TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Chambers, Aaron P. A. A1 - Breßler, Ingo T1 - Glimpses of the Future✨: Oh my god it’s full of metadata! N2 - In this talk, the importance of metadata is underscored by real-world examples. Metadata is essential to alleviating the reproducibility crises in science. This imples that a wide range of metadata must be collected, with a heavy emphasis on the automated collection of such metadata. This must subsequently be organized in an intelligible, archival structure, when possible with units and uncertainties. Such metadata can aid in improving the usage efficiency of instrumentation, as is demonstrated on the MOUSE instrument. This metadata can now be used to connect the various aspects of the holistic experimental procedure to gain better insights on the materials structure. A second example shows the extraction and organization of such metadata from an automated materials development platform, collected during the synthesis of 1200 samples. These metadata from the synthesis can then be linked to the results from the analysis of these samples, to find direct correlations between the synthesis parameters and the final structure of the materials. T2 - Helmholtz Incubator Summer Academy - Next Level Data Science CY - Online meeting DA - 18.09.2023 KW - Metadata KW - Lab automation KW - Data provenance KW - High-throughput KW - Correlative analysis KW - MOUSE KW - X-ray scattering KW - Robotics PY - 2023 AN - OPUS4-58463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Chambers, Aaron P. A. A1 - Breßler, Ingo T1 - Glimpses of the future: a “full stack”, highly automated materials research laboratory N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators. Combined with automated data correction pipelines, and our analysis and simulation software, this led to more than 40 papers in the last 5 years with just over 2 full-time staff members. This year, our new, modular synthesis platform has made more than 1000 additional samples for us to analyse and catalogue. By virtue of the automation, the synthesis of these samples is automatically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases. Having developed these proof-of-concepts, we find that materials research itself is changed dramatically by automating dull tasks in a laboratory. This talk is intended to spark ideas and collaborations by providing an overview of: 1) the current improvements in our scattering laboratory methodology, 2) introducing our open, modular robotic platform that is used for systematic sample preparation, and 3) demonstrating the data structure of the synthesis logs and measurements. Finally, the remaining bottlenecks and points of attention across all three are highlighted. T2 - FAIRmat seminar CY - Berlin, Germany DA - 28.09.2023 KW - Data stewartship KW - Metadata collection KW - Laboratory methodology KW - MOUSE KW - Robotics KW - Lab automation KW - Holistic science PY - 2023 UR - https://www.fairmat-nfdi.eu/events/brian-pauw AN - OPUS4-58464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Scoppola, E. A1 - Wolf, S.E. A1 - Kochovski, Z. A1 - Matzdorff, D. A1 - Van Driessche, A. E. S. A1 - Hövelmann, J. A1 - Emmerling, Franziska A1 - Stawski, Tomasz M. T1 - Evidence for liquid-liquid phase separation during the early stages of Mg-struvite formation N2 - The precipitation of struvite, a magnesium ammonium phosphate hexahydrate (MgNH₄PO₄ · 6H₂O) mineral, from wastewater is a promising method for recovering phosphorous. While this process is commonly used in engineered environments, our understanding of the underlying mechanisms responsible for the formation of struvite crystals remains limited. Specifically, indirect evidence suggests the involvement of an amorphous precursor and the occurrence of multi-step processes in struvite formation, which would indicate non-classical paths of nucleation and crystallization. In this study, we use synchrotron-based in situ x-ray scattering complemented by cryogenic transmission electron microscopy to obtain new insights from the earliest stages of struvite formation. The holistic scattering data captured the structure of an entire assembly in a time-resolved manner. The structural features comprise the aqueous medium, the growing struvite crystals, and any potential heterogeneities or complex entities. By analysing the scattering data, we found that the onset of crystallization causes a perturbation in the structure of the surrounding aqueous medium. This perturbation is characterized by the occurrence and evolution of Ornstein-Zernike fluctuations on a scale of about 1 nm, suggesting a non-classical nature of the system. We interpret this phenomenon as a liquid-liquid phase separation, which gives rise to the formation of the amorphous precursor phase preceding actual crystal growth of struvite. Our microscopy results confirm that the formation of Mg-struvite includes a short-lived amorphous phase, lasting >10 s. KW - Physical and theoretical chemistry KW - Non-classical crystallization KW - Struvite KW - Liquid-liquid-phase-separation KW - Nucleation KW - Crystallization KW - In-situ scattering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584766 DO - https://doi.org/10.1063/5.0166278 SN - 1089-7690 VL - 159 IS - 13 SP - 1 EP - 12 PB - AIP Publishing CY - Woodbury, NY AN - OPUS4-58476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Sokolowski-Tinten, K. T1 - Probing laser-driven structure formation at extreme scales in space and time N2 - Irradiation of solid surfaces with intense ultrashort laser pulses represents a unique way of depositing energy into materials. It allows to realize states of extreme electronic excitation and/or very high temperature and pressure and to drive materials close to and beyond fundamental stability limits. As a consequence, structural changes and phase transitions often occur along unusual pathways and under strongly nonequilibrium conditions. Due to the inherent multiscale nature — both temporally and spatially—of these irreversible processes, their direct experimental observation requires techniques that combine high temporal resolution with the appropriate spatial resolution and the capability to obtain good quality data on a single pulse/event basis. In this respect, fourth-generation light sources, namely, short wavelength and short pulse free electron lasers (FELs), are offering new and fascinating possibilities. As an example, this talk will discuss the results of scattering experiments carried out at the FLASH free electron laser at DESY (Hamburg, Germany), which allowed us to resolve laser-induced structure formation at surfaces on the nanometer to submicron length scale and in temporal regimes ranging from picoseconds to several nanoseconds with sub-picosecond resolution. The current status and future perspectives in this field via exploiting the unique possibilities of these 4th-generation light sources will be discussed. T2 - Seminar, Instituto de Óptica, CSIC CY - Madrid, Spain DA - 05.10.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Free electron laser (FEL) KW - Time-resolved scattering KW - Capillary waves PY - 2023 AN - OPUS4-58517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - OECD Prüfrichtlinie 125 N2 - Diese Präsentation ist eine Einführung in die OECD TG 125 zur Bestimmung der Partikelgrößen von Nanomaterialien. Es wird auf die verchiedenen Probleme der Partikelgrößenbestimmung eingegangen wie z.B. verschiedene Oberflächenschichten, Äquivalenzdurchmesser und Verteilungsfunktionen. Gleichzeitig werden die neuen Begrifflichkeiten eingeführt, die in der TG 125 definiert neu werden. T2 - BAM Akademie Digitaler Info-Tag "Nano or not Nano" CY - Online meeting DA - 16.02.2023 KW - Nano KW - Partikel KW - Größe KW - Partikeldurchmesser KW - Äquivalenzdurchmesser PY - 2023 AN - OPUS4-58449 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Differentielles Mobilitäts Analyse System (DMAS) N2 - Die Bestimmung der Nanopartikelgrößen- und -formverteilung nach OECD TG 125 mit einem Differentiellen Mobilitäts Analyse System (DMAS), auch bekannt als SMPS, wird vorgestellt: - Generelles Messprinzip - Welchen Durchmesser misst die Methode? - Welche Partikel kann diese Methode messen? - Welche Informationen kann diese Methode liefern? - Wo stößt die Methode an ihre Grenzen? - Implementierung und Datenauswertung, - Reporting. Anschließend wurde eine Q&A-Session für DMAS/SMPS organisiert. T2 - BAM Akademie Digitaler Info-Tag "Nano or not Nano" CY - Online meeting DA - 16.02.2023 KW - Partikel KW - Nanopartikel KW - SMPS KW - Größenbestimmung KW - DMAS PY - 2023 AN - OPUS4-58450 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Correlative Morphological-Chemical Imaging of Nanostructured Materials N2 - Newly developed methodical approaches with an emphasis on correlative imaging analysis of morphology and chemistry of nanomaterials will be presented. Correlative imaging by high-resolution SEM with STEM-in-SEM as well as with EDS, and further with AFM, or with the new technique TKD (Transmission Kikuchi Diffraction) will be explained on various examples of nanostructures, both as starting materials and as embedded/functionalized nanoparticles in products. The unique analytical benefits of the Auger electron probe as a veritable nano-tool for the local surface chemistry will be highlighted. Examples of hybrid analysis of the bulk of nanomaterials by X-ray Spectroscopy and the highest surface-sensitive methods XPS and ToF-SIMS as advanced surface characterization methods available in the Competence Centre nano@BAM will be showed. Particularly for the spatially resolved analysis of the chemistry of nanostructures, such in-depth and lateral gradients of chemistry within mesoporous thin layers, or the completeness of the shells of core-shell nanoparticles, the latter methods are inherent. Other dedicated developments like approaches for the quantitative determination of the porosity of thin mesoporous layers by electron probe microanalysis (EPMA) with SEM or the quantitative determination of the roughness of particle surface by high-resolution imaging with electron microscopy will be also presented. T2 - Conference on Applied Surface and Solid Material Analysis AOFKA 2023 CY - Zurich, Switzerland DA - 11.09.2023 KW - Correlative imaging KW - Electron microscopy KW - X-ray spectroscopy KW - Nanostructures PY - 2023 UR - https://aofka23.scg.ch/ AN - OPUS4-58338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terborg, R. A1 - Procop, Mathias T1 - Theoretical calculation and experimental determination of x-ray production efficiencies for copper, zirconium, and tungsten N2 - The X-ray intensities of the K-, L- and M-lines of copper, zirconium and tungsten have been measured with an energy-dispersive X-ray spectrometer of known efficiency as function of photon energy. X-ray production efficiencies were determined from the measured intensities for Kα- and L-series of Cu and Zr and for the L- and M-series of W. These data were compared to calculated X-ray production efficiencies based on the widely used matrix correction models of Pouchou and Pichoir (XPP) and Bastin (PROZA96). Our results indicate that a replacement of the stopping power in the PROZA96 algorithm by expressions of Joy and Jablonski has only a minor influence on the calculated X-ray production efficiencies. In contrast, the modifications of the ionization cross-section show a stronger effect. We replaced the ionization cross-sections for K lines of the PROZA96 algorithm with different models. The results for L- and M-Lines are different. For the L-lines of Cu the original XPP and PROZA96 models show the best agreement while using the Bote cross-sections result in an overestimation. For the Zr-L and W-L1, -L2, -L3 X-ray production efficiencies, the Bote cross-sections lead to a significant improvement compared to all other models. The original XPP model represents the best agreement for the M5 efficiencies but underestimates the M4 efficiencies. There is no superior model or modification because the parameter sets in the models need to be aligned to each other. However, using the ionization cross-sections of Bote, which are based on quantum mechanical calculations, show promising results in many cases. KW - X-ray production efficiency KW - EPMA KW - Copper KW - Zirconium KW - Tungsten PY - 2023 DO - https://doi.org/10.1093/micmic/ozad067.110 SN - 1435-8115 VL - 29 IS - Supplement 1 SP - 245 EP - 246 PB - Oxford University Press CY - Oxford AN - OPUS4-58339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Eckert, J. G. A1 - Lutowski, M. A1 - Geißler, D. A1 - Hertwig, A. A1 - Hidde, G. A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Influence of nanoparticle encapsulation and encoding on the surface chemistry of polymer carrier beads N2 - Surface-functionalized polymer beads encoded with molecular luminophores and nanocrystalline emitters such as semiconductor nanocrystals, often referred to as quantum dots (QDs), or magnetic nanoparticles are broadly used in the life sciences as reporters and carrier beads. Many of these applications require a profound knowledge of the chemical nature and total number of their surface functional groups (FGs), that control bead charge, colloidal stability, hydrophobicity, and the interaction with the environment and biological systems. For bioanalytical applications, also the number of groups accessible for the subsequent functionalization with, e.g., biomolecules or targeting ligands is relevant. In this study, we explore the influence of QD encoding on the amount of carboxylic acid (COOH) surface FGs of 2 μm polystyrene microparticles (PSMPs). This is done for frequently employed oleic acid and oleylamine stabilized, luminescent core/shell CdSe QDs and two commonly used encoding procedures. This included QD addition during bead formation by a thermally induced polymerization reaction and a post synthetic swelling procedure. The accessible number of COOH groups on the surface of QD-encoded and pristine beads was quantified by two colorimetric assays, utilizing differently sized reporters and electrostatic and covalent interactions. The results were compared to the total number of FGs obtained by a conductometric titration and Fourier transform infrared spectroscopy (FTIR). In addition, a comparison of the impact of QD and dye encoding on the bead surface chemistry was performed. Our results demonstrate the influence of QD encoding and the QD-encoding strategy on the number of surface FG that is ascribed to an interaction of the QDs with the carboxylic acid groups on the bead surface. These findings are of considerable relevance for applications of nanoparticle-encoded beads and safe-by-design concepts for nanomaterials. KW - Optical spectroscopy KW - Particle KW - Optical assay KW - IR spectroscopy; conductometry KW - Fluorescence KW - Quantum yield KW - Quality assurance KW - Nano KW - Synthesis KW - Surface chemistry KW - Quantification KW - Method PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581502 DO - https://doi.org/10.1038/s41598-023-38518-7 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-58150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, J. A1 - Güttler, Arne A1 - Schneider, T. A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Fluorescence Quantum Yield Standards for the UV/Visible/NIR: Development, Traceable Characterization, and Certification N2 - The rational design of next generation molecular and nanoscale reporters and the comparison of different emitter classes require the determination of the fluorometric key performance parameter fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. Main prerequisites for reliable Φf measurements, which are for transparent luminophore solutions commonly done relative to a reference, i.e., a fluorescence quantum yield standard of known Φf, are reliable and validated instrument calibration procedures to consider wavelength-, polarization-, and time-dependent instrument specific signal contributions, and sufficiently well characterized fluorescence quantum yield standards. As the standard’s Φf value directly contributes to the calculation of the sample’s Φf, its accuracy presents one of the main sources of uncertainty of relative Φf measurements. To close this gap, we developed a first set of 12 fluorescence quantum yield standards, which absorb and emit in the wavelength region of 330−1000 nm and absolutely determined their Φf values with two independently calibrated integrating sphere setups. Criteria for standard selection and the configuration of these novel fluorescence reference materials are given, and the certification procedure is presented including homogeneity and stability studies and the calculation of complete uncertainty budgets for the certified Φf values. The ultimate goal is to provide the community of fluorescence users with available reference materials as a basis for an improved comparability and reliability of quantum yield data since the measurement of this spectroscopic key property is an essential part of the characterization of any new emitter. KW - Optical spectroscopy KW - Traceability KW - Reference product KW - Dye KW - Fluorescence KW - Quantum yield KW - Reference material KW - Reference data KW - Certification KW - Quality assurance PY - 2023 DO - https://doi.org/10.1021/acs.analchem.2c05530 VL - 95 SP - 5671 EP - 5677 PB - American Chemical Society AN - OPUS4-58151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Schiek, Manuela A1 - dePréville, Sophie A1 - Hoffmann, Johannes T1 - Ellipsometry as a tool for electrical metrology - Referencing electrical properties of thin layers with TCO materials N2 - Ellipsometry is a highly valuable technology for bridging different measurement methods. As a fast, highly sensitive, and non-destructive optical technique with low environmental requirements, it is ideal for transporting measurement accuracy and for up-scaling measurements in the production environment. It can be used for highly precise determination of properties, material identity and correctness confirmation, as well as defect detection. Comparable, traceable, and accurate electrical measurements, especially at small scales are one of the biggest challenges in the development of the electrical and electronic devices of the future. In this project, we develop structured thin layer systems of the transparent conductive material indium tin oxide (ITO) to prove the concept of using these systems as standards for conductivity and permittivity. The layers are produced in a reactive magnetron sputtering process from raw ITO targets with additional oxidation achieved by oxygen injection. We present results of a study correlating the coating process conditions with the properties of the final layer material. We found that especially the temperature development during coating is of key importance and determines the layer properties to a large extent. We will discuss questions of homogeneity and reproducibility of the coating processes used. The finished layers undergo lithographic structuring and etching to produce patterns to serve as reference structures for scanning probe electrical measurements. TCOs have a large variety of applications. In this work we also study the usability of ITO for other purposes and investigate the stability of this material under application conditions. T2 - 12th Workshop Ellipsometry 2023 CY - Prague, Czech Republic DA - 18.09.2023 KW - Thin Films KW - Transparent Conductive Oxides KW - Ellipsometry KW - Electrical Properties KW - Nanoelectronics PY - 2023 AN - OPUS4-58410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Forschung in einer Bundesoberbehörde wie der BAM N2 - Die Bundesanstalt für Materialforschung und -prüfung (BAM) ist eine forschende Bundesoberbehörde und Einrichtung der Ressortforschung der Bundesrepublik Deutschland. Unter ihrer Leitlinie „Sicherheit in Technik und Chemie“ ist sie zuständig für die öffentliche technische Sicherheit und für metrologische Aufgaben in der Chemie. Das Aufgabenspektrum der BAM, das sich an aktuellen Fragestellungen aus Wissenschaft, Wirtschaft, Politik und Normung orientiert, bietet sehr viele interessante Tätigkeitsfelder für Naturwissenschaftler*Innen und Ingenieur*Innen. T2 - WIFO Leipzig 2023 CY - Leipzig, Germany DA - 05.09.2023 KW - Quality assurance KW - Optical spectroscopy KW - Certification KW - Reference product KW - Integrating sphere spectroscopy KW - Fluorescence KW - Quantum yield KW - Reference material KW - Reference data KW - Traceability KW - Nano KW - Particle KW - Analytical chemistry KW - Sensor KW - Safety PY - 2023 AN - OPUS4-58397 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oskolkova, Tatiana O. A1 - Matiushkina, Anna A. A1 - Borodina, Lyubov' N. A1 - Smirnova, Ekaterina S. A1 - Dadadzhanova, Antonina I. A1 - Sewid, Fayza A. A1 - Veniaminov, Andrey V. A1 - Moiseeva, Ekaterina O. A1 - Orlova, Anna O. T1 - FRET‐Amplified Singlet Oxygen Generation by Nanocomposites Comprising Ternary AgInS2/ZnS Quantum Dots and Molecular Photosensitizers N2 - Antibacterial photodynamic therapy (a‐PDT) has emerged as a promising non‐invasive therapeutic modality that utilizes the combination of a photosensitive agent, molecular oxygen, and excitation light to generate reactive oxygen species (ROS), demonstrating remarkable activity against multidrug‐resistant bacterial infections. However, the effective use of conventional photosensitizers is significantly limited by a number of their shortcomings, namely, poor water solubility and low selectivity. Herein, we present a novel biocompatible water‐soluble nanocomposite based on hydrophobic tetraphenylporphyrin (TPP) molecules and hydrophilic ternary AgInS2/ZnS quantum dots incorporated into a chitosan matrix as an improved photosensitizer for a‐PDT. We demonstrated that TPP molecules could be successfully transferred into chitosan solution while remaining primarily in the form of monomers, which are capable of singlet oxygen generation. We performed a detailed analysis of the Förster resonance energy transfer (FRET) between quantum dots and TPP molecules within the nanocomposite and proposed the mechanism of the singlet oxygen efficiency enhancement via FRET. KW - Nano KW - Particle KW - Quantum dot KW - Fluorescence KW - Synthesis KW - Optical spectroscopy KW - Energy transfer KW - Quality assurance KW - Lifetime KW - Quantum yield PY - 2024 DO - https://doi.org/10.1002/cnma.202300469 SN - 2199-692X VL - 10 IS - 3 SP - 1 EP - 11 PB - Wiley AN - OPUS4-59728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dal Molin, E. S. A1 - Henning, L. M. A1 - Müller, J. T. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Bekheet, M. F. A1 - Gurlo, A. A1 - Simon, U. T1 - Robocasting of ordered mesoporous silica‐based monoliths: Rheological, textural, and mechanical characterization N2 - Hierarchically porous, high‐surface‐area silica materials are excellent candidates for multiple applications like catalysis and environmental remediation. Shaping these materials with additive manufacturing (AM) techniques, like robocasting, could enable their use with the benefit of on‐demand, customized shaping and maximizing performance. Herein, ordered mesoporous silica COK‐12 slurries were robocasted into monoliths, containing different ratios of uncalcined COK‐12 and sodium bentonite (0–25 wt.%). The rheology of the mixed slurries is characterized by lower flow indexes (0.69 vs. 0.32) and higher yield stresses (96 vs. 259 Pa) compared to pure COK‐12 ones. Monoliths were printed in woodpile structures and calcined at 600°C. Micro‐CT measurements showed a linear shrinkage of 25% after calcination. Mechanical characterization showed increased uniaxial strength (0.20 ± 0.07 to 1.0 ± 0.3 MPa) with increasing binder/solids ratio from 13 to 25%. The amorphous, mesoporous structure of COK‐12 was retained. The structures exhibited open porosities of 52 ± 4% and showed higher specific mesopore volumes, and increased average mesopore size (6 vs. 8 nm) compared to COK‐12. Small‐angle x‐ray scattering analysis revealed an increased lattice parameter (10.3 vs. 11.0 nm) and reduced wall thickness (3.1 nm vs. 4.1 nm) of the COK‐12 in the monoliths. These properties indicate suitability for their application as porous supports and adsorbents. KW - Industrial and Manufacturing Engineering KW - Additive manufacturing KW - OMS KW - Porous materials KW - Robocasting KW - X-ray scattering KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582503 DO - https://doi.org/10.1002/nano.202300109 VL - 4 IS - 11-12 SP - 615 EP - 631 PB - Wiley-VCH GmbH AN - OPUS4-58250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Labrador-Paez, Lucia, L. A1 - Kankare, J. A1 - Hyppanen, I. A1 - Soukka, T. A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Widengren, J A1 - Liu, H. T1 - Frequency-Domain Method for Characterization of Upconversion Luminescence Kinetics N2 - The frequency-domain (FD) method provides an alternative to the commonly used time-domain (TD) approach in characterizing the luminescence kinetics of luminophores, with its own strengths, e.g., the capability to decouple multiple lifetime components with higher reliability and accuracy. While extensively explored for characterizing luminophores with down-shifted emission, this method has not been investigated for studying nonlinear luminescent materials such as lanthanide-doped upconversion nanoparticles (UCNPs), featuring more complicated kinetics. In this work, employing a simplified rate-equation model representing a standard two-photon energy-transfer upconversion process, we thoroughly analyzed the response of the luminescence of UCNPs in the FD method. We found that the FD method can potentially obtain from a single experiment the effective decay rates of three critical energy states of the sensitizer/activator ions involved in the upconversion process. The validity of the FD method is demonstrated by experimental data, agreeing reasonably well with the results obtained by TD methods. KW - Quality assurance KW - Luminescence KW - Method KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Lifetime KW - Method development PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597435 DO - https://doi.org/10.1021/acs.jpclett.3c00269 SP - 3436 EP - 3444 AN - OPUS4-59743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Minenkov, Alexey A1 - Hollweger, Sophia A1 - Duchoslav, Jiri A1 - Erdene-Ochir, Otgonbayar A1 - Weise, Matthias A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Schiek, Manuela T1 - Monitoring the Electrochemical Failure of Indium Tin Oxide Electrodes via Operando Ellipsometry Complemented by Electron Microscopy and Spectroscopy N2 - Transparent conductive oxides such as indium tin oxide (ITO) are standards for thin film electrodes, providing a synergy of high optical transparency and electrical conductivity. In an electrolytic environment, the determination of an inert electrochemical potential window is crucial to maintain a stable material performance during device operation. We introduce operando ellipsometry, combining cyclic voltammetry (CV) with spectroscopic ellipsometry, as a versatile tool to monitor the evolution of both complete optical (i.e., complex refractive index) and electrical properties under wet electrochemical operational conditions. In particular, we trace the degradation of ITO electrodes caused by electrochemical reduction in a pH-neutral, water-based electrolyte environment during electrochemical cycling. With the onset of hydrogen evolution at negative bias voltages, indium and tin are irreversibly reduced to the metallic state, causing an advancing darkening, i.e., a gradual loss of transparency, with every CV cycle, while the conductivity is mostly conserved over multiple CV cycles. Post-operando analysis reveals the reductive (loss of oxygen) formation of metallic nanodroplets on the surface. The reductive disruption of the ITO electrode happens at the solid–liquid interface and proceeds gradually from the surface to the bottom of the layer, which is evidenced by cross-sectional transmission electron microscopy imaging and complemented by energy-dispersive X-ray spectroscopy mapping. As long as a continuous part of the ITO layer remains at the bottom, the conductivity is largely retained, allowing repeated CV cycling. We consider operando ellipsometry a sensitive and nondestructive tool to monitor early stage material and property changes, either by tracing failure points, controlling intentional processes, or for sensing purposes, making it suitable for various research fields involving solid–liquid interfaces and electrochemical activity. KW - General Materials Science PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597625 DO - https://doi.org/10.1021/acsami.3c17923 SN - 1944-8252 VL - 16 IS - 7 SP - 9517 EP - 9531 PB - American Chemical Society (ACS) AN - OPUS4-59762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - New analytic ways to characterise mesoporous thin layers used in electrocatalytic water splitting N2 - Mesoporous materials are needed in many applications where a high specific surface area and adsorptive behaviour is needed. Important examples are separation techniques and barrier layers and catalysts. Electrochemical water splitting is the key technology for producing green hydrogen and there is no foreseeable alternative to this process for producing elementary hydrogen from green electrical power. Water electrolysis can be divided into the anodic Oxygen Evolution Reaction (OER) and the cathodic Hydrogen Evolution Reaction (HER). Both processes have to be heavily optimised to a large extent to avoid energy losses caused by overvoltage. The development of electrodes for these processes is especially difficult due to the many boundary conditions. Water splitting is a catalytic as well as electrochemical process. The contact area between the electrolyte and the electrode must be maximised maintaining the stability of the surface. Side reactions must be suppressed, and effective gas transport must be ensured. The whole process has to be tolerant with respect to temperature, harsh chemical conditions from the electrolyte as well as high current densities. We present a hybrid analytical method combining several analytical techniques for determining the properties of thin layers of mixed oxides of the general composition Ir:TiOx. These materials are promising candidates for electrocatalytical top coatings of OER electrodes. To lower the costs of the electrolysers, the main goal is to lower the Ir content retaining the system efficiency. The main properties which are hard to determine are the porous volume fraction and the Ir:Ti element ratio. By a combination of electron microscopy, spectroscopic operando ellipsometry, ellipsometric porosimetry, and other techniques, we can determine key features of mesoporous thin layer materials. We aim to develop operando capable techniques used in process monitoring as well as measurement techniques optimised for accuracy. By developing reference materials, we support long term uptake of our methodology. This work can directly be used for optimising electrocatalytic layers and is a good example for the power of hybrid metrology for improving materials design. T2 - International Conference on Resource Chemistry CY - Alzenau, Germany DA - 11.03.2024 KW - Ellipsometry KW - Electrocatalytic Water Splitting KW - Mesoporous Materials KW - Electron Probe Microanalysis KW - Hydrogen Generation PY - 2024 AN - OPUS4-59764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schiek, Manuela A1 - Minenkov, Alexey A1 - Hollweger, Sophia A1 - Duchoslav, Jiri A1 - Erdene-Ochir, Otgonbayar A1 - Weise, Matthias A1 - Ermilova, Elena A1 - Hertwig, Andreas T1 - Optical constants of In2O3-SnO2 (Indium tin oxide, ITO) N2 - Optical constants of In2O3-SnO2 (Indium tin oxide, ITO) Minenkov et al. 2024: on glass; n,k 0.191–1.69 µm Optical constants of In2O3-SnO2 (Indium tin oxide, ITO) Minenkov et al. 2024: on Si wafer, top; n,k 0.191–1.69 µm Optical constants of In2O3-SnO2 (Indium tin oxide, ITO) Minenkov et al. 2024: on Si wafer, bottom; n,k 0.191–1.69 µm KW - Indium Tin Oxide KW - Optical constants KW - Magnetron Sputtering KW - Electrochemical Degradation KW - Spectroscopic Ellipsometry PY - 2024 UR - https://refractiveindex.info/?shelf=other&book=In2O3-SnO2&page=Minenkov-glass UR - https://refractiveindex.info/?shelf=other&book=In2O3-SnO2&page=Minenkov-wafer-top UR - https://refractiveindex.info/?shelf=other&book=In2O3-SnO2&page=Minenkov-wafer-bottom PB - Refractiveindex.info AN - OPUS4-59766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knapic, D. A1 - Mardare, A. I. A1 - Voss, Heike A1 - Bonse, Jörn A1 - Hassel, A. W. T1 - Corrosion study of picosecond-laser structured and anodized Ti6Al4V for bone screws N2 - A corrosion study is performed on six variations of titanium grade 5 (Ti6Al4V) samples. Samples are prepared in different conditions by variation of preanodization, postanodization, and picosecond-laser (ps-laser) surface treatment, while polished and anodized samples serve as reference. Microcones and nanosized periodic surface features are successfully produced on Ti6Al4V samples. The morphology and topography of the structures are visualized by scanning electron microscopy and white light interference microscopy. Furthermore, the relative electrochemically active surface area (ECSA) is determined for the ps-laser-treated samples. It is determined that the preanodized and laser-treated sample has 3.5 times larger ECSA than a polished sample, and that the laser-treated sample has 4.1 times larger area. Moreover, Tafel analysis is performed to determine the corrosion properties of the samples. It is shown that the corrosion resistance improves for both laser-structured samples after the anodization. To further study the surface of the samples, electrochemical impedance spectroscopy measurements are conducted. The study indicates that the ps-laser-treated and anodized Ti6Al4V is suitable to be used for the fabrication of bone screws and plates due to its improved corrosion resistance as compared to nonanodized samples. KW - Laser-induced periodic surface structures (LIPSS) KW - Anodization KW - Bone screws KW - Implant material KW - Titanium alloys PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597890 DO - https://doi.org/10.1002/pssa.202300609 SN - 1862-6319 VL - 221 SP - 1 EP - 8 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-59789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Herausforderungen bei der Granulometrie von (technischen) Nano-Pulvern N2 - Einführungsvortrag im Rahmen der Veranstaltung der BAM-Akademie zur Anwendung der OECD TG 124 "Volume Specific Surface Area of Manufactured Nanomaterials" zu Herausforderungen bei der Granulometrie von Nanopulvern. Es werden die Einflüsse von Partikelform, Breite der Partikelgrößenverteilung und Agglomeration/ Aggregation auf das Messergebnis sowie die Vergleichbarkeit der Ergebnisse verschiedener Messverfahren dargelegt. T2 - BAM Akademie II: Info-Tage "Nano or not Nano" CY - Online meeting DA - 25.01.2024 KW - Nanopulver KW - Granulometrie KW - Partikelgröße KW - VSSA KW - OECD TG 124 PY - 2024 AN - OPUS4-59558 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emamverdi, Farnaz A1 - Huang, J. A1 - Mosane Razavi, Negar A1 - Bojdys, M. J. A1 - Forster, A. B. A1 - Budd, P. M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Molecular Mobility and Gas Transport Properties of Mixed Matrix Membranes Based on PIM‑1 and a Phosphinine Containing Covalent Organic Framework N2 - Polymers with intrinsic microporosity (PIMs) are gaining attention as gas separation membranes. Nevertheless, they face limitations due to pronounced physical aging. In this study a covalent organic framework containing λ5-phosphinine moieties, CPSF-EtO were incorporated as a nanofiller (concentration range 0-10 wt%) into a PIM-1 matrix forming dense films with a thickness of ca. 100 μm. The aim of the investigation was to investigate possible enhancements of gas transport properties and mitigating effects on physical aging. The incorporation of the nanofiller occurred on aggregate level with domains up to 100 nm as observed by T-SEM and confirmed by X-ray scattering. Moreover, the X-ray data show that the structure of the microporous network of the PIM-1 matrix is changed by the nanofiller. As the molecular mobility is fundamental for gas transport as well as for physical aging, the study includes dielectric investigations of pure PIM-1 and PIM-1/CPSF-EtO mixed matrix membranes to establish a correlation between the molecular mobility and the gas transport properties. Using the time-lag method the gas permeability and the permselectivity were determined for N2, O2, CH4 and CO2 for samples with variation in filler content. A significant increase in the permeability of CH4 and CO2 (50 % increase compared to pure PIM-1) was observed for a concentration of 5 wt% of the nanofiller. Furthermore, the most pronounced change in the permselectivity was found for the gas pair CO2/N2 at a filler concentration of 7 wt%. KW - Polymers of Intrinsic Microporosity KW - Nanocomposites PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595031 DO - https://doi.org/10.1021/acs.macromol.3c02419 SN - 0024-9297 VL - 57 IS - 4 SP - 1829 EP - 1845 PB - ACS Publications AN - OPUS4-59503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Sokolowski‐Tinten, Klaus T1 - Probing Laser‐Driven Structure Formation at Extreme Scales in Space and Time N2 - Irradiation of solid surfaces with high intensity, ultrashort laser pulses triggers a variety of secondary processes that can lead to the formation of transient and permanent structures over a large range of length scales from mm down to the nano‐range. One of the most prominent examples are LIPSS – Laser‐Induced Periodic Surface Structures. While LIPSS have been a scientific evergreen for of almost 60 years, experimental methods that combine ultrafast temporal with the required nm spatial resolution have become available only recently with the advent of short pulse, short wavelength free electron lasers. Here, the current status and future perspectives in this field are discussed by exploiting the unique possibilities of these 4th‐generation light sources to address by time‐domain experimental techniques the fundamental LIPSS‐question, namely why and how laser irradiation can initiate the transition of a “chaotic” (rough) surface from an aperiodic into a periodic structure. KW - Laser-induced periodic surface structures (LIPSS) KW - Free electron laser KW - Pump-probe experiments KW - Time-resolved scattering KW - Capillary waves PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595048 DO - https://doi.org/10.1002/lpor.202300912 SN - 1863-8899 VL - 18 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-59504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - O'Connor, Daniel A1 - Evans, Alexander A1 - Balsamo, Alessandro A1 - Favres, Georges A1 - Przyklenk, Anita A1 - Bosse, Harald A1 - Phillips, Dishi T1 - European Metrology Network (EMN) for Advanced Manufacturing Development of the Strategic Research Agenda (SRA) N2 - The European Commission has identified Advanced Manufacturing and Advanced Materials as two of six Key Enabling Technologies (KETs). It is considered that Metrology is a key enabler for the advancement of these KETs. Consequently, EURAMET, the association of metrology institutes in Europe, has strengthened the role of Metrology for these KETs by enabling the creation of a European Metrology Network (EMN) for Advanced Manufacturing. The EMN is comprised of National Metrology Institutes (NMIs) and Designated Institutes (DIs) from across Europe and was formally established in October 2021. The aim of the EMN is to provide a high-level coordination of European metrology activities for the Advanced Manufacturing community. The EMN itself is organized in three sections representing the major stages of the manufacturing chain: 1) Advanced Materials, 2) Smart Manufacturing Systems, and 3) Manufactured Components & Products. The EMN for Advanced Manufacturing is engaging with stakeholders in the field of Advanced Manufacturing (large companies & SMEs, industry organisations, existing networks, and academia), as well as the wider Metrology community, including Technical Committees, to provide input for the Strategic Research Agenda (SRA) on Metrology for Advanced Manufacturing. This contribution will give an overview about the first version of the SRA prepared by the EMN for Advanced Manufacturing. T2 - Euspen, 23rd International Conference & Exhibitio CY - Copenhagen, Danmark DA - 13.06.2023 KW - European Metrology Network (EMN) KW - Advanced Manufacturing KW - Metrology KW - Strategic Research Agenda (SRA) PY - 2023 AN - OPUS4-59176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bartczack, Dorota A1 - Taché, Olivier A1 - Hodoroaba, Vasile-Dan T1 - Report on the homogeneity assessment of bimodal gold materials (nPSize1 and nPSize2) and particle number concentration by frequency method N2 - The main objective was to assess homogeneity of two bimodal gold materials, namely nPsize1 and nPSize2, containing approximately 1:1 and 10:1 particle number-based ratio of ~30nm and ~60nm particles. Particle number-based concentration within the two size fractions was determined with spICP-MS using the particle frequency method of calibration. KW - Nanoparticles KW - Homogeneity KW - Particle number concentration KW - Gold KW - nPSize PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595451 DO - https://doi.org/10.5281/zenodo.10654245 SP - 1 EP - 5 PB - Zenodo CY - Geneva AN - OPUS4-59545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Schwibbert, Karin A1 - Richter, Anja M. A1 - Krüger, Jörg T1 - Laserstrukturierte Oberflächen Ein Weg zur Kontrolle der Biofilmbildung? N2 - Bakterielle Biofilme stellen in medizinischen und industriellen Bereichen ein ernsthaftes Problem dar. Eine der größten gesellschaftlichen Herausforderungen liegt in der zunehmenden Resistenz von Bakterien gegen Biozide, die bei antimikrobiellen Behandlungen eingesetzt werden, z.B. durch übermäßigen Einsatz in Medizin, Industrie und Landwirtschaft oder durch Reinigung und Desinfektion in Privathaushalten. Daher sind neue effiziente bakterienabweisende Strategien, die den Einsatz von Bioziden vermeiden, dringend erforderlich. Ein vielversprechender Weg zur Erzielung bakterienabweisender Oberflächen liegt in der berührungslosen und aseptischen großflächigen Laserbearbeitung von technischen Oberflächen. Maßgeschneiderte Oberflächentexturen, ermöglicht durch verschiedene Laserbearbeitungsstrategien, die zu topographischen Skalen im Bereich von Nanometern bis Mikrometern führen, können eine Lösung für diese Herausforderung darstellen. In dem Vortrag wird ein Überblick über den aktuellen Stand der Technik bei der subtraktiven Texturierung von Laseroberflächen zur Kontrolle der Biofilmbildung bei verschiedenen Bakterienstämmen und in unterschiedlichen Umgebungen gegeben. Auf der Grundlage spezifischer Eigenschaften von Bakterien und laserbearbeiteten Oberflächen werden die Herausforderungen antimikrobieller Oberflächendesigns erörtert und zukünftige Richtungen aufgezeigt. T2 - GRAVOSeminar, GRAVOmer Kompetenznetzwerk CY - Online meeting DA - 28.02.2024 KW - Laser-Materialbearbeitung KW - Ultrakurzpuls-Laser KW - Biofilme KW - Antibakterielle Oberflächen KW - Oberflächenfunktionalisierung PY - 2024 UR - https://gravomer.de/veranstaltungen-anzeigen/laserstrukturierte-oberflaechen-ein-weg-zur-kontrolle-der-biofilmbildung AN - OPUS4-59594 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Einführung: Volume Specific Surface Area (VSSA) N2 - Im Rahmen der 2. BAM-Akademie-Veranstaltung "Nano or not Nano" wurde die OECD TG 124 "Volume Specific Surface Area of Manufactured Nanomaterials" vorgestellt. Der Vortrag enthält ein Einführung zur VSSA mit Definitionen, Vorteilen und Einschränkungen. T2 - BAM Akademie II: Info-Tage "Nano or not Nano" CY - Online meeting DA - 25.01.2024 KW - Nano powder KW - VSSA KW - Specific surface KW - OECD TG PY - 2024 AN - OPUS4-59560 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Skelettdichte mittels Gaspyknometrie N2 - Im Rahmen des 2. BAM-Akademie Info-Tages "Nano or not Nano" wurde die OECD TG 124 "Volume Specific Surface Area of Manufactured Nanomaterials" vorgestellt. Der Vortrag beschreibt detailliert das Messverfahren der He-Gaspyknometrie zur Bestimmung der Skelettdichte von Pulvern und geht auf Anwendbarkeit, Besonderheiten bei Nanopulvern und wichtige Einstellparameter für die Messung ein. T2 - BAM Akademie II: Info-Tage "Nano or not Nano" CY - Online meeting DA - 25.01.2024 KW - Pycnometry KW - Density KW - Nano powder PY - 2024 AN - OPUS4-59561 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Erzeugung und Charakterisierung anisotroper Nanostrukturen durch Ultrakurzpulslaser N2 - Der Vortrag gibt einen Überblick über die Erzeugung und Charakterisierung anisotroper Nanostrukturen mittels ultrakurzgepulster Laserstrahlung. Besonderes Augenmerk liegt dabei auf dem Phänomen der sogenannten Laser-induzierten periodischen Oberflächen-Nanostrukturen auf dielektrischen Werkstoffen und ihrer zeitlichen Dynamik. Weitere Beispiele von Volumen-Nanostrukturen aus der Literatur werden diskutiert. T2 - 21. Treffen des DGG-DKG Arbeitskreises „Glasig-kristalline Multifunktionswerkstoffe“ CY - Mainz, Germany DA - 22.02.2024 KW - Laser-induzierte periodische Oberflächen-Nanostrukturen KW - Quarzglas KW - Saphir KW - Bessel-Strahlen PY - 2024 AN - OPUS4-59565 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Kun A1 - Carrod, Andrew J. A1 - Del Giorgio, Elena A1 - Hughes, Joseph A1 - Rurack, Knut A1 - Bennet, Francesca A1 - Hodoroaba, Vasile-Dan A1 - Harrad, Stuart A1 - Pikramenou, Zoe T1 - Luminescence Lifetime-Based Sensing Platform Based on Cyclometalated Iridium(III) Complexes for the Detection of Perfluorooctanoic Acid in Aqueous Samples N2 - Luminescence lifetimes are an attractive analytical method for detection due to its high sensitivity and stability. Iridium probes exhibit luminescence with long excited-state lifetimes, which are sensitive to the local environment. Perfluorooctanoic acid (PFOA) is listed as a chemical of high concern regarding its toxicity and is classified as a “forever chemical”. In addition to strict limits on the presence of PFOA in drinking water, environmental contamination from industrial effluent or chemical spills requires rapid, simple, accurate, and cost-effective analysis in order to aid containment. Herein, we report the fabrication and function of a novel and facile luminescence sensor for PFOA based on iridium modified on gold surfaces. These surfaces were modified with lipophilic iridium complexes bearing alkyl chains, namely, IrC6 and IrC12, and Zonyl-FSA surfactant. Upon addition of PFOA, the modified surfaces IrC6-FSA@Au and IrC12-FSA @Au show the largest change in the red luminescence signal with changes in the luminescence lifetime that allow monitoring of PFOA concentrations in aqueous solutions. The platform was tested for the measurement of PFOA in aqueous samples spiked with known concentrations of PFOA and demonstrated the capacity to determine PFOA at concentrations >100 μg/L (240 nM). KW - Perfluorooctanoic Acid (PFOA) KW - Cyclometalated iridium (III) complexes KW - Luminescent lifetime KW - Optically active surfaces KW - ToF-SIMS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594535 UR - https://pubs.acs.org/doi/10.1021/acs.analchem.3c04289 DO - https://doi.org/10.1021/acs.analchem.3c04289 VL - 96 IS - 4 SP - 1565 EP - 1575 PB - American Chemical Society (ACS) AN - OPUS4-59453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krenzer, Julius A1 - Mueller, Thomas A1 - El Abbassi, Abdelouahad A1 - Resch-Genger, Ute A1 - Petrov, Eugene T1 - Aroyl-S,N-ketene acetal based bichromophores exhibiting energy transfer and aggregation induced (dual) emission N2 - A series of aroyl-S,N-ketene acetal based bichromophores is readily synthesized by Buchwald-Hartwig amination and Ullmann reaction in moderate to good yields. The aminated aroyl-S,N-ketene acetals are emissive in the solid state and in the aggregate, but not in solution, thus, they are AIEgens (aggregation induced emission chromogens). Aggregation is induced by fractional alternation of the solvent mixture, here by increasing the water fraction of ethanol/water mixtures. For most derivatives, the emission upon induced aggregation stems solely from the aroyl-S,N-ketene acetal chromophore, regardless whether excitation occurs at the absorption maximum of the triarylamine or the aroyl-S,N-ketene acetal. Therefore, a pronounced energy transfer from the triarylamine donor to the aroyl-S,N-ketene acetal acceptor can be inferred. The color of the emission can be controlled by choosing the para-aroyl substituent. A partial energy transfer could also be observed for some bichromophores, leading to aggregation-induced dual emission (AIDE). In addition, four examples of aminated diaroyl-S,N-ketene acetals were added to the compound library. The electron-withdrawing properties of the additional aroyl group provide a bathochromic shift of the emission band of the aroyl-S,N-ketene acetal. These bichromophores also show AIDE and in one case even aggregation-induced white light emission as a result of additive color mixing. T2 - Beilstein Symposium on pi-Conjugated Molecules and Materials CY - Limburg, Germany DA - 07.11.2023 KW - aggregation-induced dual emission (AIDE) PY - 2023 AN - OPUS4-59006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Driscoll, Laura L. A1 - Driscoll, Elizabeth H. A1 - Dong, Bo A1 - Sayed, Farheen N. A1 - Wilson, Jacob N. A1 - O’Keefe, Christopher A. A1 - Gardner, Dominic J. A1 - Grey, Clare P. A1 - Allan, Phoebe K. A1 - Michalchuk, Adam A. L. A1 - Slater, Peter R. T1 - Under pressure: offering fundamental insight into structural changes on ball milling battery materials N2 - Synthesis of Li ion battery materials via ball milling has been a huge area of growth, leading to new high-capacity electrode materials, such as a number of promising disordered rocksalt (DRS) phases. In prior work, it was generally assumed that the synthesis was facilitated simply by local heating effects during the milling process. In this work, we show that ball milling Li2MoO4 leads to a phase transformation to the high pressure spinel polymorph and we report electrochemical data for this phase. This observation of the formation of a high pressure polymorph shows that local heating effects alone cannot explain the phase transformation observed (phenakite to spinel) and so indicates the importance of other effects. In particular, we propose that when the milling balls collide with the material, the resulting shockwaves exert a localised pressure effect, in addition to local heating. To provide further support for this, we additionally report ball milling results for a number of case studies (Li2MnO3, Li2SnO3, Nb2O5) which reinforces the conclusion that local heating alone cannot explain the phase transformations observed. The work presented thus provides greater fundamental understanding of milling as a synthetic pathway and suggests potential strategies to prepare such samples without milling (e.g., doping to create internal chemical pressure). In addition, we suggest that further research is needed into the effect of the use of milling as a route to smaller particles, since we believe that such milling may also be affecting the surface structure of the particles through the influence of the shockwaves generated. KW - Pollution KW - Nuclear Energy and Engineering KW - Sustainability and the Environment KW - Environmental Chemistry KW - Renewable Energy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590086 DO - https://doi.org/10.1039/d3ee00249g VL - 16 IS - 11 SP - 5196 EP - 5209 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Design and Quantitative Characterization of Functional Molecular Chromophores and Nanomaterials with UV/vis/NIR/IR Emission – An Overview of Research Activities in Division Biophotonics N2 - In the focus of division Biophotonics are the design, preparation, analytical and spectroscopic characterization, and application of molecular and nanoscale functional materials, particularly materials with a photoluminescence in the visible, near infrared (NIR) and short-wave infrared (SWIR). This includes optical reporters for bioimaging and sensing, security and authentication barcodes, and materials for solid state lighting, energy conversion, and photovoltaics. For the identification of optimum particle structures quantitative spectroscopic studies are performed under application-relevant conditions, focusing on the key performance parameter photoluminescence quantum yield. In addition, simple, cost-efficient, and standardizable strategies for quantifying functional groups on the surface of nano- and microparticles are developed, here with a focus on optical assays and electrochemical titration methods, cross-validated by more advanced methods such as quantitative NMR. In addition, reference materials and reference products are developed for optical methods, particularly luminescence techniques, and for analytical methods utilized for the characterization of nanomaterials. T2 - Projekttreffen Nile-Chrome 2.0 CY - Mainz, Germany DA - 11.12.2023 KW - Fluorescence KW - Quantum yield KW - Optical spectroscopy KW - Reference material KW - Reference data KW - Quality assurance KW - Dye KW - Reference product KW - NIR KW - SWIR KW - Nano KW - Particle KW - Silica KW - Polymer KW - Surface group analysis KW - Sensor molecules PY - 2023 AN - OPUS4-59123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya A1 - Di Giacomo, Bruno A1 - Srivastava, Priyanka A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - A Multimodal Approach to Quantify Surface Functional Groups and Ligands on Amorphous Silica Nanoparticles N2 - Nowadays amorphous silica nanoparticles (SiO2-NP) are one of the most abundant engineered nanomaterials, that are highly stable and can be easily produced on a large scale at low cost. Surface functionalized SiO2-NP are of great interest in the life and material sciences, as they can be used e.g. as drug carriers, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications. Their performance in such applications depends not only on particle size, size distribution, and morphology, but also on surface chemistry, i.e. the total number of surface functional groups (FG) and the number of FG accessible for subsequent functionalization with ligands or biomolecules, which in turn determines surface charge, colloidal stability, biocompatibility, and toxicity. Aiming at the development of simple, versatile, and multimodal tools for the quantification of many bioanalytically relevant FG and ligands, we investigated and compared various analytical methods commonly used for FG quantification. This includes electrochemical titration methods, dye-based optical assays, and other instrumental analytical techniques such as nuclear magnetic resonance and thermal analysis methods. The potential of our multimodal approach for FG quantification was demonstrated for commercial and custom-made silica particles of varying FG, showing not only an influence of the synthesis methods on the number of FG but also on the performance. In the future, our strategy can contribute to establish multi-method characterization strategies to provide a more detailed picture of the structure-properties relationship. T2 - Advanced Materials Safety 2023 CY - Saarbrücken, Germany DA - 08.11.2023 KW - Amorphous silica particles KW - Surface group analysis KW - Ligands KW - Reference material KW - Optical spectroscopy KW - Quantitative NMR KW - Optical assays KW - Titration KW - Engineered nanomaterials KW - Advanced Materials PY - 2023 AN - OPUS4-59124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Srivastava, Priyanka A1 - Scholtz, Lena A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute T1 - Multicolored sensors based on silica and polymeric particles for ratiometric monitoring of pH, oxygen and saccharides N2 - In recent years, the use of functionalized micro- and nanomaterials has increased rapidly for a wide range of applications in the life and material sciences, due to their unique properties in combination with their high surface-to-volume ratio and stability. For instance, functionalized micro- and nanomaterials, that are labeled or stained with a multitude of sensor dyes can be used for monitoring, and quantification of neutral and ionic analytes. These materials have several advantages as compared to conventional molecular probes like enhanced brightness, ease of designing ratiometric systems by combining analyte-sensitive and inert reference dyes, and increased photostability. Moreover, stained nanoparticles can enable the use of hydrophobic dyes in aqueous environments. Versatile templates and carriers for the fabrication of nanosensors by staining and/or labeling with different fluorophores and sensor molecules are biocompatible silica and polymeric particles, because they can be synthesized in large scales at low costs with different surface chemistries. Here we present our work on multicolored sensors for the measurement of pH, oxygen and saccharides utilizing commercially available or in-house synthesized silica and polymeric particles. T2 - 4th European Biosensor Symposium 2023 CY - Aachen, Deutschland DA - 27.08.2023 KW - Nano- and microsensors KW - Silica and polystyrene nanoparticles KW - PH probe KW - Ratiometric sensors KW - Optical spectroscopy KW - Dye KW - Saccharide sensing KW - Multicolored PY - 2023 AN - OPUS4-59125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - A Multimodal Approach to Quantify Surface Functional Groups on Nanomaterials for Safe and Sustainable by Design N2 - Engineered nanomaterials (NM) with their large surface-to-volume ratios and their for some materials observed size-dependent functional properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing and electronics or food and consumer products. The performance and safety of NM are determined by the sum of their intrinsic physicochemical properties. Especially, the particle surface chemistry, which is largely controlled by the chemical nature and density of functional groups (FG) and ligands, is an important key driver for NM performance, stability, and processibility as well as the interaction of NM with the environment. Thus, methods for FG quantification can foster the sustainable development of functional and safe(r) NM. Aiming at the development of simple, versatile, and multimodal tools for the quantification of many bioanalytically relevant FG and ligands, we investigated and compared various analytical methods commonly used for FG quantification. This includes electrochemical titration methods, dye-based optical assays, and other instrumental analytical techniques such as nuclear magnetic resonance and thermal analysis methods. The potential of our multimodal approach for FG quantification was demonstrated for commercial and custom-made polymeric and silica particles of varying FG, used as optical pH sensors. In the future, our strategy can contribute to establish multi-method characterization strategies to provide a more detailed picture of the structure-properties relationship. T2 - NanoSAFE & NanoSafety Cluster 2023 CY - Grenoble, France DA - 05.06.2023 KW - Engineered Nanomaterials KW - Safe-by-Design KW - Sustainable-by-Design KW - Surface Group Analysis KW - Silica and Polystyrene Particles KW - Surface Modification KW - Dye KW - Optical Spectroscopy KW - Quantitative NMR KW - Electrochemical Titration KW - Functionalized Nanomaterials KW - Nanosafety PY - 2023 AN - OPUS4-59126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - Development of multimodal methods to quantify the total and accessible number of functional groups and ligands on nanomaterials N2 - Engineered and tailored nanomaterials (NM) are of great interest in the life and material sciences, as they can be used, e.g., as drug carriers, barcodes, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications. Their performance and safety depend not only on their particle size, size distribution, and morphology, but also on their surface chemistry, i.e., the total number of surface functional groups (FG) and the number of FG accessible for subsequent functionalization with ligands or biomolecules, which in turn determines surface charge, colloidal stability, biocompatibility, and toxicity. It also underlines the importance of validated analytical methods that provide accurate information on these application-relevant physicochemical properties with a known uncertainty. In the case of FG quantification, this calls for robust, fast, inexpensive, and reliable methods which allow for the characterization of a broad variety of NM differing in size, chemical composition, and optical properties. Methods Aiming at the development of simple, versatile, and multimodal tools for the quantification of bioanalytically relevant FG such as amine, carboxy, thiol, and aldehyde functionalities, we investigated and compared various analytical methods commonly used for FG quantification. This includes electrochemical titration methods, dye-based optical assays, and other instrumental analytical techniques such as nuclear magnetic resonance (NMR), mass spectrometry (MS), and thermal analysis methods. Results Here, we will present examples for different types of NMs and FGs including results from a currently running interlaboratory comparison (ILC) with the National Research Council of Canada (NRC) to pave the road for method standardization. Innovative aspects • Surface analysis • Performance and safety of nanomaterials • Standardization T2 - ANAKON 2023 CY - Vienna, Austria DA - 11.04.2023 KW - Engineered Nanomaterials KW - Surface group analysis KW - Optical spectroscopy KW - Quantitative NMR KW - Ligands KW - Dye KW - Particle synthesis KW - Optical Assays KW - Titration KW - Safe-by-Design KW - Nano KW - Nanosafety KW - Silica- and Polystyrene Particles PY - 2023 AN - OPUS4-59127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Embedding and cross-sectioning as a sample preparation procedure for accurate and representative size and shape measurement of nanopowders N2 - Reliable measurement of the size of polydisperse, complex-shaped commercial nanopowders is a difficult but necessary task, e.g., for regulatory requirements and toxicity risk assessment. Suitable methods exist for the accurate characterization of the size of non-aggregated, stabilized, spherical and monodisperse nanoparticles. In contrast, industrial nanoscale powders usually require dedicated sample preparation procedures developed for the analysis method of choice. These nano-powders tend to agglomerate and/or aggregate, a behavior which in combination with an innate broad particle size distribution and irregular shape often significantly alters the achievable accuracy of the measured size parameters. The present study systematically tests two commercially available nanoscale powders using different sample preparation methods for correlative analysis by scanning electron microscopy, dynamic light scattering, Brunauer–Emmet–Teller method and differential mobility analysis. One focus was set on the sample preparation by embedding nanoparticles in carbon-based hot-mounting resin. Literature on this topic is scarce and the accuracy of the data extracted from cross sections of these particles is unclearly stated. In this paper systematic simulations on the deviation of the size parameters of well-defined series of nanoparticles with different shapes from the nominal value were carried out and the contributing factors are discussed. KW - Nanopowder KW - Electron microscopy KW - Sample preparation KW - Cross-sectioning KW - Cerium oxide KW - Zinc oxide PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593289 DO - https://doi.org/10.1038/s41598-023-51094-0 SN - 2045-2322 VL - 14 SP - 1 EP - 10 PB - Springer Nature CY - London AN - OPUS4-59328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, Y. A1 - Gruner, A. A1 - Aboud, D. G. K. A1 - Bonse, Jörn A1 - Schille, J. A1 - Loeschner, U. A1 - Kietzig, A.-M. T1 - Polarization effects on laser-inscribed angled micro-structures N2 - The polarization of the laser beam exhibits more substantial differences in laser micromachining as the angle of incidence deviates from zero. In the reported work, our focus was to explore the effects of circularly, p- and s-polarized laser on angled ultrashort pulse laser micromachining of micropillar arrays. The examination encompassed laser process factors, including angles of incidence, microstructure dimensions, and inter-pillar spacing. A comparison between the resulting structures demonstrated that p-polarized laser beam was the most efficient in material removal in angled laser micromachining, followed by circularly polarized laser. While the s-polarized beam exhibited the lowest ablation efficiency among the three. Such distinction is mainly attributed to the distinguishing reflectivity of the three states of polarization on tilted planes. The development of structural heights during ablation processes was examined, and potential defects in laser processing methodologies were interpreted. The dependency of structural heights on inter-pillar spacing was analyzed. This study bridges the gap between existing studies on angled ultrashort pulse laser machining and the influences of polarization on laser machining. The comparison between structures produced using laboratory-scale and industrial-scale laser systems also yielded pertinent recommendations for facilitating a smooth transition of angled laser micromachining from laboratory-scale research to industrial applications. KW - Laser processing KW - Laser-induced periodic surface structures (LIPSS) KW - Microstructures KW - Nanostructures PY - 2024 UR - https://www.sciencedirect.com/science/article/pii/S0169433223028714 DO - https://doi.org/10.1016/j.apsusc.2023.159191 SN - 0169-4332 VL - 649 SP - 1 EP - 15 PB - Elsevier AN - OPUS4-59329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Liaison of ISO/TC 202 Microbeam Analysis with VAMAS/TWA 37 Quantitative Microstructural Analysis N2 - The progress in activities on Microbeam Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 is presented and discussed with respect to the identification and launching corresponding VAMAS projects. The ongoing project "FIB sample processing for TEM" is presented in detail. T2 - 30th Meeting of ISO/TC 202 Microbeam Analysis CY - Berlin, Germany DA - 22.11.2023 KW - VAMAS KW - ISO/TC 202 KW - Microbeam Analysis KW - Standardisation KW - Electron microscopy KW - FIB PY - 2023 AN - OPUS4-58984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan ED - Hodoroaba, Vasile-Dan T1 - Liaison Report from ISO/TC 202 'Microbeam Analysis' to ISO/TC 229 'Nanotechnologies' N2 - Liaison activities within ISO/TC 202 'Microbeam Analysis' which are relevant to ISO/TC 229 'Nanotechnologies' are reported acoording to the structure defined by ISO/TC229 Nanotechnologies Liaisons Coordination Group (NLCG): new standards/documents, coordination issues, and further detailed specific information, e.g. publications, events, comments. KW - ISO/TC 229 Nanotechnologies KW - ISO/TC 202 Microbeam Analysis KW - Standardisation PY - 2023 SP - 1 EP - 3 CY - ISO, Geneva, CH AN - OPUS4-58986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - O'Connor, Daniel A1 - Evans, Alexander A1 - Balsamo, Alessandro A1 - Favres, Georges A1 - Przyklenk, Anita A1 - Bosse, Harald A1 - Phillips, Dishi T1 - European Metrology Network (EMN) for Advanced Manufacturing ─ Development of the Strategic Research Agenda (SRA) N2 - The European Commission has identified Advanced Manufacturing and Advanced Materials as two of six Key Enabling Technologies (KETs). It is considered that Metrology is a key enabler for the advancement of these KETs. Consequently, EURAMET, the association of metrology institutes in Europe, has strengthened the role of Metrology for these KETs by enabling the creation of a European Metrology Network (EMN) for Advanced Manufacturing. The EMN is comprised of National Metrology Institutes (NMIs) and Designated Institutes (DIs) from across Europe and was formally established in October 2021. The aim of the EMN is to provide a high-level coordination of European metrology activities for the Advanced Manufacturing community. The EMN itself is organized in three sections representing the major stages of the manufacturing chain: 1) Advanced Materials, 2) Smart Manufacturing Systems, and 3) Manufactured Components & Products. The EMN for Advanced Manufacturing is engaging with stakeholders in the field of Advanced Manufacturing (large companies & SMEs, industry organisations, existing networks, and academia), as well as the wider Metrology community, including Technical Committees, to provide input for the Strategic Research Agenda (SRA) on Metrology for Advanced Manufacturing. This contribution will give an overview about the first version of the SRA prepared by the EMN for Advanced Manufacturing T2 - Euspen, 23rd International Conference & Exhibitio CY - Copenhagen, Danmark DA - 12.06.2023 KW - European Metrology Network (EMN) KW - Advanced Manufacturing KW - Metrology KW - Strategic Research Agenda (SRA) PY - 2023 SP - 363 EP - 364 AN - OPUS4-59196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Weise, Matthias A1 - Grundmann, Jana A1 - Bodermann, Bernd A1 - Klapetek, Petr A1 - Hoffmann, Johannes A1 - de Preville, Sophie T1 - Imaging spectroscopic ellipsometry for investigation of energy materials and materials for nano-electronics N2 - Ellipsometry is a very powerful tool used for accurate material investigation in a wide wavelength range. It is a non-destructive and fast method. Imaging ellipsometry as a combination of optical microscopy and ellipsometry enables spatially resolved measurements when determining the layer thickness and dielectric properties of thin layers. It is known for its high polarisation sensitivity and high contrast for the surface structures. In this contribution we show the application of the imaging ellipsometry for detection of defects in energy materials and quality validation of possible reference materials for nano-electronics. Defects in wide bandgap semiconductors, in homoepitaxial SiC and heteroepitaxial GaN layers on transparent SiC substrates, can be successfully detected and classified by means of imaging ellipsometry. Correlation of imaging ellipsometry results with results from complementary techniques such as white light interference microscopy as well as atomic force microscopy contribute to understanding of surface topography and defect formation mechanisms. We discuss the potential of different methods for analysing ellipsometric map data for monitoring the defect densities. Electric properties of materials at the nanoscale can be investigated by means of scanning probe microscopy methods such as scanning microwave microscopy and conductive atomic force microscopy. However, development of new robust and easy-to-use calibration methods and calibration standards is essential to increase the traceability of these methods and allow their broad application in industry. We show how imaging spectroscopic ellipsometry can be used for development and monitoring of processing quality of patterned reference samples based on indium tin oxide (ITO) layer with different thickness and conductivity. T2 - 12th Workshop on Spectroscopic Ellipsometry (WSE) CY - Prague, Czech Republic DA - 18.09.2023 KW - Ellipsometry KW - Thin Films KW - Transparent Conductive Oxides KW - Energy materials KW - White light interference microscopy KW - Nanoelectronics KW - Wide-bandgap semiconductors PY - 2023 AN - OPUS4-59340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Kneiske, Sönke A1 - Guilherme Buzanich, Ana A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - A fluorolytic sol-gel route to access an amorphous Zr fluoride catalyst: A useful tool for C-F bond activation N2 - A route to a ZrF4 catalyst active in room temperature Friedel–Crafts and dehydrofluorination reactions was developed via a fluorolytic sol–gel route, which was followed by a postfluorination step using a stream of CHClF2. The behaviour of different Zr(IV) precursors in a sol–gel reaction with anhydrous isopropanol/HF solution was investigated. The subsequent post-fluorination step was optimised in its temperature ramp and confirmed the necessity of a fluorination of the generated xerogels to obtain catalytic activity. The process is discussed in the context of the analysis of the materials using Brunauer–Emmett–Teller analysis (BET), powder X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The local structure of the amorphous catalyst was elucidated by extended X-ray absorption fine structure spectroscopy (EXAFS). KW - Catalysis KW - Heterogeneous catalysis KW - C-F bond activation KW - Postfluorination PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593433 DO - https://doi.org/10.1039/D3CY01439H SN - 2044-4761 SP - 1 EP - 8 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Focused ion beam techniques beyond the ordinary - Methodological developments within ADVENT N2 - This poster presents the focused ion beam preparation methodologies developed within the framework of the EU funded EURAMET project ADVENT (Advanced Energy-Saving Technology). It summarises the key breakthroughs achieved for various in situ investigation techniques, e.g. in situ experiments at the Synchrotron facility BESSY II (IR-SNOM and XRS), TEM and SMM instrumentation. The created experimental devices from diverse thin-film semiconductor materials paved the way to dynamic structural studies bearing the potential to determine nanoscale correlations between strain and electric fields and, moreover, for the fundamental development of new in situ capabilities. N2 - Dieses Poster zeigt die FIB Präparationstechniquen, die im Rahmen des EU-finanzierten EURAMET-Projekts ADVENT (Advanced Energy Saving Technology) entwickelt wurden. Es fasst die wichtigsten Errungenschaften zusammen, die für verschiedene in situ Untersuchungstechniken erzielt wurden, z.B. situ-Experimente in dem Synchrotronring BESSY II (IR-SNOM und XRS), in situ TEM Experimente und für die SMM Technik. Die experimentellen Probenstrukturen, die aus verschiedenen Dünnschicht-Halbleitermaterialien erzeugt wurden, ebneten den Weg für dynamische Strukturstudien, die das Potenzial haben, nanoskalige Korrelationen zwischen Dehnung und elektrischen Feldern zu bestimmen und darüber hinaus neue in situ Messmethoden zu entwickeln. T2 - Final Meeting CY - Online Meeting DA - 30.06.2020 KW - FIB KW - Sample preparation KW - In situ KW - TEM KW - AFM PY - 2020 AN - OPUS4-51606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cornelsen Sampaio Kling, I. A1 - Pauw, Brian Richard A1 - Jacome, Leonardo A. A1 - Archanjo, B. S. A1 - Simão, R. A. T1 - Development and characterization of starch film and the incorporation of silver nanoparticles N2 - Starch is one of the biopolymers being used for bioplastic synthesis. For production, starch can be combined with different plasticizers, starches from different plant sources and even with nanomaterials to improve or to add film properties. The challenge of adding these, e.g. in the form of silver nanoparticles (AgNp) is to determine the concentration so as to avoid impairing the properties of the film, agglomeration or altering the visual characteristics of the film. In this study, a starch film synthesis route and the incorporation of silver nanoparticles has been proposed in order not to alter the properties of the film while maintaining the transparency and a clear colour of the starch film. The results showed that the proposed synthesis route is promising, efficient, reproducible, fast and the film has good mechanical properties. T2 - Semana MetalMat & Painal PEMM 2020 CY - Online meeting DA - 23.11.2020 KW - Biofilm KW - Silver nanoparticle KW - Starch KW - Starch nanoparticle PY - 2020 SP - 1 EP - 2 AN - OPUS4-51940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Porta-Velilla, L. A1 - Martínez, E. A1 - Frechilla, A. A1 - Castro, M. A1 - de la Fuente, G. F. A1 - Bonse, Jörn A1 - Angurel, L. A. T1 - Grain orientation, angle of incidence, and beam polarization effects on ultraviolet 300 ps-laser-induced nanostructures on 316L stainless steel N2 - Laser-induced periodic surface structures (LIPSS) represent a unique route for functionalizing materials through the fabrication of surface nanostructures. Commercial AISI 316L stainless steel (SS316L) surfaces are laser treated by ultraviolet 300 ps laser pulses in a laser line scanning (LLS) approach. Processing parameters are optimized (pulse energy of 2.08 µJ, pulse repetition frequency of 300 kHz, and suitable laser scan and sample displacement rates) for the generation of low spatial frequency LIPSS over a large 25 × 25 mm2 area. Different angles of incidence of the laser radiation (0°, 30°, and 45°) and different linear laser beam polarizations (s and p) produce a plethora of rippled surface morphologies at distinct grains. Scanning electron microscopy and 2D Fourier transforms, together with calculations of the optical energy deposited at the treated surfaces using Sipe's first-principles electromagnetic scattering theory, are used to study and analyze in detail these surface morphologies. Combined with electron backscattering diffraction, analyses allow associating site-selectively various laser-induced-surface morphologies with the underlying crystalline grain orientation. Resulting grain orientation maps reveal a strong impact of the grain crystallographic orientation on LIPSS formation and point toward possible strategies, like multi-step processes, for improving the manufacturing of LIPSS and their areal coverage of polycrystalline technical materials. KW - Laser-induced periodic surface structures (LIPSS) KW - Steel KW - Grain orientation KW - Electron backscattering diffraction (EBSD) KW - Laser processing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588929 DO - https://doi.org/10.1002/lpor.202300589 SN - 1863-8899 SP - 1 EP - 21 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella T1 - (Nano-)Partikel-Tracking-Analyse (PTA/NTA) N2 - Einführung in die Partikelgrößenbestimmung von (Nano)Materialien mittels NTA/PTA. Normative Grundlagen (ISO 19430:2016 und ASTM E2834), Messprinzip, Messgeräte, Einflussfaktoren und Besonderheiten, Implementierung, Informationsgehalt der Daten, Reporting. T2 - BAM Akademie: Info-Tage "NANO OR NOT NANO" CY - Online meeting DA - 16.02.2023 KW - Partikelgrößenbestimmung KW - Partikelkonzentration KW - Nano KW - Standardisierung KW - Brownsche Molekularbewegung KW - Lichtstreuung PY - 2023 AN - OPUS4-59132 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Osipova, Viktoriia A1 - Tavernaro, Isabella A1 - Resch-Genger, Ute T1 - Incorporation of near-infrared light emitting chromium (III) complexes into silica nanoparticles and spectroscopic characterization N2 - In recent years, chromium (III) complexes have received a lot of attention as novel near-infrared (NIR) emitters triggered by the report on the first molecular ruby Cr(ddpd)2(BF4)3 with a high photoluminescence quantum yield of 13.7% of its near infrared (NIR) emission band and a long luminescence lifetime of 1.122 ms at room temperature.[1] However, in an oxygen-containing environment, the photoluminescence quantum yields and luminescence lifetimes of these chromium(III) complexes show only very small values. This hampers their application as NIR luminescence labels. This application, that cannot be tackled by conventional deoxygenating approaches, requires suitable strategies to protect the luminescence of the chromium(III) complexes from oxygen quenching. An elegant approach to reduce the undesired luminescence quenching by triplet oxygen explored by us presents the incorporation of these chromium(III) complexes into different types of amorphous, non-porous silica nanoparticles, that can be simply surface functionalized, e.g., with targeting ligands and/or other sensor molecules. In this work, as first proof-of-concept experiments, a set of chromium (III) complexes constituting of different ligands and counter anions, were embedded into the core of silica nanoparticles. Subsequently, the optical properties of the resulting luminescent silica nanoparticles were spectroscopically assessed by steady state and time-resolved luminescence spectroscopy. First results of time-resolved luminescence measurements confirm our design concept of nanoscale NIR emissive Cr(III) complex-based reporters T2 - Projekttreffen Nile-Chrome 2.0 CY - Mainz, Germany DA - 11.12.2023 KW - Cr(III) complex KW - NIR KW - Luminescence KW - Nano KW - Silica KW - Lifetime KW - Quantum Yields KW - Particle Synthesis KW - Sensors KW - Probe KW - Surface Group Analysis PY - 2023 AN - OPUS4-59149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - Behind the Paper - Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies N2 - In this contribution we highlight the importance of comparison for scientific research while developing a new, functional pH sensor system, and the valuable insights this can provide. KW - Dye KW - Optical Spectroscopy KW - pH probe KW - Silica and Polystyrene Particles KW - Nano KW - Surface groups KW - Safe-by-Design KW - Cell studies KW - Sensors KW - Particle Synthesis KW - Fluorescence PY - 2023 UR - https://communities.springernature.com/posts/dual-color-ph-probes-made-from-silica-and-polystyrene-nanoparticles-and-their-performance-in-cell-studies SP - 1 EP - 2 PB - Springer Nature CY - London AN - OPUS4-59150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Osipova, Viktoriia A1 - Srivastava, Priyanka A1 - Huang, Zixuan A1 - Merei, Rabih A1 - Resch-Genger, Ute T1 - Design of Fluorescent, Amorphous Silica-NPs and their Versatile Use in Sensing Applications N2 - Surface functionalized silica nanoparticles (SiO2-NP) gained great interest in the life and material sciences, as they can be used e.g. as drug carriers, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications. They are highly stable, are easily produced and modified on a large scale at low cost and can be labeled or stained with a multitude of sensor dyes. These dye modified particle conjugates have several advantages as compared to conventional molecular probes like enhanced brightness, ease of designing ratiometric systems by combining analyte-sensitive and inert reference dyes, and increased photostability. Moreover, stained nanoparticles can enable the use of hydrophobic dyes in aqueous environments. Here we present our work on multicolored sensors for the measurement of pH, oxygen and saccharides utilizing amorphous SiO2 NPs. T2 - Focus Area Day Analytical Sciences 2023 CY - Berlin, Germany DA - 20.04.2023 KW - Amorphous silica particles KW - Particle Synthesis KW - Nano KW - Ratiometric Sensors KW - Fluorescence KW - pH probe KW - Dye PY - 2023 AN - OPUS4-59151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Favres, Georges A1 - O'Connor, Daniel A1 - Balsamo, Alessandro A1 - Evans, Alexander A1 - Castro, Fernando A1 - Przyklenk, Anita A1 - Bosse, Harald T1 - European Metrology Network (EMN) for Advanced Manufacturing N2 - The European Commission has identified Advanced Manufacturing and Advanced Materials as two of six Key Enabling Technologies (KETs). By fully utilizing these KETs, advanced and sustainable economies will be created. It is considered that Metrology is a key enabler for the advancement of these KETs. EURAMET, the association of metrology institutes in Europe, has strengthened the role of Metrology for these KETs by enabling the creation of a European Metrology Network for Advanced Manufacturing. The EMN is made up of National Metrology Institutes (NMIs) and Designated Institutes (DIs) from across Europe and was formally established in October 2021. The EMN aims to provide a high-level coordination of European metrology activities for the Advanced Materials and Advanced Manufacturing community. The EMN itself is organized in three sections representing the major stages of the manufacturing chain: 1) Advanced Materials, 2) Smart Manufacturing Systems, and 3) Manufactured Components & Products. The EMN for Advanced Manufacturing is engaging with stakeholders in the field of Advanced Manufacturing and Advanced Materials (Large companies & SMEs, industry organisations, existing networks, and academia), as well as the wider metrology community (including TCs) to provide input for the preparation of a Strategic Research Agenda (SRA) for Metrology for Advanced Manufacturing. This presentation will describe the progress in the development of the SRA by the EMN for Advanced Manufacturing. The metrology challenges identified across the various key industrial sectors, which utilise Advanced Materials and Advanced Manufacturing will be presented. The EMN for Advanced Manufacturing is supported by the project JNP 19NET01 AdvManuNet. T2 - 21st International Metrology Congress, CIM 2023 CY - Lyon (Chassieu), France DA - 07.03.2023 KW - Advanced Materials KW - EMN KW - European Metrology Network for Advanced Manufacturing, Strategic Research Agenda KW - SRA PY - 2023 AN - OPUS4-59208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Chambers, Aaron P. A. A1 - Breßler, Ingo T1 - Glimpses of the Future ✨: Advancing X-ray Scattering in an Automated Materials Research Laboratory N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology1 let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators. Combined with automated data correction pipelines, and our analysis and simulation software, this led to more than 40 papers2 in the last 5 years with just over 2 full-time staff members. This year, our new, modular synthesis platform has made more than 1000 additional samples for us to analyse and catalogue. By virtue of the automation, the synthesis of these samples is automatically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases. Having developed these proof-of-concepts, we find that materials research itself is changed dramatically by automating dull tasks in a laboratory. This talk is intended to spark ideas and invite collaborations by providing an overview of: 1) the current improvements in our wide-range X-ray scattering laboratory methodology, 2) Introduce some of our open-source analysis and simulation software, touching on scattering, diffraction and PDF, and 3) introducing our open, modular robotic platform for systematic sample preparation. Finally, the remaining bottlenecks and points of attention across all three are highlighted. T2 - Swiss Society for Crystallography (SSCr) annual meeting CY - Zurich, Switzerland DA - 08.09.2023 KW - Lab automation KW - Fourier transforms KW - X-ray scattering KW - Robotic synthesis KW - Data stewardship KW - Holistic experimental procedures KW - MOUSE KW - Metal-organic frameworks KW - High-throughput measurements PY - 2023 AN - OPUS4-58237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolmangadi, Mohamed A. A1 - Zhuoqing, L. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Wuckert, E. A1 - Raab, A. A1 - Laschat, S. A1 - Huber, P. A1 - Schönhals, Andreas T1 - Confinement-suppressed phase transition and dynamic self-assembly of ionic superdiscs in ordered nanochannels: Implication for nanoscale applications N2 - Ionic Liquid Crystals are ionic liquids that exhibit liquid crystalline mesomorphism together with ionic conductivity. As known confined liquid crystal mesophases can show an anomalous dynamics and phase behavior. Investigations considering the factors controlling the macroscopic properties of ILCs in confinement are scare in the literature. This study reports the molecular mobility, and the phase transition behavior of a guanidinium based columnar ILC confined in the nanopores of self-ordered anodic aluminum oxide membranes of various pore diameters (25 – 180 nm) using Broadband Dielectric Spectroscopy (BDS), calorimetry and X-ray scattering. It is aimed to reveal in which way the pore size as well as the pore surface wettability (hydrophobic or hydrophilic) alters the molecular dynamics, and phase transition behavior for this system. These properties are crucial for applications. The DSC investigations reveal: (i) the phase transition temperature for the transition from the plastic crystalline to the crystalline-liquid state has non-monotonic dependence versus the inverse pore diameter and (ii) the transition from the liquid crystalline to the isotropic phase is suppressed for all nanoconfined samples. This transition suppressed in the thermal signal was evidenced by BDS and X-ray scattering. It is discussed as a continuous phase transition taking place in the pores instead of a discontinuous first order transition as observed for the bulk. BDS investigations show different relaxation processes for the bulk and the nanoconfined ILC. Molecular origins for various relaxation processes are discussed and suggested. It is further shown that the self-assembly of this ILC is dynamic in nature which might apply for other ILCs too. The obtained results will have implications for the nanoscale applications of ionic liquid crystals. KW - Ionic Liquid Crystals PY - 2023 DO - https://doi.org/10.1021/acsanm.3c02473 VL - 6 IS - 17 SP - 15673 EP - 15684 PB - ACS AN - OPUS4-58210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Chambers, Aaron P. A. A1 - Breßler, Ingo T1 - Digital Everything: X-ray Scattering and Synthesis Laboratories N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators. Combined with automated data correction pipelines, and our analysis and simulation software, this led to more than 40 papers in the last 5 years with just over 2 full-time staff members. This year, our new, modular synthesis platform has made more than 1000 additional samples for us to analyse and catalogue. By virtue of the automation, the synthesis of these samples is automatically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases. This talk is intended to spark ideas and invite collaborations by providing an overview of: 1) the current improvements in our wide-range X-ray scattering laboratory methodology, and 2) introducing our open, modular robotic platform for systematic sample preparation. T2 - Seminar at KIT CY - Karlsruhe, Germany DA - 17.08.2023 KW - Lab automation KW - Data stewardship KW - Scattering KW - X-ray scattering KW - Automated synthesis KW - Data pipelines PY - 2023 AN - OPUS4-58234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Everything SAXS Part 1: Introduction, Sample Requirements and Measurement "Space" N2 - This talk for the Swiss Society for Crystallography (SSCr) workshop on SAXS will introduce scattering from various angles, focusing in particular on: - Information content of X-ray scattering experiments, three entry points… - An introduction to Fourier Transforms - Sample criteria, compatibility, and selection - Key indicators of a measurement – where is the information? - Key indicators of measurement quality - Experiment planning, the basics T2 - Topical workshop of the Swiss Society for Crystallography CY - Zurich, Switzerland DA - 08.09.2023 KW - X-ray scattering KW - Data stewardship KW - Measurement science KW - MOUSE KW - Holistic experiment approaches PY - 2023 AN - OPUS4-58235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Everything SAXS Part 2: Data Processing, Workflow and Pitfalls N2 - The second talk for the Swiss Society for Crystallography (SSCr) workshop on SAXS will highlight the data processing challenges, holistic experimental workflow developments, and the pitfalls. In particular, the following items will be addressed: - The importance of data processing and estimating uncertainty - A universal correction pipeline – away with the headaches, at least for this step! - Experiment planning part 2, some tips and advice to improve your corrected data. - Sample preparation, background selection, some tips and advice to improve your corrected data. - Automate for your mental well-being; electronic logbooks, measurement catalogs and workflow management software - Life on the edge: several pitfalls to avoid… T2 - Topical workshop of the Swiss Society for Crystallography CY - Zurich, Switzerland DA - 08.09.2023 KW - X-ray scattering KW - MOUSE KW - Data processing KW - Uncertainties KW - Pitfalls PY - 2023 AN - OPUS4-58236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - SEM/EDS as THE Versatile and Powerful Tool for Micro and Nano Analysis N2 - The basic principles of generation of electrons and X-rays and the operation of SEM/EDS instruments are presented. Examples, recent successes and challenges in the analysis of nano-structures are given. Multi-method analytical approaches with the focus on imaging the nanoscale are highlighted. Details on the sample preparation and persepective on the automated analysis (sample preparation, measurement, data analyis and storage) are given. Metrological aspects, standardisation, and reference materials are also emphasized by examples. T2 - Training Course Metrological Determination of Micro and Nano Contaminants in Food CY - Berne, Switzerland DA - 05.09.2023 KW - SEM KW - EDS KW - Microanalysis KW - Nanoanalysis KW - Imaging PY - 2023 UR - https://www.sem.admin.ch/metas/en/home/dl/kurs_uebersicht/micro_nano_contaminants_in_food.html AN - OPUS4-58188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Durlo Tambara, Luis Urbano A1 - Matos, P. R. de A1 - Lima, G. T. S. A1 - Silvestro, L. A1 - Rocha, J.C. A1 - Campos, C. E. M. de A1 - Gleize, P. J. P. T1 - Influence of Nanosilica and Superplasticizer Incorporation on the Hydration, Strength, and Microstructure of Calcium Sulfoaluminate Cement Pastes N2 - This study investigated the effect of incorporating three types of nanosilica (NS), two powders, and one colloidal suspension on the hydration, strength, and microstructure of calcium sulfoaluminate (CSA) cement pastes prepared with and without a superplasticizer (SP). X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and compressive strength tests were performed after 2, 5, and 28 days of hydration. The results showed that both NS powders delayed cement hydration at an early age, which was attributed to particle agglomeration (confirmed by dynamic light scattering). Whereas well-dispersed colloidal NS did not significantly affect the hydration of CSA at the investigated ages. SP incorporation improved the dispersion of CSA cement particles, resulting in a 10% increase in the degree of hydration of ye’elimite at 28 days for the system without NS. Conversely, when the SP was incorporated in NS-containing mixtures, it hindered cement hydration of the systems with powdered NS, but did not significantly affect the cement hydration of the system containing colloidal NS. The SEM images suggested that the SP changed the ettringite morphology, thereby negatively affecting the mechanical strength of the CSA pastes. KW - Calcium sulfoaluminate (CSA) cement KW - Nanosilica (NS) KW - Hydration KW - Microstructure PY - 2023 DO - https://doi.org/10.1061/JMCEE7.MTENG-15570 SN - 0899-1561 VL - 35 IS - 7 SP - 04023216 PB - ASCE AN - OPUS4-57404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terborg, R. A1 - Kim, K. J. A1 - Hodoroaba, Vasile-Dan T1 - Elemental composition and thickness determination of thin films by electron probe microanalysis N2 - Electron probe microanalysis (EPMA) applies to solid samples of homogenous (bulk) chemical composition and can usually not be applied to structures which are inhomogeneous in the micrometer range such as thin film systems down to a few nm. However, in combination with the established thin film software Stratagem, the thickness as well as the elemental composition of thin films on a substrate can be determined. This has been recently successfully demonstrated for Fe-Ni on Si and Si-Ge on Al2O3 thin film systems. For both systems five samples of different elemental composition and a reference were produced and characterised by inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM) as reference values. Last year, a new and open-source thin film evaluation programme called BadgerFilm has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we reevaluated the data acquired for the Fe-Ni and Si-Ge systems using the BadgerFilm software package and compared the obtained elemental compositions and thickness values with the results of the Stratagem software and the reference methods. The conclusion is that the BadgerFilm software shows good agreement with the elemental composition and thickness calculated by Stratagem (mostly <2% for both composition and thickness) and with the reference values for two representative thin film systems (<1%–2% for composition and <10%–20% for thickness). KW - Elemental composition KW - EPMA KW - Film thickness KW - Thin films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576368 DO - https://doi.org/10.1002/sia.7183 SN - 0142-2421 VL - 55 SP - 496 EP - 500 PB - Wiley AN - OPUS4-57636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, W. A1 - Schweins, R. A1 - Nöcker, B. A1 - Kohlbrecher, J. A1 - Smales, Glen Jacob A1 - Huber, K. T1 - Comparative study of the co-assembly behaviour of 3-chloro-4-hydroxy-phenylazo dyes with DTAB N2 - The co-assembly of three one-fold negatively charged 3-chloro-4-hydroxy-phenylazo dyes (Yellow, Blue and Red) with the cationic surfactant dodecyltrimethylammoniumbromide (DTAB) was studied to probe dye–DTAB binding stoichiometry and assembly morphology. For each dye, phase separation was observed above a given dye : DTAB ratio with the ratio depending on the dye. While Yellow and DTAB showed liquid/liquid phase separation above Yellow : DTAB = 1 : 1.67, crystalline dye–DTAB complexes were observed for Blue–DTAB and Red–DTAB above Blue : DTAB = 1 : 2.56 and Red : DTAB = 1 : 2.94 respecively. In homogeneous solution, UV/vis spectroscopic investigations suggest stochiometries of Yellow : DTAB = 1 : 2, Blue : DTAB = 1 : 3 and Red : DTAB = 1 : 4. It was concluded, that Yellow exhibits the highest dye : DTAB binding stoichiometry in both, dye–surfactant complexes in the 2-phase region and in solution, whereas the lowest dye : DTAB binding stoichiometry was observed for Red–DTAB in both cases. The observed stoichiometries are inversely correlated to the impact dye addition has on the morphology of DTAB micelles. Generally, addition of dye to DTAB micelles leads to a reduction in spontaneous curvature of these micelles and to the formation of triaxial ellipsoidal or cylindrical micelles from oblate ellipsoidal DTAB micelles. At a DTAB concentration of 30 mM and a dye concentration of 5 mM, this effect was most pronounced for Red and least pronounced for Yellow, whilst Blue showed an intermediate effect. KW - Dye KW - DTAB KW - SAXS KW - Small-angle X-ray scattering KW - X-ray scattering KW - Data analysis KW - Micelle PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576978 DO - https://doi.org/10.1039/D3SM00501A SN - 1744-683X VL - 19 IS - 24 SP - 4588 EP - 4598 PB - Royal Society of Chemistry AN - OPUS4-57697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth Kinetics and Molecular Mobility of the Adsorbed Layer of Poly(bisphenol-A Carbonate) (PBAC), Polysulfone (PSU), and Poly (2-Vinyl Pyridine) (P2VP) N2 - Interactions between a polymer and a substrate interface play a vital role in understanding the improvement in thin film material properties as well as serving as a model for nanocomposites. For any non-repulsive polymer-substrate interactions, polymer segments form an irreversibly adsorbed layer and show a slowdown in the glassy dynamics and thus an increase in the thermal glass transition temperature compared to the bulk-like values. The growth kinetics of the adsorbed layer obey a two-step mechanism: formation of immobilized layer with flat segmental conformations and a loosely bound layer with stretched chains pinned to the surface. Here the adsorbed layer was studied for: poly (bisphenol-A carbonate) (PBAC) and polysulfone (PSU), two bulky polymers containing a functional group (phenyl ring) in the backbone and compared to poly (2-vinyl pyridine) (P2VP), where the backbone is a vinyl-derivative and the functional group (pyridine) is in the side chain. The growth kinetics for PBAC and PSU were found to deviate from the well-known mechanism, observed for polymers such as P2VP. Atomic force microscopy and ellipsometry were used for this investigation and was additionally supported by broadband dielectric spectroscopy. T2 - 11th International Conference on Times of Polymers (TOP) and Composites CY - Ischia, Italy DA - 11.06.2023 KW - Adsorbed Layer KW - Dielectric Spectroscopy KW - Atomic Force Microscopy KW - Ellipsometry KW - Growth Kinetics KW - Molecular Mobility PY - 2023 AN - OPUS4-57709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bawadkji, O. A1 - Cherri, M. A1 - Schäfer, A. A1 - Herziger, S. A1 - Nickl, Philip A1 - Achazi, K. A1 - Donskyi, Ievgen A1 - Adeli, M. A1 - Haag, R. T1 - One-pot covalent functionalization of 2D black phosphorus by anionic ring opening polymerization N2 - In this work, a one-pot approach for the covalent functionalization of few-layer black phosphorus (BP) by anionic ring opening polymerization of glycidol to obtain multifunctional BP-polyglycerol (BP-PG) with high amphiphilicity for near-infrared-responsive drug delivery and biocompatibility is reported. Straightforward synthesis in combination with exceptional biological and physicochemical properties designates functionalized BP-PG as a promising candidate for a broad range of biomedical applications. KW - 2D nanomaterial KW - Amphiphilicity KW - Black phosphorus KW - Hyperbranched KW - Polyglycerol KW - Water dispersibility PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568833 DO - https://doi.org/10.1002/admi.202201245 SN - 2196-7350 VL - 9 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Sokolowski-Tinten, K. A1 - Barty, A. A1 - Chapman, H. N. A1 - Bajt, S. A1 - Bogan, M. J. A1 - Boutet, S. A1 - Cavallerie, A. A1 - Düsterer, S. A1 - Frank, M. A1 - Hajdu, J. A1 - Hau-Riege, S. A1 - Marchesini, S. A1 - Stojanovic, N. A1 - Treusch, R. T1 - Formation of laser-induced periodic surface structures observed with extreme temporal and spatial resolution N2 - Laser-induced periodic surface structures (LIPSS) have gained remarkable attention as they represent a universal phenomenon that is often accompanying laser-processing. Such LIPSS enable a plethora of different surface functionalizations for applications in the fields of optics, fluidics, tribology, or medicine. Due to the inherent multiscale nature of processes involved in LIPSS formation, their in-situ observation requires experimental techniques that combine high temporal resolution with the appropriate spatial resolution. In this respect fourth generation light sources, namely short wavelength, short pulse free electron lasers (FELs) are offering new and fascinating possibilities. This work contribution will discuss the results of scattering experiments carried at the FLASH free electron laser at DESY (Hamburg, Germany), which allowed us to resolve laser-induced structure formation at surfaces on the nm to sub-µm length scale and in temporal regimes ranging from ps to several ns with sub-ps resolution. A ps-optical pump / fs-XUV scattering probe scheme was employed to 100 nm thick laser-excited silicon films, while recording snapshots of the transmitted XUV scattering patterns at various delay times after the laser pulse impact. On timescales ranging from hundred ps until several ns almost quantitative agreement was observed between certain features of the recorded scattering patterns and predictions of the first-principles theory of J.E. Sipe and coworkers. Other scattering features appearing with a delay of ~100 ps and lasting for ~1 ns are attributed to capillary surface waves being excited at the laser-melted film material while ablation proceeds. Our superior spatio-temporal resolution experiments allow to uniquely reveal and distinguish early signatures of coherent/plasmonic electromagnetic scattering effects, separately followed by hydrodynamic matter reorganization. T2 - EMRS Spring Meeting 2023, Symposium L “Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - XUV scattering KW - Free electron laser KW - Pump-probe KW - Capillary waves PY - 2023 AN - OPUS4-57601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - VAMAS Regional Workshop in Germany N2 - An overview on the VAMAS technical working areas (TWA) and projects where Germany is active has been given. The role of VAMAS as an international pre-standardisation platform, including its intense collaboration with international bodies ISO, CEN, OECD and CCQM and national organizations like DIN has been highlighted. T2 - VAMAS Regional Workshop 2023 - What can pre-normative research do for industry? CY - Online meeting DA - 24.01.2023 KW - VAMAS KW - Advanced materials KW - Inter-laboratory comparisons KW - Regional workshop PY - 2023 UR - https://www.bam-akademie.de/kursangebot/kurs/vamas-regional-workshop-2023-23.html?lang=en AN - OPUS4-57281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth Kinetics and Molecular Mobility of the adsorbed Layer of Poly(bisphenol-A Carbonate) (PBAC), Polysulfone (PSU), and Poly (2-Vinyl Pyridine) (P2VP) N2 - Interactions between a polymer and a substrate interface play a vital role in understanding the improvement in thin film material properties as well as serving as a model for nanocomposites. For any non-repulsive polymer-substrate interactions, polymer segments form an irreversibly adsorbed layer and show a slowdown in the glassy dynamics and thus an increase in the thermal glass transition temperature compared to the bulk-like values. The growth kinetics of the adsorbed layer obey a two-step mechanism: formation of immobilized layer with flat segmental conformations and a loosely bound layer with stretched chains pinned to the surface. Here the adsorbed layer was studied for: poly (bisphenol-A carbonate) (PBAC) and polysulfone (PSU), two bulky polymers containing a functional group (phenyl ring) in the backbone and compared to poly (2-vinyl pyridine) (P2VP), where the backbone is a vinyl-derivative and the functional group (pyridine) is in the side chain. The growth kinetics for PBAC and PSU were found to deviate from the well-known mechanism, observed for polymers such as P2VP. Atomic force microscopy and ellipsometry were used for this investigation and was additionally supported by broadband dielectric spectroscopy. T2 - Deutschen Physikalische Gesellschaft (DPG) Tagung CY - Dresden, Germany DA - 26.03.2023 KW - Thin films KW - Adsorbed Layer KW - Broadband dielectric spectroscopy KW - Atomic force microscopy KW - Growth Kinetics PY - 2023 AN - OPUS4-57282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Stoian, R. A1 - Bonse, Jörn T1 - Ultrafast Laser Nanostructuring — The Pursuit of Extreme Scales N2 - Long seen as “a solution seeking a problem,” laser pulses are nowadays – more than 60 years after their first practical demonstration – paramount in shaping and structuring matter. Harnessing their capabilities to direct intense beams of light, the number of scientific and technological developments and daily-life applications is continuously increasing. Today, the presence of lasers is ubiquitous in all sites of scientific and technological interest, from the most advanced research laboratories to industrial factories and medical hospitals. The directionality of the laser beam determines equally a local character on lightmatter interaction and as such a local modification to a material target. Furthermore, the coherence of laser radiation enables near-field or far-field scattering and interference effects that widen significantly the capabilities of controlling and tracking laser-matter interactions in space and time. Already with the advent of lasers, powerful beams of light have been directed at solid materials for a variety of purposes, making this application as old as the laser itself. The roots of the major applications for laser structuring were developed already in the 1960s, setting the base of both theoretical and experimental studies on laser ablation, with the number of publications expanding explosively during the next decades. Within this dynamic context, laser processing of materials experienced an impressive development over the years. Laser processing means specifically the capability to structure and tailor a material on its surface or even within its volume, rendering new functions and properties that are impacting the mechanical, electrical, or optical characteristics of the material. These properties are scaledependent, generating thus over the years an equally impressive quest for spatial or temporal resolution. Therefore, the developments in laser engineering with major breakthroughs, notably in pulse duration and power, always closely accompanied the efforts in material structuring with two milestones in sight: (1) yield and (2) resolution. Every step in shrinking the laser pulse duration led to a subsequent strong-impact development in process precision – particularly when the ultrashort pulse durations surpassed the fundamental electron-phonon relaxation times. Thus, minimizing heat diffusion, the advent of pulses with duration smaller than molecular or lattice vibration times has managed to confine the spatial resolution to the optical diffraction limit and sometimes even beyond. The nanoscale was already in sight at the turn of the millennium. An important question may be raised now; is there any fundamental limit in the processing resolution, a barrier defined by the intrinsic properties of light and matter? The answer has an inherently multidisciplinary nature, following the conversion of free-propagating electromagnetic radiation into material-confined energy potentially usable to drive or transform matter, and will be the focus of the present book. Relying on the experience and expertise of the leading researchers in the field, the present book intends to explore the current efforts in achieving laser processing resolution beyond the diffraction limit, laying down a perspective towards extreme laser nanostructuring. Following the most recent advances and developments, it puts forward a concept of extreme processing scales enabled by optical pulses that are able to bypass diffraction limits and achieve structuring characteristic scales beyond 100 nm. This objective can be achieved by a comprehensive understanding on how light can change matter and how, in turn, matter can change light, allowing jointly for actively controlling light and material processes. In order to give an extended perspective on the current state-of-the-art in the field of precision laser structuring, the book is divided into three main parts. The first part of the book (Part I: Fundamental Processes) offers a perspective into the fundamentals of laser-matter interaction on extreme spatial scales, with a description of the most advanced modeling efforts in understanding energy deposition in matter, a plethora of material-relaxation pathways, as well as advanced concepts for probing and observing matter in motion. Roadmaps for energy localization will be developed, and the atomistic perspective of laser ablation visualized. Theoretical modelling enables in-depth insights on ultrafast quantum processes at the nanoscale. Laser-driven self-organization at surfaces will be dissected regarding the question of how light drives material periodic patterns down to the nanoscale, explored and transmitted to its ultimate limits of an atomic printer, and immediately complemented by the unprecedented capabilities of ultrafast in-situ observation approaches for tracking the laser-induced material response with extreme spatial and temporal resolution. In the second part of the book (Part II: Concepts of Extreme Nanostructuring), distinct concepts will be developed and explored that allow confinement of light and harnessing of a material response restricted to nano- or mesoscopic scales at surfaces or in the volume of irradiated materials. A special focus will be on optical near-field related approaches for localizing light on scales even below the optical diffraction limit and plasmonic printing. Spatial and temporal beam-shaping and tailored interference techniques are discussed in the context of ultrashort laser pulses, and insights into some extreme states of matter realized by the tight confinement of laser energy are presented. The ultimate limits of writing waveguides in the bulk of dielectrics and for manifesting 3D-nanolithography are elucidated. Plasma-based surface treatments can significantly enhance the vertical precision of surface processing through etching processes. Finally, the third part of the book (Part III: Applications) leads us to a number of resuming applications, unveiling the tremendous capabilities of surface functionalization through laser micro- and nanostructuring, assessing the 3D-writing of waveguides in the bulk of dielectrics or semiconductors for enabling new branches of integrated photonics, and summarizing related applications ranging from nanophotonics to nanofluidics and from optical sensing to biomedical applications, including the latest capabilities of refractive eye surgery. This part will analyze the applications’ compatibility in yield and reproducibility with current industrial requirements, costs, and intellectual property aspects. It expands the involved spatial scales by more than eight orders of magnitude, when extending extremely small structures featuring sizes of few tens of nanometers to larger dimensions in the meter range. Thus, from surfaces to the bulk, from subtractive to additive manufacturing approaches, from advanced theoretical frames to practical technological processes – we invite the readers here to an exciting journey into the varicolored landscape of extreme laser nanostructuring. The idea of this book project was seeded in early 2020. We were delighted about the numerous and extremely positive responses from the laser-processing community, quickly receiving commitments for more than 30 individual book chapters. About 2500 communications later, the book is published. We would like to thank all authors of this book project for their insightful and detailed chapters, reviewing and reporting on this fascinating topic of the pursuit of extreme scales in ultrafast laser nanostructuring. Moreover, we would like to acknowledge the professional help and guidance of the staff of Springer Nature. Finally, we hope you will enjoy reading this book as much as we have enjoyed putting it together. Saint Etienne, France Razvan Stoian Berlin, Germany Jörn Bonse December 2022 KW - Laser nanostructuring KW - Surface engineering KW - Nonlinear lithography KW - Self-organization KW - Laser-induced periodic surface structures, LIPSS PY - 2023 SN - 978-3-031-14751-7 (Hardcover) SN - 978-3-031-14752-4 (eBook) DO - https://doi.org/10.1007/978-3-031-14752-4 SN - 0342-4111 VL - 239 SP - 1 EP - 1245 PB - Springer Nature Switzerland AG CY - Cham ET - 1 AN - OPUS4-57294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Mezera, Marek A1 - Florian, C. A1 - Römer, G.-W. A1 - Krüger, Jörg A1 - Bonse, Jörn ED - Stoian, R. ED - Bonse, Jörn T1 - Creation of Material Functions by Nanostructuring N2 - Surface nanostructures provide the possibility to create and tailor surface functionalities mainly via controlling their topography along with other chemical and physical material properties. One of the most appealing technologies for surface functionalization via micro- and nanostructuring is based on laser processing. This can be done either via direct contour-shaping of the irradiated material using a tightly focused laser beam or in a self-ordered way that allows employing larger laser beam diameters along with areal scanning to create a variety of laser-induced periodic surface structures (LIPSS). For the latter approach, particularly ultrashort pulsed lasers have recently pushed the borders across long-lasting limitations regarding the minimum achievable feature sizes and additionally boosted up the production times. This chapter reviews the plethora of recently investigated applications of LIPSS—for example, via imposing diffractive or plasmonic structural colors, the management of liquids and surface wetting properties, biomedical and bioinspired functionalities, beneficial effects in tribology for reducing friction and wear, the manipulation of optical scattering and absorption in photovoltaics, or the modification of magnetic or superconducting surface properties in other energy applications. The footprint of the LIPSS-based technology is explored in detail regarding the current state of industrialization, including an analysis of the market and associated LIPSS production costs. KW - Laser-induced periodic surface structures, LIPSS KW - Surface functionalization KW - Nanostructures KW - Microstructures KW - Laser processing PY - 2023 SN - 978-3-031-14751-7 SN - 978-3-031-14752-4 DO - https://doi.org/10.1007/978-3-031-14752-4_23 VL - 239 SP - 827 EP - 886 PB - Springer Nature Switzerland AG CY - Cham, Switzerland AN - OPUS4-57295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Sokolowski-Tinten, K. A1 - Bonse, Jörn A1 - Barty, A. A1 - Chapman, H.N. A1 - Bajt, S. A1 - Bogan, M.J. A1 - Boutet, S. A1 - Cavalleri, A. A1 - Düsterer, S. A1 - Frank, M. A1 - Hajdu, J. A1 - Hau-Riege, S. A1 - Marchesini, S. A1 - Stojanonovic, N. A1 - Treusch, R. ED - Stoian, R. ED - Bonse, Jörn T1 - In-Situ Observation of the Formation of Laser-Induced Periodic Surface Structures with Extreme Spatial and Temporal Resolution N2 - Irradiation of solid surfaces with intense ultrashort laser pulses represents a unique way of depositing energy into materials. It allows to realize states of extreme electronic excitation and/or very high temperature and pressure and to drive materials close to and beyond fundamental stability limits. As a consequence, structural changes and phase transitions often occur along unusual pathways and under strongly nonequilibrium conditions. Due to the inherent multiscale nature—both temporally and spatially—of these irreversible processes, their direct experimental observation requires techniques that combine high temporal resolution with the appropriate spatial resolution and the capability to obtain good quality data on a single pulse/event basis. In this respect, fourth-generation light sources, namely, short wavelength and short pulse free electron lasers (FELs), are offering new and fascinating possibilities. As an example, this chapter will discuss the results of scattering experiments carried out at the FLASH free electron laser at DESY (Hamburg, Germany), which allowed us to resolve laser-induced structure formation at surfaces on the nanometer to submicron length scale and in temporal regimes ranging from picoseconds to several nanoseconds with sub-picosecond resolution. KW - Laser-induced periodic surface structures, LIPSS KW - Capillary waves KW - Time-resolved scattering KW - Pump-probe experiments KW - Free electron laser PY - 2023 SN - 978-3-031-14751-7 SN - 978-3-031-14752-4 DO - https://doi.org/10.1007/978-3-031-14752-4_6 VL - 239 SP - 257 EP - 276 PB - Springer Nature Switzerland AG CY - Cham, Switzerland AN - OPUS4-57297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - (Pre)Standardisation and Metrology in Microbeam Analysis – Ongoing Activities and Opportunities N2 - The presentation addresses the current ongoing projects as well as the gaps and opportunities in microbeam analysis within ISO/TC 202 Microbeam Analysis standardisation body and in-liaison Technical Working Areas (TWAs) at the pre-standardization platform of VAMAS (Versailles Project on Advanced Materials and Standards). T2 - EMAS 2023 - 17th European Workshop on Modern Developmennts and Applications in Microbeam Analysis - General Assembly CY - Krakow, Poland DA - 07.05.2023 KW - Microbeam analysis KW - EDS KW - Electron microscopy KW - Inter-laboratory comparison KW - EBSD KW - Standardisation PY - 2023 AN - OPUS4-57483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Terborg, R. A1 - Hodoroaba, Vasile-Dan A1 - Kim, K.J. T1 - Determination of Thin Film Thickness and Composition using Energy Dispersive EPMA N2 - Electron probe microanalysis (EPMA)is a non-destructive technique which assumes a sample of homogenous (bulk) chemical composition and can, therefore, not be used for thin film samples. However, in combination with one of the possible thin film software packages, STRATAGEM, the thickness as well as the composition of such films on a substrate can be determined. This has been demonstrated for FeNi on Si and SiGe on Al2O3 film systems. For both systems five samples with different elemental composition and a reference were produced and characterised by the Korean research institute KRISS using inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM). In 2021, a new and open source thin film evaluation programme called BADGERFILM has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we re-evaluated the data acquired for the FeNi and SiGe systems using the BADGERFILM software package and compared the resulting composition and thickness with the results of the established STRATAGEM software and other reference methods. With the current evaluation, the BADGERFILM software shows good agreement with the composition and thickness calculated by STRATAGEM and provided by the KRISS. These results between two well-known layered material systems analysed with available conventional EMPA approaches (STRATAGEM and direct thickness measurement by TEM) and a new one (BADGERFILM) proves that reliable non-destructive thin film analysis is possible. In this way, we validate the performance of the new software, which is not at all self-explanatory for such complex quantification algorithms lying behind the final quantified results. T2 - EMAS 2023 - 17th European Workshop on Modern Developments and Applications in Microbeam Analysis CY - Krakow, Poland DA - 07.05.2023 KW - Thin films KW - BADGER film KW - Electron probe microanallysis (EPMA) KW - FeNi thin film KW - Al2O3 thin films PY - 2023 UR - https://www.microbeamanalysis.eu/events/event/60-emas-2023-17th-european-workshop-on-modern-developments-and-applications-in-microbeam-analysis AN - OPUS4-57484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - VAMAS interlaboratory comparisons on nanoparticles associated with the outcomes of the EMPIR project nPSize N2 - Following points are presented and discussed: i) nPSize as an EMPIR project on the nanoparticle size and shape distribution of (more) complex particles including sample preparation and machine learning approaches; ii) parallel development of ISO 21363 (PSSD by TEM), ISO 19749 (PSSD by SEM), ISO 22292 (3D TEM), ISO 52408 (NP Prep for AFM and EM), iii) VAMAS and pre-standardisation, TWA 34 „Nanoparticle Populations“ with two nPSize ILC projects P15 & P16 – results to be published and integrated in ISO 21363 (PSSD by TEM); iv) Remaining challenges: platelets, 2D materials (TiO2 and GR2M); v) Reference data sets as part of a complete Characterisation Workflow. T2 - How to identify Nanomaterials more effectively? Good Practices and Ways to Progress CY - Paris, France DA - 11.05.2023 KW - Nanoparticles KW - VAMAS KW - nPSize KW - Particle size distribution KW - Nanoparticle concentration KW - Interlaboratory comparison PY - 2023 UR - https://www.lne.fr/fr/service/formation/journee-technique-nanomateriaux-comment-identifier-efficacement-nanomateriaux?utm_source=Twitter&utm_medium=Tweet&utm_campaign=JT2301 AN - OPUS4-57485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Hiid, Gundula A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth kinetics of the adsorbed layer of poly(bisphenol A carbonate) and its effect on the glass transition behavior in thin films N2 - The glass transition behavior of thin films of poly(bisphenol A carbonate) (PBAC) was studied employing ellipsometry. The glass transition temperature increases with the reduction of the film thickness. This result is attributed to the formation of an adsorbed layer with a reduced mobility compared to bulk PBAC. Therefore, for the first time, the growth kinetics of the adsorbed layer of PBAC was investigated, prepared by leaching samples from a 200 nm thin film which were annealed for several times at three different temperatures. The thickness of each prepared adsorbed layer was measured by multiple scans using atomic force microscopy (AFM). Additionally, an unannealed sample was measured. Comparison of the measurements of the unannealed and the annealed samples provides proof of a pre-growth regime for all annealing temperatures which was not observed for other polymers. For the lowest annealing temperature after the pre-growth stage only a growth regime with a linear time dependence is observed. For higher annealing temperatures the growth kinetics changes from a linear to a logarithmic growth regime at a critical time. At the longest annealing times the films showed signs of dewetting where segments of the adsorbed film were removed from the substrate (dewetting by desorption). The dependence of the surface roughness of the PBAC surface on annealing time also confirmed that the films annealed at highest temperatures for the longest times desorbed from the substrate. KW - Ultra thin polymer films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574531 DO - https://doi.org/10.1039/D3RA02020G SN - 2046-2069 VL - 13 IS - 21 SP - 14473 EP - 14483 PB - RSC Publishing CY - London AN - OPUS4-57453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baglo, K. A1 - Sauermoser, M. A1 - Lid, M. A1 - Paschke, T. A1 - Bin Afif, A. A1 - Lunzer, M. A1 - Bock, Robert A1 - Steinert, M. A1 - Flaten, A. A1 - Torgersen, J. T1 - Overcoming the transport limitations of photopolymer-derived architected carbon N2 - Photopolymer derived carbon grows in popularity, yet the range in available feature sizes is limited. Here we focus on expanding the field to low surface to volume ratio (SVR) structures. We describe a high temperature acrylic photopolymerizable precursor with FTIR and DSC and develop a thermal inert-gas treatment for producing architected carbon in the mm scale with SVR of 1.38 x10-3 μm-1. Based on TGA and MS, we distinguish two thermal regimes with activation energies of ~79 and 169 kJ mol-1, which we reason with mechanisms during the polymer’s morphologic conversion between 300 - 500 °C. The temperature range of the major dimensional shrinkage (300-440 °C, 50%) does not match the range of the largest alteration in elemental composition (440-600 °C, O/C 0.25-0.087%). The insights lead to an optimized thermal treatment with an initial ramp (2 °C min-1 to 350 °C), isothermal hold (14h), post hold ramp (0.5 °C min-1 to 440 °C) and final ramp (10 °C min-1 to 1000 °C). The resulting carbon structures are dimensionally stable, non-porous at the μm scale, and comprise an unprecedented variation in feature sizes (from mm to μm scale). The findings shall advance architected carbon to industrially relevant scales. KW - Carbon KW - Photopolymer KW - Transport limitations KW - Porous materials KW - Additive manufacturing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575038 DO - https://doi.org/10.1002/admt.202300092 SN - 2365-709X SP - 2300092 PB - Wiley-VCH GmbH AN - OPUS4-57503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Ebel, Kenny A1 - Heinze, Katja A1 - Resch-Genger, Ute A1 - Bald, Ilko T1 - Quantum Yield of DNA Strand Breaks under Photoexcitation of a Molecular Ruby N2 - Photodynamic therapy (PDT) used for treating cancer relies on the generation of highly reactive oxygen species, for example, singlet oxygen 1O2, by light-induced excitation of a photosensitizer (PS) in the presence of molecular oxygen, inducing DNA damage in close proximity of the PS. Although many precious metal complexes have been explored as PS for PDT and received clinical approval, only recently, the potential of photoactive complexes of nonnoble metals as PS has been discovered. Using the DNA origami technology that can absolutely quantify DNA strand break cross sections, we assessed the potential of the luminescent transition metal complex [Cr(ddpd)2]3+ (ddpd=N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) to damage DNA in an air-saturated aqueous environment upon UV/Vis illumination. The quantum yield for strand breakage, that is, the ratio of DNA strand breaks to the number of absorbed photons, was determined to 1–4%, indicating efficient transformation of photons into DNA strand breaks by [Cr(ddpd)2]3+. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - PDT KW - Singlet oxygen KW - DNA KW - Origami KW - Quantum yield PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573631 DO - https://doi.org/10.1002/chem.202203719 SP - 1 EP - 7 AN - OPUS4-57363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Andresen, Elena A1 - Würth, Christian A1 - Weigert, Florian A1 - Frenzel, Florian T1 - Luminescent Nanoparticles – Photophysics, Mechanistic Studies, and Applications N2 - Inorganic nanocrystals with linear and nonlinear luminescence in the ultraviolet, visible, near infrared and short-wave infrared like semiconductor quantum dots and spectrally shifting lanthanide-based nanophosphors have meanwhile found many applications in the life and material sciences. This includes optical reporters for bioimaging and sensing, security and authentication barcodes, solid state lighting, converter materials, and photovoltaics. The identification of optimum particle structures requires quantitative spectroscopic studies under application-relevant conditions, focusing on the key performance parameter photoluminescence quantum yield, ideally flanked by single particle studies to assess spectroscopic inhomogeneities on a particle-to-particle level for typical preparation methods. In this context, methods to quantify the photoluminescence of these different nanoscale emitters are shown and utilized as a basis for a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different size and particle architecture in different environments. Exemplary for the application potential of such nanomaterials, in addition, the design of optical sensors from different nanomaterials and functional organic dyes is briefly summarized. T2 - CRC 1411 Symposium CY - Nürnberg, Germany DA - 20.03.2023 KW - Semiconductor quantum dot KW - Upconversion nanocrystal KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics PY - 2023 AN - OPUS4-57364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Transmission and Scanning Electron Microscopy (SEM/TEM) N2 - Die Bestimmung der Nanopartikelgrößen- und -formverteilung nach OECD TG 125 mit der Transmission and Scanning Electron Microscopy (SEM/TEM) wird punktuell vorgestellt: - Generelles Messprinzip - Beispiele - Korrelative Mikroskopie - Welchen Durchmesser misst die Methode? - Welche Partikel kann diese Methode messen? - Welche Informationen kann diese Methode liefern? - Wo stößt die Methode an ihre Grenzen? - Implementierung und Datenauswertung, - Reporting. Anschließend wurde eine Q&A-Session für die Imaging-Methoden organisiert. T2 - Digital Info-Days „Nano or not Nano“ - Measuring according to OECD Test Guideline No. 125 CY - Online meeting DA - 16.02.2023 KW - Nanoparticles KW - OECD TG 125 KW - Partikelgrößenverteilung KW - Elektronenmikroskopie PY - 2023 UR - https://www.bam-akademie.de/kursangebot/kurs/digitale-info-tage-%E2%80%9Enano-or-not-nano%E2%80%9C-19.html AN - OPUS4-57217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Hodoroaba, Vasile-Dan T1 - Project 15 Measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension N2 - The progress in the VAMAS Project #15" Measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension" within TWA 34 Nanoparticle Populations is presented with highlight of the following points: - Determine and compare particle size and shape distribution by means of: • electron microscopy (SEM, TEM, STEM-in-SEM) • atomic force microscopy (AFM) • small angle X-ray scattering (SAXS) - Determine uncertainty induced by deposition protocol from liquid suspension with comparison to known values from a prior ILC with already deposited nanoparticles on TEM grids. - Provide comparative validation of protocols for the techniques other than TEM. T2 - VAMAS Regional Workshop 2023 CY - Online meeting DA - 24.01.2023 KW - Nanoparticles KW - VAMAS KW - Electron microscopy KW - AFM KW - SAXS KW - TiO2 PY - 2023 UR - https://www.bam.de/Content/EN/Events/2023/2023-01-24-vamas-regional-workshop.html AN - OPUS4-57220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Hodoroaba, Vasile-Dan T1 - Project 16 Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension N2 - The progress of the VAMAS Project 16 "Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension" in TWA 34 Nanoparticle Populations is presented. Follwowing points are discusssed: - Validate the performance of imaging methods to measure the relative number concentration • electron microscopy (SEM, TEM) and atomic force microscopy (AFM) • two modes of bimodal (30 and 60 nm) silica nanoparticles - Validate the performance of small angle X-ray scattering (SAXS) for the traceable measurement of the number concentration of the two modes. T2 - VAMAS Regional Workshop 2023 - What can pre-normative research do for industry? CY - Online meeting DA - 24.01.2023 KW - Nanoparticles KW - VAMAS KW - Inter-laboratory comparison KW - SiO2 KW - Electron microscopy KW - AFM PY - 2023 UR - https://www.bam.de/Content/EN/Events/2023/2023-01-24-vamas-regional-workshop.html AN - OPUS4-57221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Schönhals, Andreas A1 - Smales, Glen Jacob T1 - Confinement induced Relaxations and phase behvaiour of nanoconfined Ionic Liquid Crystal N2 - Ionic Liquid Crystals (ILCs) are materials that combine the properties of liquid crystals together with ionic conduction. It is known that liquid crystal mesophases in confinement exhibit anomalous dynamics and phase behavior. However, similar studies about factors that control the macroscopic properties of ILCs in confinement are limited. Here, Broadband Dielectric Spectroscopy (BDS), X-ray scattering, and calorimetry were applied to study the molecular dynamics, and phase behavior of a guanidinium based columnar ionic liquid crystal confined in self-ordered alumina oxide nanopores of pore sizes ranging from 180 nm down to 25 nm. It is aimed to understand how pore size and pore surface wettability (hydrophilic or hydrophobic) influence the molecular dynamics, and phase behavior for this system which are crucial for applications. The DSC measurements show: (i) the crystalline-liquid crystalline transition temperature has non-monotonic dependence on inverse pore diameter and (ii) the liquid crystalline-isotropic transition is completely suppressed for all the confined samples. This thermally suppressed transition was detected by BDS and X-ray scattering and is considered as a continuous phase transition instead of a discontinuous first order transition. BDS investigations reveal several relaxation processes for the bulk and confined scenarios. The relaxation modes are suppressed and become slower for the confined scenarios compared to the bulk. Possible molecular origins for these relaxation processes are discussed, and it is shown that the self-assembly of these ILCs is dynamic in nature. T2 - CONFIT 2022 CY - Grenoble, France DA - 10.10.2022 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2022 AN - OPUS4-57339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Schönhals, Andreas A1 - ZhuoQing, L. A1 - Huber, P. A1 - Laschat, S. T1 - Dynamics and conductivity of nanoconfined amino acid based superdiscs: Influence of the side chain length N2 - Ionic Liquid Crystals (ILCs) are emerging class of materials that combine the properties of liquid crystals with the ionic conduction similar to ionic liquids. It’s known that liquid crystals exhibit intriguing properties when confined and are of importance from both fundamental and technological perspective. Here, we study the molecular dynamics and electrical conductivity of a homologous series of Dopamine (DOPA) based ILCs, ILCn (n = 12,14,16) confined in self ordered nanoporous alumina oxide membrane of 180 nm pore size using Broadband Dielectric Spectroscopy (BDS). We aim to understand how the alkyl chain length and confinement influence the dynamics in this system. In the bulk, for all ILCs, we observe two relaxation modes in the crystalline phase, the  and α1 relaxation respectively, and one relaxation mode in the columnar phase, the α2 relaxation, but for ILC16, where two relaxation modes (α2 and α3) are detected in the columnar phase. For the confined case, all relaxation processes slowdown compared to the bulk. For ILC16, the α1 relaxation is completely suppressed. For all ILCs, the absolute values of DC conductivity are reduced by some three orders of magnitude. We discuss in detail the possible molecular origin of the relaxation processes and the charge transport in this system. T2 - CONFIT 2022 CY - Grenoble, France DA - 10.10.2022 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2022 AN - OPUS4-57341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Schönhals, Andreas T1 - Suppressed Transition and Dynamic self-asembly of ionic superdiscs in cylindrical nanochannels N2 - Liquid crystalline mesophases in nanoconfinement exhibit intriguing phase transition behaviors and relaxation dynamics. Here, we investigate the molecular mobility and electrical conductivity of a columnar ionic liquid crystal confined in self-ordered nanoporous alumina oxide membranes of pore size ranging from 180 nm down to 25 nm. We use nano-broadband dielectric spectroscopy (BDS) and calorimetry to study the dynamics and phase behavior. Calorimetric investigation reveals a complete suppression of the columnar – isotropic transition, while the plastic crystalline – columnar transition temperature decreases with inverse pore size and deviates from the Gibbs – Thomson equation. For the bulk case, BDS detects two relaxation modes in the crystalline phase, the γ relaxation and the α1 relaxation, and two relaxation modes in the columnar phase, the α2 and α3 relaxation. All relaxation modes slow down for the confined case compared to the bulk. However, a new relaxation mode reflecting the interfacial layer emerges for the 80 and 25 nm. We discuss the possible molecular origins of the different relaxation modes observed. For the bulk ILC, a clear jump of 4 orders of magnitude in the absolute values of DC conductivity occurs at the transition from the plastic crystalline to hexagonal columnar phase, for the confined ILC, this transition is smooth. DC conductivity is reduced for the confined case, except for the 25nm, where the values are similar to the bulk. T2 - APS March Meeting 2023 CY - Las Vegas, NV, USA DA - 05.03.2023 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2023 AN - OPUS4-57342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Smales, Glen Jacob A1 - Böhning, Martin T1 - Molecular Dynamics of Janus Polynorbornenes: Glass Transitions and Nanophase separation N2 - We report the dielectric and calorimetric investigations of an homologous series of Janus polynorbornenes with rigid main backbone and flexible -Si(OR)3 side groups, of differing length alkyl chains (R = Propyl, Butyl, Hexyl, Octyl, Decyl). Dielectric dispersion reveals two active processes at low temperatures, denoted as β- and α- relaxation. The former can be assigned to localized fluctuations, whilst the latter relates to the glassy dynamics of the flexible -Si(OR)3 side groups, that creates a nanophase separation in both the alkyl chain rich and backbone rich domains. Temperature modulated DSC measurements and X-ray scattering experiment confirm the nanophase separation. Fast Scanning Calorimetry employing both fast heating and cooling rates detects the glass transition temperatures of the backbone rich domains, which are beyond or near to their degradation temperatures in terms of conventional DSC. The cooperative length scale of glass transition and the size of the alkyl chain rich domains increases with chain length. Alongside these results, a significant conductivity contribution was observed for all Poly(tricyclononenes) with Si(OR)3 side groups, which is interpreted in terms of a percolation model. T2 - Chemical Engg Seminar CY - Columbia University, NY, USA DA - 14.03.2023 KW - Glass transition KW - Conductivity KW - Fast Scanning Calorimetry KW - Dynamics PY - 2023 AN - OPUS4-57343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Schönhals, Andreas A1 - Li, Z. A1 - Huber, P. T1 - Suppressed Transition and Dynamic self-asembly of ionic superdiscs in cylindrical nanochannels N2 - Liquid crystalline mesophases in nanoconfinement exhibit intriguing phase transition behaviors and relaxation dynamics. Here, we investigate the molecular mobility and electrical conductivity of a columnar ionic liquid crystal confined in self-ordered nanoporous alumina oxide membranes of pore size ranging from 180 nm down to 25 nm. We use nano-broadband dielectric spectroscopy (BDS) and calorimetry to study the dynamics and phase behavior. Calorimetric investigation reveals a complete suppression of the columnar – isotropic transition, while the plastic crystalline – columnar transition temperature decreases with inverse pore size and deviates from the Gibbs – Thomson equation. For the bulk case, BDS detects two relaxation modes in the crystalline phase, the γ relaxation and the α1 relaxation, and two relaxation modes in the columnar phase, the α2 and α3 relaxation. All relaxation modes slow down for the confined case compared to the bulk. However, a new relaxation mode reflecting the interfacial layer emerges for the 80 and 25 nm. We discuss the possible molecular origins of the different relaxation modes observed. For the bulk ILC, a clear jump of 4 orders of magnitude in the absolute values of DC conductivity occurs at the transition from the plastic crystalline to hexagonal columnar phase, for the confined ILC, this transition is smooth. DC conductivity is reduced for the confined case, except for the 25nm, where the values are similar to the bulk. T2 - DPG Spring Meet 2023 CY - Dresden, Germany DA - 26.03.2023 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2023 AN - OPUS4-57345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feltin, N. A1 - Crouzier, L. A1 - Delvallée, A. A1 - Pellegrino, F A1 - Maurino, V. A1 - Bartczak, D. A1 - Goenaga-Infante, H. A1 - Taché, O. A1 - Marguet, S. A1 - Testard, F. A1 - Artous, S. A1 - Saint-Antonin, F. A1 - Salzmann, Christoph A1 - Deumer, J. A1 - Gollwitzer, C. A1 - Koops, R. A1 - Sebaïhi, N. A1 - Fontanges, R. A1 - Neuwirth, M. A1 - Bergmann, D. A1 - Hüser, D. A1 - Klein, T. A1 - Hodoroaba, Vasile-Dan T1 - Metrological Protocols for Reaching Reliable and SI-Traceable Size Results for Multi-Modal and Complexly Shaped Reference Nanoparticles N2 - The study described in this paper was conducted in the framework of the European nPSize project (EMPIR program) with the main objective of proposing new reference certified nanomaterials for the market in order to improve the reliability and traceability of nanoparticle size measurements. For this purpose, bimodal populations as well as complexly shaped nanoparticles (bipyramids, cubes, and rods) were synthesized. An inter-laboratory comparison was organized for comparing the size measurements of the selected nanoparticle samples performed with electron microscopy (TEM, SEM, and TSEM), scanning probe microscopy (AFM), or small-angle X-ray scattering (SAXS). The results demonstrate good consistency of the measured size by the different techniques in cases where special care was taken for sample preparation, instrument calibration, and the clear definition of the measurand. For each characterization method, the calibration process is described and a semi-quantitative table grouping the main error sources is proposed for estimating the uncertainties associated with the measurements. Regarding microscopy-based techniques applied to complexly shaped nanoparticles, data dispersion can be observed when the size measurements are affected by the orientation of the nanoparticles on the substrate. For the most complex materials, hybrid approaches combining several complementary techniques were tested, with the outcome being that the reliability of the size results was improved. KW - Certified reference nanomaterials KW - Traceable nanoparticle size measurements; KW - Hybrid metrology KW - Scanning probe microscopy KW - Small-angle X-ray scattering KW - Electron microscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571902 DO - https://doi.org/10.3390/nano13060993 SN - 2079-4991 VL - 13 IS - 6 - Special Issue "Identification and Quantification of Nanomaterials" SP - 1 EP - 25 PB - MDPI CY - Basel, CH AN - OPUS4-57190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Probing Nanoscale Relaxation Behavior in Thin Polymer Films N2 - The investigations into the complicated effects of film thickness on bulk properties of thin polymer films has yielded conflicting results. The reduction in molecular mobility, and with it an increase in the glass transition temperature, for thin films of poly (bisphenol A carbonate) (PBAC) was assigned to the formation of an adsorbed layer. The adsorbed layer was obtained by washing away the loosely bounded chains using a good solvent. Next, using atomic force microscopy (AFM), the thickness of each sample was measured after annealing for various times at three different annealing temperatures. The growth of this adsorbed layer was shown to deviate from the previously reported 2-step mechanism seen for other polymers. For PBAC, after very long annealing times at high temperatures the thin films were dewetted, where segments of the adsorbed layer were removed from the substrate. T2 - Royal Society of Chemistry (RSC) Poster CY - Online meeting DA - 28.02.2023 KW - Thin films KW - Adsorbed Layer KW - Broadband dielectric spectroscopy KW - Atomic force microscopy KW - Growth Kinetics PY - 2023 AN - OPUS4-57196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - VIDEO A1 - Pauw, Brian Richard T1 - "Ultima Ratio": Multi-scale, high-resolution 3D-FFT scattering pattern simulations N2 - This talk highlights a proof-of-concept that demonstrates the ability to calculate high-resolution Fourier transforms. These can be combined with multi-scale modeling to simulate scattering over a wide range, from small-angle scattering to XRD and PDF. The preprint documenting this is available on the ArXiv here: https://doi.org/10.48550/arXiv.2303.13435 The Jupyter notebook, VASP calculation details and MOUSE measured scattering patterns are available from this Zenodo repository: https://dx.doi.org/10.5281/zenodo.7764045 KW - Video KW - Simulation KW - High-resolution KW - Fourier Transform KW - 3D FFT KW - Nanomaterial KW - Metal organic framework KW - MOF KW - SAXS KW - XRD KW - PDF KW - X-ray diffraction KW - Pair distribution function KW - Small-angle X-ray scattering PY - 2023 UR - https://www.youtube.com/watch?v=lEApkOqR5e8 PB - YouTube, LLC CY - San Bruno, CA, USA AN - OPUS4-57212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Electric Safety Interlock N2 - This interlock is designed to prevent electrical shock from high voltage (>60V) equipment. While the general safety interlock can be generically applied, this particular example employs an external vacuum-activated switch. It is for safeguarding human operations inside a vacuum sample chamber while the chamber doors are open. The circuit is closed (output is active) when a sufficient level of vacuum is reached, i.e. when all accessible openings are necessarily closed. The initial application is to interrupt power to a 220V, 250W heating cartridge (itself mounted inside a small sample holder with potentially exposed contacts) when the sample chamber is open. The external circuit can be modified to use different interlock mechanisms as needed. Note that the external interlock circuit is only a single circuit (with two signal lines) and thus is not protected against external shorts. To accomodate a range of safety interlocks, the 4-pin M12 connector is wired as follows: Pin 1 (Brown): +24V for power supply, max current 0.6A Pin 2 (White): Safety interlock system signal 1 (0 or 24V) Pin 3 (Blue) : Safety interlock system signal 2 (0 or 24V) Pin 4 (Black): 0V for power supply The safety is interlocked (output active) when both signal pins are set high (24V), with sufficient current to activate the two relays. Pin 1 and 4 can be used to power safety hardware (such as light curtains or proximity detectors) with 24VDC up to a current of 0.6A. A larger power supply can be installed when higher currents are needed, while staying within the current limits imposed by the wiring cross-section. KW - Electric Safety Interlock KW - MOUSE KW - 60-230V PY - 2023 DO - https://doi.org/10.6084/m9.figshare.22265920.v1 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-57138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Gawlitza, Kornelia A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Polymerizable BODIPY probe crosslinker for the molecularly imprinted polymer-based detection of organic carboxylates via fluorescence N2 - This contribution reports the development of a polymerizable BODIPY-type fluorescent probe targeting small-molecule carboxylates for incorporation into molecularly imprinted polymers (MIPs). The design of the probe crosslinker includes a urea recognition site p-conjugated to the 3-position of the BODIPY core and two methacrylate moieties. Titration experiments with a carboxylate-expressing antibiotic, levofloxacin (LEVO), showed a blue shift of the absorption band as well as a broadening and decrease in emission, attributed to hydrogen bonding between the probe’s urea group and the carboxylate group of the antibiotic. Using this probe crosslinker, core–shell particles with a silica core and a thin MIP shell were prepared for the detection of LEVO. The MIP exhibited highly selective recognition of LEVO, with an imprinting factor of 18.1 compared to the non-imprinted polymer. Transmission electron microscopy confirmed the core–shell structure and spectroscopic studies revealed that the receptor’s positioning leads to a unique perturbation of the polymethinic character of the BODIPY chromophore, entailing the favourable responses. These features are fully preserved in the MIP, whereas no such response was observed for competitors such as ampicillin. The sensory particles allowed to detect LEVO down to submicromolar concentrations in dioxane. We have developed here for the first time a BODIPY probe for organic carboxylates and incorporated it into polymers using the imprinting technique, paving the way for BODIPY-type fluorescent MIP sensors. KW - Fluorescence KW - BODIPY probe KW - Molecularly Imprinted Polymers KW - Sensor Materials KW - Dyes KW - Water analysis KW - Advanced materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598629 DO - https://doi.org/10.1039/D3MA00476G SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Navigating the Nanoworld: Understanding Materials Properties with the Transmission Electron Microscope N2 - The field of materials science is defined as “the study of the properties of solid materials and how those properties are determined by a material’s composition and structure.”. Many –if not most– of the materials that are produced nowadays owe their properties to structures engineered down to the nanoscopic level. This need has been partly realized thanks to the understanding of materials’ building blocks via characterization techniques that reach this level of resolution. Transmission electron microscopy, since its first implementation in the early 1930s (in Berlin), has been implemented to achieve imaging –and spectral– analysis at lateral resolutions down to the atomic level. In this contribution, a series of practical examples will be presented, where applied materials are characterized by a range of transmission electron microscopy techniques to understand structural and functional properties of a wide range of materials. Among these materials examples will be presented on structural conventionally and additively manufactured metallic alloys, high entropy alloys, dissimilar aluminum-to-steel welds, magnetic nanoparticles, ceramic coatings, high temperature oxidation products. Addressed will be either the effect of processing route or that of the exposure to experimental conditions similar to those found in the respective intended applications. T2 - UA/UAB/UAH MSE Graduate Seminar CY - Online meeting DA - 19.01.2022 KW - Transmission electron microscopy (TEM) KW - Characterization KW - Microstructure KW - 3D PY - 2022 AN - OPUS4-54238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Probenpräparation für AFM-basierte Untersuchungsverfahren N2 - Adapted and advanced sample preparation of semiconductor layer systems with the focused ion beam for AFM-based test methods N2 - Der vorliegende Vortrag gibt einen Überblick über Probenpräparationen mit der Focused Ion Beam (FIB) für AFM-basierte Untersuchungsverfahren. Anhand zweier Beispiele wird gezeigt, wie ionenstrahlpolierte Lamellen aus Halbleiter-Schichtsystemen elektrisch leitfähig auf Substrate platziert werden, so dass in-situ und in-operando Messungen mit Scanning Microwave Microscope (SMM) bzw. Spectroscopic infrared scanning near-field optical microscope (IR-SNOM) durchgeführt werden können. T2 - 15. Berlin-Brandenburger Präparatorentreffen CY - Potsdam/Golm, Germany DA - 11.04.2019 KW - Focused Ion Beam KW - AFM based test methods KW - Sample preparation KW - Semiconductor materials KW - Layer system PY - 2019 AN - OPUS4-47784 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Altmann, Korinna A1 - Hodoroaba, Vasile-Dan T1 - Getting reliable data on microplastic detection methods by means of ILC N2 - There is an urgent demand for reliable data on microplastic analysis, particularly on its physico-chemical properties as well as validated methodology to obtain such data. Through interlaboratory comparisons (ILCs) it becomes possible to assess accuracy and precision of methods by involving many laboratories around the world. At BAM, my tasks focused around organisation of an ILC on physico-chemical characterisation of microplastic detection methods under the international pre-standardisation platform VAMAS (www.vamas.org/twa45/) as Project 2 “Development of standardized methodologies for characterisation of microplastics with microscopy and spectroscopy methods” under the Technical Working Area TWA 45 “Micro and Nano Plastics in the Environment”. With a proud number of 84 participants this ILC is able to provide superior statistical results. Thermoanalytical (Py-GC/MS and TED-GC/MS) and vibrational (µ-IR and µ-Raman) methods were asked for identification and quantification of microplastic test samples according to mass or particle number. Preliminary results indicate which methods show a higher accuracy and precision and reveal some sample preparation ideas which work best for microplastics characterisation. At the end of the ILC an overall plausibility of the results will be assessed. T2 - CUSP Early Career Researchers Meeting CY - Online meeting DA - 21.11.2023 KW - Micro- and Nanoplastics KW - Interlaboratory comparison KW - Microplastic reference materials PY - 2023 AN - OPUS4-59056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burkert, Andreas A1 - Müller, Thoralf A1 - Lehmann, Jens T1 - Bedeutung der Wirksumme bei Nichtrostenden Stählen N2 - Anhand der Wirksumme ist eine Abschätzung des legierungsabhängigen Einflusses auf den Korrosionswiderstand gegen chloridhaltige Medien möglich. Die berechneten Werte sind nur bei optimaler Wärmebehandlung und Verarbeitung zutreffend. Die Anwendung einer einfachen Formel unter Berücksichtigung von Chrom, Molybdän und Stickstoff ist in der Regel völlig ausreichend. Das daraus abgeleitete Ranking von Werkstoffen ist für diverse technische Regelwerke und zur Unterstützung der Werkstoffauswahl geeignet. Für die Warenein-/Ausgangskontrolle ist die alleinige Feststellung der Wirksumme unzureichend. Ergänzende Korrosionsuntersuchungen/-prüfungen zur Beschreibung des Korrosionswiderstandes sind dafür notwendig. Gleiches gilt für die Beurteilung von Schadensfällen. Hier sind Verarbeitung, Einsatzbedingungen und die Konstruktion von ausschlaggebender Bedeutung. T2 - Fortbildung Kursleiter Kompetenzzentren Edelstahl Rostfrei CY - Trier, Germany DA - 25.09.2023 KW - Nichtrostender Stahl KW - Korrosion KW - Wirksumme PY - 2023 AN - OPUS4-58453 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Waniek, Tassilo A1 - Braun, Ulrike A1 - Altmann, Korinna A1 - Hodoroaba, Vasile-Dan T1 - Interlaboratory Comparisons – ILCs (2022-2023) N2 - To obtain reliable data on micro- and nanoplastics (MPs, NPs) BAM (Federal Institute for Materials Research and Testing) is organizing interlaboratory comparisons (ILCs). Main focus is detection and physico-chemical characterisation. The accuracy and precision of the results of different laboratories and comparability of the results among the participants are addressed. The ILCs will be performed in the following order: i) ILC #1: Detection and Characterisation of MPs (1-1000 µm) and ii) ILC #2: Detection and Characterisation of NPs (< 1 µm). For the ILC #1 the parameters to be analysed are: particle size distribution, shape, mass content, particle concentration, with thermoanalytic (Py-GC/MS, TED-GC/MS) and spectroscopy (µ-Raman, µ-FTIR) methods. For the ILC #2 the parameters are: particle size distribution, shape, particle concentration, with methods such as spectroscopical (Raman), Electron Microscopies (SEM, AFM), etc. Exact measurands and methods are still under discussion. BAM will provide test materials of well-known stability and homogeneity. ILC participants will include partners of the CUSP (the European research cluster to understand the health impacts of micro- and nanoplastics), and any other institutions over the world. The ILCs will take place under the international pre-standardisation platform VAMAS, new Technical Working Area 35 “Micro and Nano Plastics in the Environment” (http://www.vamas.org/twa45/). T2 - Progressing Together: 2nd CUSP Annual Meeting at the JRC (Ispra) CY - Ispra, Italy DA - 08.06.2022 KW - ILC KW - Micro- and nanoplastics KW - VAMAS KW - Analytical methods PY - 2022 AN - OPUS4-55097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Altmann, Korinna T1 - Micro- and Nanoplastics: from physico-chemical properties to reference products N2 - In this presentation we demonstrate the importance of physico-chemical properties (pc) of micro- and nanoplastic particles (MNPs). These properties determine interaction between MNPs and cells or living organisms. To perform accurate experiments for acquiring pc information it is essential to develop well-characterized and understood plastic reference materials. Such reference materials can be used in interlaboratory comparisons (ILCs). BAM is organizing under VAMAS two ILCs, on micro- and nanoplastics to obtain reliable results and methodologies for pc characterization of MNPs. By gaining profound knowledge on pc properties it becomes possible to estimate the impact of MNPs on the humans and environment and therefore to translate the knowledge to the level of regulation. T2 - CUSP early-stage researchers meeting CY - Online meeting DA - 08.11.2022 KW - Micro- and nanoplastics KW - Plastic reference materials KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-56330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Florian, C. A1 - Sokolowski-Tinten, K. A1 - Gräf, S. T1 - Advances in ultrafast laser manufacturing: nanostructures, thin films, and scaling perspectives N2 - Advanced ultrafast laser technology is a rapidly growing field that currently enables many new industrial and scientific applications. During the last decades, this has been significantly driven by the availability of high-repetition-rate laser sources and novel beam delivery concepts. At the laser side, Moore’s law equally manifests for ultrafast laser technologies, since the average output power of such lasers doubles approximately every two years. This development is mainly driven by the increase of the pulse repetition rates of energetic laser pulses, currently enforcing the development of smart beam control and novel scanning strategies for preventing heat-accumulation and plasma-shielding effects during laser-based materials processing. This keynote presentation addresses the advantages, recent developments, and perspectives of laser processing with ultrashort laser pulses. A special focus is laid on the tailored structuring of thin films as well as the manufacturing and probing of sub-diffraction surface nanostructures – an ongoing race to extreme scales. Current limitations are identified and an outlook to future scaling perspectives will be provided. T2 - SPIE Photonics Europe 2024 Conference, Symposium "Lasers and Photonics for Advanced Manufacturing" CY - Strasbourg, France DA - 07.04.2024 KW - Ultrafast laser processing KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Laser technology KW - Time-resolved analysis PY - 2024 UR - https://spie.org/photonics-europe/presentation/Advances-in-ultrafast-laser-manufacturing--nanostructures-thin-films-and/13005-36#_=_ AN - OPUS4-59852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Battig, Alexander A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Huth, Christian A1 - Böhning, Martin A1 - Schartel, Bernhard T1 - Multifunctional Property Improvements by Combining Graphene and Conventional Fillers in Chlorosulfonated Polyethylene Rubber Composites N2 - The incorporation of nanoparticles like multilayer graphene (MLG) into elastomeric composites boosts their technical performance, such as their mechanical behavior and electrical conductivity. Common filler types (carbon black (CB) and aluminum trihydroxide (ATH)) generally fulfill single, specific purposes and are often used in high loadings. CB typically reinforces rubber mechanically, while ATH increases flame retardancy. Small amounts of MLG reduce these high filler contents and maintain the multifunctional characteristics of rubber composites. In chlorosulfonated polyethylene (CSM) + ATH, an intrinsically flame-retardant rubber was designed to achieve the highest standards such as maximum average of heat emission (MARHE) <90 kW m−2, 3 phrMLG was substituted for 15 phr CB and/or 3 phr ATH via an industrially applicable processing approach. Replacing either CB or ATH resulted in a property profile that was multifunctionally improved in terms of features such as mechanical performance, reduced sorption, and flame retardance. MLG nanocomposites are reported to show promise as an industrially utilizable route to obtain multifunctional high-performance rubbers. KW - Nanocomposites KW - Rubber KW - Multilayer graphene KW - Flame retardancy KW - Synergy KW - Nanoparticles KW - Elastomers PY - 2022 DO - https://doi.org/10.1021/acsapm.1c01469 SN - 2637-6105 VL - 4 IS - 2 SP - 1021 EP - 1034 PB - ACS Publ. CY - Washington, DC AN - OPUS4-54330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Abdou-Rahaman Fadul, Naïssa A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Multifunctional graphene nanofiller in flame retarded polybutadiene/chloroprene/carbon black composites N2 - To curtail flammability risks and improve material properties, flame retardants (FRs) and fillers are mixed into rubbers. High loadings of aluminum trihydroxide (ATH) and carbon black (CB) are the most used FRs and reinforcing additive, respectively, in rubbers. To reduce loading without losing mechanical properties, partial substitution of ATH as well as CB by low amounts of multilayer graphene (MLG) nanoparticles is investigated. The high aspect ratio MLG is made of ten graphene sheets. In polybutadiene/chloroprene (BR/CR) nanocomposites 3 phr MLG replaced 15 phr CB and/or 3 phr ATH. Material and mechanical properties as well as fire behavior of the nanocomposites are compared to BR/CR with 20 phr CB both with and without 50 phr ATH. MLG appears as a promising nanofiller to improve the functional properties: replacement of CB improved rheological, curing, and mechanical properties; substitution of ATH improved nanocomposite properties without affecting flame retardancy. KW - Nanocomposites KW - Rubber KW - Multilayer graphene KW - Carbon black KW - Polybutadiene/chloroprene KW - Graphene PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523468 DO - https://doi.org/10.1515/epoly-2021-0026 SN - 1618-7229 VL - 21 IS - 1 SP - 244 EP - 262 PB - De Gruyter AN - OPUS4-52346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, S. A1 - Voss, L. A1 - Stephan, Ina A1 - Hübert, Thomas A1 - Kemnitz, E. T1 - Improved Durability of Wood Treated with Nano Metal Fluorides against Brown-Rot and White-Rot Fungi N2 - Low-water soluble metal fluorides such as magnesium fluoride (MgF2) and calcium Fluoride (CaF2) were evaluated for decay protection of wood. Initially, the biocidal efficacy of nano metal fluorides (NMFs) against wood destroying fungi was assessed with an in-vitro agar test. The results from the test showed that agar medium containing MgF2 and CaF2 was more efficient in preventing fungal decay than stand-alone MgF2 or CaF2. These metal fluorides, in their nanoscopic form synthesized using fluorolytic sol-gel synthesis, were introduced into the sapwood of Scots pine and beech wood and then subjected to accelerated ageing by leaching (EN 84). MAS 19F NMR and X-ray micro CT images showed that metal fluorides were present in treated wood, unleached and leached. Decay resistance of Scots pine and beech wood treated with NMFs was tested against Wood destroying fungi Rhodonia placenta and Trametes versicolor in accordance with EN 113. Results revealed that mass losses were reduced to below 3% in wood treated with the combination of MgF2 and CaF2. It is concluded that NMFs provide full protection to wood even after it has been leached and can be used as wood preservatives in outdoor environments. KW - Nanoparticles KW - Fluoride KW - Wood protection KW - Fluorolytic sol-gel synthesis KW - Brown-rot fungi KW - White-rot fungi KW - Basidiomycetes PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543877 DO - https://doi.org/10.3390/app12031727 VL - 12 IS - 3 SP - 1 EP - 11 PB - MDPI AN - OPUS4-54387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grundmann, Jana A1 - Bodermann, Bernd A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Hertwig, Andreas A1 - Klapetek, Petr A1 - Rafighdoost, Jila A1 - Pereira, Silvania F. T1 - Optical and tactile measurements on SiC sample defects N2 - Abstract. In power electronics, compound semiconductors with large bandgaps, like silicon carbide (SiC), are increasingly being used as material instead of silicon. They have a lot of advantages over silicon but are also intolerant of nanoscale material defects, so that a defect inspection with high accuracy is needed. The different defect types on SiC samples are measured with various measurement methods, including optical and tactile methods. The defect types investigated include carrots, particles, polytype inclusions and threading dislocations, and they are analysed with imaging ellipsometry, coherent Fourier scatterometry (CFS), white light interference microscopy (WLIM) and atomic force microscopy (AFM). These different measurement methods are used to investigate which method is most sensitive for which type of defect to be able to use the measurement methods more effectively. It is important to be able to identify the defects to classify them as critical or non-critical for the functionality of the end product. Once these investigations have been completed, the measurement systems can be optimally distributed to the relevant defects in further work to realize a hybrid analysis of the defects. In addition to the identification and classification of defects, such a future hybrid analysis could also include characterizations, e.g. further evaluation of ellipsometric data by using numerical simulations. KW - Compound semiconductors KW - Hybrid metrology KW - Material defects KW - Spectroscopic Ellipsometry KW - Scanning Probe Microscopy KW - White-light Interference Microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601220 DO - https://doi.org/10.5194/jsss-13-109-2024 SN - 2194-878X VL - 13 IS - 1 SP - 109 EP - 121 PB - Copernicus GmbH AN - OPUS4-60122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - López-Iglesias, C. A1 - Markovina, A. A1 - Nirmalananthan-Budau, N. A1 - Resch-Genger, Ute A1 - Klinger, D. T1 - Optically monitoring the microenvironment of a hydrophobic cargo in amphiphilic nanogels: influence of network composition on loading and release N2 - Amphiphilic nanogels (ANGs) are promising carriers for hydrophobic cargos such as drugs, dyes, and catalysts. Loading content and release kinetics of these compounds are controlled by type and number of hydrophobic groups in the amphiphilic copolymer network. Thus, understanding the interactions between cargo and colloidal carrier is mandatory for a tailor-made and cargo-specific ANG design. To systematically explore the influence of the network composition on these interactions, we prepared a set of ANGs of different amphiphilicity and loaded these ANGs with varying concentrations of the solvatochromic dye Nile Red (NR). Here, NR acts as a hydrophobic model cargo to optically probe the polarity of its microenvironment. Analysis of the NR emission spectra as well as measurements of the fluorescence quantum yields and decay kinetics revealed a decrease in the polarity of the NR microenvironment with increasing hydrophobicity of the hydrophobic groups in the ANG network and dye–dye interactions at higher loading concentrations. At low NR concentrations, the hydrophobic cargo NR is encapsulated in the hydrophobic domains. Increasing NR concentrations resulted in probe molecules located in a more hydrophilic environment, i.e., at the nanodomain border, and favored dye–dye interactions and NR aggregation. These results correlate well with release experiments, indicating first NR release from more hydrophilic network locations. Overall, our findings demonstrate the importance to understand carrier–drug interactions for efficient loading and controlled release profiles in amphiphilic nanogels. KW - Particle KW - Energy transfer KW - Limit of detection KW - Polymer KW - Luminescence KW - Quantitative spectroscopy KW - Nano KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Dye KW - Probe KW - Sensor KW - Nile Red PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601603 DO - https://doi.org/10.1039/d4nr00051j SN - 2040-3364 IS - 16 SP - 9525 EP - 9535 PB - The Royal Society of Chemistry AN - OPUS4-60160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -