge length of 8 nm. These particles were synthesized by thermal decomposition of iron oleate in high boiling organic solvents adapting well-known literature procedures. After dilution to a concentration suitable for electron microscopy (TEM and SEM) as well as for small-angle X-ray scattering (SAXS) measurements, the candidate nanoRM was bottled and assessed for homogeneity and stability by both methods following the guidelines of ISO 17034 and ISO Guide 35. The particle sizes obtained by both STEM-in-SEM and TEM are in excellent agreement with a minimum Feret of 8.3 nm ± 0.7 nm. The aspect ratio (AR) of the iron oxide cubes were extracted from the images as the ratio of minimum Feret to Feret resulting in an AR of 1.18 for TEM to 1.25 for SEM. Alternatively, a rectangular bounding box was fitted originating from the minimum Feret and the longest distance through the particle in perpendicular direction. This led to AR values of 1.05 for TEM and 1.12 for SEM, respectively. The results confirm the almost ideal cubic shape. KW - Reference nanoparticles KW - Iron oxide KW - Cubical shape KW - Electron microscopy KW - SAXS KW - Nano CRM KW - Size PY - 2022 DO - https://doi.org/10.1017/S1431927622003610 SN - 1435-8115 VL - 28 IS - Suppl. 1 SP - 802 EP - 805 PB - Cambridge University Press AN - OPUS4-55599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sordello, F. A1 - Prozzi, M. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Pellegrino, F. T1 - Increasing the HER efficiency of photodeposited metal nanoparticles over TiO2 using controlled periodic illumination N2 - Although the use of noble metal catalysts can increase the efficiency of hydrogen evolution reaction, the process is still limited by the characteristics of the metal-hydrogen (M−H) bond, which can be too strong or too weak, depending on the metal employed. Studies revealed that the hydrogen affinity for the metal surface (i.e. H absorption/desorption) is regulated also by the potential at the metal nanoparticles. Through controlled periodic illumination (CPI) of a series of metal/TiO2 suspensions, here we demonstrated that an increase of the HER efficiency is possible for those photodeposited metals which have a Tafel slope below 125 mV. Two possible explanations are here reported, in both of them the M−H interaction and the metal covering level play a prominent role, which also depend on the prevailing HER mechanism (Volmer-Heyrovsky or Volmer-Tafel). KW - Controlled periodic illumination KW - Hydrogen evolution reaction KW - Titanium dioxide KW - Photoreforming KW - Volcano plot KW - Sabatier KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589875 DO - https://doi.org/10.1016/j.jcat.2023.115215 VL - 429 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-58987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, M. A1 - Schlaich, C. A1 - Zhang, J. A1 - Donskyi, Ievgen A1 - Schwibbert, Karin A1 - Schreiber, Frank A1 - Xia, Y. A1 - Radnik, Jörg A1 - Schwerdtle, T. A1 - Haag, R. T1 - Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction N2 - Bacterial infection and osteogenic integration are the two main problems that cause severe complications after surgeries. In this study, the antibacterial and osteogenic properties were simultaneously introduced in biomaterials, where copper nanoparticles (CuNPs) were generated by in situ reductions of Cu ions into a mussel-inspired hyperbranched polyglycerol (MI-hPG) coating via a simple dip-coating method. This hyperbranched polyglycerol with 10 % catechol groups’ modification presents excellent antifouling property, which could effectively reduce bacteria adhesion on the surface. In this work, polycaprolactone (PCL) electrospun fiber membrane was selected as the substrate, which is commonly used in biomedical implants in bone regeneration and cardiovascular stents because of its good biocompatibility and easy post-modification. The as-fabricated CuNPs-incorporated PCL membrane [PCL-(MI-hPG)-CuNPs] was confirmed with effective antibacterial performance via in vitro antibacterial tests against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and multi-resistant E. coli. In addition, the in vitro results demonstrated that osteogenic property of PCL-(MI-hPG)-CuNPs was realized by upregulating the osteoblast-related gene expressions and protein activity. This study shows that antibacterial and osteogenic properties can be balanced in a surface coating by introducing CuNPs. KW - Mussel-inspired coating KW - CuNPs KW - Multi-resistant bacteria KW - Antibacterial KW - Antifouling KW - Osteogenesis PY - 2021 DO - https://doi.org/10.1016/j.jmst.2020.08.011 SN - 1005-0302 VL - 68 SP - 160 EP - 171 PB - Elsevier Ltd. AN - OPUS4-51519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Voss, Heike A1 - Knigge, Xenia A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Hertwig, Andreas A1 - Wasmuth, Karsten A1 - Sahre, Mario A1 - Weise, Matthias A1 - Mezera, Marek A1 - Krüger, Jörg A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Chemical analyses of ps-laser generated LIPSS and Spikes on titanium alloy by HAXPES, XPS, and depth-profiling TOF-SIMS N2 - Laser-induced periodic surface structures (LIPSS) and their combination with self-ordered microstructures forming hierarchical Spikes enable a large variety of different surface functionalizations for applications in the fields of optics, fluidics, tribology, or medicine. Moreover, high spatial frequency LIPSS (HSFL) provide an appealing and straightforward way for surface nanostructuring featuring spatial periods even below 100 nm – far beyond the optical diffraction limit. However, the imposed surface functionalities are usually caused by both, topographic and chemical surface alterations. For exploring these effects in detail, multi-method characterizations were performed here for HSFL and hierarchical Spikes processed on Ti-6Al-4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ~1 ps pulse duration, 1 – 400 kHz pulse repetition rate) under different laser and scan processing conditions. The following sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), stylus profilometry (SP), and white light interference microscopy (WLIM), as well as near-surface chemical analyses by X-ray photoelectron spectroscopy (XPS), hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (TOF-SIMS). The results allow to qualify the laser ablation depth, the geometrical HSFL/Spikes characteristics and provide detailed insights into the depth extent and the nature of the ps-laser-induced near-surface oxidation arising from the laser-processing in ambient air and into the relevance of heat-accumulation effects at high pulse repetition rates. Moreover, the direct comparison of the HAXPES and XPS data reveals the role of surface-covering organic contaminants adsorbed from the ambient atmosphere without the uncertainties and potential sputter reduction potentially caused by ion-sputter depth profiling. T2 - 11th International LIPSS Workshop CY - Madrid, Spain DA - 27.09.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrafast laser processing KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Time-of-flight secondary ion mass spectrometry (ToF-SIMS) KW - Ti6Al4V alloy PY - 2023 AN - OPUS4-58532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Knigge, Xenia A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Sahre, Mario A1 - Weise, Matthias A1 - Voss, Heike A1 - Hertwig, Andreas A1 - Wasmuth, Karsten A1 - Mezera, Marek A1 - Krüger, Jörg A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Chemical and topographical analyses of ps-laser generated HSFL on titanium alloy N2 - Laser-induced periodic surface structures (LIPSS) enable a large variety of different surface functionalizations for applications in the fields of optics, fluidics, tribology, or medicine. Moreover, high spatial frequency LIPSS (HSFL) provide an appealing and straightforward way for the generation of surface nanostructures featuring spatial periods even below 100 nm – far beyond the optical diffraction limit. However, the imposed surface functionalities are usually caused by both, topographic and chemical surface alterations. For exploring these effects in detail, multi-method characterization was performed here for HSFL processed on Ti-6Al-4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ~1 ps pulse duration, 1 – 400 kHz pulse repetition rate) under different scan processing conditions. The subsequent sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), stylus profilometry (SP), as well as near-surface chemical analyses by X-ray photoelectron spectroscopy (XPS), hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (TOF-SIMS). The results allow to qualify the laser ablation depth, the geometrical HSFL characteristics and provide detailed insights into the depth extent and the nature of the ps-laser-induced near-surface oxidation arising from the laser-processing in ambient air and into the relevance of heat-accumulation effects at high pulse repetition rates. Moreover, the direct comparison of the HAXPES and XPS data reveals the role of surface-covering organic contaminants adsorbed from the ambient atmosphere without ion-sputter depth profiling. Furthermore, reduction of the oxides by sputtering can be avoided. T2 - SPIE Photonics Europe 2024 Conference, Symposium "Lasers and Photonics for Advanced Manufacturing" CY - Strasbourg, France DA - 07.04.2024 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrafast laser processing KW - Nanostructures KW - Chemical analyses PY - 2024 UR - https://spie.org/photonics-europe/presentation/Chemical-and-topographical-analyses-of-ps-laser-generated-high-spatial/13005-69#_=_ AN - OPUS4-59853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Hahn, Marc Benjamin A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Cover image for the article "Nanomechanical study of polycarbonate/boehmite nanoparticles/epoxy ternary composite and their interphases" N2 - The image designed by Natalia Cano Murillo and colleagues shows the cross section of a ternary composite (boehmite/polycarbonate/epoxy, 80μm x 80μm). The surface was measured by AFM kelvin probe microscopy, yielding the surface potential which is shown as 3D‐surface and contour lines. The sample was further subjected to AFM force spectroscopy with a lateral resolution of 1μm², yielding the local Young's modulus, projected in false colors on the 3D surface. The ternary system, containing boehmite nanoparticles, shows a broad distribution of modulus, desirable for optimized macroscopic mechanical properties, such as high stiffness as well as toughness. KW - Boehmite KW - Epoxy KW - Polycarbonate KW - AFM KW - BNP PY - 2020 DO - https://doi.org/10.1002/app.50400 SN - 0021-8995 SN - 1097-4628 VL - 138 IS - 12 SP - 1 PB - Wiley CY - New York, NY AN - OPUS4-51831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Szymoniak, Paulina A1 - Smales, Glen Jacob A1 - Sturm, Heinz A1 - Schönhals, Andreas T1 - Electrospun nanocomposites fibers of polycarbonate and taurine modified boehmite nanoparticles - What can be learned from structural and thermal investigations N2 - Though the reinforcing properties of inorganic particles in thermosetting nanocomposites, has been exploited, the integration of nanoparticles continues to be challenging in terms of their homogeneous distribution and their manipulation which can contribute to occupational hazards. Due to a second encapsulations of nanoparticles, electrospun nanocomposite fibers containing nanoparticles might be an alternative for overcoming these issues, as the fiber nonwovens contains the nanoparticles allowing for safer manipulation. Here, the morphology, and the thermal properties of electrospun polycarbonate fibers containing taurine modified boehmite nanoparticles (BNP) are investigated by means of small and wide-angle X-ray scattering as well as fast scanning and temperature modulated fast scanning calorimetry for the first time. The latter techniques allow the investigation of the thermal properties of single fibers at heating rates up to 10^4 K s^-1 keeping its structure intact. A quantitative analysis of the scattering data reveals a porous structure of the fibers. The porous structure is quantified regarding the pore volume and the pore size. A constant amount of aggregation is found even for the highly BNP loaded fibers. Thermal analysis on the fibers reveals a rigid amorphous fraction (RAF) where it is known that RAF determinates the properties of a nanocomposite to a large extent. For the fibers RAF amounts up to 40 wt%, which is essential higher compared to equally formulated PC/BNP composite cast films. The RAF in the case of the fibers, is not only due to the presence of particles in the polymer but also due to orientation effects induced by the electrospinning process. KW - Nanocomposite fibers KW - Electrospinning KW - X-ray scattering KW - Fast scanning calorimetry KW - Rigid amorphous fraction PY - 2021 DO - https://doi.org/10.1021/acsapm.1c01265 VL - 3 IS - 12 SP - 6572 EP - 6585 PB - ACS AN - OPUS4-53871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Elert, Anna Maria A1 - Hodoroaba, Vasile-Dan A1 - Agudo Jácome, Leonardo A1 - Altmann, Korinna A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Short- and long-range mechanical and chemical interphases caused by interaction of Boehmite (γ-AlOOH) with anhydride-cured epoxy resins N2 - Understanding the interaction between boehmite and epoxy and the formation of their interphases with different mechanical and chemical structures is crucial to predict and optimize the properties of epoxy-boehmite nanocomposites. Probing the interfacial properties with atomic force microscopy (AFM)-based methods, especially particle-matrix long-range interactions, is challenging. This is due to size limitations of various analytical methods in resolving nanoparticles and their interphases, the overlap of interphases, and the effect of buried particles that prevent the accurate interphase property measurement. Here, we develop a layered model system in which the epoxy is cured in contact with a thin layer of hydrothermally synthesized boehmite. Different microscopy methods are employed to evaluate the interfacial properties. With intermodulation atomic force microscopy (ImAFM) and amplitude dependence force spectroscopy (ADFS), which contain information about stiffness, electrostatic, and van der Waals forces, a soft interphase was detected between the epoxy and boehmite. Surface potential maps obtained by scanning Kelvin probe microscopy (SKPM) revealed another interphase about one order of magnitude larger than the mechanical interphase. The AFM-infrared spectroscopy (AFM-IR) technique reveals that the soft interphase consists of unreacted curing agent. The long-range electrical interphase is attributed to the chemical alteration of the bulk epoxy and the formation of new absorption bands. KW - Nanocomposites KW - Interphase KW - Intermodulation AFM KW - Electron microscopy KW - Infrared nano AFM PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483672 UR - https://www.mdpi.com/2079-4991/9/6/853/htm DO - https://doi.org/10.3390/nano9060853 SN - 2079-4991 VL - 9 IS - 6 SP - 853, 1 EP - 20 PB - MDPI AN - OPUS4-48367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nickl, Philip A1 - Hilal, T. A1 - Olal, D. A1 - Donskyi, Ievgen A1 - Radnik, Jörg A1 - Ludwig, K. A1 - Haag, R. T1 - A New Support Film for Cryo Electron Microscopy Protein Structure Analysis Based on Covalently Functionalized Graphene N2 - Protein adsorption at the air–water interface is a serious problem in cryogenic electron microscopy (cryoEM) as it restricts particle orientations in the vitrified ice-film and promotes protein denaturation. To address this issue, the preparation of a graphene-based modified support film for coverage of conventional holey carbon transmission electron microscopy (TEM) grids is presented. The chemical modification of graphene sheets enables the universal covalent anchoring of unmodified proteins via inherent surface-exposed lysine or cysteine residues in a one-step reaction. Langmuir–Blodgett (LB) trough approach is applied for deposition of functionalized graphene sheets onto commercially available holey carbon TEM grids. The application of the modified TEM grids in single particle analysis (SPA) shows high protein binding to the surface of the graphene-based support film. Suitability for high resolution structure determination is confirmed by SPA of apoferritin. Prevention of protein denaturation at the air–water interface and improvement of particle orientations is shown using human 20S proteasome, demonstrating the potential of the support film for structural biology. KW - Functionalized graphene KW - Transmission electron microsocpy KW - Protein structure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566443 DO - https://doi.org/10.1002/smll.202205932 SN - 1613-6810 SP - 2205932 PB - Wiley VCH AN - OPUS4-56644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Zarinwall, A. A1 - Silbernagl, Dorothee A1 - Garnweitner, G. A1 - Sturm, Heinz T1 - Mechanical coupling of matrix and nanoparticles depending on particle surface modification N2 - Boehmite nanoparticles has been successfully functionalized with APTES. After APTES functionalization further modification with tailored molecules e.g. via carboxylic acids is possible. The tailored surface functionalization is strongly enhanced by improved coupling protocols. Arbitrary variation of the functionalization degree is possible. Thereby the temperature stable APTES functionalization enables a wide range of functional groups. By TGA-MS analysis strong evidence for the bonding situation of the APTES on the boehmite surface has been found. Additionally first experiments has been performed to predict the polymer-particle compatibility enhancement via reverse wetting angle measurements with AFM. T2 - Workshop Acting Principles of Nano-Scaled Matrix Additives for Composite Structures CY - BAM, Berlin, Germany DA - 11.10.2019 KW - Surface modification KW - Nanocomposites KW - Boehmite KW - Silane KW - Thermogravimetry KW - Mass spectrometry PY - 2019 AN - OPUS4-49435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulka, M.W. A1 - Nie, C. A1 - Nickl, P. A1 - Kerkhoff, Y. A1 - Garg, A. A1 - Salz, D. A1 - Radnik, Jörg A1 - Grunwald, I. A1 - Haag, R. T1 - Surface-Initiated Grafting of Dendritic Polyglycerol from Mussel-Inspired Adhesion-Layers for the Creation of Cell-Repelling Coatings N2 - Biofouling is a major challenge in the application of textiles, biosensors, and biomedical implants. In the current work, a straightforward method for the solvent-free polymerization of antifouling dendritic polyglycerol (dPG) from mussel-inspired dendritic polyglycerol (MI-dPG) coatings on hydrophilic titanium dioxide (TiO2) and hydrophobic polydimethylsiloxane (PDMS) is reported. Surface characterization is performed by static water contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Significant lower CA values are obtained after dPG grafting from MI-dPG-coated TiO2 and MI-dPG coated PDMS. Furthermore, XPS shows a time-dependent increase of the CO bond content upon dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. Analysis of the surface morphology by SEM shows a clear time-dependent increase in the surface roughness upon dPG grafting from MI-dPG-coated TiO2 and MIdPG-coated PDMS. When the viability of two adhesive cell types is studied via LIVE/DEAD staining, a strong reduction in the cell density is observed after the dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS (a decrease of >95% in all cases). The combined results show that biocompatible but highly cell-repelling surfaces are efficiently constructed via the grafting of dPG from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. KW - Repelling surface coatings KW - Dendritic polyglycerol KW - Mussel-inspired adhesives KW - Surface-initated grafting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516590 DO - https://doi.org/10.1002/admi.202000931 SN - 2196-7350 VL - 7 IS - 24 SP - 931 PB - Wiley VCH AN - OPUS4-51659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Knigge, Xenia A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Cant, D.J.H. A1 - Shard, A.G. A1 - Clifford, C.A. T1 - Composition, thickness, and homogeneity of the coating of core–shell nanoparticles—possibilities, limits, and challenges of X-ray photoelectron spectroscopy N2 - Core–shell nanoparticles have attracted much attention in recent years due to their unique properties and their increasing importance in many technological and consumer products. However, the chemistry of nanoparticles is still rarely investigated in comparison to their size and morphology. In this review, the possibilities, limits, and challenges of X-ray photoelectron spectroscopy (XPS) for obtaining more insights into the composition, thickness, and homogeneity of nanoparticle coatings are discussed with four examples: CdSe/CdS quantum dots with a thick coating and a small core; NaYF4-based upconverting nanoparticles with a large Yb-doped core and a thin Er-doped coating; and two types of polymer nanoparticles with a poly(tetrafluoroethylene) core with either a poly(methyl methacrylate) or polystyrene coating. Different approaches for calculating the thickness of the coating are presented, like a simple numerical modelling or a more complex simulation of the photoelectron peaks. Additionally, modelling of the XPS background for the investigation of coating is discussed. Furthermore, the new possibilities to measure with varying excitation energies or with hard-energy X-ray sources (hard-energy X-ray photoelectron spectroscopy) are described. A discussion about the sources of uncertainty for the determination of the thickness of the coating completes this review. KW - X-ray spectroscopy KW - Nanoparticles KW - Spectroscopy / Instrumentation KW - Spectroscopy / Theory PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548305 DO - https://doi.org/10.1007/s00216-022-04057-9 VL - 414 IS - 15 SP - 4331 EP - 4345 PB - SpringerNature AN - OPUS4-54830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Braun, Ulrike T1 - Kunststoffe und deren Recycling – Materialwissenschaftliche Erkenntnisse, um mehr Recyclat einzusetzen N2 - Nach einer Übersicht zu den immer schneller aktualisierenden Rahmenbedingungen von Politik und Gesellschaft folgt eine Übersicht zu materialwissenschaftlichen Problemen des Recyclings von Kunststoffen. Lösungsansätze aus der Forschung reichen von einfacher Optimierung bis hin zur radikalen Neukonstruktion der polymeren Werkstoffe. Aus dem bereits möglichen Ansatz "performance-by-design" wird ein neuer Weg des "recycling-by-design" adressiert. Dies inkludiert methodisch eine skalenübergreifende Modellierung und die Depolarisation bis zum Monomer. T2 - Gefahrgut-Technik-Tage CY - Berlin, Germany DA - 07.11.2019 KW - Recycling KW - Kunststoff KW - Additiv KW - Polymer KW - Normung KW - Plastikstrategie KW - Grenzfläche als Material KW - Recycling-by-design PY - 2019 AN - OPUS4-49561 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin T1 - Accessing radiation damage to biomolecules on the nanoscale by particle-scattering simulations N2 - Radiation damage to DNA plays a central role in radiation therapy to cure cancer. The physico-chemical and biological processes involved encompass huge time and spatial scales. To obtain a comprehensive understanding on the nano and the macro scale is a very challenging tasks for experimental techniques alone. Therefore particle-scattering simulations are often applied to complement measurements and aide their interpretation, to help in the planning of experiments, to predict their outcome and to test damage models. In the last years, powerful multipurpose particle-scattering framework based on the Monte-Carlo simulation (MCS) method, such as Geant4 and Geant4-DNA, were extended by user friendly interfaces such as TOPAS and TOPAS-nBio. This shifts their applicability from the realm of dedicated specialists to a broader range of scientists. In the present review we aim to give an overview over MCS based approaches to understand radiation interaction on a broad scale, ranging from cancerous tissue, cells and their organelles including the nucleus, mitochondria and membranes, over radiosensitizer such as metallic nanoparticles, and water with additional radical scavenger, down to isolated biomolecules in the form of DNA, RNA, proteins and DNA-protein complexes. Hereby the degradation of biomolecules by direct damage from inelastic scattering processes during the physical stage, and the indirect damage caused by radicals during the chemical stage as well as some parts of the early biological response is covered. Due to their high abundance the action of hydroxyl radicals (•OH) and secondary low energy electrons (LEE) as well as prehydrated electrons are covered in additional detail. Applications in the prediction of DNA damage, DNA repair processes, cell survival and apoptosis, influence of radiosensitizer on the dose distribution within cells and their organelles, the study of linear energy transfer (LET), the relative biological effectiveness (RBE), ion beam cancer therapy, microbeam radiation therapy (MRT), the FLASH effect, and the radiation induced bystander effect are reviewed. KW - DNA KW - Protein KW - G5P KW - OH KW - Au KW - AuNP KW - Radiation KW - SSB KW - DSB KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Particle scattering KW - Penelope model KW - Proteins KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Radiotherapy KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - Base damage KW - Base loss KW - DNA radiation damage KW - Direct damage KW - Dissociative electron attachment (DEA) KW - Dissociative electron transfer (DET) KW - Double-strand break (DSB) KW - ESCA KW - Hydrated DNA KW - Hydrated electron KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Ionization KW - Ionisation KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - Prehydrated electron KW - Presolvated electron KW - Quasi-direct damage KW - ROS KW - Radical KW - Reactive oxygen species KW - Single-strand break (SSB) KW - XPS KW - Xray KW - Xray photo electron spectrocopy KW - Cosolute KW - Ectoin KW - Ectoine KW - GVP KW - Gene five protein KW - Hydroxyectoine KW - Ionizing radiation damage KW - OH radical scavenger KW - Monte-Carlo simulations KW - Nanodosimetry KW - Osmolyte KW - Particle scattering simulations KW - Protein unfolding KW - Radical Scavenge KW - Radical scavenger KW - Single-stranded DNA-binding proteins KW - SAXS KW - Bio-SAXS KW - X-ray scattering KW - ssDNA KW - dsDNA KW - FLASH effect KW - Bystander effect KW - Ion beam therapy KW - Bragg peak KW - LET KW - MCNP KW - Photons KW - Electrons KW - Carbon ions KW - MRT KW - RNA KW - RBE KW - base loss KW - abasic side KW - DMSO KW - Cells PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573240 DO - https://doi.org/10.1088/2399-6528/accb3f SN - 2399-6528 VL - 7 IS - 4 SP - 042001 PB - Institute of Physics (IOP) Publishing CY - London AN - OPUS4-57324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakenecker, A. A1 - Topolniak, Ievgeniia A1 - Lüdtke-Buzug, K. A1 - Pauw, Brian Richard A1 - Buzug, T. T1 - Additive manufacturing of superparamagnetic micro-devices for magnetic actuation N2 - 3D microstructures with sub-micron resolution can be manufactured in additive manner applying multi-photon laser structuring technique. This paper is focused on the incorporation of superparamagnetic iron oxide nanoparticles into the photoresist in order to manufacture micrometer-sized devices featuring a magnetic moment. The aim of the project is to achieve untethered actuation of the presented objects through externally applied magnetic fields. Future medical application scenarios such as drug delivery and tissue engineering are targeted by this research. T2 - Additive Manufacturing Meets Medicine 2019 CY - Lübeck, Germany DA - 12.09.2019 KW - MPI KW - Two-Photon Polymerization KW - Magnetic swimmers KW - MPLS PY - 2019 UR - www.journals.infinite-science.de/ammm DO - https://doi.org/10.18416/AMMM.2019.1909S09T06 SP - 153 EP - 154 PB - Infinite Science Publishing AN - OPUS4-49114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hachenberger, Y. U. A1 - Rosenkranz, Daniel A1 - Kromer, C. A1 - Krause, B. C. A1 - Dreiack, N. A1 - Kriegel, F. L. A1 - Kozmenko, E. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Bierkandt, F. S. A1 - Laux, P. A1 - Panne, Ulrich A1 - Luch, A. T1 - Nanomaterial Characterization in Complex Media - Guidance and Application N2 - A broad range of inorganic nanoparticles (NPs) and their dissolved ions possess a possible toxicological risk for human health and the environment. Reliable and robust measurements of dissolution effects may be influenced by the sample matrix, which challenges the analytical method of choice. In this study, CuO NPs were investigated in several dissolution experiments. Two analytical techniques (dynamic light scattering (DLS) and inductively-coupled plasma mass spectrometry (ICP-MS)) were used to characterize NPs (size distribution curves) time-dependently in different complex matrices (e.g., artificial lung lining fluids and cell culture media). The advantages and challenges of each analytical approach are evaluated and discussed. Additionally, a direct-injection single particle (DI sp)ICP-MS technique for assessing the size distribution curve of the dissolved particles was developed and evaluated. The DI technique provides a sensitive response even at low concentrations without any dilution of the complex sample matrix. These experiments were further enhanced with an automated data evaluation procedure to objectively distinguish between ionic and NP events. With this approach, a fast and reproducible determination of inorganic NPs and ionic backgrounds can be achieved. This study can serve as guidance when choosing the optimal analytical method for NP characterization and for the determination of the origin of an adverse effect in NP toxicity. KW - Nanon KW - Characterization KW - SpICP-MS KW - Matrix KW - Dissolution PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572138 DO - https://doi.org/10.3390/nano13050922 VL - 13 IS - 5 SP - 1 EP - 19 AN - OPUS4-57213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia T1 - Micropatterning of mussel-inspired materials - Empower selective functionality N2 - Surface-modification platforms that are universally applicable are vital for the development of new materials, surfaces, and nanoparticles. Mussel-inspired materials (MIMs) are widely used in various fields because of their strong adhesive properties and post-functionalization reactivity. However, conventional MIM coating techniques have limited deposition selectivity and lack structural control, which has limited their use in microdevices that require full control over deposition. To overcome these limitations, we developed a micropatterning technique for MIMs using multiphoton lithography, which does not require photomasks, stamps, or multistep procedures. This method enables the creation of MIM patterns with micrometer resolution and full design freedom and paves the way for innovative applications of MIMs in various multifunctional systems and microdevices, such as microsensors, MEMS, and microfluidics. T2 - BioCHIP Berlin - International Forum on Biochips and Microfabrication CY - Berlin, Germany DA - 28.05.2024 KW - Mussel inspired materials KW - Multiphoton lithography KW - Two photon polymerisation PY - 2024 AN - OPUS4-60254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fortini, Renata A1 - Sturm, Heinz A1 - Meyer-Plath, A. A1 - Kehren, D. T1 - Development of a method for measuring the flexural rigidity of nanofibres N2 - Toxicological studies have shown that some types of carbon nanotubes may provoke asbestos-like effects including chronic inflammation and lung cancer. Inhaled carbon nanotubes may reach the deep lung tissue. Alveolar macrophages are responsible to remove such foreign objects from the alveoli in a process called phagocytosis. If a macrophage fails to uptake a nanotube completely, cell lesions may give rise to inflammation. It is currently assumed that short, flexible and long as well as granularly agglomerated (tangled) nanofibres are clearable by macrophages, whereas biodurable long and rigid nanotubes may persist in lung tissue. The flexural rigidity of nanofibres is therefore believed to be an important material property that governs fibre toxicity and needs to be investigated. The present work aims at determining the rigidity of nanofibres by detecting their resonance frequencies using a Dynamic Scanning Electron Microscope (DySEM) setup. By depositing and fixing a nanofibre to an oscillating support, it can be excited to vibrations and treated as a cantilevered beam. This way, its elastic modulus can be determined via Euler-Bernoulli’s beam theory. Multi-walled carbon nanotubes (MWCNTs) were deposited on high frequency piezoelectric quartz crystals mounted on a scanning electron microscope (SEM) holder. When introduced into the SEM chamber and connected to a frequency-sweeping waveform generator, the quartz crystal actuates the deposited fibre. A lock-in amplified processes the secondary electron detector signal resulting from the electron beam modulated by the vibrating nanofibre. Whenever a fibre resonance is detected, the SEM image of the fibre is stored to identify the fibre oscillation mode. The found resonance frequencies and modes allow determining the elastic modulus accordingly. Since the frequency spacing of resonances is predicted by Euler-Bernoulli, the mode number can be identified and elastic modulus values be averaged. A significant number of individual MWCNTs were classified according to their level of rigidity. The applicability and reliability of the method will be discussed. T2 - Microscopy Conference CY - Berlin, Germany DA - 01.09.2019 KW - Carbon nanotubes KW - Rigidity KW - Resonance frequency KW - Nanofibers KW - Bending modulus PY - 2019 AN - OPUS4-49198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fortini, Renata A1 - Sturm, Heinz A1 - Meyer-Plath, Asmus A1 - Kehren, Dominic T1 - Development of a method for measuring the flexural rigidity of nanofibres N2 - Toxicological studies have shown that some types of carbon nanotubes may provoke asbestos-like effects including chronic inflammation and lung cancer. Inhaled carbon nanotubes may reach the deep lung tissue. Alveolar macrophages are responsible to remove such foreign objects from the alveoli in a process called phagocytosis. If a macrophage fails to uptake a nanotube completely, cell lesions may give rise to inflammation. It is currently assumed that short, flexible and long as well as granularly agglomerated (tangled) nanofibres are clearable by macrophages, whereas biodurable long and rigid nanotubes may persist in lung tissue. The flexural rigidity of nanofibres is therefore believed to be an important material property that governs fibre toxicity and needs to be investigated. The present work aims at determining the rigidity of nanofibres by detecting their resonance frequencies using a Dynamic Scanning Electron Microscope (DySEM) setup. By depositing and fixing a nanofibre to an oscillating support, it can be excited to vibrations and treated as a cantilevered beam. This way, its elastic modulus can be determined via Euler-Bernoulli’s beam theory. Multi-walled carbon nanotubes (MWCNTs) were deposited on high frequency piezoelectric quartz crystals mounted on a scanning electron microscope (SEM) holder. When introduced into the SEM chamber and connected to a frequency-sweeping waveform generator, the quartz crystal actuates the deposited fibre. A lock-in amplified processes the secondary electron detector signal resulting from the electron beam modulated by the vibrating nanofibre. Whenever a fibre resonance is detected, the SEM image of the fibre is stored to identify the fibre oscillation mode. The found resonance frequencies and modes allow determining the elastic modulus accordingly. Since the frequency spacing of resonances is predicted by Euler-Bernoulli, the mode number can be identified and elastic modulus values be averaged. A significant number of individual MWCNTs were classified according to their level of rigidity. The applicability and reliability of the method will be discussed. T2 - EUROMAT CY - Stockholm, Sweden DA - 01.09.2019 KW - Carbon nanotubes KW - Rigidity KW - Resonance frequency KW - Nanofibers KW - Bending modulus PY - 2019 AN - OPUS4-49197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fortini, Renata A1 - Sturm, Heinz A1 - Meyer-Plath, Asmus A1 - Kehren, Dominic T1 - Development of a method for measuring the flexural rigidity of nanofibers N2 - Toxicological studies have shown that some types of carbon nanotubes may provoke asbestos-like effects including chronic inflammation and lung cancer. Inhaled carbon nanotubes may reach the deep lung tissue. Alveolar macrophages are responsible to remove such foreign objects from the alveoli in a process called phagocytosis. If a macrophage fails to uptake a nanotube completely, cell lesions give rise to inflammation. It is currently assumed that short, long and flexible, and granularly agglomerated (tangled) nanofibres are clearable by macrophages, whereas biodurable long and rigid nanotubes persist in the lung tissue. The flexural rigidity of nanofibres is therefore believed to an important material property that governs fibre toxicity and needs to be investigated. The present work aims at determining the rigidity of nanofibres by detecting their resonance frequencies using a Dynamic Scanning Electron Microscope (DySEM) setup. By depositing and fixing a nanofibre to an oscillating support, it can be excited to vibrations and treated as a cantilevered beam. This way, its elastic modulus can be determined via Euler-Bernoulli’s beam theory. Multi-walled carbon nanotubes (MWCNTs) were deposited on high frequency piezoelectric quartz crystals mounted on a scanning electron microscope (SEM) holder. When introduced into the SEM chamber and connected to a frequency-sweeping waveform generator, the quartz crystal actuates the deposited fibre. A lock-in amplified processes the secondary electron detector signal resulting from the electron beam modulated by the vibrating nanofibre. Whenever a fibre resonance is detected, the SEM image of the fibre is stored to identify the fibre oscillation mode. The found resonance frequencies and modes allow determining the elastic modulus according. Since the frequency spacing of resonances is predicted by Euler-Bernoulli, the mode number can be checked and elastic modulus values be averaged. A significant number of MWCNTs have been classified according to their level of rigidity. The applicability and reliability of the method will be discussed. T2 - International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Carbon nanotubes KW - Rigidity KW - Resonance KW - Nanofibers KW - Bending modulus PY - 2019 AN - OPUS4-49196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Surface Analysis and Context of the New HAXPES@BAM N2 - The Competence Centre nano@BAM is presenting a new X-ray Photoelectron Spectrometer – the HAXPES (XPS at hard energy) – for researching advanced materials at the nanoscale. With HAXPES detailed chemical information can now be gained not only from the first outermost nanometres of the sample surface, but also from deeper regions. Top international experts will share their knowledge and key findings on how to utilise HAXPES for exploring the surface of various advanced materials. Following the lectures, we will show you a short demo of the new instrument and answer your questions. T2 - Inauguration of the HAXPES@BAM - A new Hard-X-Ray Photoelectron Spectrometer CY - Online meeting DA - 25.01.2022 KW - XPS KW - HAXPES KW - Nano@BAM KW - Surface Analysis PY - 2022 UR - https://www.bam.de/Content/EN/Events/2022/2022-01-25-hapex.html AN - OPUS4-54377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Towards Reproducible Analysis Workflows for Reliable Structural and Chemical Composition of Industrial Graphene N2 - The scientific and technological interest in graphene has been growing more and more in the late years due to its outstanding properties and diverse promising applications. However, graphene implementation into the industrial market is still limited and many challenges are yet to be addressed before this material can become suitable for the large-scale production. One of the most crucial challenge to overcome is to develop reliable and reproducible ways to characterize the material properties which can heavily affect the product performance. In our study the chemical composition of nine different samples of industrial graphene, graphene oxide and functionalized graphene were investigated. The samples were analysed both in form of powder and pellets. A comparative characterisation of the chemical composition was performed through X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDX). XPS depth resolution is in the order of 10 nm, while for EDX the analysis was performed at two different energy levels, i.e. 5 keV and 15 keV, and thus varying the analysis depth from 200 nm to 2000 nm. The XPS measurement area is 300x700 µm² while the EDX measurement was performed by analysing a grid of 25 locations (5x5) of 150 x 150 ?m2 area, covering the whole pellet surface of 5 mm diameter and then calculating the mean of the elemental concentration. The results of the elemental concentration values from XPS and EDX analyses show a good agreement for all the elements presents in the samples, despite the different spatial resolutions of the two techniques. Therefore, the samples appear homogeneous both in the lateral and vertical directions. The results relative to powder and pellets samples do not differ in a significant way except for a slight increase in the carbon content regarding the pellet samples, probably due to a minor contamination effect introduced through pressing. Nevertheless, pellets samples appear to be quite representative for the material while being much more convenient in terms of handling and safety compared to nano-powders and providing a regular flat surface for EDX analysis. Finally, this approach correlating XPS and EDS represents a simple, fast and reliable way for characterizing the chemical composition and the homogeneity of industrial graphene. This study is part of the project Standardisation of structural and chemical properties of graphene (ISO-G-SCoPe) which has received funding from the EMPIR programme co-financed by the Participating States and from the European Union?s Horizon 2020 research and innovation programme under Grant agreement No. 19NRM04. T2 - SALSA Make and Measure... and Machines CY - Online meeting DA - 16.09.2021 KW - Graphene KW - XPS KW - EDX KW - Graphene functionalisation PY - 2021 UR - https://fakultaeten.hu-berlin.de/en/mnf/forschung_internationales/grs/salsa/SALSA_MM AN - OPUS4-53463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - VAMAS-Enabling international standardisation for increasing the take up of Emerging Materials N2 - VAMAS (Versailles Project on Advanced Materials and Standards) supports world trade in products dependent on advanced materials technologies by providing technical basis for harmonized measurements, testing, specification, reference materials and standards. The major tools for fulfilling this task are interlaboratory comparisons (ILC). The organisation structure of VAMAS is presented. It is discussed, how a new technical activity can initiate. T2 - DIN NA062-08-16 Oberflächenanalytik Frühjahrstreffen CY - Berlin, Germany DA - 11.05.2022 KW - Advanced Materials KW - Standards KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-54831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Correlative analysis through XPS and EDX measurements for accurate chemical composition of industrial Graphene N2 - The scientific and technological interest in graphene has been growing more and more in the late years due to its outstanding properties and diverse promising applications. However, graphene implementation into the industrial market is still limited and many challenges are yet to be addressed before this material can become suitable for the large-scale production. One of the most crucial challenge to overcome is to develop reliable and reproducible ways to characterize the material properties which can heavily affect the product performance. In our study the chemical composition of nine different samples of industrial graphene, graphene oxide and functionalized graphene were investigated. The samples were analysed both in form of powder and pellets. A comparative characterisation of the chemical composition was performed through X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDX). XPS depth resolution is in the order of 10 nm, while for EDX the analysis was performed at two different energy levels, i.e. 5 keV and 15 keV, and thus varying the analysis depth from 200 nm to 2000 nm. The XPS measurement area is 300x700 µm² while the EDX measurement was performed by analysing a grid of 25 locations (5x5) of 150 x 150 ?m2 area, covering the whole pellet surface of 5 mm diameter and then calculating the mean of the elemental concentration. The results of the elemental concentration values from XPS and EDX analyses show a good agreement for all the elements presents in the samples, despite the different spatial resolutions of the two techniques. Therefore, the samples appear homogeneous both in the lateral and vertical directions. The results relative to powder and pellets samples do not differ in a significant way except for a slight increase in the carbon content regarding the pellet samples, probably due to a minor contamination effect introduced through pressing. Nevertheless, pellets samples appear to be quite representative for the material while being much more convenient in terms of handling and safety compared to nano-powders and providing a regular flat surface for EDX analysis. Finally, this approach correlating XPS and EDS represents a simple, fast and reliable way for characterizing the chemical composition and the homogeneity of industrial graphene. This study is part of the project ?Standardisation of structural and chemical properties of graphene? (ISO-G-SCoPe) which has received funding from the EMPIR programme co-financed by the Participating States and from the European Union?s Horizon 2020 research and innovation programme under Grant agreement No. 19NRM04. T2 - 2021 Fall Meeting of the European Materials Research Society (E-MRS) CY - Online meeting DA - 20.9.2021 KW - Graphene KW - XPS KW - EDS KW - Standardisation KW - Graphene functionalization PY - 2021 UR - https://www.european-mrs.com/meetings/2021-fall-meeting AN - OPUS4-53462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Knigge, Xenia T1 - First Experiences with the new HAXPES@BAM N2 - This talk was part of the inauguration event for the new x-ray photoelectron spectrometer with the possibility to measure HAXPES (hard energy x-ray photoelectron spectroscopy). With HAXPES detailed chemical information can now be gained not only from the first outermost nanometres of the sample surface, but also from deeper regions. In this talk first results and experiences handling the spectrometer are shown. T2 - Inauguration of the HAXPES@BAM - A new Hard-X-Ray Photoelectron Spectrometer CY - Online meeting DA - 25.01.2022 KW - HAXPES KW - Nano@BAM KW - Surface Analysis KW - XPS PY - 2022 UR - https://www.bam.de/Content/EN/Events/2022/2022-01-25-hapex.html AN - OPUS4-54434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nickl, Philip A1 - Radnik, Jörg A1 - Azab, W. A1 - Donskyi, Ievgen T1 - Surface characterization of covalently functionalized carbon-based nanomaterials using comprehensive XP and NEXAFS spectroscopies N2 - Reliable and straightforward characterization and analysis of carbon-based nanomaterials on the atomic level is essential to exploring their potential for application. Here we use a combination of highly surface sensitive x-ray photoelectron (XP) spectroscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS) to study and quantify the covalent functionalization of nanographene and single-walled carbon nanotubes with nitrene [2 + 1]-cycloaddition. With this comprehensive analytical approach, we demonstrate that the π-conjugated system of functionalized carbon-based nanomaterials is preserved according to NEXAFS analysis, which is challenging to prove with XP spectroscopy investigation alone. Using this combination of analytical approaches, we show significant similarities after functionalization for various carbon-based nanomaterials. Both analytical methods are strongly suited to study possible post-modification reactions of functionalized carbon-based nanomaterials. KW - Graphene KW - Carbon nanotubes KW - Covalend functionalization PY - 2023 DO - https://doi.org/10.1016/j.apsusc.2022.155953 VL - 613 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-56865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Characterization of Graphene using HAXPES N2 - Since its discovery, graphene has got growing attention in the industrial and application research due to its unique properties . However, graphene has not been yet implemented into the industrial market, in particularly due to the difficulty of properly characterizing this challenging material. As most of other nanomaterials, graphene’s properties are closely linked to its chemical and structural properties, such as number of layers, flake thickness, degree of functionalisation and C/O ratio. For the commercialization, suitable procedures for the measurement and characterization of the ultrathin flakes, of lateral dimensions in the range from µm to tens of µm, are essential.Surface chemical methods, especially XPS, have an outstanding role of providing chemical information on the composition. Thereby, one well-known problem for surface analytical methods is the influence of contamination on the composition as in the case of adventitious carbon. The differentiation between carbon originated from the contamination or from the graphene sample itself is often not obvious, which can lead to altered results in the determination of the composition. To overcome this problem, Hard Energy X-ray Photoelectron Spectroscopy (HAXPES) offers new possibilities due to its higher information depth. Therefore, XPS measurement obtained with Al Kα radiation (E = 1486. 6 eV) were compared with analyses performed with a Cr Kα (E = 5414. 8 eV) excitation on functionalized graphene samples. Differences are discussed in terms of potential carbon contamination, but also of oxygen on the composition of the samples. Measurements are performed on O-, N- and F-functionalized graphene. Different preparation procedures (powder, pellet, drop cast from liquid suspension) will be also discussed, correlation of the results with the flakes morphology as well as their validation with other independent methods are in progress. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Graphene KW - Functionalized graphene KW - Depth profiling PY - 2022 AN - OPUS4-56814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. T1 - BP150: Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement by Monte-Carlo based particle scattering Simulations N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined. Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. We apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. T2 - DPG Frühjahrstagung CY - Dresden, Germany DA - 26.03.2023 KW - AuNP KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Penelope model KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Radiotherapy KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - Beta particle KW - Particle scattering KW - Protein KW - Proteins PY - 2023 AN - OPUS4-57253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement by Monte-Carlo based particle scattering Simulations N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined.[1] Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. [2] These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for ongoing experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au. T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - AuNP KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Penelope model KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radiotherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - beta particle KW - particle scattering PY - 2023 AN - OPUS4-57060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - Exchange interaction KW - Ferromagnetism KW - LLG KW - Landau Lifshitz equation KW - Magnetic moment KW - Magnetic nanoparticles KW - Micromagnetism KW - OOMMF KW - Object oriented micromagnetic framework KW - Stochastic Landau Lifshitz Gilbert equation KW - Temperature scaling PY - 2023 AN - OPUS4-57062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, G. J. A1 - Pauw, Brian Richard T1 - DACHS/MOFs/AutoMOFs_1/Synthesis N2 - The DACHS (Database for Automation, Characterization and Holistic Synthesis) project aims to create completely traceable experimental data, covering syntheses, measurements, analyses, and interpretations. DACHS_MOFs focuses on the synthesis and characterisation of metal-organic frameworks, across multiple, automation-assisted experimental series (AutoMOFs), with the overall goal of producing reproducible MOF samples through tracking of the synthesis parameters. DACHS_MOFs is simultaneously used to test the DACHS principles. This upload contain synthesis data from AutoMOFs_1 in HDF5 format (.h5). Each .h5 file contains detailed information on the chemical, experimenal, and synthesis parameters used during the synthesis of a single AutoMOF sample. KW - Synthesis KW - Automation KW - Traceability KW - Procedure PY - 2024 DO - https://doi.org/10.5281/zenodo.11236031 PB - Zenodo CY - Geneva AN - OPUS4-60243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Ermilova, Elena A1 - Hülagü, Deniz T1 - Determining Material Properties with Spectroscopic Ellipsometry N2 - In this lecture, an introduction will be given on Spectroscopic Ellipsometry, what quantities can be obtained with it, and how we use it in ELENA and other projects to determine functional parameters of thin layers at the nanoscale. T2 - Summer school ELENAM : metrology at the nanoscale CY - Fréjus, France DA - 02.06.2024 KW - Thin Layers KW - Ellipsometry KW - Nanotechnology KW - Electrical Paramters PY - 2024 AN - OPUS4-60247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Eckert, J. G. A1 - Graf, Rebecca T. A1 - Kunst, A. A1 - Wegner, Karl David A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Correlating semiconductor nanoparticle architecture and applicability for the controlled encoding of luminescent polymer microparticles N2 - Luminophore stained micro- and nanobeads made from organic polymers like polystyrene (PS) are broadly used in the life and material sciences as luminescent reporters, for bead-based assays, sensor arrays, printable barcodes, security inks, and the calibration of fluorescence microscopes and flow cytometers. Initially mostly prepared with organic dyes, meanwhile luminescent core/shell nanoparticles (NPs) like spherical semiconductor quantum dots (QDs) are increasingly employed for bead encoding. This is related to their narrower emission spectra, tuneability of emission color, broad wavelength excitability, and better photostability. However, correlations between particle architecture, morphology, and photoluminescence (PL) of the luminescent nanocrystals used for encoding and the optical properties of the NP-stained beads have been rarely explored. This encouraged us to perform a screening study on the incorporation of different types of luminescent core/shell semiconductor nanocrystals into polymer microparticles (PMPs) by a radical-induced polymerization reaction. Nanocrystals explored include CdSe/CdS QDs of varying CdS shell thickness, a CdSe/ZnS core/shell QD, CdSe/CdS quantum rods (QRs), and CdSe/CdS nanoplatelets (NPLs). Thereby, we focused on the applicability of these NPs for the polymerization synthesis approach used and quantified the preservation of the initial NP luminescence. The spectroscopic characterization of the resulting PMPs revealed the successful staining of the PMPs with luminescent CdSe/CdS QDs and CdSe/CdS NPLs. In contrast, usage of CdSe/CdS QRs and CdSe QDs with a ZnS shell did not yield luminescent PMPs. The results of this study provide new insights into structure–property relationships between NP stained PMPs and the initial luminescent NPs applied for staining and underline the importance of such studies for the performance optimization of NP-stained beads. KW - Quantitative spectroscopy KW - Energy transfer KW - Synthesis KW - Surface chemistry KW - Semiconductor quantum dot KW - Luminescence KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Polymer particle KW - Quantum rod KW - Nanoplatelet PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602206 DO - https://doi.org/10.1038/s41598-024-62591-1 VL - 14 SP - 1 EP - 16 AN - OPUS4-60220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reiber, T. A1 - Hübner, Oskar A1 - Dose, C. A1 - Yushchenko, D. A. A1 - Resch-Genger, Ute T1 - Fluorophore multimerization on a PEG backbone as a concept for signal amplification and lifetime modulation N2 - Fluorescent labels have strongly contributed to many advancements in bioanalysis, molecular biology, molecular imaging, and medical diagnostics. Despite a large toolbox of molecular and nanoscale fluorophores to choose from, there is still a need for brighter labels, e.g., for flow cytometry and fluorescence microscopy, that are preferably of molecular nature. This requires versatile concepts for fluorophore multimerization, which involves the shielding of dyes from other chromophores and possible quenchers in their neighborhood. In addition, to increase the number of readout parameters for fluorescence microscopy and eventually also flow cytometry, control and tuning of the labels’ fluorescence lifetimes is desired. Searching for bright multi-chromophoric or multimeric labels, we developed PEGylated dyes bearing functional groups for their bioconjugation and explored their spectroscopic properties and photostability in comparison to those of the respective monomeric dyes for two exemplarily chosen fluorophores excitable at 488 nm. Subsequently, these dyes were conjugated with anti-CD4 and anti-CD8 immunoglobulins to obtain fluorescent conjugates suitable for the labeling of cells and beads. Finally, the suitability of these novel labels for fluorescence lifetime imaging and target discrimination based upon lifetime measurements was assessed. Based upon the results of our spectroscopic studies including measurements of fluorescence quantum yields (QY) and fluorescence decay kinetics we could demonstrate the absence of significant dye-dye interactions and self-quenching in these multimeric labels. Moreover, in a first fluorescence lifetime imaging (FLIM) study, we could show the future potential of this multimerization concept for lifetime discrimination and multiplexing. KW - Imaging KW - Quantum yield KW - Quality assurance KW - Antibody KW - Conjugate KW - Cell KW - FLIM KW - PEG KW - Flow cytometry KW - Lifetime KW - Energy transfer KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Fluorescence KW - Dye KW - Amplification KW - Microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602197 DO - https://doi.org/10.1038/s41598-024-62548-4 VL - 14 IS - 1 SP - 1 EP - 11 AN - OPUS4-60219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Ponader, Marco A1 - Raab, Christopher A1 - Weider, Prisca S. A1 - Hartfiel, Reni A1 - Kaufmann, Jan Ole A1 - Völzke, Jule L. A1 - Bosc-Bierne, Gaby A1 - Prinz, Carsten A1 - Schwaar, T. A1 - Andrle, Paul A1 - Bäßler, Henriette A1 - Nguyen, Khoa A1 - Zhu, Y. A1 - Mey, A. S. J. S. A1 - Mostafa, A. A1 - Bald, I. A1 - Weller, Michael G. T1 - Efficient Purification of Cowpea Chlorotic Mottle Virus by a Novel Peptide Aptamer N2 - The cowpea chlorotic mottle virus (CCMV) is a plant virus explored as a nanotechnological platform. The robust self-assembly mechanism of its capsid protein allows for drug encapsulation and targeted delivery. Additionally, the capsid nanoparticle can be used as a programmable platform to display different molecular moieties. In view of future applications, efficient production and purification of plant viruses are key steps. In established protocols, the need for ultracentrifugation is a significant limitation due to cost, difficult scalability, and safety issues. In addition, the purity of the final virus isolate often remains unclear. Here, an advanced protocol for the purification of the CCMV from infected plant tissue was developed, focusing on efficiency, economy, and final purity. The protocol involves precipitation with PEG 8000, followed by affinity extraction using a novel peptide aptamer. The efficiency of the protocol was validated using size exclusion chromatography, MALDI-TOF mass spectrometry, reversed-phase HPLC, and sandwich immunoassay. Furthermore, it was demonstrated that the final eluate of the affinity column is of exceptional purity (98.4%) determined by HPLC and detection at 220 nm. The scale-up of our proposed method seems to be straightforward, which opens the way to the large-scale production of such nanomaterials. This highly improved protocol may facilitate the use and implementation of plant viruses as nanotechnological platforms for in vitro and in vivo applications. N2 - Das Cowpea Chlorotic Mottle Virus (CCMV) ist ein Pflanzenvirus, das als nanotechnologische Plattform erforscht wird. Der robuste Selbstorganisationsmechanismus seines Kapsidproteins ermöglicht die Verkapselung und gezielte Abgabe von Medikamenten. Darüber hinaus kann das Kapsid-Nanopartikel als programmierbare Plattform für die Präsentation verschiedener molekularer Komponenten verwendet werden. Im Hinblick auf künftige Anwendungen ist eine effiziente Produktion und Reinigung von Pflanzenviren von entscheidender Bedeutung. In etablierten Protokollen stellt die notwendige Ultrazentrifugation aufgrund von Kosten, schwieriger Skalierbarkeit und Sicherheitsaspekten eine erhebliche Einschränkung dar. Darüber hinaus bleibt die Reinheit des endgültigen Virusisolats oft unklar. Hier wurde ein fortschrittliches Protokoll für die Reinigung von CCMV aus infiziertem Pflanzengewebe entwickelt, wobei der Schwerpunkt auf Effizienz, Wirtschaftlichkeit und Reinheit lag. Das Protokoll beinhaltet eine Fällung mit Polyethylenglycol (PEG 8000), gefolgt von einer Affinitätsextraktion mit einem neuartigen Peptid-Aptamer. Die Effizienz des Protokolls wurde mithilfe von Größenausschluss-Chromatographie (SEC), MALDI-TOF-Massenspektrometrie, Umkehrphasen-HPLC und Sandwich-Immunoassay validiert. Darüber hinaus wurde nachgewiesen, dass das endgültige Eluat der Affinitätssäule eine außergewöhnliche Reinheit (98,4 %) aufweist, die durch HPLC und Detektion bei 220 nm bestimmt wurde. Die Skalierung der von uns vorgeschlagenen Methode scheint einfach zu sein, was den Weg für eine größer angelegte Produktion solcher Nanomaterialien ebnet. Dieses stark verbesserte Protokoll könnte die Verwendung und Umsetzung von Pflanzenviren als nanotechnologische Plattformen für In-vitro- und In-vivo-Anwendungen erleichtern. KW - Affinity chromatography KW - Nanoparticles KW - Nanoscience KW - Carrier protein KW - Encapsulation KW - Combinatorial peptide library KW - Peptide binder KW - Vigna unguiculata KW - Augenbohne KW - Schlangenbohne KW - Pflanzenvirus KW - Plant virus KW - Upscaling KW - Commercialization KW - Reference material KW - Nanocarrier PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572645 DO - https://doi.org/10.3390/v15030697 VL - 15 IS - 3 SP - 1 EP - 24 PB - MDPI CY - Basel, Schweiz AN - OPUS4-57264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa, Elena A1 - Climent Terol, Estela A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Optimization of analytical assay performance of antibody-gated indicator-releasing mesoporous silica particles N2 - Antibody-gated indicator delivery (gAID) systems based on mesoporous silica nano- and microparticle scaffolds are a promising class of materials for the sensitive chemical detection of small-molecule analytes in simple test formats such as lateral flow assays (LFAs) or microfluidic chips. Their architecture is reminiscent of drug delivery systems, only that reporter molecules instead of drugs are stored in the voids of a porous host particle. In addition, the pores are closed with macromolecular “caps” through a tailored “gatekeeping” recognition chemistry so that the caps are opened when an analyte has reacted with a “gatekeeper”. The subsequent uncapping leads to a release of a large number of indicator molecules, endowing the system with signal amplification features. Particular benefits of such systems are their modularity and adaptability. With the example of the immunochemical detection of type-I pyrethroids by fluorescent dye-releasing gAID systems, the influence of several tuning modes on the optimisation of such hybrid sensory materials is introduced here. In particular, different mesoporous silica supports (from nano- and microparticles to platelets and short fibres), different functionalisation routes and different loading sequences were assessed. The materials’ performances were evaluated by studying their temporal response behaviour and detection sensitivity, including the tightness of pore closure (through the amount of blank release in the absence of analyte) and the release kinetics. Our results indicate that the better the paratope-accommodating Fab region of the antibody “cap” fits into the host material's pore opening, the better the closing/opening mechanism can be controlled. Because such materials are well-suited for LFAs, performance assessment included a test-strip format besides conventional assays in suspension. In combination with dyes as indicators and smartphones for read-out, simple analytical tests for use by untrained personnel directly at a point-of-need such as an aeroplane cabin can be devised, allowing for sensitivities down to the μg kg−1 range in <5 min with case-required selectivities. KW - Antibody-gated indicator delivery KW - Lateral flow assay KW - SBA-15 KW - SBA-16 KW - Type-I pyrethroids KW - Phenothrin KW - Permethrin KW - Etofenprox KW - Amplification KW - Biosensors KW - Immunoassays KW - Mesoporous particles KW - Optical detection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517053 DO - https://doi.org/10.1039/d0tb00371a VL - 8 IS - 22 SP - 4950 EP - 4961 PB - Royal Society of Chemistry AN - OPUS4-51705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David A1 - Häusler, I. A1 - Knigge, Xenia A1 - Hodoroaba, Vasile-Dan A1 - Emmerling, Franziska A1 - Reiss, P. A1 - Resch-Genger, Ute T1 - One-Pot Heat-Up Synthesis of ZnSe Magic-Sized Clusters Using Thiol Ligands N2 - The unique optoelectronic properties of semiconductor nanocrystals, also termed quantum dots (QDs), have led to many advances in optoelectronic devices, bioimaging, and biosensing. This strong potential in a wide range of applications sparked the interest for a better understanding of the QD formation mechanisms. Recent studies have shown that atomically defined, zero-dimensional magic-size clusters (MSCs) play a crucial role during the nucleation and growth of QDs. Thereby MSCs consist of discrete numbers of ions leading to narrow size distributions and thus narrow absorption peaks, which evolve in discrete steps from one stable size to the next. The formation of MSCs was found in the synthesis of II-VI and III-V QDs but only limited synthesis approaches are available for the synthesis of MSCs in single-ensemble form without coexistence of other-size QDs. These MSCs can further self-assemble into two- and three-dimensional hybrid structures using organic ligands like diamines, leading to enhanced photoluminescence properties and catalytic activities. In this contribution, we present a synthesis strategy for the preparation of single-sized ZnSe MSCs. With a band gap of 2.7 eV and being an earth-abundant material, ZnSe QDs are interesting for light-emitting devices, blue-green lasers, photocatalysis, and fluorescence probes. In contrast to other studies, our approach is based on a one-pot heat-up synthesis and uses less toxic and dangerous zinc precursors (e.g. zinc stearate). Knowing that thiol-based ligands can alter the formation process of ZnSe QDs, we investigated the influence of 1-dodecanethiol on the ZnSe MSC formation using absorption spectroscopy, TEM, XPS, and XRD. By variation of the thiol ligand concentration and reaction temperature, we were able to synthesize two new ZnSe MSC sizes, the largest so far, by using easy-to-handle precursors. T2 - NANOHYBRID - Hamburg Conference on Complex Nanostructures CY - Hamburg, Germany DA - 04.10.2022 KW - ZnSe KW - Magic-sized cluster KW - Nanoparticle KW - Synthesis KW - Nanomaterial PY - 2022 AN - OPUS4-56193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Luch, A. A1 - Sogne, V. A1 - Maier, F. A1 - Burr, L. A1 - Schmid, D. A1 - Yoon, T.-H. A1 - Petters, R. A1 - Briffa, S.M. A1 - Valsami-Jones, E. T1 - Automation and Standardization—A Coupled Approach Towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis N2 - Whereas the characterization of nanomaterials using different analytical techniques is often highly automated and standardized, the sample preparation that precedes it causes a bottleneck in nanomaterial analysis as it is performed manually. Usually, this pretreatment depends on the skills and experience of the analysts. Furthermore, adequate reporting of the sample preparation is often missing. In this overview, some solutions for techniques widely used in nano-analytics to overcome this problem are discussed. Two examples of sample preparation optimization by au-tomation are presented, which demonstrate that this approach is leading to increased analytical confidence. Our first example is motivated by the need to exclude human bias and focuses on the development of automation in sample introduction. To this end, a robotic system has been de-veloped, which can prepare stable and homogeneous nanomaterial suspensions amenable to a variety of well-established analytical methods, such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), field-flow fractionation (FFF) or single-particle inductively coupled mass spectrometry (sp-ICP-MS). Our second example addresses biological samples, such as cells exposed to nanomaterials, which are still challenging for reliable analysis. An air–liquid interface has been developed for the exposure of biological samples to nanomaterial-containing aerosols. The system exposes transmission electron microscopy (TEM) grids under reproducible conditions, whilst also allowing characterization of aerosol composition with mass spectrometry. Such an approach enables correlative measurements combining biological with physicochemical analysis. These case studies demonstrate that standardization and automation of sample preparation setups, combined with appropriate measurement processes and data reduction are crucial steps towards more reliable and reproducible data. KW - Sample preparation KW - Automation KW - Nanomaterial analysis KW - Standardization PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543988 DO - https://doi.org/10.3390/molecules27030985 VL - 27 IS - 3 SP - 1 EP - 22 PB - MDPI AN - OPUS4-54398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Emamverdi, Farnaz A1 - Cacua, K. A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Carrier Fibers for the Safe Dosage of Nanoparticles in Nanocomposites: Nanomechanical and Thermomechanical Study on Polycarbonate/Boehmite Electrospun Fibers Embedded in Epoxy Resin N2 - The reinforcing effect of boehmite nanoparticles (BNP) in epoxy resins for fiber composite lightweight construction is related to the formation of a soft but bound interphase between filler and polymer. The interphase is able to dissipate crack propagation energy and consequently increases the fracture toughness of the epoxy resin. Usually, the nanoparticles are dispersed in the resin and then mixed with the hardener to form an applicable mixture to impregnate the fibers. If one wishes to locally increase the fracture toughness at particularly stressed positions of the fiber-reinforced polymer composites (FRPC), this could be done by spraying nanoparticles from a suspension. However, this would entail high costs for removing the nanoparticles from the ambient air. We propose that a fiber fleece containing bound nanoparticles be inserted at exposed locations. For the present proof-of-concept study, an electrospun polycarbonate nonwoven and taurine modified BNP are proposed. After fabrication of suitable PC/EP/BNP composites, the thermomechanical properties were tested by dynamic mechanical analysis (DMA). Comparatively, the local nanomechanical properties such as stiffness and elastic modulus were determined by atomic force microscopy (AFM). An additional investigation of the distribution of the nanoparticles in the epoxy matrix, which is a prerequisite for an effective nanocomposite, is carried out by scanning electron microscopy in transmission mode (TSEM). From the results it can be concluded that the concept of carrier fibers for nanoparticles is viable. KW - Advanced materials KW - Electrospun nanocomposite fiber KW - Nanomechanical charecteisation KW - Nanosafety KW - Epoxy nanocomposites PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528265 DO - https://doi.org/10.3390/nano11061591 VL - 11 IS - 6 SP - 1591 PB - MDPI CY - CH - 4020 Basel, Switzerland AN - OPUS4-52826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Raw and processed X-ray scattering datasets for: "Entering a new dimension in powder processing for advanced ceramics shaping" N2 - This dataset is a complete set of raw, processed and analyzed data, associated with the manuscript mentioned in the title. All associated metadata and processing history has been added. Particle size distribution analyses using McSAS are included as well. The samples consisted of a 4.2 mass% dispersion of yttria-stabilized zirconia nanoparticles in a cross-linked matrix. The measurements show a good dispersion with minimal agglomeration. The wide-angle region shows diffraction information consistent with zirconia. KW - X-ray scattering KW - Nanocomposite KW - Ceramic microprinting KW - Yttria-stabilized zirconia KW - SAXS KW - Nanomaterials KW - Two-photon polymerization KW - Transparency KW - Mechanical testing PY - 2023 DO - https://doi.org/10.5281/zenodo.7498647 PB - Zenodo CY - Geneva AN - OPUS4-56766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Co0.75Fe2.25O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Co0.75Fe2.25O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Co0.75Fe2.25O4 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7940769 PB - Zenodo CY - Geneva AN - OPUS4-57664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized Co2.25Fe0.75O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized Co2.25Fe0.75O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - XPS KW - HAXPES KW - SEM KW - NanoSolveIT KW - Co2.25Fe0.75O4 nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7940538 PB - Zenodo CY - Geneva AN - OPUS4-57663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dietmar A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Boehmite Nanofillers in Epoxy Oligosiloxane Resins: Influencing the Curing Process by Complex Physical and Chemical Interactions N2 - In this work, a novel boehmite (BA)-embedded organic/inorganic nanocomposite coating based on cycloaliphatic epoxy oligosiloxane (CEOS) resin was fabricated applying UV-induced cationic polymerization. The main changes of the material behavior caused by the nanofiller were investigated with regard to its photocuring kinetics, thermal stability, and glass transition. The role of the particle surface was of particular interest, thus, unmodified nanoparticles (HP14) and particles modified with p-toluenesulfonic acid (OS1) were incorporated into a CEOS matrix in the concentration range of 1–10 wt.%. Resulting nanocomposites exhibited improved thermal properties, with the glass transition temperature (Tg) being shifted from 30 °C for unfilled CEOS to 54 °C (2 wt.% HP14) and 73 °C (2 wt.% OS1) for filled CEOS. Additionally, TGA analysis showed increased thermal stability of samples filled with nanoparticles. An attractive interaction between boehmite and CEOS matrix influenced the curing. Real-time infrared spectroscopy (RT-IR) experiments demonstrated that the epoxide conversion rate of nanocomposites was slightly increased compared to neat resin. The beneficial role of the BA can be explained by the participation of hydroxyl groups at the particle surface in photopolymerization processes and by the complementary contribution of p-toluenesulfonic acid surface modifier and water molecules introduced into the system with nanoparticles. KW - Real-time infrared spectroscopy KW - Boehmite KW - Nanocomposite KW - Cationic photocuring KW - Cycloaliphatic epoxy oligosiloxane KW - Epoxy conversion degree PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479628 DO - https://doi.org/10.3390/ma12091513 VL - 12 IS - 9 SP - 1513 PB - MDPI AN - OPUS4-47962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - 1,3-Dimethyl-imidazolium dimethyl phosphate ([MMIM]+[DMP]−) analyzed by XPS and HAXPES N2 - The ionic liquid 1,3-dimethyl-imidazolium-dimethylphosphate ([MMIM]+[DMP]−) was analyzed using (hard) x-ray photoelectron spectroscopy. Here, XPS and HAXPES spectra are shown in comparison. For the acquisition of the XPS spectra, monochromatic Al Kα radiation at 1486.6 eV was used, while for the acquisition of the HAXPES spectra, monochromatic Cr Kα radiation at 5414.8 eV was applied. Here, survey scans and high-resolution spectra of P 2p, P 2s, C 1s, O 1s, and N 1s for both methods and P 1s, P KL2,3L2,3, and P KL1L2,3 for HAXPES are shown. KW - C7H15N2O4P KW - [MMIM]+[DMP]− KW - Lonic liquid KW - Hard x-ray photoelectron spectroscopy KW - HAXPES KW - XPS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571604 DO - https://doi.org/10.1116/6.0002297 VL - 30 IS - 1 SP - 1 EP - 20 PB - AIP Publishing AN - OPUS4-57160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Radnik, Jörg A1 - Ermilova, Elena A1 - Hodoroaba, Vasile-Dan T1 - Accuracy on all scales: Hybrid metrology for micro- and nanomanufacturing N2 - In this presentation, we discuss hybrid metrology and correlative imaging. These techniques are used to improve the design and quality monitoring of nanomaterials used in energy technology and for referencing the properties of nanoparticles. T2 - EMN for Advanced Manufacturing workshop CY - Berlin, Germany DA - 22.05.2024 KW - Nanotechnology KW - Nanoanalytics KW - Correlative Spectroscopy KW - Correlative Imaging PY - 2024 AN - OPUS4-60240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Chemello, Giovanni A1 - Radnik, Jörg T1 - Morphology Analysis of Graphene Oxide Flakes with SEM - Preparation of an Inter-Laboratory Comparison @VAMAS N2 - Experience gained at BAM within the European project ISGScope on the accurate measureemnt of graphene oxide flakes by electron microscopy is presented. Particularly, factors such as the type of solvent, substrate temperature, but also proper, gentle measurement parameters and image analysis conditions towards automation are highlighted. The measurement procedures in develeopment are being prepared to launch an inter-laboratory comparison under VAMAS (TWA41) as preparatory guidance for future standardisation at ISO. T2 - ISO/TC 229 Nanotechnologies Plenary Meeting - Graphene Standardisation CY - Teddington, UK DA - 14.11.2022 KW - Graphene oxide flakes KW - SEM KW - Morphology KW - VAMAS KW - Standardisation KW - Sample preparation KW - ISOGScope PY - 2022 AN - OPUS4-56300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Characterization of industrial graphene using HAXPES N2 - A comparative analysis is performed by XPS, HAXPES and SEM of industrial functionalised graphene powder of different morphology. The chemical analysis carried out by XPS, which probing depth is around 10nm, and HAXPES, which can reach up to 30nm probing depth. By combining these two techniques is possible to get a rough, non-destructive depth profiling of the sample's surface. The results show a higher concentration of the functionlisation elements on the surface of the sample and the influence of the morphology on the functionalisation process and the C/O ratio. T2 - SALSA Make and Measure 2022 CY - Berlin, Germany DA - 15.09.2022 KW - Graphene KW - XPS KW - HAXPES KW - SEM KW - Graphene funcionalisation PY - 2022 AN - OPUS4-55971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -