TY - CONF A1 - Topolniak, Ievgeniia A1 - Knigge, Xenia A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Maskless Micropatterning of Polydopamine for versatile surface functionalization N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA has been shown as one of the most versatile platforms for altering the properties and incorporating new functionalities to nearby any material surface despite its nature. Rich chemistry of PDA enables broad variety of surface modification and diverse secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. Despite high potential of polydopamine, the lack of deposition control and precision in existed methods limits their applications in microdevices and miniaturized functional systems like, for example, MEMS, microfluidic and sensorics. Herein, we demonstrate a novel maskless approach for surface micropatterning with polydopamine based on Multiphoton Lithography that overcomes present limitations. Neither strong oxidants, metal ions nor adjustment of pH to alkaline is required by this technique. The spatial resolution down to 0.8 µm has been achieved which is at least an order of magnitude smaller than shown by other existed methods. We are able to control the morphology and thickness of the micropattern by altering fabrication parameters allowing structure gradient. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. Post-modification of polydopamine micropatterns with protein enzyme like trypsin is demonstrated to highlight its sensing potential. Presented in this work microfabrication technique empowers advanced applications of mussel-inspired materials in single-molecule bioassays, sensors and other complex microdevices. T2 - International Conference on Precision Engineering and Sustainable Manufacturing CY - Okinawa, Japan DA - 18.07.2023 KW - Multiphoton lithography KW - Polydopamine KW - Micropatterning PY - 2023 AN - OPUS4-58878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating networks with tuned thermal and mechanical properties N2 - Text Multiphoton lithography (MPL) has recently attracted significant research interest as a versatile tool capable of producing 2D and 3D micro- and nanoscopic features with high spatial resolution. The integrity of MPL microstructures, or their ability to respond to external stimuli, is of critical importance. However, achieving the desired properties of fabricated microcomponents for a specific application remains a challenge. In this work, we present new MPL materials based on epoxy-acrylate interpenetrating networks (IPNs). We aim at 3D microstructures, whose properties can be easily tuned by varying the ratio of the IPN components and fabrication parameters (Figure 1). The resulting library of 3D microstructures was investigated for their thermal and mechanical properties using highly-sensitive space-resolved methods. Flash scanning calorimetry revealed the influence of both, IPN composition and fabrication parameters, on glass transition temperature and material fragility. AFM force-distance curve and intermodulation methods were used to characterize the mechanical properties with a lateral resolution of 1 micron and 4 nm, respectively. The deformation, stiffness and elastic behavior are discussed in detail in relation to the morphology. Moreover, we found that some 3D IPN microstructures exhibit fully elastic behavior. Our funding encourages the further development of IPN systems as versatile and easily tunable MPL materials. T2 - Micro Nano Engineering (MNE conference) CY - Berlin, Germany DA - 25.09.2023 KW - Interpenetrating polymer network KW - Multiphoton Lithography KW - Two photon polymerisation KW - Direct laser writing KW - Polyethylene glycol diacrylate PY - 2023 AN - OPUS4-58879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Foroutan, F. A1 - Kyffin, B. A. A1 - Nikolaou, A. A1 - Merino-Gutierrez, J. A1 - Abrahams, I. A1 - Kanwal, N. A1 - Knowles, J. C. A1 - Smith, A. J. A1 - Smales, Glen Jacob A1 - Carta, D. T1 - Highly porous phosphate-based glasses for controlled delivery of antibacterial Cu ions prepared via sol–gel chemistry N2 - Mesoporous glasses are a promising class of bioresorbable biomaterials characterized by high surface area and extended porosity in the range of 2 to 50 nm. These peculiar properties make them ideal materials for the controlled release of therapeutic ions and molecules. Whilst mesoporous silicate-based glasses (MSG) have been widely investigated, much less work has been done on mesoporous phosphate-based glasses (MPG). In the present study, MPG in the P2O5–CaO–Na2O system, undoped and doped with 1, 3, and 5 mol% of Cu ions were synthesized via a combination of the sol–gel method and supramolecular templating. The non-ionic triblock copolymer Pluronic P123 was used as a templating agent. The porous structure was studied via a combination of Scanning Electron Microscopy (SEM), Small-Angle X-ray Scattering (SAXS), and N2 adsorption–desorption analysis at 77 K. The structure of the phosphate network was investigated via solid state 31P Magic Angle Spinning Nuclear Magnetic Resonance (31P MAS-NMR) and Fourier Transform Infrared (FTIR) spectroscopy. Degradation studies, performed in water via Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), showed that phosphates, Ca2+, Na+ and Cu ions are released in a controlled manner over a 7 days period. The controlled release of Cu, proportional to the copper loading, imbues antibacterial properties to MPG. A significant statistical reduction of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial viability was observed over a 3 days period. E. coli appeared to be more resistant than S. aureus to the antibacterial effect of copper. This study shows that copper doped MPG have great potential as bioresorbable materials for controlled delivery of antibacterial ions. KW - Bioresorbable Biomaterials KW - Mesoporous phosphate-based glasses KW - Synthesis KW - Degradation studies KW - X-ray scattering KW - MOUSE KW - Antibacterial properties KW - Aantimicrobial PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578101 DO - https://doi.org/10.1039/D3RA02958A VL - 13 IS - 29 SP - 19662 EP - 19673 PB - Royal Society of Chemistry AN - OPUS4-57810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Single Femtosecond Laser Pulse induced Amorphization, Re-crystallization and Native Oxide Removal at Silicon Wafer Surfaces N2 - Single femtosecond laser pulse induced amorphization, re-crystallization and native oxide layer removal at silicon wafer surfaces of different crystal orientation is studied via spectroscopic imaging ellipsometry, atomic force microscopy, and high-resolution transmission electron microscopy. T2 - 2023 Conference on Lasers and Electro-Optics/Europe – European Quantum Electronics Conferences CY - Munich, Germany DA - 26.06.2023 KW - Femtosecond laser KW - Laser-induced amorphization KW - Spectroscopic imaging ellipsometry KW - Transmission electron microscopy KW - Native oxide layer PY - 2023 AN - OPUS4-57829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - What’s that beyond the grasslands? Expanding your world view via wide-range X-ray scattering N2 - This talk introduces the expanded view that comes from wide-range X-ray scattering investigations. Compared to X-ray diffraction studies alone, the additional angular range of this technique provides information on the larger structural dimensions present in your samples. This allows for the extraction of information on the size and size distribution of nanostructural components, such as nanoparticles, nanovoids, and any other structure exhibiting an electron density contrast. The talk introduces the technique, the MOUSE instrument used for these investigations, and provides several real-world examples of its uses. The audience is invited to choose which examples captures their interest from a range of options, in the latter segment of the talk. T2 - ECS8: European Crystallography School 2023 CY - Berlin, Germany DA - 18.06.2023 KW - X-ray scattering KW - Introduction KW - Fourier transforms KW - Nanostructure investigation KW - Instrument automation KW - MOUSE PY - 2023 AN - OPUS4-57769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized AlOOH nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized AlOOH nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - AlOOH KW - Nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7966245 PB - Zenodo CY - Geneva AN - OPUS4-57757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of Ce0.9Zr0.1O2 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of Ce0.9Zr0.1O2 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Ce0.9Zr0.1O2 KW - Nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7986672 PB - Zenodo CY - Geneva AN - OPUS4-57758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of Fe3O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of Fe3O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Fe3O4 KW - Nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7990085 PB - Zenodo CY - Geneva AN - OPUS4-57759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of CeO2/Co3O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of CeO2/Co3O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Nanoparticles KW - CeO2/Co3O4 PY - 2023 DO - https://doi.org/10.5281/zenodo.7989698 PB - Zenodo CY - Geneva AN - OPUS4-57760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterilized TiO2 PVP nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterilized TiO2 PVP nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Nanoparticles KW - TiO2 PVP PY - 2023 DO - https://doi.org/10.5281/zenodo.7966354 PB - Zenodo CY - Geneva AN - OPUS4-57761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterile ZnO nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of ZnO nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Nanoparticles KW - ZnO PY - 2023 DO - https://doi.org/10.5281/zenodo.7990213 PB - Zenodo CY - Geneva AN - OPUS4-57762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterile citrated stabilized Au nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of Au nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Au Nanoparticles KW - NanoSolveIT PY - 2023 DO - https://doi.org/10.5281/zenodo.7990250 PB - Zenodo CY - Geneva AN - OPUS4-57763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterile Fe3O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterile Fe3O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Fe3O4 KW - Nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7990301 PB - Zenodo CY - Geneva AN - OPUS4-57764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bawadkji, O. A1 - Cherri, M. A1 - Schäfer, A. A1 - Herziger, S. A1 - Nickl, Philip A1 - Achazi, K. A1 - Donskyi, Ievgen A1 - Adeli, M. A1 - Haag, R. T1 - One-pot covalent functionalization of 2D black phosphorus by anionic ring opening polymerization N2 - In this work, a one-pot approach for the covalent functionalization of few-layer black phosphorus (BP) by anionic ring opening polymerization of glycidol to obtain multifunctional BP-polyglycerol (BP-PG) with high amphiphilicity for near-infrared-responsive drug delivery and biocompatibility is reported. Straightforward synthesis in combination with exceptional biological and physicochemical properties designates functionalized BP-PG as a promising candidate for a broad range of biomedical applications. KW - 2D nanomaterial KW - Amphiphilicity KW - Black phosphorus KW - Hyperbranched KW - Polyglycerol KW - Water dispersibility PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568833 DO - https://doi.org/10.1002/admi.202201245 SN - 2196-7350 VL - 9 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as CRM for Size and Shape N2 - Due to their unique physico-chemical properties, nanoparticles are well established in research and industrial applications. A reliable characterization of their size, shape, and size distribution is not only mandatory to fully understand and exploit their potential and develop reproducible syntheses, but also to manage environmental and health risks related to their exposure and for regulatory requirements. To validate and standardize methods for the accurate and reliable particle size determination nanoscale reference materials (nanoRMs) are necessary. However, there is only a very small number of nanoRMs for particle size offered by key distributors such as the National Institute of Standards and Technology (NIST) and the Joint Research Centre (JRC) and, moreover, few provide certified values. In addition, these materials are currently restricted to polymers, silica, titanium dioxide, gold and silver, which have a spherical shape except for titania nanorods. To expand this list with other relevant nanomaterials of different shapes and elemental composition, that can be used for more than one sizing technique, we are currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance for the material and life sciences. T2 - Microscopy and Microanalysis 2022 CY - Online meeting DA - 31.07.2022 KW - Certified Referencematerial KW - Cubical Iron Oxide KW - Nanoparticles KW - Electron Microscopy KW - Small-Angle X-ray Scattering PY - 2022 AN - OPUS4-57035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zubia Aranburu, Judith A1 - Cappella, Brunero A1 - Zabala Eguren, A. A1 - Buruaga Lamarain, L. A1 - Aginagalde Lopez, A. A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Quantification of the adhesion force of E. coli on Ti via single-cell force spectroscopy N2 - Antibiotic resistance is a growing global problem which poses a massive threat to human health. Although human activity contributes to the acceleration of the process, bacteria have a self-driven stabilisation mechanism to protect themselves from such and other external threats: biofilm formation. Nonetheless, it is the adhesion of a single bacterial cell to a surface that triggers the formation of such network of biomolecules and microorganisms, as well as its hazardous consequences. The main objective of this work was to quantify the adhesion force of a single E. coli cell on a Ti substrate via the AFM-related single-cell force spectroscopy, with both the cell and the substrate material being of high clinical relevance. A set of 25 x 25 force displacement curves was acquired with a maximum force of 3.2 nN without dwell time, yielding a topography map and an adhesion force map that showed to be correlated. A mean adhesion force of 0.85 ± 0.175 nN was measured and the presence of cell appendages on the bacterial cell wall was verified through individual force-displacement curves. Bacterial viability was assessed after the measurements via live/dead staining. T2 - XL Congreso Anual de la Sociedad Española de Ingeniería Biomédica CASEIB 2022 CY - Valladolid, Spain DA - 23.11.2022 KW - Bacteria KW - Atomic force microscopy KW - Force distance curve PY - 2022 SN - 978-84-09-45972-8 SP - 217 EP - 220 AN - OPUS4-57039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - François, P. T1 - ELENA Project: Creating a simplified uncertainty calculation for industrial applications N2 - In this workpackage of the ELENA project, we develop a way to express the measurement uncertainty of nanoscale determination of electrical propserties. The method developed aims to be usable for industrial contexts and described in technical documents and standards drafts. Standards and reference samples are used to make traceable measurements available for the end user. T2 - Congrès International de Metrologie CY - Lyon, France DA - 06.03.2023 KW - Nanoscale measurements KW - Electrical properties KW - Optical measurements KW - Surfaces KW - Scanning probe measurements PY - 2023 AN - OPUS4-57155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - 1,3-Dimethyl-imidazolium dimethyl phosphate ([MMIM]+[DMP]−) analyzed by XPS and HAXPES N2 - The ionic liquid 1,3-dimethyl-imidazolium-dimethylphosphate ([MMIM]+[DMP]−) was analyzed using (hard) x-ray photoelectron spectroscopy. Here, XPS and HAXPES spectra are shown in comparison. For the acquisition of the XPS spectra, monochromatic Al Kα radiation at 1486.6 eV was used, while for the acquisition of the HAXPES spectra, monochromatic Cr Kα radiation at 5414.8 eV was applied. Here, survey scans and high-resolution spectra of P 2p, P 2s, C 1s, O 1s, and N 1s for both methods and P 1s, P KL2,3L2,3, and P KL1L2,3 for HAXPES are shown. KW - C7H15N2O4P KW - [MMIM]+[DMP]− KW - Lonic liquid KW - Hard x-ray photoelectron spectroscopy KW - HAXPES KW - XPS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571604 DO - https://doi.org/10.1116/6.0002297 VL - 30 IS - 1 SP - 1 EP - 20 PB - AIP Publishing AN - OPUS4-57160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brüngel, R. A1 - Rückert, J. A1 - Müller, P. A1 - Babick, F. A1 - Friedrich, C. M. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Mech, A. A1 - Weigel, S. A1 - Wohlleben, W. A1 - Rauscher, H. T1 - NanoDefiner Framework and e-Tool Revisited According to the European Commission’s Nanomaterial Definition 2022/C 229/01 N2 - The new recommended definition of a nanomaterial, 2022/C 229/01, adopted by the European Commission in 2022, will have a considerable impact on European Union legislation addressing chemicals, and therefore tools to implement this new definition are urgently needed. The updated NanoDefiner framework and its e-tool implementation presented here are such instruments, which help stakeholders to find out in a straightforward way whether a material is a nanomaterial or not. They are two major outcomes of the NanoDefine project, which is explicitly referred to in the new definition. This work revisits the framework and e-tool, and elaborates necessary adjustments to make these outcomes applicable for the updated recommendation. A broad set of case studies on representative materials confirms the validity of these adjustments. To further foster the sustainability and applicability of the framework and e-tool, measures for the FAIRification of expert knowledge within the e-tool’s knowledge base are elaborated as well. The updated framework and e-tool are now ready to be used in line with the updated recommendation. The presented approach may serve as an example for reviewing existing guidance and tools developed for the previous definition 2011/696/EU, particularly those adopting NanoDefine project outcomes. KW - Nanomaterial definition KW - Nanomaterial categorisation KW - Nanomaterial regulation KW - Nanomaterial legislation KW - Decision support KW - FAIRification PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571618 DO - https://doi.org/10.3390/nano13060990 SN - 2079-4991 VL - 13 IS - 6 - Special Issue "Identification and Quantification of Nanomaterials" SP - 1 EP - 16 PB - MDPI CY - Basel, CH AN - OPUS4-57161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feltin, N. A1 - Crouzier, L. A1 - Delvallée, A. A1 - Pellegrino, F A1 - Maurino, V. A1 - Bartczak, D. A1 - Goenaga-Infante, H. A1 - Taché, O. A1 - Marguet, S. A1 - Testard, F. A1 - Artous, S. A1 - Saint-Antonin, F. A1 - Salzmann, Christoph A1 - Deumer, J. A1 - Gollwitzer, C. A1 - Koops, R. A1 - Sebaïhi, N. A1 - Fontanges, R. A1 - Neuwirth, M. A1 - Bergmann, D. A1 - Hüser, D. A1 - Klein, T. A1 - Hodoroaba, Vasile-Dan T1 - Metrological Protocols for Reaching Reliable and SI-Traceable Size Results for Multi-Modal and Complexly Shaped Reference Nanoparticles N2 - The study described in this paper was conducted in the framework of the European nPSize project (EMPIR program) with the main objective of proposing new reference certified nanomaterials for the market in order to improve the reliability and traceability of nanoparticle size measurements. For this purpose, bimodal populations as well as complexly shaped nanoparticles (bipyramids, cubes, and rods) were synthesized. An inter-laboratory comparison was organized for comparing the size measurements of the selected nanoparticle samples performed with electron microscopy (TEM, SEM, and TSEM), scanning probe microscopy (AFM), or small-angle X-ray scattering (SAXS). The results demonstrate good consistency of the measured size by the different techniques in cases where special care was taken for sample preparation, instrument calibration, and the clear definition of the measurand. For each characterization method, the calibration process is described and a semi-quantitative table grouping the main error sources is proposed for estimating the uncertainties associated with the measurements. Regarding microscopy-based techniques applied to complexly shaped nanoparticles, data dispersion can be observed when the size measurements are affected by the orientation of the nanoparticles on the substrate. For the most complex materials, hybrid approaches combining several complementary techniques were tested, with the outcome being that the reliability of the size results was improved. KW - Certified reference nanomaterials KW - Traceable nanoparticle size measurements; KW - Hybrid metrology KW - Scanning probe microscopy KW - Small-angle X-ray scattering KW - Electron microscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571902 DO - https://doi.org/10.3390/nano13060993 SN - 2079-4991 VL - 13 IS - 6 - Special Issue "Identification and Quantification of Nanomaterials" SP - 1 EP - 25 PB - MDPI CY - Basel, CH AN - OPUS4-57190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omar, Hassan T1 - Probing Nanoscale Relaxation Behavior in Thin Polymer Films N2 - The investigations into the complicated effects of film thickness on bulk properties of thin polymer films has yielded conflicting results. The reduction in molecular mobility, and with it an increase in the glass transition temperature, for thin films of poly (bisphenol A carbonate) (PBAC) was assigned to the formation of an adsorbed layer. The adsorbed layer was obtained by washing away the loosely bounded chains using a good solvent. Next, using atomic force microscopy (AFM), the thickness of each sample was measured after annealing for various times at three different annealing temperatures. The growth of this adsorbed layer was shown to deviate from the previously reported 2-step mechanism seen for other polymers. For PBAC, after very long annealing times at high temperatures the thin films were dewetted, where segments of the adsorbed layer were removed from the substrate. T2 - Royal Society of Chemistry (RSC) Poster CY - Online meeting DA - 28.02.2023 KW - Thin films KW - Adsorbed Layer KW - Broadband dielectric spectroscopy KW - Atomic force microscopy KW - Growth Kinetics PY - 2023 AN - OPUS4-57196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Spaltmann, Dirk A1 - Gee, M. T1 - Editorial: Tribology and Atomic Force Microscopy - Towards Single Asperity Contact N2 - The concept behind this Research Topic (RT) was to collect works, in which Atomic Force Microscopy (AFM) techniques are employed to study tribological phenomena and to push the resolution of measurements towards single asperity contact. Thanks to the direct determination of sample height with sub-nanometer resolution and the possibility of measuring local friction, AFM can be employed after a tribotest to detect topography and friction changes at the nanometer scale. Recently, efforts are being expended to use AFM cantilevers as tribometers, i.e., as probes altering the volume of suitable samples, thereby measuring tip and/or sample wear and friction at the nano/microscale. Thus, single asperity contact, friction, and wear can be investigated. Since friction and wear at the macroscale are the result of asperities interactions, such experiments are of great importance for better understanding of tribological processes. KW - Nanotribology KW - Friction KW - Wear KW - Single asperity KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571037 DO - https://doi.org/10.3389/fmech.2022.853934 SN - 2297-3079 VL - 8 SP - 1 EP - 2 PB - Frontiers Media CY - Lausanne AN - OPUS4-57103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Li, Z. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, Jun T1 - Preparation of NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles and application of their fluorescence temperature sensing properties N2 - The NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles were successfully prepared by the solvothermal method, and the samples were pure hexagonal phase with good crystallinity and homogeneous size, asevidenced by XRD and TEM analysis. The FT-IR analysis shows that β-CD is successfully encapsulated on the surface of NaYF4: Yb3+/Tm3+@NaYF4 nanoparticles. The fluorescence intensity 3and lifetime were significantly increased after coating the inert layer on the surface of core nanoparticles. After further surface modification of β-CD, the fluorescence intensity and fluorescence lifetime were reduced, but the overall fluorescence was stronger. Temperature measurements using the fluorescence intensity ratio technique were found to have relatively low reliability and absolute sensitivity for temperature measurements using thermally coupled energy levels. However, the reliability of temperature measurements using non-thermally coupled energy levels is significantly higher and the absolute sensitivity is much higher than for measurements at thermally coupled levels. Since the maximum absolute sensitivity, maximum relative sensitivity and minimum temperature resolution are determined to be 0.1179 K-1, 2.19 %K􀀀 1 and 0.00019 K, respectively, NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles are expected to be widely used in the biomedical field due to their feasibility, reliability, non-toxicity and harmlessness. KW - Upconversion KW - Surface modification KW - Fluorescence intensity ratio KW - Thermally coupled levels KW - Non-thermally coupled levels PY - 2023 DO - https://doi.org/10.1016/j.optmat.2022.113389 SN - 0925-3467 VL - 136 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-57105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cheng, Z. A1 - Meng, M. A1 - Qiao, X. A1 - Liu, Y. A1 - Resch-Genger, Ute A1 - Ou, J. T1 - The synthesis of Er3+/Yb3+/K+ triple-doped NaYF4 phosphors and its high sensitivity optical thermometers at low power N2 - Optical Thermometry is popular among researchers because of its non-contact, high sensitivity, and fast measurement properties. In the present experiment, Er3+/Yb3+/K+ co-doped NaYF4 nanoparticles with different K+ concentrations were synthesized by solvothermal method, and the samples showed bright upconversion green emission under the excitation of a 980 nm laser. The powder X-ray diffractometer and transmission electron microscope were used to characterize the crystal structure and its surface morphology, respectively. The spectral characteristics of nanoparticles with K+ doping concentration from 10% to 30% (Molar ratio) were investigated by fluorescence spectroscopy, and it was observed that the fluorescence intensity reached the maximum at the K+ concentration of 20%, after which the intensity weakened when the K+ content continued to increase. According to the dependence between the luminescence intensity of the sample and the laser power density and fluorescence lifetime, the intrinsic mechanism was carefully investigated. Temperature-dependent spectra of the samples were recorded in the temperature range of 315–495 K, and the maximum values of absolute sensitivity (Sa) and relative sensitivity (Sr) were measured at 0.0041 K−1 (455 K) and 0.9220%K−1 (315 K). The experimental results show that K+/Er3+/Yb3+ triple-doped NaYF4 green fluorescent nanoparticles (GFNs) have good prospects for applications in display devices, temperature sensing, and other fields. KW - K+ doped KW - Upconversion luminescence KW - Optical temperature sensing KW - Thermal coupling energy level PY - 2023 DO - https://doi.org/10.1016/j.jallcom.2022.168299 VL - 937 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-57106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fritzsche, Sven A1 - Weimann, Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz T1 - 2PP-TestArtifact N2 - This repository contains a test artifact (TA), also called test structure, designed for two-photon polymerization (also known as Direct Laser Writing (DLW) or Two/Multi-photon lithography (2PA/MPA)). Test artifacts can be used to compare structures, to check options used by the slicer, check the state of the 2PP machine itself or to get a construction guidelines for a certain combination of power, velocity and settings. The associated paper can be found here: https://dx.doi.org/10.1088/1361-6501/acc47a General ideas behind the test artifact: 1. optimized for 2PP-DLW 2. should be fast and easy to analyse with optical microscopy or 3. scanning electron microscopy without tilt. 3. short time to fabricate 4. include a reasonable amount of different features 5. bulk and small structures on the substrate KW - Reference structure KW - Calibration structure KW - Test structure KW - Laser writing KW - Two-photon polymerization KW - 3D printing KW - Additive manufacturing KW - Microprinting KW - Multi-photon light structuring PY - 2023 DO - https://doi.org/10.6084/m9.figshare.22285204.v2 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-57165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrandt, Jana A1 - Thünemann, Andreas T1 - Aqueous Dispersions of Polypropylene: Toward Reference Materials for Characterizing Nanoplastics N2 - Microplastics and nanoplastics pollute the natural environment all over the world, but the full extent of the hazards posed by this waste is unclear. While research on microplastics is well advanced, little work has been done on nanoplastics. This discrepancy is mainly due to the lacking ability to detect nanoplastics in biologically and environmentally relevant matrices. Nanoplastics reference materials can help the development of suitable methods for identifying and quantifying nanoplastics in nature. The aim is to synthesize nanoplastics made from one of the most commonly used plastics, namely polypropylene. An easy way to produce long-term stable aqueous dispersions of polypropylene nanoparticles (nano polypropylene) is reported. The nanoplastic particles, prepared by mechanical breakdown, show a mean hydrodynamic diameter of D h = 180.5 ± 5.8 nm and a polydispersity index of PDI = 0.084 ± 0.02. No surfactant is needed to obtain dispersion which is stable for more than 6 months. The colloidal stability of the surfactant-free nano polypropylene dispersions is explained by their low zeta potential of 𝜻 = −43 ± 2 mV. KW - Nanoparticles KW - Reference Material KW - Nanoplastics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571799 DO - https://doi.org/10.1002/marc.202200874 SN - 1022-1336 VL - 44 IS - 6 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Dynamische Lichtstreuung DLS nach ISO 22412:2017 N2 - Einführung in die Partikelgrößenbestimmung von Nano-Materialien mittels Dynamischer Lichtstreuung. Normative Grundlagen (ISO 22412 und OECD TG 125); Messprinzip, Auswertealgorithmen, Informationsgehalt der Daten, Metadaten, Reporting. T2 - BAM Akademie: Info-Tage "NANO OR NOT NANO" CY - Online meeting DA - 16.02.2023 KW - DLS KW - Particle size KW - Nano PY - 2023 AN - OPUS4-57128 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Zentrifugen Sedimentationsverfahren CLS nach ISO 13318 2:2007 N2 - Einführung in die Bestimmung der Partikelgröße von Nano-Materialien mittels Zentrifugen Sedimentationsverfahren CLS nach ISO 13318 2:2007. Normative Grundlagen (einschließlich OECD TG 125), Messprinzip, Auswertung, Vor- und Nachteile der Methode, Metadaten, Reporting. T2 - BAM Akademie: Info-Tage "NANO OR NOT NANO" CY - Online meeting DA - 16.02.2023 KW - CLS KW - Particle size KW - Nano PY - 2023 AN - OPUS4-57129 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Balazs, D. M. A1 - Beyer, F. L. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Giudice, A. D. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, Max A1 - Hollamby, M. J. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Ricardo de Abreu Furtado Garcia, P. A1 - Rochels, L. A1 - Rosalie, Julian M. A1 - Saloga, P. E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Annadurai, V. A1 - Spiering, G. A. A1 - Stawski, Tomasz A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor - Results of a small-angle scattering data analysis round robin N2 - A Round Robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions, and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5 % and half of the population width entries within 40 %, respectively. Due to the added complexity of the structure factor, much fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 % and 86 % respectively. This Round Robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round robin KW - Sall-angle scattering KW - Nanostructure quantification KW - Nanostructure KW - SAXS KW - MOUSE KW - X-ray scattering KW - Size distribution KW - Nanoparticles PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571342 DO - https://doi.org/10.48550/arXiv.2303.03772 SP - 1 EP - 23 PB - Cornell University CY - Ithaca, NY AN - OPUS4-57134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Electric Safety Interlock N2 - This interlock is designed to prevent electrical shock from high voltage (>60V) equipment. While the general safety interlock can be generically applied, this particular example employs an external vacuum-activated switch. It is for safeguarding human operations inside a vacuum sample chamber while the chamber doors are open. The circuit is closed (output is active) when a sufficient level of vacuum is reached, i.e. when all accessible openings are necessarily closed. The initial application is to interrupt power to a 220V, 250W heating cartridge (itself mounted inside a small sample holder with potentially exposed contacts) when the sample chamber is open. The external circuit can be modified to use different interlock mechanisms as needed. Note that the external interlock circuit is only a single circuit (with two signal lines) and thus is not protected against external shorts. To accomodate a range of safety interlocks, the 4-pin M12 connector is wired as follows: Pin 1 (Brown): +24V for power supply, max current 0.6A Pin 2 (White): Safety interlock system signal 1 (0 or 24V) Pin 3 (Blue) : Safety interlock system signal 2 (0 or 24V) Pin 4 (Black): 0V for power supply The safety is interlocked (output active) when both signal pins are set high (24V), with sufficient current to activate the two relays. Pin 1 and 4 can be used to power safety hardware (such as light curtains or proximity detectors) with 24VDC up to a current of 0.6A. A larger power supply can be installed when higher currents are needed, while staying within the current limits imposed by the wiring cross-section. KW - Electric Safety Interlock KW - MOUSE KW - 60-230V PY - 2023 DO - https://doi.org/10.6084/m9.figshare.22265920.v1 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-57138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Exkurs Partikelgrößenverteilungen N2 - Einführung in die Darstellung der Ergebnisse von Partikelgrößenbestimmungen: Was ist ein Kugeläquivalenzdurchmesser; welche Bedeutung hat die gemessene Mengenart; welche Parameter werden ausgewiesen. Bezug zu Regularien hinsichtlich der Bewertung "Nano- oder nicht Nano-Material. T2 - BAM Akademie: Info-Tage "NANO OR NOT NANO" CY - Online meeting DA - 16.02.2023 KW - Nano material KW - Particle size KW - Size distribution PY - 2023 AN - OPUS4-57127 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Monavari, Mahshid A1 - Homaeigohar, Shahin A1 - Medhekar, Rucha A1 - Nawaz, Qaisar A1 - Monavari, Mehran A1 - Zheng, Kai A1 - Boccaccini, Aldo R. T1 - A 3D-Printed Wound-Healing Material Composed of Alginate Dialdehyde–Gelatin Incorporating Astaxanthin and Borate Bioactive Glass Microparticles N2 - In this study, a wound dressing composed of an alginate dialdehyde−gelatin (ADA-GEL) hydrogel incorporated by astaxanthin (ASX) and 70B (70:30 B2O3/CaO in mol %) borate bioactive glass (BBG) microparticles was developed through 3D printing. ASX and BBG particles sti.ened the composite hydrogel construct and delayed its in vitro degradation compared to the pristine hydrogel construct, mainly due to their cross-linking role, likely arising from hydrogen bonding between the ASX/BBG particles and ADA-GEL chains. Additionally, the composite hydrogel construct could hold and deliver ASX steadily. The composite hydrogel constructs codelivered biologically active ions (Ca and B) and ASX, which should lead to a faster, more e.ective wound-healing process. As shown through in vitro tests, the ASX-containing composite hydrogel promoted fibroblast (NIH 3T3) cell adhesion, proliferation, and vascular endothelial growth factor expression, as well as keratinocyte (HaCaT) migration, thanks to the antioxidant activity of ASX, the release of cell-supportive Ca2+ and B3+ ions, and the biocompatibility of ADA-GEL. Taken together, the results show that the ADA-GEL/BBG/ASX composite is an attractive biomaterial to develop multipurposed wound-healing constructs through 3D printing. KW - General Materials Science PY - 2023 DO - https://doi.org/10.1021/acsami.2c23252 SP - 1 EP - 12 PB - American Chemical Society (ACS) AN - OPUS4-58548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nourinejhad Zarghani, Shaheen A1 - Ehlers, Jens A1 - Monavari, Mehran A1 - von Bargen, Susanne A1 - Hamacher, Joachim A1 - Büttner, Carmen A1 - Bandte, Martina T1 - Applicability of Different Methods for Quantifying Virucidal Efficacy Using MENNO Florades and Tomato Brown Rugose Fruit Virus as an Example N2 - After entry of a quarantine/regulated pathogen, infected plants shall be destroyed, and the cultivated area (e.g., greenhouse) shall be disinfected. Therefore, the selection of an effective disinfectant plays an important role. With the availability of different methods for virus quantification, we investigated the application of quantitative ELISA (qELISA), RT-qPCR (reverse transcription-quantitative polymerase chain reaction), and bioassays for the quantification of disinfectant efficacy. Therefore, we estimated the titer reduction in tomato brown rugose fruit virus (ToBRFV), a regulated pathogen, in plant sap and on germ carriers after treatment with MENNO Florades 4% for 16 h. The virus load before and after the treatment was measured with the mentioned methods. The RT-qPCR and qELISA methods showed very low efficacy in the presence of the disinfectant. Although bioassays are time-consuming, need purified particles for establishing the quantification models, and are less sensitive than RT-qPCR, they were able to quantify the differences in virus titer in the presence/absence of disinfectant. Interestingly, the bioassays reached at least the lower limit sensitivity of a qELISA. By being less sensitive to the presence of the disinfectant, bioassays proved to be the only technique for the determination of the disinfectant efficacy against ToBRFV on different germ carriers as well as on virus-infected plant sap. KW - Plant Science KW - Ecology KW - Evolution KW - Behavior and Systematics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585497 DO - https://doi.org/10.3390/plants12040894 VL - 12 IS - 4 SP - 1 EP - 18 PB - MDPI AG AN - OPUS4-58549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nourinejhad Zarghani, Shaheen A1 - Monavari, Mehran A1 - Ehlers, Jens A1 - Hamacher, Joachim A1 - Büttner, Carmen A1 - Bandte, Martina T1 - Comparison of Models for Quantification of Tomato Brown Rugose Fruit Virus Based on a Bioassay Using a Local Lesion Host N2 - Considering the availability of serological and molecular biological methods, the bioassay has been paled into insignificance, although it is the only experimental method that can be used to demonstrate the infectivity of a virus. We compared goodness-of-fit and predictability power of five models for the quantification of tomato brown rugose fruit virus (ToBRFV) based on local lesion assays: the Kleczkowski model, Furumoto and Mickey models I and II, the Gokhale and Bald model (growth curve model), and the modified Poisson model. For this purpose, mechanical inoculations onto Nicotiana tabacum L. cv. Xanthi nc and N. glutionosa L. with defined virus concentrations were first performed with half-leaf randomization in a Latin square design. Subsequently, models were implemented using Python software and fitted to the number of local lesions. All models could fit to the data for quantifying ToBRFV based on local lesions, among which the modified Poisson model had the best prediction of virus concentration in spike samples based on local lesions, although data of individual indicator plants showed variations. More accurate modeling was obtained from the test plant N. glutinosa than from N. tabacum cv. Xanthi nc. The position of the half-leaves on the test plants had no significant effect on the number of local lesions. KW - Plant Science KW - Ecology KW - Evolution KW - Behavior and Systematics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585506 DO - https://doi.org/10.3390/plants11243443 VL - 11 IS - 24 SP - 1 EP - 16 PB - MDPI AN - OPUS4-58550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill T1 - Reaction of high-entropy alloys with hydrogen under extreme conditions N2 - In the current study, we investigate an interaction under high-pressure high-temperature of single phase fcc-, hcp- and bcc-structured high-entropy alloys with hydrogen, carbon and nitrogen to obtain high-entropy hydrides, carbides and nitrides. Structural changes in high-entropy alloys upon compression and heating in the presence of these light elements are in the focus of our investigation. An easy route to high-entropy hydrides, carbides and nitrides will open new synthetic horizons in compositionally complex materials. Our study suggests that high-entropy alloys form high- entropy hydrides mainly with a composition close to M:H 1:1 ratio. Hydrides can be obtained under compression with hydrogen as a pressure compression medium or using hydrogen fluid as reactive agent. T2 - Intermetallics 2023 CY - Bad Staffelstein, Germany DA - 03.10.2023 KW - HEA PY - 2023 AN - OPUS4-58555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - Particle size determination of a commercially available CeO2 nano powder - SOPs and reference data N2 - Compilation of detailed SOPs for characterization of a commercially available CeO2 nano powder including - suspension preparation (indirect and direct sonication), - particle size determination (Dynamic Light Scattering DLS and Centrifugal Liquid Sedimentation CLS) with reference data, respectively. For sample preparation and analysis by Scanning Electron Microscopy (SEM) of this powder see related works (submitted, coming soon). KW - Wet dispersion KW - Nano powder KW - Particle size KW - CeO2 KW - Ceria KW - DLS KW - CLS PY - 2023 DO - https://doi.org/10.5281/zenodo.10061079 PB - Zenodo CY - Geneva AN - OPUS4-58785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - SOP and reference data for determination of the Volume-specific Surface Area (VSSA) of a commercially available CeO2 nano powder N2 - Detailed SOP and reference data for the determination of the VSSA of a commercially available CeO2 nano powder: specific (BET-) Surface Area by gas adsorption (Ar and N2) skeletal (true solid state) density by gas pycnometry. Estimation of the particle size by VSSA screening method. KW - Nano powder KW - VSSA KW - Volume specific surface area KW - Screening method KW - Ceria KW - CeO2 PY - 2023 DO - https://doi.org/10.5281/zenodo.10061235 PB - Zenodo CY - Geneva AN - OPUS4-58786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shanmugam, Sankaran A1 - Peterlechner, Martin A1 - Iskandar, Mohamad Riza A1 - Saikia, Ujjal A1 - Kulitckii, Vladislav A1 - Lipińska-Chwałek, Marta A1 - Mayer, Joachim A1 - Rösner, Harald A1 - Hickel, Tilmann A1 - Divinski, Sergiy V. A1 - Wilde, Gerhard T1 - Coherent twin-oriented Al3Sc-based precipitates in Al matrix N2 - Al3(Sc,Zr,Ti) nanoparticles with an ideal twin-type orientation relationship to Al host matrix were found in cold-rolled and subsequently annealed Al-based alloy. Atomic-scale investigations using high-resolution scanning transmission electron microscopy identified particles that form prominent coherent (111) twin-type interfaces along their longer facets and semi-coherent twin interfaces on their shorter facets. Ab-initio calculations showed that a coherent Al/Al3Sc twin-like phase boundary corresponds to a local energy minimum. A model is proposed explaining the formation of the twin orientation relationship of an Al3Sc nanoparticle with the Al host matrix. KW - Al-based alloy KW - Precipitation KW - Twin orientation relationship KW - Ab initio calculations KW - Transition electron microscopy PY - 2023 DO - https://doi.org/10.1016/j.scriptamat.2023.115351 SN - 1359-6462 VL - 229 SP - 1 EP - 6 PB - Elsevier BV AN - OPUS4-58789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - An interlaboratory comparison on measuring the chemical composition of functionalized graphene nanoplatelets N2 - The results of the international interlaboratory comparison ""Chemical Composition of functionalized graphene with X-ray photoelectron spectroscopy (XPS) under the auspice of VAMAS TWA 2 (Surface Chemical Analysis) will be presented. T2 - Kratos German User Meeting 2023 CY - Berlin, Germany DA - 25.10.2023 KW - Graphene KW - Interlaboratory Comparison KW - X-ray photoelectron spectroscopy PY - 2023 AN - OPUS4-58683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Annadurai, V. A1 - Balazs, D. M. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Del Giudice, A. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Garcia, P. R. A. F. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, M. A1 - Hollamby, M. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Rochels, L. A1 - Rosalie, Julian M. A1 - Saloga, Patrick E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Spiering, G. A. A1 - Stawski, Tomasz M. A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor - Results of a small-angle scattering data analysis round robin N2 - A round-robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5% and half of the population width entries within 40%. Due to the added complexity of the structure factor, far fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 and 86%, respectively. This round-robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round Robin KW - Data analysis KW - Small-angle scattering KW - Nanomaterials KW - Interlaboratory comparability KW - Nanostructure quantification KW - Methodology KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587091 DO - https://doi.org/10.1107/S1600576723008324 SN - 1600-5767 VL - 56 IS - 6 SP - 1618 EP - 1629 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-58709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni T1 - Measurement of the morphology of graphene related 2D materials as flakes N2 - The presentation shows the results of the mini-interlaboratory comparison focused on the measurement of the morphology of graphene oxide flakes using scanning electron microscopy. In this work, a route for the sample preparation, SEM measurement and image analysis is proposed. The results of the image analysis, performed on 200+ flakes per sample, are presented by comparing the distributions of the size and shape descriptors calculated according to two different approaches. The influences of a different SEM measurement operator, analysis approach and analysis operator on the final size and shape distributions are highlighted. T2 - EMRS Fall 2023 CY - Warsaw, Poland DA - 18.09.2023 KW - Graphene oxide KW - SEM KW - 2D flakes KW - Image analysis PY - 2023 AN - OPUS4-58752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Würth, Christian T1 - Time resolved spectroscopy of upconverting lanthanide based upconversion nanocrystals N2 - The optical properties of these materials strongly depend on the excitation power density, i.e., the number of photons absorbed per time interval. The upconversion quantum efficiencies (ΦUC) of these materials, the excitation power dependent population i.e. the emission characteristics, and the deactivation dynamics are influenced by nanoparticle architecture, doping concentration, and the microenvironment. We will discuss how time resolved measurements can help to understand the fundamental photophysical mechanisms and discuss differences to other nanocrystals like quantum dots. T2 - 19th International Course on “Principles and Applications of Time-resolved Fluorescence Spectroscopy” CY - Berlin, Germany DA - 16.11.2022 KW - Nanoparticle KW - Lanthanide KW - Upconversion KW - Energy transfer PY - 2022 AN - OPUS4-57000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Liu, Y. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, J. T1 - NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ Upconversion Nanoparticles for Optical Temperature Monitoring and Self-Heating in Photothermal Therapy N2 - The core−shell NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ upconversion nanoparticles were successfully prepared by a solvothermal method, and a layer of mesoporous silica (mSiO2) was successfully coated on the periphery of the core−shell nanoparticles to transform their surface from lipophilic to hydrophilic, further expanding their applications in biological tissues. The physical phase, morphology, structure, and fluorescence properties were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (TEM), Fourier infrared spectroscopy (FT-IR), ζ potential analysis, and fluorescence spectroscopy. It was found that the material has a hexagonal structure with good hydrophilicity and emits intense fluorescence under 980 nm pump laser excitation. The non-contact temperature sensing performance of nanoparticles was evaluated by analyzing the upconversion fluorescence of Tm3+ (1G4 → 3F4 and 3F3 → 3H6) in the temperature range of 284−344 K. The absolute and relative sensitivities were found to be 0.0067 K−1 and 1.08 % K−1, respectively, with high-temperature measurement reliability and good temperature cycling performance. More importantly, its temperature measurement in phosphate-buffered saline (PBS) solution is accurate. In addition, the temperature of the cells can be increased by adjusting the laser power density and laser irradiation time. Therefore, an optical temperature sensing platform was built to realize the application of real-time monitoring of cancer cell temperature and the dual function of photothermal therapy. KW - Sensor KW - Temperature KW - Lanthanide KW - Tag KW - Fluorescence KW - Nanoparticles KW - Synthesis KW - Environment KW - Monitoring KW - Sensing KW - Nano KW - Life sciences KW - Upconversion PY - 2023 DO - https://doi.org/10.1021/acsanm.2c05110 VL - 6 IS - 1 SP - 759 EP - 771 PB - ACS Publications AN - OPUS4-57081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - “Ultima Ratio”: Multi-scale, high-resolution 3D-FFT scattering pattern simulations N2 - This talk highlights a proof-of-concept that demonstrates the ability to calculate high-resolution Fourier transforms. These can be combined with multi-scale modeling to simulate scattering over a wide range, from small-angle scattering to XRD and PDF. T2 - Shapespyer/MuSSIC launch workshop CY - Didcot, UK DA - 20.02.2023 KW - X-ray scattering KW - Simulation KW - Fourier Transform KW - 3D KW - High resolution KW - Multi-scale PY - 2023 AN - OPUS4-57031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement by Monte-Carlo based particle scattering Simulations N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined.[1] Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. [2] These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for ongoing experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au. T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - AuNP KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Penelope model KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radiotherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - beta particle KW - particle scattering PY - 2023 AN - OPUS4-57060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - Exchange interaction KW - Ferromagnetism KW - LLG KW - Landau Lifshitz equation KW - Magnetic moment KW - Magnetic nanoparticles KW - Micromagnetism KW - OOMMF KW - Object oriented micromagnetic framework KW - Stochastic Landau Lifshitz Gilbert equation KW - Temperature scaling PY - 2023 AN - OPUS4-57062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Hahn, Marc Benjamin T1 - Inside back cover for the article "Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine" N2 - Showcasing research from the Federal Institute for Material Research and Testing Berlin and Fraunhofer Institute for Celltherapy and Immunology Branch Bioanalytics and Bioprocesses Potsdam. Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine. We aimed to increase the possible undisturbed exposure time during bio-SAXS measurements of single-stranded DNA-binding proteins. Therefore small angle X-ray scattering was performed on Gene-V Protein (G5P/GVP), which is involved in DNA repair processes. To achieve this, irradiations were performed in presence and absence of the hydroxyl-radical scavenger and osmolyte Ectoine, which showed efficient radiation protection and prevented protein aggregation, thus allows for a non-disturbing way to improve structure-determination of biomolecules. KW - Bio-SAXS KW - BioSAXS KW - Cosolute KW - DNA KW - Dosimetry KW - Ectoin KW - Ectoine KW - G5P KW - GVP KW - Geant4 KW - Geant4-DNA KW - Ionizing radiation damage KW - LEE KW - McSAS3 KW - Microdosimetry KW - Monte-Carlo simulations KW - OH Radical KW - OH radical scavenger KW - Protein KW - Protein unfolding KW - Radiation damage KW - Radical Scavenger KW - SAXS KW - Single-stranded DNA-binding proteins KW - Small-angle xray scattering KW - Topas-MC KW - Topas-nBio KW - TopasMC KW - X-ray scattering KW - Particle scatterin simulations KW - ssDNA PY - 2023 DO - https://doi.org/10.1039/D3CP90056H SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 7 SP - 5889 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-57006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Functional Luminophores – From Photophysics to Standardized Luminescence Measurements N2 - Inorganic nanocrystals with linear and nonlinear luminescence in the ultraviolet, visible, near infrared and short-wave infrared like semiconductor quantum dots and spectrally shifting lanthanide-based nanophosphors have meanwhile found applications in the life and material sciences ranging from optical reporters for bioimaging and sensing over security barcodes to solid state lighting and photovoltaics. These nanomaterials commonly have increasingly sophisticated core/shell particle architectures with shells of different chemical composition and thickness to minimize radiationless deactivation at the particle surface that is usually the main energy loss mechanism [1]. For lanthanide-based spectral shifters, particularly for very small nanoparticles, also surface coatings are needed which protect near-surface lanthanide ions from luminescence quenching by high energy vibrators like O-H groups and prevent the disintegration of these nanoparticles under high dilution conditions. [2,3,4]. The identification of optimum particle structures requires quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield [5,6], ideally flanked by single particle studies to assess spectroscopic inhomogeneities on a particle-to-particle level for typical preparation methods [7,8], Moreover, in the case of upconversion nanoparticles with a multi-photonic and hence, excitation power density (P)-dependent luminescence, quantitative luminescence studies over a broad P range are required to identify particle architectures that are best suited for applications in fluorescence assays up to fluorescence microscopy. Here, we present methods to quantify the photoluminescence of these different types of emitters in the vis/NIR/SWIR and as function of P and demonstrate the importance of such measurements for a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different size and particle architecture in different environments. T2 - Eingeladener Vortrag Uni Erlangen CY - Erlangen, Germany DA - 18.01.2023 KW - Semiconductor quantum dot KW - Upconversion nanocrystal KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Reference material KW - Surface analysis KW - Quantification PY - 2023 AN - OPUS4-57011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - X-ray Scattering USAXS/SAXS/WAXS (/XRD/PDF) N2 - A ten minute introduction to the technique of X-ray scattering. This talk discusses the foundation and the resulting morphological parameters that can be obtained from the technique. The talk is prepared for discussion within the framework of the OECD REACH guideline for nanomaterials. T2 - Digitaler Info-Tag "Nano or not Nano" CY - Berlin, Germany DA - 16.02.2023 KW - X-ray scattering KW - BAM Academy KW - SAXS KW - XRD KW - WAXS KW - Nanomaterial KW - REACH KW - OECD KW - Guideline PY - 2023 AN - OPUS4-57013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andresen, Elina A1 - Islam, Fahima A1 - Prinz, Carsten A1 - Gehrmann, P. A1 - Licha, K. A1 - Roik, Janina A1 - Recknagel, Sebastian A1 - Resch-Genger, Ute T1 - Assessing the reproducibility and up‑scaling of the synthesis of Er,Yb‑doped NaYF4‑based upconverting nanoparticles and control of size, morphology, and optical properties N2 - Lanthanide-based, spectrally shifting, and multi-color luminescent upconverting nanoparticles (UCNPs) have received much attention in the last decades because of their applicability as reporter for bioimaging, super-resolution microscopy, and sensing as well as barcoding and anti-counterfeiting tags. A prerequisite for the broad application of UCNPs in areas such as sensing and encoding are simple, robust, and easily upscalable synthesis protocols that yield large quantities of UCNPs with sizes of 20 nm or more with precisely controlled and tunable physicochemical properties from lowcost reagents with a high reproducibility. In this context, we studied the reproducibility, robustness, and upscalability of the synthesis of β-NaYF4:Yb, Er UCNPs via thermal decomposition. Reaction parameters included solvent, precursor chemical compositions, ratio, and concentration. The resulting UCNPs were then examined regarding their application-relevant physicochemical properties such as size, size distribution, morphology, crystal phase, chemical composition, and photoluminescence. Based on these screening studies, we propose a small volume and high-concentration synthesis approach that can provide UCNPs with different, yet controlled size, an excellent phase purity and tunable morphology in batch sizes of up to at least 5 g which are well suited for the fabrication of sensors, printable barcodes or authentication and recycling tags. KW - Photoluminescence KW - Nano KW - Nanomaterial KW - Synthesis KW - Reproducibility KW - Upconversion nanoparticle KW - Lanthanide PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570170 DO - https://doi.org/10.1038/s41598-023-28875-8 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 13 AN - OPUS4-57017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - New project on the quantification of functional groups (FGS) on nanomaterials N2 - The surface chemistry of nanomaterials controls their interaction with the environment and biological species and their fate and is hence also relevant for their potential toxicity. This has meanwhile led to an increasing interest in validated and preferably standardized methods for the determination and quantification of surface functionalities on nanomaterials and initiated different standardization projects within ISO/TC 229 and IEC/TC 113 as well as interlaboratory comparisons (ILCs) of different analytical methods for the quantification of surface coatings by OECD. Here we present the results of a first ILC on the quantification of the amount of amino functionalities on differently sized inorganic nanoparticles done by division Biophotonics and the National Research Council of Canada (NRC) and the PWI 19257 on the Characterization and Quantification of Surface Functional Groups and Coatings on Nanoobjects approved by ISO/TC 229 (WG2) in fall 2022 that will result in a VAMAS study on this topic organized by division Biophotonics. Key words: nanoparticles, surface analysis, surface functional groups, quantification, optical assay, qNMR, VAMAS, standardization, ICL, quality assurance, reference material. T2 - Eingeladener Vortrag Universität Erlangen CY - Erlangen, Germany DA - 18.01.2023 KW - Quality assurance KW - Nano KW - Particle KW - Standard KW - Reference material KW - Surface analysis KW - Quantification KW - Interlaboratory comparison KW - Standardization KW - VAMAS PY - 2023 AN - OPUS4-57044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Applications of photoluminescence lifetime measurements in the life and material sciences N2 - Bioanalytical, diagnostic, and security applications require the fast and sensitive determination of a steadily increasing number of analytes or events in parallel in a broad variety of detection formats and increased sensitivities. This – flanked by recent technical advancements and the availability of simple to use, commercial time-resolved photoluminescence measuring devices at reasonable costs - calls for the exploitation of the species- and environment-specific photoluminescence parameter luminescence lifetime. In this context, time-resolved photoluminescence measurements of different classes of molecular and nanocrystalline emitter and luminescent particles in different time windows are presented and examples for applications such as lifetime multiplexing and barcoding in conjunction with fluorescence lifetime imaging microscopy (FLIM) and flow cytometry are given. T2 - Eingeladener Vortrag bei dem Workshop von Picoquant „Time-resolved fluorescence“ CY - Berlin, Germany DA - 17.11.2022 KW - Dye KW - Quantum dot KW - Upconversion nanocrystal KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Reference material PY - 2022 AN - OPUS4-57048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Design, characterization, and application of fluorescent sensor particles N2 - pH and oxygen are amongst the most important and frequently measured analytes in the life and material sciences, indicating, e.g., diseases and corrosion processes. This includes the optical monitoring of pH in living cells for studying cellular internalization pathways, such as phagocytosis, endocytosis, and receptor ligand internalization with the aid of molecular and nanoscale fluorescent sensors. Nanoparticle (NP)-based sensors, that are labeled or stained with a multitude of sensor dyes, have several advantages as compare to conventional molecular probes like enhanced brightness, i.e., amplified signals, ease of designing ratiometric systems by combining analyte sensitive and inert reference dyes, and increased photostability. Moreover, this can enable the use of hydrophobic dyes in aqueous environments. Versatile templates and carriers for the fabrication of nanosensors by the staining and/or labelling with different fluorophores and sensor molecules or surface functionalized NP like silica (SiO2-NP) and polystyrene (PS-NP) particles provide. Here we present the design of a versatile platform of color emissive nanosensors and stimuli-responsive microparticles for the measurement of pH, oxygen, and other targets utilizing both types of matrices and sets of spectrally distinguishable sensor and reference dyes and their characterization and demonstrate the applicability of representative sensor particle for cellular studies. T2 - Vortrag bei dem Projekttreffen MicraGen CY - Copenhagen, Denmark DA - 18.08.2022 KW - Dye KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Integrating sphere spectroscopy KW - Sensor KW - pH KW - Oxygen KW - Microfluidics KW - Cancer KW - Cell KW - Life sciences PY - 2022 AN - OPUS4-57049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Differentielles Mobilitäts Analyse System (DMAS) N2 - Die Bestimmung der Nanopartikelgrößen- und -formverteilung nach OECD TG 125 mit einem Differentiellen Mobilitäts Analyse System (DMAS), auch bekannt als SMPS, wird vorgestellt: - Generelles Messprinzip - Welchen Durchmesser misst die Methode? - Welche Partikel kann diese Methode messen? - Welche Informationen kann diese Methode liefern? - Wo stößt die Methode an ihre Grenzen? - Implementierung und Datenauswertung, - Reporting. Anschließend wurde eine Q&A-Session für DMAS/SMPS organisiert. T2 - BAM Akademie Digitaler Info-Tag "Nano or not Nano" CY - Online meeting DA - 16.02.2023 KW - Partikel KW - Nanopartikel KW - SMPS KW - Größenbestimmung KW - DMAS PY - 2023 AN - OPUS4-58450 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burkert, Andreas T1 - Bedeutung der Wirksumme bei Nichtrostenden Stählen N2 - Anhand der Wirksumme ist eine Abschätzung des legierungsabhängigen Einflusses auf den Korrosionswiderstand gegen chloridhaltige Medien möglich. Die berechneten Werte sind nur bei optimaler Wärmebehandlung und Verarbeitung zutreffend. Die Anwendung einer einfachen Formel unter Berücksichtigung von Chrom, Molybdän und Stickstoff ist in der Regel völlig ausreichend. Das daraus abgeleitete Ranking von Werkstoffen ist für diverse technische Regelwerke und zur Unterstützung der Werkstoffauswahl geeignet. Für die Warenein-/Ausgangskontrolle ist die alleinige Feststellung der Wirksumme unzureichend. Ergänzende Korrosionsuntersuchungen/-prüfungen zur Beschreibung des Korrosionswiderstandes sind dafür notwendig. Gleiches gilt für die Beurteilung von Schadensfällen. Hier sind Verarbeitung, Einsatzbedingungen und die Konstruktion von ausschlaggebender Bedeutung. T2 - Fortbildung Kursleiter Kompetenzzentren Edelstahl Rostfrei CY - Trier, Germany DA - 25.09.2023 KW - Nichtrostender Stahl KW - Korrosion KW - Wirksumme PY - 2023 AN - OPUS4-58453 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Gawek, Marcel A1 - Hertwik, Andreas A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Investigation of the behavior of thin polymeric films including the adsorbed layer on the substrate by nano-sized relaxation spectroscopy and complementary methods N2 - Thin polymeric films are of great importance of high number of high-tech applications for instance in sensors and nanoelectronics. Form the scientific point of view thin films with thickness below 100 nm are ideal model systems to study confinement effects on its properties for instance on the molecular relaxation processes. In this contribution an overview is presented about the behavior of different systems as investigated by nanosized relaxation spectroscopy like broadband dielectric spectroscopy employing nano structured capacitors and AC chip calorimetry complimented by ellipsometry. The systems considered are PVME1, PVME/PS blends2,3 P2VP4, PBAC5 and polysulfone6. Besides the film also the adsorbed layer on the substrate prepared by a leaching approach and investigated by AFM is considered.1,4-7. For these investigationsss it is found that the adsorbed layer itself exhibits a relaxation dynamics which might be assigned either to molecular motions or to adsorptions desorption kinetics. T2 - 9. International Discussion Meeting Relaxation Complex Systems CY - Chiba, Japan DA - 12.08.2023 KW - Thin polymer films PY - 2023 AN - OPUS4-58103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David T1 - Exploring the photoluminescence of gold NCs and Ag2S NPs to boost their SWIR emission N2 - Current challenges and objectives for non-invasive optical bioimaging are deep tissue penetration, high detection sensitivity, high spatial and temporal resolution, and fast data acquisition. A promising spectral window to tackle these challenges is the short-wave infrared (SWIR) ranging from 900 nm to 1700 nm where scattering, absorption, and autofluorescence of biological components are strongly reduced compared to the visible/NIR. At present, the best performing SWIR contrast agents are based on nanomaterials containing toxic heavy-metal ions like cadmium or lead, which raises great concerns for biological applications. Promising heavy-metal free nanoscale candidates are gold nanoclusters (AuNCs) and Ag2S nanoparticles (NPs). The photoluminescence (PL) of both types of nanomaterials is very sensitive to their size, composition of their surface ligand shell, and element composition, which provides an elegant handle to fine-tune their absorption and emission features and boost thereby the size of the signals recorded in bioimaging studies. Aiming for the development of SWIR contrast agents with optimum performance, we dived deeper into the photophysical processes occurring in these nanomaterials, thereby exploring in depth how the environment, surface ligand composition, and the incorporation of transition metals influence the optical properties of AuNCs and Ag2S NPs. We observed a strong enhancement of the SWIR emission of AuNCs upon exposure to different local environments (in solution, polymer, and in the solid state). Addition of metal ions such as Zn2+ to Ag2S based NPs led to a strong PL enhancement, yielding PL quantum yields of about 10% and thus making them highly suitable for non-invasive deep imaging of vascular networks and 3D fluid flow mapping. T2 - NaNaX 10 - Nanoscience with Nanocrystals CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Quantum dots KW - Ag2S KW - Fluorescence KW - SWIR KW - Gold nanocluster KW - Nanomaterial KW - bioimaging PY - 2023 AN - OPUS4-58104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Hu, Y. ED - Wang, X. T1 - Influence of the Size and Dispersion State of Two-Dimensional Nanomaterials on the Fire Safety of Polymers N2 - Only the nano-scaled structure of the nanocomposite and the dispersion of nanoparticles within the polymer matrix harbor multifunctional potential including superior fire retardancy. Thus, this chapter focuses on the dispersion of nanoplates, based mainly on studies of layered silicates and graphene/graphene-related nanoplates. The nanostructure and properties of the nanocomposites are dependent mainly on thermodynamic and kinetic factors during preparation. Improving nano-dispersion often directly improves flame retardancy. Therefore, the modification of the nanoplates as well as the preparation of nanocomposites becomes very important to control this dispersion. The dispersion of nanoplates functions as a prerequisite for the formation of an efficient protective layer, changing the melt flow and dripping behavior, or the improvement of the char properties. KW - Nanocomposite KW - Flame retardancy KW - 2D nanoparticle KW - Exfoliation KW - Dispersion KW - Flammability PY - 2023 SN - 978-1-032-35268-8 SN - 978-1-032-35502-3 SN - 978-1-003-32715-8 DO - https://doi.org/10.1201/9781003327158-2 SP - 23 EP - 58 PB - CRC Press CY - Boca Raton AN - OPUS4-58290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krauss, S. W. A1 - Eckardt, M. A1 - Will, J. A1 - Spiecker, E. A1 - Siegel, R. A1 - Dulle, M. A1 - Schweins, R. A1 - Pauw, Brian Richard A1 - Senker, J. A1 - Zobel, M. T1 - H-D-isotope effect of heavy water affecting ligand-mediated nanoparticle formation in SANS and NMR experiments N2 - An isotopic effect of normal (H2O) vs. heavy water (D2O) is well known to fundamentally affect structure and chemical properties of proteins, for instance. Here we correlate results from small angle X-ray and neutron scattering (SAXS, SANS) with high-resolution scanning transmission electron microscopy to track the evolution of CdS nanoparticle size and crystallinity from aqeuous solution in presence of the organic ligand ethylenediaminetetraacetate (EDTA) at room temperature in both H2O and D2O. We provide evidence via SANS experiments that exchanging H2O by D2O impacts nanoparticle formation by changing the equilibria and dynamics of EDTA clusters in solution as investigated by nuclear magnetic resonance. The colloidal stability of the CdS nanoparticles, covered by a layer of [Cd(EDTA)]2- complexes, is significantly reduced in D2O despite the strong stabilizing effect of EDTA in suspensions of normal water. Hence, conclusions about nanoparticle formation mechanisms from D2O solutions can bare limited transferability to reactions in normal water due to isotopic effects, which thus need to be discussed for contrast match experiments. KW - General Materials Science KW - Quantum dots KW - CdS KW - Deuterium KW - X-ray scattering KW - MOUSE PY - 2023 DO - https://doi.org/10.1039/D3NR02419A SN - 2040-3364 VL - 15 IS - 40 SP - 16413 EP - 16424 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Thünemann, Andreas A1 - Radnik, Jörg A1 - Häusler, I. A1 - Bresch, Harald A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Iron Oxide Nanocubes as a New Certified Reference Material for Nanoparticle Size Measurements N2 - The rational design and increasing industrial use of nanomaterials require a reliable characterization of their physicochemical key properties like size, size distribution, shape, and surface chemistry. This calls for nanoscale reference materials (nanoRMs) for the validation and standardization of commonly used characterization methods closely matching real-world nonspherical nano-objects. This encouraged us to develop a nonspherical nanoRM of very small size consisting of 8 nm iron oxide nanocubes (BAM-N012) to complement spherical gold, silica, and polymer nanoRMs. In the following, the development and production of this nanoRM are highlighted including the characterization by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) as complementary methods for size and shape parameters, homogeneity and stability studies, and calculation of a complete uncertainty budget of the size features. The determination of the nanocubes’ edge length by TEM and SAXS allows a method comparison. In addition, SAXS measurements can also provide the mean particle number density and the mass concentration. The certified size parameters, area equivalent circular diameter and square edge length, determined by TEM with a relative expanded uncertainty below 9%, are metrologically traceable to a natural constant for length, the very precisely known (111) lattice spacing of silicon. Cubic BAM-N012 qualifies as a certified nanoRM for estimating the precision and trueness, validation, and quality assurance of particle size and shape measurements with electron microscopy and SAXS as well as other sizing methods suitable for nanomaterials. The production of this new iron oxide nanocube RM presents an important achievement for the nanomaterial community, nanomaterial manufacturers, and regulators. KW - Certification KW - SAXS KW - Homogeneity KW - Nano KW - Particle KW - Iron oxide KW - Quality assurance KW - Reference material KW - Size KW - Electron microscopy KW - Stability KW - Shape PY - 2023 DO - https://doi.org/10.1021/acs.analchem.3c00749 SN - 0003-2700 VL - 95 IS - 33 SP - 12223 EP - 12231 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-58176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Chemical and topographical changes upon sub-100-nm LIPSS formation on titanium alloy N2 - Laser-induced periodic surface structures (LIPSS) have gained remarkable attention as they represent a universal phenomenon that is often accompanying laser-processing. Such LIPSS enable a large variety of different surface functionalizations for applications in the fields of optics, fluidics, tribology, or medicine. Moreover, so-called “high spatial frequency LIPSS” (HSFL) provide an appealing and straightforward way for surface nanostructuring featuring spatial periods even below 100 nm – far beyond the optical diffraction limit. However, the imposed surface functionalities are usually caused by both, topographic and chemical surface alterations. For exploring these effects in detail, multi-method characterizations were performed here for HSFL on processed Ti- 6Al- 4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ~1 ps pulse duration, 1 – 400 kHz pulse repetition rate) under different laser and scan processing conditions. The sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), stylus profilometry (SP), and white light interference microscopy (WLIM), as well as near-surface chemical analyses by X-ray photoelectron spectroscopy (XPS), hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (TOF-SIMS). The results allow to qualify the laser ablation depth, the geometrical HSFL characteristics and provide detailed insights into the depth extent and the nature of the ps-laser-induced near-surface oxidation. Significance for medical applications will be outlined. T2 - E-MRS Spring Meeting 2023 CY - Strasbourg, France DA - 29.05.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser processing KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Time-offlight secondary ion mass spectrometry (ToF-SIMS) KW - Ti6Al4V alloy PY - 2023 AN - OPUS4-58531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Probing laser-driven structure formation at extreme scales in space and time N2 - Irradiation of solid surfaces with intense ultrashort laser pulses represents a unique way of depositing energy into materials. It allows to realize states of extreme electronic excitation and/or very high temperature and pressure and to drive materials close to and beyond fundamental stability limits. As a consequence, structural changes and phase transitions often occur along unusual pathways and under strongly nonequilibrium conditions. Due to the inherent multiscale nature — both temporally and spatially—of these irreversible processes, their direct experimental observation requires techniques that combine high temporal resolution with the appropriate spatial resolution and the capability to obtain good quality data on a single pulse/event basis. In this respect, fourth-generation light sources, namely, short wavelength and short pulse free electron lasers (FELs), are offering new and fascinating possibilities. As an example, this talk will discuss the results of scattering experiments carried out at the FLASH free electron laser at DESY (Hamburg, Germany), which allowed us to resolve laser-induced structure formation at surfaces on the nanometer to submicron length scale and in temporal regimes ranging from picoseconds to several nanoseconds with sub-picosecond resolution. The current status and future perspectives in this field via exploiting the unique possibilities of these 4th-generation light sources will be discussed. T2 - Seminar, Instituto de Óptica, CSIC CY - Madrid, Spain DA - 05.10.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Free electron laser (FEL) KW - Time-resolved scattering KW - Capillary waves PY - 2023 AN - OPUS4-58517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Chemical analyses of ps-laser generated LIPSS and Spikes on titanium alloy by HAXPES, XPS, and depth-profiling TOF-SIMS N2 - Laser-induced periodic surface structures (LIPSS) and their combination with self-ordered microstructures forming hierarchical Spikes enable a large variety of different surface functionalizations for applications in the fields of optics, fluidics, tribology, or medicine. Moreover, high spatial frequency LIPSS (HSFL) provide an appealing and straightforward way for surface nanostructuring featuring spatial periods even below 100 nm – far beyond the optical diffraction limit. However, the imposed surface functionalities are usually caused by both, topographic and chemical surface alterations. For exploring these effects in detail, multi-method characterizations were performed here for HSFL and hierarchical Spikes processed on Ti-6Al-4V alloy upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ~1 ps pulse duration, 1 – 400 kHz pulse repetition rate) under different laser and scan processing conditions. The following sample characterization involved morphological and topographical investigations by scanning electron microscopy (SEM), atomic force microscopy (AFM), stylus profilometry (SP), and white light interference microscopy (WLIM), as well as near-surface chemical analyses by X-ray photoelectron spectroscopy (XPS), hard X-ray photoelectron spectroscopy (HAXPES) and depth-profiling time-of-flight secondary ion mass spectrometry (TOF-SIMS). The results allow to qualify the laser ablation depth, the geometrical HSFL/Spikes characteristics and provide detailed insights into the depth extent and the nature of the ps-laser-induced near-surface oxidation arising from the laser-processing in ambient air and into the relevance of heat-accumulation effects at high pulse repetition rates. Moreover, the direct comparison of the HAXPES and XPS data reveals the role of surface-covering organic contaminants adsorbed from the ambient atmosphere without the uncertainties and potential sputter reduction potentially caused by ion-sputter depth profiling. T2 - 11th International LIPSS Workshop CY - Madrid, Spain DA - 27.09.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrafast laser processing KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Time-of-flight secondary ion mass spectrometry (ToF-SIMS) KW - Ti6Al4V alloy PY - 2023 AN - OPUS4-58532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative Microstructural Analysis - VAMAS TWA 37 & Liaison with ISO/TC 202 Microbeam Analysis N2 - The progress in activities on Microbeam Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 is presented and discussed with respect to the identification and launching corresponding VAMAS projects. The ongoing project "FIB sample processing for TEM" is presented in detail. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 48th Steering Committee Meeting CY - New Delhi, India DA - 9.10.2023 KW - TEM KW - FIB KW - EBSD KW - Sample preparation KW - VAMAS KW - Standardisation KW - Interlaboratory comparisons PY - 2023 UR - https://www.nplindia.org/index.php/amcsnzt_2023/ AN - OPUS4-58538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Glimpses of the Future✨: Oh my god it’s full of metadata! N2 - In this talk, the importance of metadata is underscored by real-world examples. Metadata is essential to alleviating the reproducibility crises in science. This imples that a wide range of metadata must be collected, with a heavy emphasis on the automated collection of such metadata. This must subsequently be organized in an intelligible, archival structure, when possible with units and uncertainties. Such metadata can aid in improving the usage efficiency of instrumentation, as is demonstrated on the MOUSE instrument. This metadata can now be used to connect the various aspects of the holistic experimental procedure to gain better insights on the materials structure. A second example shows the extraction and organization of such metadata from an automated materials development platform, collected during the synthesis of 1200 samples. These metadata from the synthesis can then be linked to the results from the analysis of these samples, to find direct correlations between the synthesis parameters and the final structure of the materials. T2 - Helmholtz Incubator Summer Academy - Next Level Data Science CY - Online meeting DA - 18.09.2023 KW - Metadata KW - Lab automation KW - Data provenance KW - High-throughput KW - Correlative analysis KW - MOUSE KW - X-ray scattering KW - Robotics PY - 2023 AN - OPUS4-58463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Glimpses of the future: a “full stack”, highly automated materials research laboratory N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators. Combined with automated data correction pipelines, and our analysis and simulation software, this led to more than 40 papers in the last 5 years with just over 2 full-time staff members. This year, our new, modular synthesis platform has made more than 1000 additional samples for us to analyse and catalogue. By virtue of the automation, the synthesis of these samples is automatically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases. Having developed these proof-of-concepts, we find that materials research itself is changed dramatically by automating dull tasks in a laboratory. This talk is intended to spark ideas and collaborations by providing an overview of: 1) the current improvements in our scattering laboratory methodology, 2) introducing our open, modular robotic platform that is used for systematic sample preparation, and 3) demonstrating the data structure of the synthesis logs and measurements. Finally, the remaining bottlenecks and points of attention across all three are highlighted. T2 - FAIRmat seminar CY - Berlin, Germany DA - 28.09.2023 KW - Data stewartship KW - Metadata collection KW - Laboratory methodology KW - MOUSE KW - Robotics KW - Lab automation KW - Holistic science PY - 2023 UR - https://www.fairmat-nfdi.eu/events/brian-pauw AN - OPUS4-58464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Scoppola, E. A1 - Wolf, S.E. A1 - Kochovski, Z. A1 - Matzdorff, D. A1 - Van Driessche, A. E. S. A1 - Hövelmann, J. A1 - Emmerling, Franziska A1 - Stawski, Tomasz M. T1 - Evidence for liquid-liquid phase separation during the early stages of Mg-struvite formation N2 - The precipitation of struvite, a magnesium ammonium phosphate hexahydrate (MgNH₄PO₄ · 6H₂O) mineral, from wastewater is a promising method for recovering phosphorous. While this process is commonly used in engineered environments, our understanding of the underlying mechanisms responsible for the formation of struvite crystals remains limited. Specifically, indirect evidence suggests the involvement of an amorphous precursor and the occurrence of multi-step processes in struvite formation, which would indicate non-classical paths of nucleation and crystallization. In this study, we use synchrotron-based in situ x-ray scattering complemented by cryogenic transmission electron microscopy to obtain new insights from the earliest stages of struvite formation. The holistic scattering data captured the structure of an entire assembly in a time-resolved manner. The structural features comprise the aqueous medium, the growing struvite crystals, and any potential heterogeneities or complex entities. By analysing the scattering data, we found that the onset of crystallization causes a perturbation in the structure of the surrounding aqueous medium. This perturbation is characterized by the occurrence and evolution of Ornstein-Zernike fluctuations on a scale of about 1 nm, suggesting a non-classical nature of the system. We interpret this phenomenon as a liquid-liquid phase separation, which gives rise to the formation of the amorphous precursor phase preceding actual crystal growth of struvite. Our microscopy results confirm that the formation of Mg-struvite includes a short-lived amorphous phase, lasting >10 s. KW - Physical and theoretical chemistry KW - Non-classical crystallization KW - Struvite KW - Liquid-liquid-phase-separation KW - Nucleation KW - Crystallization KW - In-situ scattering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584766 DO - https://doi.org/10.1063/5.0166278 SN - 1089-7690 VL - 159 IS - 13 SP - 1 EP - 12 PB - AIP Publishing CY - Woodbury, NY AN - OPUS4-58476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hering, Marcus A1 - Sievers, Jürgen A1 - Curbach, Manfred A1 - Beckmann, Birgit T1 - An Approach to Predicting the Ballistic Limit of Thin Textile-Reinforced Concrete Plates Based on Experimental Results N2 - In this article, a partial selection of experiments on enhancing the impact resistance of structural components with non-metallic, textile-reinforced concrete is discussed. The focus is on the experimental investigations in which the impact resistance of thin, textile-reinforced concrete plates is characterized. The article discusses the materials, fabrics and test setup used. For the experimental work, a drop tower from the Otto Mohr Laboratory, which belongs to the Technische Universtät Dresden, was used. Furthermore, the experimental results are presented and evaluated using different methods. Based on the collected data, a suitable approach to determining the perforation velocity of an impactor through the investigated thin, textile-reinforced concrete plates is shown. KW - Building and Construction KW - Civil and Structural Engineering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586692 DO - https://doi.org/10.3390/buildings13092234 VL - 13 IS - 9 SP - 1 EP - 14 PB - MDPI AN - OPUS4-58669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spaltmann, Dirk T1 - Improvement of the tribological performance of titanium alloy using FS-laser-induced periodic surface structures in combination with ZDDP and ionic liquid lubricant additives N2 - The performance of titanium alloy (Ti6Al4V) surfaces was investigated in lubricated reciprocating sliding tribological tests (RSTT). Special emphasis was laid on the effect of surface nanostructures in area of contact on the respective friction and wear behaviour. These so-called laser-induced periodic surface structures (LIPSS, ripples) were produced on the titanium alloy surface upon scan processing in air by an ultrashort pulsed femtosecond (fs) laser. As lubricant served two types of base oils, a pure polyalcylene-glycol, and an SAE 0W30 oil containing only antioxidants and temperature stabilizers. Tribological tests were carried out on polished as well as LIPSS covered areas using both types of base oil. A test metrics was established, combining the additive 2-ethylhexyl-zincdithiophosphate (ZDDP) or the ionic liquid [P6,6,6,14] [DEHP] (98% purity) with the respective base oils. The test metrics also considered the orientation of motion with respect to the orientation of the structures formed on the surface. Results are presented which show that the interplay between LIPSS and the local chemistry formed by the respective additives is beneficial for the tribological behaviour of the titanium alloy. Certain combinations of base oil, additive and LIPSS reduced friction and wear significantly in the tribological contact. T2 - 64. Tribologie-Fachtagung CY - Göttingen, Germany DA - 25.09.2023 KW - TiAl64V KW - 100Cr6 KW - Friction KW - Wear KW - LIPSS KW - Lubrication KW - PAG KW - Ionic liquid PY - 2023 AN - OPUS4-58641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ayerdi Gomez, A. A1 - Slachciak, Nadine A1 - Zubia Aranburu, J. A1 - Zabala, A. A1 - Aginagalde, A. A1 - Bonse, Jörn A1 - Spaltmann, Dirk T1 - Improvement of the tribological performance of titanium alloy using FS-laser-induced periodic surface structures in combination with ZDDP and ionic liquid lubricant additives N2 - The performance of titanium alloy (Ti6Al4V) surfaces was investigated in lubricated reciprocating sliding tribological tests (RSTT). Special emphasis was laid on the effect of surface nanostructures in area of contact on the respective friction and wear behaviour. These so-called laser-induced periodic surface structures (LIPSS, ripples) were produced on the titanium alloy surface upon scan processing in air by an ultrashort pulsed femtosecond (fs) laser. As lubricant served two types of base oils, a pure polyalcylene-glycol, and an SAE 0W30 oil containing only antioxidants and temperature stabilizers. Tribological tests were carried out on polished as well as LIPSS covered areas using both types of base oil. A test metrics was established, combining the additive 2-ethylhexyl-zincdithiophosphate (ZDDP) or the ionic liquid [P6,6,6,14] [DEHP] (98% purity) with the respective base oils. The test metrics also considered the orientation of motion with respect to the orientation of the structures formed on the surface. Results are presented which show that the interplay between LIPSS and the local chemistry formed by the respective additives is beneficial for the tribological behaviour of the titanium alloy. Certain combinations of base oil, additive and LIPSS reduced friction and wear significantly in the tribological contact. T2 - 64. Tribologie-Fachtagung CY - Göttingen, Germany DA - 25.09.2023 KW - TiAl64V KW - 100Cr6 KW - Friction KW - Wear KW - LIPSS KW - Lubrication KW - PAG KW - Ionic liquid PY - 2023 SP - 1 EP - 5 AN - OPUS4-58642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - A holistic experiment chain for scattering-powered materials science investigations N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology1 let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators over the last five years. Combined with universal, automat-ed data correction pipelines, as well as our analysis and simulation software, this led to more than 40 papers2 in the last 5 years with just over 2 full-time staff members. While this approach greatly improved the consistency of the results, the consistency of the samples and sample series provided by the users was less reliable nor necessarily reproducible. To address this issue, we built an EPICS-controlled, modular synthesis platform to add to our laboratory. To date, this has prepared over 1200 additional (Metal-Organic Framework) samples for us to meas-ure, analyse and catalogue. By virtue of the automation, the synthesis of these samples is automat-ically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases alongside the morphological results obtained from the automated X-ray scat-tering analysis. Having developed these proof-of-concepts, we find that the consistency of results are greatly im-proved by virtue of their reproducibility, hopefully adding to the reliability of the scientific findings as well. Additionally, the nature of the experiments has changed greatly, with much more emphasis on preparation and careful planning. This talk will discuss the advantages and disadvantages of this highly integrated approach and will touch upon upcoming developments. T2 - canSAS-XIII CY - Grenoble, France DA - 16.10.2023 KW - Methodology KW - Lab automation KW - X-ray scattering KW - Automated synthesis KW - Data stewardship KW - Holistic experimental procedures KW - Scicat PY - 2023 AN - OPUS4-58643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprachmann, J. A1 - Grabicki, N. A1 - Möckel, Anna A1 - Maltitz, J. A1 - del Refugio Monroy Gómez, J. A1 - Smales, Glen Jacob A1 - Dumele, O. T1 - Substituted Benzophenone Imines for COF Synthesis via Formal Transimination N2 - Covalent organic frameworks (COFs) are a prominent class of organic materials constructed from versatile building blocks via reversible reactions. The quality of imine-linked COFs can be improved by using amine monomers protected with benzophenone forming benzophenone imines. Here, we present a study on substituted benzophenones in COF synthesis via formal transimination. 12 para-substituted N-aryl benzophenone imines, with a range of electron-rich to electron-poor substituents, were prepared and their hydrolysis kinetics were studied spectroscopically. All substituted benzophenone imines can be employed in COF synthesis and lead to COFs with high crystallinity and high porosity. The substituents act innocent to COF formation as the substituted benzophenones are cleaved off. Imines can be tailored to their synthetic demands and utilized in COF formation. This concept can make access to previously unattainable, synthetically complex COF monomers feasible. KW - Materials Chemistry KW - Metals and Alloys KW - Surfaces, Coatings and Films KW - General Chemistry KW - Ceramics and Composites KW - Electronic, Optical and Magnetic Materials KW - Catalysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586449 DO - https://doi.org/10.1039/D3CC03735E SN - 1359-7345 SP - 1 EP - 4 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - VAMAS Regional Report Germany N2 - Regional standardisation activities and how VAMAS can help in any way to promote activities are reported. Activities related to organisational updates, government initiatives/priorities (especially related to Materials), details of any strategy documents publicly available, networks within Germany and how we engage are presented. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 48th Steering Committee Meeting CY - New Delhi, India DA - 09.10.2023 KW - VAMAS KW - Standardisation PY - 2023 UR - https://www.nplindia.org/index.php/amcsnzt_2023/ AN - OPUS4-58572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jamro, R. A1 - Mente, Tobias A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Al-Falahat, Ala'A. M. A1 - Woracek, R. A1 - Manke, I. A1 - Griesche, Axel T1 - Temperature distribution during welding measured by neutron imaging N2 - This study was carried out to investigate the neutron transmission signal as a function of sample temperature during a welding process. A theoretical description that includes the Debye-Waller factor was used to describe the temperature influence on the neutron crosssections. Neutron imaging using a monochromatic beam helps to observe transmission variations related to the material temperature. In-situ neutron imaging of welding experiments show the distribution of the temperature in bulk steel samples. The performed finite element modelling of expected temperature distributions shows good agreement with the obtained experimental data. KW - Neutron imaging KW - Debye-Waller-Faktor PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586268 DO - https://doi.org/10.1088/1742-6596/2605/1/012026 VL - 2605 SP - 1 EP - 10 PB - IOP Publishing Ltd. AN - OPUS4-58626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Eckert, J. G. A1 - Lutowski, Marc A1 - Geißler, Daniel A1 - Hertwig, Andreas A1 - Hidde, Gundula A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Influence of nanoparticle encapsulation and encoding on the surface chemistry of polymer carrier beads N2 - Surface-functionalized polymer beads encoded with molecular luminophores and nanocrystalline emitters such as semiconductor nanocrystals, often referred to as quantum dots (QDs), or magnetic nanoparticles are broadly used in the life sciences as reporters and carrier beads. Many of these applications require a profound knowledge of the chemical nature and total number of their surface functional groups (FGs), that control bead charge, colloidal stability, hydrophobicity, and the interaction with the environment and biological systems. For bioanalytical applications, also the number of groups accessible for the subsequent functionalization with, e.g., biomolecules or targeting ligands is relevant. In this study, we explore the influence of QD encoding on the amount of carboxylic acid (COOH) surface FGs of 2 μm polystyrene microparticles (PSMPs). This is done for frequently employed oleic acid and oleylamine stabilized, luminescent core/shell CdSe QDs and two commonly used encoding procedures. This included QD addition during bead formation by a thermally induced polymerization reaction and a post synthetic swelling procedure. The accessible number of COOH groups on the surface of QD-encoded and pristine beads was quantified by two colorimetric assays, utilizing differently sized reporters and electrostatic and covalent interactions. The results were compared to the total number of FGs obtained by a conductometric titration and Fourier transform infrared spectroscopy (FTIR). In addition, a comparison of the impact of QD and dye encoding on the bead surface chemistry was performed. Our results demonstrate the influence of QD encoding and the QD-encoding strategy on the number of surface FG that is ascribed to an interaction of the QDs with the carboxylic acid groups on the bead surface. These findings are of considerable relevance for applications of nanoparticle-encoded beads and safe-by-design concepts for nanomaterials. KW - Optical spectroscopy KW - Particle KW - Optical assay KW - IR spectroscopy KW - Fluorescence KW - Quantum yield KW - Quality assurance KW - Nano KW - Synthesis KW - Surface chemistry KW - Quantification KW - Method KW - Conductometry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581502 DO - https://doi.org/10.1038/s41598-023-38518-7 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 15 PB - Springer Nature CY - London AN - OPUS4-58150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, J. A1 - Güttler, Arne A1 - Schneider, T. A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Fluorescence Quantum Yield Standards for the UV/Visible/NIR: Development, Traceable Characterization, and Certification N2 - The rational design of next generation molecular and nanoscale reporters and the comparison of different emitter classes require the determination of the fluorometric key performance parameter fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. Main prerequisites for reliable Φf measurements, which are for transparent luminophore solutions commonly done relative to a reference, i.e., a fluorescence quantum yield standard of known Φf, are reliable and validated instrument calibration procedures to consider wavelength-, polarization-, and time-dependent instrument specific signal contributions, and sufficiently well characterized fluorescence quantum yield standards. As the standard’s Φf value directly contributes to the calculation of the sample’s Φf, its accuracy presents one of the main sources of uncertainty of relative Φf measurements. To close this gap, we developed a first set of 12 fluorescence quantum yield standards, which absorb and emit in the wavelength region of 330−1000 nm and absolutely determined their Φf values with two independently calibrated integrating sphere setups. Criteria for standard selection and the configuration of these novel fluorescence reference materials are given, and the certification procedure is presented including homogeneity and stability studies and the calculation of complete uncertainty budgets for the certified Φf values. The ultimate goal is to provide the community of fluorescence users with available reference materials as a basis for an improved comparability and reliability of quantum yield data since the measurement of this spectroscopic key property is an essential part of the characterization of any new emitter. KW - Optical spectroscopy KW - Traceability KW - Reference product KW - Dye KW - Fluorescence KW - Quantum yield KW - Reference material KW - Reference data KW - Certification KW - Quality assurance PY - 2023 DO - https://doi.org/10.1021/acs.analchem.2c05530 VL - 95 SP - 5671 EP - 5677 PB - American Chemical Society AN - OPUS4-58151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dal Molin, E. S. A1 - Henning, L. M. A1 - Müller, J. T. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Bekheet, M. F. A1 - Gurlo, A. A1 - Simon, U. T1 - Robocasting of ordered mesoporous silica‐based monoliths: Rheological, textural, and mechanical characterization N2 - Hierarchically porous, high‐surface‐area silica materials are excellent candidates for multiple applications like catalysis and environmental remediation. Shaping these materials with additive manufacturing (AM) techniques, like robocasting, could enable their use with the benefit of on‐demand, customized shaping and maximizing performance. Herein, ordered mesoporous silica COK‐12 slurries were robocasted into monoliths, containing different ratios of uncalcined COK‐12 and sodium bentonite (0–25 wt.%). The rheology of the mixed slurries is characterized by lower flow indexes (0.69 vs. 0.32) and higher yield stresses (96 vs. 259 Pa) compared to pure COK‐12 ones. Monoliths were printed in woodpile structures and calcined at 600°C. Micro‐CT measurements showed a linear shrinkage of 25% after calcination. Mechanical characterization showed increased uniaxial strength (0.20 ± 0.07 to 1.0 ± 0.3 MPa) with increasing binder/solids ratio from 13 to 25%. The amorphous, mesoporous structure of COK‐12 was retained. The structures exhibited open porosities of 52 ± 4% and showed higher specific mesopore volumes, and increased average mesopore size (6 vs. 8 nm) compared to COK‐12. Small‐angle x‐ray scattering analysis revealed an increased lattice parameter (10.3 vs. 11.0 nm) and reduced wall thickness (3.1 nm vs. 4.1 nm) of the COK‐12 in the monoliths. These properties indicate suitability for their application as porous supports and adsorbents. KW - Industrial and Manufacturing Engineering KW - Additive manufacturing KW - OMS KW - Porous materials KW - Robocasting KW - X-ray scattering KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582503 DO - https://doi.org/10.1002/nano.202300109 VL - 4 IS - 11-12 SP - 615 EP - 631 PB - Wiley-VCH GmbH AN - OPUS4-58250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Opitz, R. A1 - Ghoreishi, N. A1 - Plate, K. A1 - Barnes, J.-P. A1 - Bellew, A. A1 - Bellu, A. A1 - Ceccone, G. A1 - de Vito, E. A1 - Delcorte, A. A1 - Franquet, A. A1 - Fumageli, F. A1 - Gilliland, D. A1 - Jungnickel, H. A1 - Lee, T.G. A1 - Poleunis, C. A1 - Rading, D. A1 - Shon, H.K. A1 - Spampinato, V. A1 - Son, J.G. A1 - Wang, F. A1 - Wang, Y.-C. A. A1 - Zhao, Y. A1 - Roloff, A. A1 - Tentschert, J. A1 - Radnik, Jörg T1 - VAMAS TWA2 interlaboratory comparison: Surface analysis of TiO2 nanoparticles using ToF-SIMS N2 - Due to the extremely high specific surface area of nanoparticles and corresponding potential for adsorption, the results of surface analysis can be highly dependent on the history of the particles, particularly regarding sample preparation and storage. The sample preparation method has, therefore, the potential to have a significant influence on the results. This report describes an interlaboratory comparison (ILC) with the aim of assessing which sample preparation methods for ToF-SIMS analysis of nanoparticles provided the most intra- and interlaboratory consistency and the least amount of sample contamination. The BAM reference material BAM-P110 (TiO2 nanoparticles with a mean Feret diameter of 19 nm) was used as a sample representing typical nanoparticles. A total of 11 participants returned ToF-SIMS data,in positive and (optionally) negative polarity, using sample preparation methods of “stick-and-go” as well as optionally “drop-dry” and “spin-coat.” The results showed that the largest sources of variation within the entire data set were caused by adventitious hydrocarbon contamination or insufficient sample coverage, with the spin-coating protocol applied in this ILC showing a tendency toward insufficient sample coverage; the sample preparation method or the participant had a lesser influence on results. KW - Secondary Ion Mass Spectrometry KW - VMAAS KW - Titania KW - Interlaboratory comparison KW - Reproducibility PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582290 DO - https://doi.org/10.1116/6.0002814 SN - 0734-2101 VL - 41 IS - 5 SP - 053210-1 EP - 053210-13 PB - AIP (American Institute of Physics) AN - OPUS4-58229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Digital Everything: X-ray Scattering and Synthesis Laboratories N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators. Combined with automated data correction pipelines, and our analysis and simulation software, this led to more than 40 papers in the last 5 years with just over 2 full-time staff members. This year, our new, modular synthesis platform has made more than 1000 additional samples for us to analyse and catalogue. By virtue of the automation, the synthesis of these samples is automatically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases. This talk is intended to spark ideas and invite collaborations by providing an overview of: 1) the current improvements in our wide-range X-ray scattering laboratory methodology, and 2) introducing our open, modular robotic platform for systematic sample preparation. T2 - Seminar at KIT CY - Karlsruhe, Germany DA - 17.08.2023 KW - Lab automation KW - Data stewardship KW - Scattering KW - X-ray scattering KW - Automated synthesis KW - Data pipelines PY - 2023 AN - OPUS4-58234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Everything SAXS Part 1: Introduction, Sample Requirements and Measurement "Space" N2 - This talk for the Swiss Society for Crystallography (SSCr) workshop on SAXS will introduce scattering from various angles, focusing in particular on: - Information content of X-ray scattering experiments, three entry points… - An introduction to Fourier Transforms - Sample criteria, compatibility, and selection - Key indicators of a measurement – where is the information? - Key indicators of measurement quality - Experiment planning, the basics T2 - Topical workshop of the Swiss Society for Crystallography CY - Zurich, Switzerland DA - 08.09.2023 KW - X-ray scattering KW - Data stewardship KW - Measurement science KW - MOUSE KW - Holistic experiment approaches PY - 2023 AN - OPUS4-58235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Everything SAXS Part 2: Data Processing, Workflow and Pitfalls N2 - The second talk for the Swiss Society for Crystallography (SSCr) workshop on SAXS will highlight the data processing challenges, holistic experimental workflow developments, and the pitfalls. In particular, the following items will be addressed: - The importance of data processing and estimating uncertainty - A universal correction pipeline – away with the headaches, at least for this step! - Experiment planning part 2, some tips and advice to improve your corrected data. - Sample preparation, background selection, some tips and advice to improve your corrected data. - Automate for your mental well-being; electronic logbooks, measurement catalogs and workflow management software - Life on the edge: several pitfalls to avoid… T2 - Topical workshop of the Swiss Society for Crystallography CY - Zurich, Switzerland DA - 08.09.2023 KW - X-ray scattering KW - MOUSE KW - Data processing KW - Uncertainties KW - Pitfalls PY - 2023 AN - OPUS4-58236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Glimpses of the Future ✨: Advancing X-ray Scattering in an Automated Materials Research Laboratory N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology1 let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators. Combined with automated data correction pipelines, and our analysis and simulation software, this led to more than 40 papers2 in the last 5 years with just over 2 full-time staff members. This year, our new, modular synthesis platform has made more than 1000 additional samples for us to analyse and catalogue. By virtue of the automation, the synthesis of these samples is automatically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases. Having developed these proof-of-concepts, we find that materials research itself is changed dramatically by automating dull tasks in a laboratory. This talk is intended to spark ideas and invite collaborations by providing an overview of: 1) the current improvements in our wide-range X-ray scattering laboratory methodology, 2) Introduce some of our open-source analysis and simulation software, touching on scattering, diffraction and PDF, and 3) introducing our open, modular robotic platform for systematic sample preparation. Finally, the remaining bottlenecks and points of attention across all three are highlighted. T2 - Swiss Society for Crystallography (SSCr) annual meeting CY - Zurich, Switzerland DA - 08.09.2023 KW - Lab automation KW - Fourier transforms KW - X-ray scattering KW - Robotic synthesis KW - Data stewardship KW - Holistic experimental procedures KW - MOUSE KW - Metal-organic frameworks KW - High-throughput measurements PY - 2023 AN - OPUS4-58237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, J. A1 - Güttler, Arne A1 - Richter, Maria A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Wegner, Karl David A1 - Würth, Christian T1 - Photoluminescence Quantum Yields of Luminescent Nanocrystals and Particles in the UV/vis/NIR/SWIR N2 - The rational design of functional luminescent materials such as semiconductor quantum dots and lanthanide-based upconversion nanoparticles, all photophysical and mechanistic studies, and the comparison of different emitters require accurate and quantitative photoluminescence measurements. Particularly the reliable determination of the key performance parameter photoluminescence quantum yield (f), the number of emitted per absorbed photons, and the brightness are of special importance for luminescence applications in the life and material sciences and nano(bio)photonics.[1] In this context, examples for absolute measurements of the photoluminescence quantum yields of UV/vis/NIR/SWIR emissive semiconductor quantum dots and rods, made from different materials, and spectrally shifting lanthanide upconversion nanocrystals with different surface chemistries in transparent matrices are presented including excitation wavelength and power density dependent studies utilizing integration sphere spectroscopy.[2,3] In addition, procedures for the absolute determination of the photoluminescence quantum yields of scattering dispersions of larger size quantum rods and differently sized inorganic particles have been developed as well as procedures for the characterization of solid luminescent nanomaterials such as different perovskites and YAG:Cer converter materials.[4] Thereby, challenges and pitfalls of f measurements in different wavelength regions including the SWIR and material-specific effects related to certain emitter classes are addressed, achievable uncertainties are quantified, and relative and absolute measurements of photoluminescence quantum yield measurements are compared to underline limitations of the former approach. Finally, a set of novel UV/vis/NIR quantum yield standards is presented including their certification with a complete uncertainty budget.[5] T2 - NANAX 10 CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Fluorescence KW - Optical spectroscopy KW - Reference data KW - Traceability KW - NIR KW - Scattering KW - Reference material KW - Certification KW - Quality assurance KW - Dye KW - Reference product KW - SWIR KW - Nano KW - Particle KW - Perovskite KW - Integrating sphere spectroscopy KW - Quantum yield PY - 2023 AN - OPUS4-58238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella T1 - pH-Responsive Dyad Molecules: MiGraGen Project N2 - Optical pH sensors utilizing colorimetric or fluorescent indicator dyes are highly promising in many biomedical and life science applications where electrochemical sensors fail. For instance, optical sensors are not prone to electrical interferences, they are noninvasive and enable remote measurements. Moreover, fluorescence detection is very fast, highly sensitive, and provides several readout parameters ideal for multiplexing with nanometer resolution using simple, inexpensive, and miniaturizable instrumentation. Here, we present the design of a dyad sensor molecule, consisting of an analyte-responsive and an analyte inert reference fluorophore. T2 - MiGraGen Project Meeting 16.06.2023 CY - Online Meeting DA - 16.06.2023 KW - Dyad molecules KW - pH sensing KW - Fluorescent indicator KW - Ratiometric sensors PY - 2023 AN - OPUS4-58070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella T1 - pH- and O2-Responsive Nanoparticles – The MiGraGen Project N2 - In recent years, the demand for reliable, versatile, fluorescent pH and oxygen sensors has increased rapidly in many biomedical applications since these analytes are important indicators of cell function or certain diseases. Therefore, sensor particles are needed that are small enough to penetrate cells, non-toxic, and allow for close-up optical monitoring. When developing such sensor systems, one must consider the pH and oxygen range detectable by the sensor dye and the matrix material of the used carrier particles. Here, we present the development of pH- and oxygen-responsive polymeric beads functionalized with fluorescent dyad molecules that consist of an analyte-responsive fluorophore and an analyte-inert dye. T2 - MiGraGen Project Meeting 09.08.2023 CY - Online Meeting DA - 09.08.2023 KW - Nano- and microsensors KW - Functionalized silica and polymeric particles KW - pH sensing KW - Oxygen sensing KW - Fluorescence PY - 2023 AN - OPUS4-58071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matiushkina, Anna T1 - Synthesis and physical properties studies of bifunctional nanocomposites N2 - At present, the field of research on nanostructures is actively developing, which is due to their unique physico-chemical properties compared to bulk materials. Many research activities are focused on obtaining nanocomposites, which combine various types of nanostructures with different properties and function. For example, the development of magneto-luminescent nanocomposites makes it possible to use their luminescence for optical imaging, and their magnetic properties for magnetic targeted delivery and as agents of hyperthermia and magnetic resonance imaging. My master studies as part of the project Goszadanie 2019-1080 at ITMO were focused on the investigation of nanocomposites, consisting of semiconductor quantum dots (QDs) as luminescent component and superparamagnetic iron oxide nanoparticles (SPIONs) as magnetic one, in solution and during their incubation with HeLa cells. The spectrally resolved analysis of the QD photoluminescence (PL) kinetics of the free QDs and the QDs incorporated in these nanocomposites undergoing energy transfer processes allowed for (1) understanding the reasons for the quenching of QD luminescence in cells, (2) evaluating the average distance between the QDs and, based on this, concluding the degree of QD aggregation in cells, and (3) drawing conclusions about the QD-quencher composites integrity in cells. Overall, the analysis of the PL kinetics confirmed that QDs and SPIONs remain bound in the obtained nanocomposites during incubation with cells. To ensure the successful advancement of nanomaterials in biomedicine and the transition from their laboratory preparation and studies to their use in different applications and in industry, it is crucial to develop reliable measurement methods and reference materials candidates for the characterization of functional nanomaterials and assessing the quality of the obtained nanostructures. My recently started project at BAM, which is part of the EU metrology project MeTrINo, will be devoted to this topic. There we will focus on the development of methodologies for the synthesis and characterization of iron oxide nanoparticles, already used in biomedicine, and multi-element lanthanide-based nanoparticles with attractive upconversion luminescence, as reference materials with high monodispersity and reproducibility. Also, these nanoparticles will be functionalized with organic dyes for optical imaging and, probably, the study of the energy transfer phenomena. T2 - Bad Honnef Summer School CY - Bad Honnef, Germany DA - 30.07.2023 KW - Quantum dots KW - Iron oxide nanoparticles KW - Upconversion nanoparticles PY - 2023 AN - OPUS4-58075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Osipova, Viktoriia T1 - Incorporation of near-infrared light emitting chromium (III) complexes into the core and shell of silica nanoparticles and optimisation of their optical properties N2 - In recent years, chromium (III) complexes have received a lot of attention as novel near-infrared (NIR) emitters. This interest was triggered by the report on the first molecular ruby Cr(ddpd)2(BF4)3 with a high photoluminescence quantum yield of 13.7% of its near infrared (NIR) emission band and a long luminescence lifetime of 1.122 ms at room temperature. Meanwhile, the influence of triplet oxygen, temperature, and pressure on the optical properties of different molecular rubies have been assessed. These features make these molecular rubies promising candidates for multi-analyte optical sensing applications and the generation of singlet oxygen for photocatalysis and photodynamic therapy. However, in an oxygen-containing environment, the photoluminescence quantum yields and luminescence lifetimes of these chromium(III) complexes show only very small values. This hampers their application as NIR luminescence labels. This application, that cannot be tackled by conventional deoxygenating approaches, requires suitable strategies to protect the luminescence of the chromium(III) complexes from oxygen quenching. Typical approaches to reduce the oxygen sensitivity of long-lived luminophores include the encapsulation into an oxygen-shielding matrix or less commonly employed, by tuning the bulkiness of the ligands for oxygen-sensitive coordination compounds. An elegant approach to reduce the undesired luminescence quenching by triplet oxygen explored by us presents the incorporation of these chromium(III) complexes into amorphous, non-porous silica nanoparticles, that can be simply surface functionalized, e.g., with targeting ligands and/or other sensor molecules. This can enable the use of such chromium(III) complexes as reporters for bioanalytical assays and bioimaging without the need to introduce reactive groups into the ligands and can pave the road to lifetime tuning. In this work, as first proof-of-concept experiments, a set of chromium (III) complexes constituting of different ligands and counter anions, were embedded into the core of silica nanoparticles. As an alternative synthesis strategy, selected complexes were incorporated into a silica shell formed around the core of self-made silica nanoparticles. Subsequently, the optical properties of the resulting luminescent silica nanoparticles were spectroscopically assessed by steady state and time-resolved luminescence spectroscopy. First results of time-resolved luminescence measurements of the Cr(ddpd)2(PF6)3 complex incorporated into 25nm large silica nanoparticles dispersed in aerated water in comparison to the decay kinetics obtained for this complex in acetonitrile in air showed an increase in lifetime from 46 µs to 1147 µs. This confirming our design concept of nanoscale NIR emissive Cr(III) reporters. T2 - Bad Honnef summer school CY - Bad Honnef, Germany DA - 30.07.2023 KW - Chromium (III) complexes KW - Silica Nanoparticles KW - Luminescence lifetime measurments PY - 2023 AN - OPUS4-58076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terborg, R. A1 - Procop, Mathias T1 - Theoretical calculation and experimental determination of x-ray production efficiencies for copper, zirconium, and tungsten N2 - The X-ray intensities of the K-, L- and M-lines of copper, zirconium and tungsten have been measured with an energy-dispersive X-ray spectrometer of known efficiency as function of photon energy. X-ray production efficiencies were determined from the measured intensities for Kα- and L-series of Cu and Zr and for the L- and M-series of W. These data were compared to calculated X-ray production efficiencies based on the widely used matrix correction models of Pouchou and Pichoir (XPP) and Bastin (PROZA96). Our results indicate that a replacement of the stopping power in the PROZA96 algorithm by expressions of Joy and Jablonski has only a minor influence on the calculated X-ray production efficiencies. In contrast, the modifications of the ionization cross-section show a stronger effect. We replaced the ionization cross-sections for K lines of the PROZA96 algorithm with different models. The results for L- and M-Lines are different. For the L-lines of Cu the original XPP and PROZA96 models show the best agreement while using the Bote cross-sections result in an overestimation. For the Zr-L and W-L1, -L2, -L3 X-ray production efficiencies, the Bote cross-sections lead to a significant improvement compared to all other models. The original XPP model represents the best agreement for the M5 efficiencies but underestimates the M4 efficiencies. There is no superior model or modification because the parameter sets in the models need to be aligned to each other. However, using the ionization cross-sections of Bote, which are based on quantum mechanical calculations, show promising results in many cases. KW - X-ray production efficiency KW - EPMA KW - Copper KW - Zirconium KW - Tungsten PY - 2023 DO - https://doi.org/10.1093/micmic/ozad067.110 SN - 1435-8115 VL - 29 IS - Supplement 1 SP - 245 EP - 246 PB - Oxford University Press CY - Oxford AN - OPUS4-58339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Correlative Morphological-Chemical Imaging of Nanostructured Materials N2 - Newly developed methodical approaches with an emphasis on correlative imaging analysis of morphology and chemistry of nanomaterials will be presented. Correlative imaging by high-resolution SEM with STEM-in-SEM as well as with EDS, and further with AFM, or with the new technique TKD (Transmission Kikuchi Diffraction) will be explained on various examples of nanostructures, both as starting materials and as embedded/functionalized nanoparticles in products. The unique analytical benefits of the Auger electron probe as a veritable nano-tool for the local surface chemistry will be highlighted. Examples of hybrid analysis of the bulk of nanomaterials by X-ray Spectroscopy and the highest surface-sensitive methods XPS and ToF-SIMS as advanced surface characterization methods available in the Competence Centre nano@BAM will be showed. Particularly for the spatially resolved analysis of the chemistry of nanostructures, such in-depth and lateral gradients of chemistry within mesoporous thin layers, or the completeness of the shells of core-shell nanoparticles, the latter methods are inherent. Other dedicated developments like approaches for the quantitative determination of the porosity of thin mesoporous layers by electron probe microanalysis (EPMA) with SEM or the quantitative determination of the roughness of particle surface by high-resolution imaging with electron microscopy will be also presented. T2 - Conference on Applied Surface and Solid Material Analysis AOFKA 2023 CY - Zurich, Switzerland DA - 11.09.2023 KW - Correlative imaging KW - Electron microscopy KW - X-ray spectroscopy KW - Nanostructures PY - 2023 UR - https://aofka23.scg.ch/ AN - OPUS4-58338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - Ellipsometry as a tool for electrical metrology - Referencing electrical properties of thin layers with TCO materials N2 - Ellipsometry is a highly valuable technology for bridging different measurement methods. As a fast, highly sensitive, and non-destructive optical technique with low environmental requirements, it is ideal for transporting measurement accuracy and for up-scaling measurements in the production environment. It can be used for highly precise determination of properties, material identity and correctness confirmation, as well as defect detection. Comparable, traceable, and accurate electrical measurements, especially at small scales are one of the biggest challenges in the development of the electrical and electronic devices of the future. In this project, we develop structured thin layer systems of the transparent conductive material indium tin oxide (ITO) to prove the concept of using these systems as standards for conductivity and permittivity. The layers are produced in a reactive magnetron sputtering process from raw ITO targets with additional oxidation achieved by oxygen injection. We present results of a study correlating the coating process conditions with the properties of the final layer material. We found that especially the temperature development during coating is of key importance and determines the layer properties to a large extent. We will discuss questions of homogeneity and reproducibility of the coating processes used. The finished layers undergo lithographic structuring and etching to produce patterns to serve as reference structures for scanning probe electrical measurements. TCOs have a large variety of applications. In this work we also study the usability of ITO for other purposes and investigate the stability of this material under application conditions. T2 - 12th Workshop Ellipsometry 2023 CY - Prague, Czech Republic DA - 18.09.2023 KW - Thin Films KW - Transparent Conductive Oxides KW - Ellipsometry KW - Electrical Properties KW - Nanoelectronics PY - 2023 AN - OPUS4-58410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - OECD Prüfrichtlinie 125 N2 - Diese Präsentation ist eine Einführung in die OECD TG 125 zur Bestimmung der Partikelgrößen von Nanomaterialien. Es wird auf die verchiedenen Probleme der Partikelgrößenbestimmung eingegangen wie z.B. verschiedene Oberflächenschichten, Äquivalenzdurchmesser und Verteilungsfunktionen. Gleichzeitig werden die neuen Begrifflichkeiten eingeführt, die in der TG 125 definiert neu werden. T2 - BAM Akademie Digitaler Info-Tag "Nano or not Nano" CY - Online meeting DA - 16.02.2023 KW - Nano KW - Partikel KW - Größe KW - Partikeldurchmesser KW - Äquivalenzdurchmesser PY - 2023 AN - OPUS4-58449 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Forschung in einer Bundesoberbehörde wie der BAM N2 - Die Bundesanstalt für Materialforschung und -prüfung (BAM) ist eine forschende Bundesoberbehörde und Einrichtung der Ressortforschung der Bundesrepublik Deutschland. Unter ihrer Leitlinie „Sicherheit in Technik und Chemie“ ist sie zuständig für die öffentliche technische Sicherheit und für metrologische Aufgaben in der Chemie. Das Aufgabenspektrum der BAM, das sich an aktuellen Fragestellungen aus Wissenschaft, Wirtschaft, Politik und Normung orientiert, bietet sehr viele interessante Tätigkeitsfelder für Naturwissenschaftler*Innen und Ingenieur*Innen. T2 - WIFO Leipzig 2023 CY - Leipzig, Germany DA - 05.09.2023 KW - Quality assurance KW - Optical spectroscopy KW - Certification KW - Reference product KW - Integrating sphere spectroscopy KW - Fluorescence KW - Quantum yield KW - Reference material KW - Reference data KW - Traceability KW - Nano KW - Particle KW - Analytical chemistry KW - Sensor KW - Safety PY - 2023 AN - OPUS4-58397 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolff, M. A1 - Wonneberger, R. A1 - Freiberg, K.E. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Giebeler, L. A1 - Koitzsch, A. A1 - Kunz, C. A1 - Weber, H. A1 - Hufenbach, J.K. A1 - Müller, F.A. A1 - Gräf, S. T1 - Formation of laser-induced periodic surface structures on Zr-based bulk metallic glasses with different chemical composition N2 - Bulk metallic glasses (BMG) are amorphous metal alloys known for their unique physical and mechanical properties. In the present study, the formation of femtosecond (fs) laser-induced periodic surface structures (LIPSS) on the Zr-based BMGs Zr46Cu46Al8, Zr61Cu25Al12Ti2, Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit105) and Zr57Cu15.4Al10Ni12.6Nb5 (Vit106) was investigated as a function of their different chemical composition. For this purpose, LIPSS were generated on the sample surfaces in an air environment by fs-laser irradiation (λ = 1025 nm, τ = 300 fs, frep = 100 kHz). The surface topography was characterized by scanning electron microscopy and atomic force microscopy. Moreover, the impact of LIPSS formation on the structure and chemical surface composition was analyzed before and after fs-laser irradiation by X-ray diffraction and X-ray photoelectron spectroscopy as well as by transmission electron microscopy in combination with energy dispersive X-ray spectroscopy. Despite the different chemical composition of the investigated BMGs, the fs-laser irradiation resulted in almost similar properties of the generated LIPSS patterns. In the case of Zr61Cu25Al12Ti2, Vit105 and Vit106, the surface analysis revealed the preservation of the amorphous state of the materials during fs-laser irradiation. The study demonstrated the presence of a native oxide layer on all pristine BMGs. In addition, fs-laser irradiation results in the formation of laser-induced oxide layers of larger thickness consisting of an amorphous ZrAlCu-oxide. The precise laser-structuring of BMG surfaces on the nanoscale provides a versatile alternative to thermoplastic forming of BMG surfaces and is of particular interest for the engineering of functional material surfaces. KW - Bulk metallic glasses KW - Femtosecond laser KW - Laser-induced periodic surface structures (LIPSS) KW - Chemical analysis KW - Oxidation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581799 DO - https://doi.org/10.1016/j.surfin.2023.103305 SN - 2468-0230 VL - 42 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-58179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - SEM/EDS as THE Versatile and Powerful Tool for Micro and Nano Analysis N2 - The basic principles of generation of electrons and X-rays and the operation of SEM/EDS instruments are presented. Examples, recent successes and challenges in the analysis of nano-structures are given. Multi-method analytical approaches with the focus on imaging the nanoscale are highlighted. Details on the sample preparation and persepective on the automated analysis (sample preparation, measurement, data analyis and storage) are given. Metrological aspects, standardisation, and reference materials are also emphasized by examples. T2 - Training Course Metrological Determination of Micro and Nano Contaminants in Food CY - Berne, Switzerland DA - 05.09.2023 KW - SEM KW - EDS KW - Microanalysis KW - Nanoanalysis KW - Imaging PY - 2023 UR - https://www.sem.admin.ch/metas/en/home/dl/kurs_uebersicht/micro_nano_contaminants_in_food.html AN - OPUS4-58188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Accurate Measurement of Size of Graphene Oxide Flakes by Scanning Electron Microscopy (SEM) N2 - Accurate characterisation of the morphology (size) and chemistry of graphene-related 2D materials (GR2M) is key in understanding their extraordinary functionalities. Hence, not only the tailoring of these functionalities aiming at applications of increased-performance becomes possible, but also the correlation of the physico-chemical properties with the understanding of the potential toxicity eventually enables a safe and sustainable development of the GR2M for new applications. Whilst AFM and Raman Spectroscopy are recommended to measure the thickness of GO flakes, Scanning Electron Microscopy (SEM) is the most suited method to assess their lateral size, which varies between tens of µm down to below 100 nm. In this paper, procedures for the accurate determination of lateral size of graphene oxide (GO) flakes by SEM are presented. The prerequisite for accurate flake size analysis is the proper sample preparation, i.e. deposition of ideally isolated flakes on a substrate, with the flakes being unfolded, non-overlapped, parallel with the substrate, and having a high coverage density. Examples of optimum image caption conditions and image analysis procedures will be presented. The size descriptors and their measurement are described in the context of the corresponding analysis approach: i) length and width of the flakes with a quick and rough, but robust procedure, and ii) exact contouring of the flakes as part of a highly accurate, but more time-consuming measurement approach. The possibility of application of automated image analysis is discussed as the alternative to the manual flakes analysis. T2 - Graphene 2023 CY - Manchester, UK DA - 27.07.2023 KW - Graphene oxide KW - SEM KW - Size KW - Standardisation PY - 2023 UR - https://www.grapheneconf.com/2023/index.php AN - OPUS4-57910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kohlbrecher, J. A1 - Breßler, Ingo T1 - SASfit 0.94.12 N2 - Small-angle scattering is an increasingly common method for characterizing particle ensembles in a wide variety of sample types and for diverse areas of application. SASfit has been one of the most comprehensive and flexible curve-fitting programs for decades, with many specialized tools for various fields. KW - Small-angle scattering KW - SAXS KW - SANS KW - Scattering pattern analysis PY - 2023 UR - https://doi.org/10.5281/zenodo.7530357 DO - https://doi.org/10.5281/zenodo.7530356 PB - Zenodo CY - Geneva AN - OPUS4-57913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolmangadi, Mohamed A. A1 - Zhuoqing, L. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Wuckert, E. A1 - Raab, A. A1 - Laschat, S. A1 - Huber, P. A1 - Schönhals, Andreas T1 - Confinement-suppressed phase transition and dynamic self-assembly of ionic superdiscs in ordered nanochannels: Implication for nanoscale applications N2 - Ionic Liquid Crystals are ionic liquids that exhibit liquid crystalline mesomorphism together with ionic conductivity. As known confined liquid crystal mesophases can show an anomalous dynamics and phase behavior. Investigations considering the factors controlling the macroscopic properties of ILCs in confinement are scare in the literature. This study reports the molecular mobility, and the phase transition behavior of a guanidinium based columnar ILC confined in the nanopores of self-ordered anodic aluminum oxide membranes of various pore diameters (25 – 180 nm) using Broadband Dielectric Spectroscopy (BDS), calorimetry and X-ray scattering. It is aimed to reveal in which way the pore size as well as the pore surface wettability (hydrophobic or hydrophilic) alters the molecular dynamics, and phase transition behavior for this system. These properties are crucial for applications. The DSC investigations reveal: (i) the phase transition temperature for the transition from the plastic crystalline to the crystalline-liquid state has non-monotonic dependence versus the inverse pore diameter and (ii) the transition from the liquid crystalline to the isotropic phase is suppressed for all nanoconfined samples. This transition suppressed in the thermal signal was evidenced by BDS and X-ray scattering. It is discussed as a continuous phase transition taking place in the pores instead of a discontinuous first order transition as observed for the bulk. BDS investigations show different relaxation processes for the bulk and the nanoconfined ILC. Molecular origins for various relaxation processes are discussed and suggested. It is further shown that the self-assembly of this ILC is dynamic in nature which might apply for other ILCs too. The obtained results will have implications for the nanoscale applications of ionic liquid crystals. KW - Ionic Liquid Crystals PY - 2023 DO - https://doi.org/10.1021/acsanm.3c02473 VL - 6 IS - 17 SP - 15673 EP - 15684 PB - ACS AN - OPUS4-58210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - First of its kind: A test artifact for direct laser writing N2 - With femtosecond-laser direct writing (fs-LDW) maturing in all aspects as a manufacturing technology, a toolset for quality assurance must be developed. In this work we introduce a first of its kind test artifact. Test artifacts are standardized 3D models with specific geometric features to evaluate the performance of writing parameters. Test artifacts are already common in other 3D additive manufacturing technologies e.g. selective laser melting. The test artifact introduced in this work was developed in particular to accommodate the high geometrical resolution of fs-LDW structures and the limited possibilities to examine the resulting structure. Geometric accuracy, surface adhesion as well as confocal Raman spectroscopy results were considered when evaluating the design of the test artifact. We will explain the individual features and design considerations of our fs-LDW test artifact. The difference between two slicers, Cura and 3DPoli, and the implications on measured feature sizes and the general shape is quantified. The measured geometries are used to derive a general design guide for a specific combination of photoresists, laser power and scanning speed and to analyze the geometric accuracy of a structure produced using these guidelines. The shown test artifact is publicly available as STL file on GitHub (https://github.com/BAMresearch/2PP-TestArtifact) and in the supplement. KW - Laser direct writing KW - Multi photon lithography KW - Reference material KW - Raman spectroscopy KW - Confocal raman imaging KW - Slicers KW - Open data on zenodo PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580951 DO - https://doi.org/10.1088/1361-6501/acc47a VL - 34 IS - 7 SP - 1 EP - 14 PB - IOP Science AN - OPUS4-58095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - Test artifact for fs-LDW N2 - Data to generate the given graphs in the publication as well as raw images of the shown images. KW - stl code KW - Images KW - Graphs KW - Data PY - 2023 DO - https://doi.org/10.5281/zenodo.7671945 PB - Zenodo CY - Geneva AN - OPUS4-58096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Sokolowski‐Tinten, Klaus T1 - Probing Laser‐Driven Structure Formation at Extreme Scales in Space and Time N2 - Irradiation of solid surfaces with high intensity, ultrashort laser pulses triggers a variety of secondary processes that can lead to the formation of transient and permanent structures over a large range of length scales from mm down to the nano‐range. One of the most prominent examples are LIPSS – Laser‐Induced Periodic Surface Structures. While LIPSS have been a scientific evergreen for of almost 60 years, experimental methods that combine ultrafast temporal with the required nm spatial resolution have become available only recently with the advent of short pulse, short wavelength free electron lasers. Here, the current status and future perspectives in this field are discussed by exploiting the unique possibilities of these 4th‐generation light sources to address by time‐domain experimental techniques the fundamental LIPSS‐question, namely why and how laser irradiation can initiate the transition of a “chaotic” (rough) surface from an aperiodic into a periodic structure. KW - Laser-induced periodic surface structures (LIPSS) KW - Free electron laser KW - Pump-probe experiments KW - Time-resolved scattering KW - Capillary waves PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595048 DO - https://doi.org/10.1002/lpor.202300912 SN - 1863-8899 VL - 18 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-59504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -