TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg T1 - Quo vadis LIPSS? – Applications of Laser-Induced Periodic Surface Structures N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the femtosecond to picosecond range. During the past years significantly increasing industrial and research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical, biological, or chemical surface properties. In this contribution the mechanisms of formation and current trends and applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting properties, the mimicry of the natural texture of animals, the tailoring of surface colonization by bacterial biofilms, the advancement of leadless medical pacemakers, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - 11. Mittweidaer Lasertagung CY - Mittweida, Germany DA - 13.11.2019 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Applications PY - 2019 AN - OPUS4-49655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dieter A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Impact of Boehmite nanoparticles on the curing behaviour and thermal properties of cycloaliphatic-epoxy oligosiloxane hybrid N2 - UV-curing coatings are nowadays widely used due to their unique advantages. High-quality coatings can be obtained at short curing times and low temperatures so that thermal stress to the substrate is minimised. Photocured Cycloaliphatic-Epoxy Oligosiloxane (CEO) resin was reported to be used as encapsulation material for organic electronics. However, further reinforcement of CEO film properties is desired to achieve requested device lifetime. In this work we introduced Boehmite nanoparticles (BA) into CEO matrix in order to modify the film properties and study the main changes of the material behaviour with regard to its photocuring kinetics, thermal stability and glass transition. Particular interest was focused on the role of particle surface in nanocomposite properties. Hence, BA particles without (HP14) and with organic surface modifier (OS1) at different loadings (up to 10 wt%) were applied in this study. Morphology investigation with SEM operated in transmission mode showed good BA dispersion forming network-like structure. At the same time, distribution of particles differed for HP14 and OS1 as a result of different interaction in CEO-solvent-particles system. CEO structure obtained via non-hydrolytic sol-gel reaction was verified by 13C and 29Si NMR. In situ monitoring of film curing was performed using RT-IR spectroscopy. No significant modification of final convention degree with particle incorporation was observed in contrast to considerable decrease of curing efficiency reported previously for similar system by Esposito et al.,2008. Further, cured hybrid nanocomposite films were analysed by TGA and DSC, which revealed impact of surface modifier on film thermal properties. T2 - E-MRS CY - Warsaw, Poland DA - 15.09.2018 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - DSC KW - TGA KW - UV-curing PY - 2018 AN - OPUS4-47643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures N2 - This presentation reviews the current state in the field of Laser-induced Periodic Surface Structures (LIPSS). These surface nanostructures are a universal phenomenon and can be generated on almost any material by irradiation with intense linearly polarized laser radiation. LIPSS are formed in a “self-ordered” way and are often accompanying material processing applications. They can be produced following a single-step process and enable surface functionalization through the adaption of optical, mechanical and chemical surface properties. Their structural sizes typically range from several micrometers down to less than 100 nanometers exhibiting a clear correlation with the polarization direction of the laser radiation. Various types of surface structures are classified, relevant control parameters are identified, and their material specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics, through time-resolved optical experiments and theoretical simulations. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. T2 - Seminar CY - Laser-Laboratorium Göttingen e.V., Germany DA - 18.11.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Electromagnetic radiation KW - Applications KW - Femtosecond laser ablation PY - 2019 AN - OPUS4-49689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Acosta-Zepeda, C. A1 - Saavedra, S. A1 - Bonse, Jörn A1 - Haro-Poniatowski, E. T1 - Modelling of single UV nanosecond pulsed laser surface modifications of silicon N2 - Irradiation with a single spatially Gaussian-shaped nanosecond laser pulse in the melting regime can result in a characteristic annular change in the surface morphology of crystalline silicon. This has been verified experimentally in a variety of situations, where dimple-shaped surface topographies are produced. In a recent work we have investigated the induced changes in the surface topography upon exposure to wavelengths in the visible and near infrared spectral region. Irradiation in the UV requires a more detailed analysis due to the enhanced absorption of the material. In the present analysis, we determine under which conditions our previous model can be used and the corresponding results are presented. KW - Laser KW - Silicon KW - Surface modification PY - 2020 DO - https://doi.org/10.1088/1555-6611/ab9b2c SN - 1555-6611 SN - 1054-660X VL - 30 IS - 8 SP - 086003-1 EP - 086003-4 PB - IOP Publishing / Astro Ltd CY - Bristol, United Kingdom AN - OPUS4-51022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dieter A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Influence of Boehmite nanofiller on the properties of cycloaliphatic-epoxy oligosiloxane resin coatings N2 - Organic-inorganic nanostructured materials have drawn much attention over the past decade, particularly due to their versatile and outstanding properties. Possessing the properties between those of polymers and those of glasses, siloxane-based resins are non-toxic, easy to synthesize and process hybrid materials, that hold a promising potential in the field of advanced coatings. Photocurable resins are nowadays widely used as coatings due to their unique advantages. In particular, cationic ring-opening curing is not inhibited by oxygen, leads to low degree of shrinkage and superior adhesion. The most important, it enables production of high-quality coatings within short exposure times without applying temperature, thus, minimizing the presence of the thermal stress in the substrate. Photocured Cycloaliphatic-Epoxy Oligosiloxane (CEO) resin was reported to be used as encapsulation material for organic electronics. However, further reinforcement of CEO properties is desired to achieve requested device lifetime. One of the common approaches to improve material characteristics is by embedding inorganic nanoparticles into polymer matrix. It has been shown that the resulted nanocomposites exhibit enhanced functional properties included but not limited by optical, mechanical, thermal and barrier ones. In this work we focused on the incorporation of Boehmite nanoparticles (BA) into CEO matrix as a tool to strengthen the film properties and to study the main changes occurred in the material behavior with regard to its photocuring kinetics, thermal stability and glass transition. Particular interest was focused on the role of particle surface in nanocomposite properties. Hence, BA particles without (HP14) and with organic surface modifier (OS1) at different loadings (up to 10 wt%) were applied in this study. Morphology investigation with SEM operated in transmission mode showed good BA dispersion forming network-like structure. At the same time, distribution of particles differed for HP14 and OS1 as a result of different interaction in CEO-solvent-particles system. CEO structure obtained via non-hydrolytic sol-gel reaction was verified by 13C and 29Si NMR. In situ monitoring of film curing was performed using RT-IR spectroscopy. A slight increase of final convention degree with particle incorporation was observed in contrast to the considerable decrease of curing efficiency reported previously for similar system. Further, the cured hybrid nanocomposite films were analyzed by TGA and DSC, which revealed impact of surface modifier on thermal stability and glass transition temperature. T2 - Kyiv Conference on Analytical Chemistry: Modern Trends CY - Kyiv, Ukraine DA - 17.09.2018 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - Photocuring PY - 2018 AN - OPUS4-47642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gräf, S. A1 - Kunz, C. A1 - Büttner, T.N. A1 - Naumann, B. A1 - Boehm, A.V. A1 - Gnecco, E. A1 - Bonse, Jörn A1 - Neumann, C. A1 - Turchanin, A. A1 - Müller, F.A. T1 - Large-area fabrication of low- and high-spatial-frequency laser-induced periodic surface structures on carbon fibers N2 - The properties of fiber-reinforced polymers (CFRP) or concretes (ECC) strongly depend on the interface between the fiber and the surrounding matrix. Different methods such as plasma oxidation, chemical or electrolytic etching and chemical vapor deposition have been investigated to increase, for example, the bonding strength. The present study deals with the functionalization of the fiber surface based on laser-induced periodic surface structures (LIPSS). They can be characterized as a modulation of the surface topography on the nano- and microscale that results from the irradiation of the surface with linearly polarized laser radiation close to the ablation threshold. According to their spatial period, LIPSS are classified into low-spatial frequency LIPSS (LSFL) and high-spatial frequency LIPSS (HSFL). The great potential of both types of LIPSS structures regarding functional surface properties was demonstrated in numerous investigations. The objective of the present study was the homogenous manufacturing of both types of LIPSS on large areas of carbon fiber arrangements without damage. The results are discussed based on a detailed analysis of the topographic and chemical surface properties. T2 - 15th International Conference on Laser Ablation (COLA 2019) CY - Hawaii, USA DA - 08.09.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Carbon fibers KW - Femtosecond laser ablation KW - Surface functionalization PY - 2019 AN - OPUS4-49676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures: mechanisms, applications, and unsolved problems N2 - Laser-induced Periodic Surface Structures (LIPSS, ripples) are a universal phenomenon and can be generated in a contactless, single-step process on almost any type of solid upon irradiation with intense laser pulses. They represent a (quasi-)periodic modulation of the surface topography in the form of a linear grating and are typically formed in a “self-ordered” way in the focus of a laser beam. Thus, they are often accompanying laser material processing applications. The structural sizes of LIPSS typically range from several micrometers down to less than 100 nanometers – far beyond the optical diffraction limit – while their orientations exhibit a clear correlation with the local polarization direction of the laser radiation. From a theoretical point of view, a controversial debate has emerged during the last decades, whether LIPSS originate from electromagnetic effects (seeded already during the laser irradiation) – or whether they emerge from matter-reorganization processes (distinctly after the laser irradiation). From a practical point of view, however, LIPSS represent a simple and robust way for the nanostructuring of solids that allows creating a wide range of different surface functionalities featuring applications in optics, tribology, medicine, energy technologies, etc. This presentation reviews the currently existent theories of LIPSS. A focus is laid on the historic development of the fundamental ideas behind the LIPSS, their corresponding mathematical descriptions and numerical implementations, along with a comparison and critical assessment of the different approaches. Fourth generation light sources, namely short wavelength, short pulse free electron lasers (FELs) are offering new and fascinating possibilities to resolve laser-induced structure formation at surfaces on the sub-micrometer to nanometer length scale and in temporal regimes ranging from picoseconds to several nanoseconds with sub-picosecond resolution. This unique spatio-temporal resolution allows to reveal early signatures of coherent/plasmonic electromagnetic scattering effects followed by the excitation of hydrodynamic capillary waves – providing new insights to the above-mentioned debate. Finally, some unsolved scientific problems related to LIPSS are identified and the pending technological limitations are discussed. While the currently available laser and scanner technology already allows large area surface processing with rates at the m2/min level, industrial applications of LIPSS are sometimes limited by the complex interplay between the nanoscale surface topography and the specific surface chemistry. This typically manifests in difficulties to control the processing of LIPSS and in limitations to ensure the long-term stability of the created surface functions. Strategies for overcoming such limitations are outlined. T2 - Institutskolloquium des Leibniz-Instituts für Oberflächenmodifizierung CY - Leipzig, Germany DA - 02.02.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Industrial applications KW - Femtosecond laser PY - 2023 AN - OPUS4-56949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - Test artifact for fs-LDW N2 - Data to generate the given graphs in the publication as well as raw images of the shown images. KW - stl code KW - Images KW - Graphs KW - Data PY - 2023 DO - https://doi.org/10.5281/zenodo.7671945 PB - Zenodo CY - Geneva AN - OPUS4-58096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee T1 - Grenzflächen als Material: Konzepte und Beispiele zu nanoverstärkten Duroplasten N2 - Nachdem Jahrzehnte die Grenzfläche zwischen Kohlefaser und Duroplastmatrix optimiert wurde liegt das Augenmerk heute auf der Polymermatrix selbst. Diese lässt sich hinsichtlich ihres Elastizitätsmoduls und ihrer Bruchfestigkeit verbessern, indem Nanopartikel aus Böhmit (AlOOH) eindispergiert werden. Der Vortrag geht auf integrale und hochauflösend-bildgebende Methoden ein die ein Verständnis der komplexen Zusammenhänge ermöglichen. Nach einer chemischen in-situ Analyse des Aushärtvorgangs, aus welchem sich die Bedeutung der externer Parameter ablesen lässt, werden diverse hochauflösende, neue Methoden der Rasterkraftmikroskopie (AFM) eingeführt. Der lokalen Bestimmung des E-Moduls der Nanopartikel folgen Ausführungen zum temperaturabhängigen Chemismus des Böhmits, der während der Aushärtung Wasser freisetzt. Die hochauflösende Bestimmung der Oberflächenpotentiale, der Steifigkeit, der attraktiven Kräfte zwischen Spitze und Probe sowie der Energiedissipation im Kontakt stellen auf der Nanoskala eine komplexe Datenquelle dar, die auf der Makroskala einer Ergänzung bedarf: Durch Kombination von dynamisch-mechanisch-thermischer Analyse einerseits und Kartierung physikalischer Eigenschaften auf der Nanoskala andererseits kann der Zusammenhang zwischen chemischer Steuerung der Netzwerkbildung und den mechanischen Eigenschaften des Nanokomposits geklärt werden. Überraschend ist, dass bei geeigneter Steuerung der lokale E-Modul der Polymermatrix den des Füllstoffs übersteigt. Die Rissfortschrittsenergie wird in Böhmit-modifiziertem Epoxy verbessert absorbiert, die These dazu ist, dass die (010)-Gleitebenen, die nur durch Wasserstoffbrücken zusammen gehalten werden, einigermaßen schadlos geschert werden können. Daraus folgt, dass das System auf der Nanoskala über einen, wenn auch begrenzten, Selbstheilmechanismus verfügt. Zudem wird durch die hohe Heterogenität der Steifigkeit und Energiedissipation des Nanokomposits eine Risstrajektorie vielfach umgelenkt und somit früher gestoppt. Ergebnisse dieses Vortrags stammen aus einer Zusammenarbeit innerhalb des DFG-Forscherverbundes FOR2021 „Wirkprinzipien nanoskaliger Matrixadditive für den Faserverbundleichtbau“. T2 - Niedersächsisches Symposium Materialtechnik - NSM 2019 CY - Clausthal, Germany DA - 14.02.1019 KW - Nanokomposit KW - Böhmit KW - Risstrajektorie KW - Oberflächenpotential KW - Energiedissipation im Kontakt KW - Oberflächensteifigkeit KW - attraktive Wechelwirkung KW - Epoxy-Anhydrid Duroplast KW - Leichtbau PY - 2019 AN - OPUS4-47636 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Erzeugung und Charakterisierung anisotroper Nanostrukturen durch Ultrakurzpulslaser N2 - Der Vortrag gibt einen Überblick über die Erzeugung und Charakterisierung anisotroper Nanostrukturen mittels ultrakurzgepulster Laserstrahlung. Besonderes Augenmerk liegt dabei auf dem Phänomen der sogenannten Laser-induzierten periodischen Oberflächen-Nanostrukturen auf dielektrischen Werkstoffen und ihrer zeitlichen Dynamik. Weitere Beispiele von Volumen-Nanostrukturen aus der Literatur werden diskutiert. T2 - 21. Treffen des DGG-DKG Arbeitskreises „Glasig-kristalline Multifunktionswerkstoffe“ CY - Mainz, Germany DA - 22.02.2024 KW - Laser-induzierte periodische Oberflächen-Nanostrukturen KW - Quarzglas KW - Saphir KW - Bessel-Strahlen PY - 2024 AN - OPUS4-59565 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Simon, P. ED - Ihlemann, J. ED - Bonse, Jörn T1 - Special issue "Laser-generated periodic nanostructures" N2 - The study of laser-fabricated periodic nanostructures is one of the leading topics of today’s photonics research. Such structures on the surface of metals, semiconductors, dielectrics, or polymers can generate new material properties with special functionalities. Depending on the specific material parameters and the morphology of the structures, new devices such as microlasers, optical nanoswitches, optical storage devices, sensors or antifraud features can be realized. Furthermore, laser-generated surface textures can be used to improve the tribological properties of surfaces in contact and in relative motion—to reduce friction losses or wear, to modify the wettability or the cell and biofilm growth properties of surfaces through bioinspired laser engineering, for emerging medical applications, or as decoration elements for the refinement of precious goods. This Special Issue “Laser-Generated Periodic Nanostructures” focuses on the latest experimental and theoretical developments and practical applications of laser-generated periodic structures that can be generated in a “self-organized” way (laser-induced periodic surface structures, LIPSS, ripples) or via laser interference-based direct ablation (often referred to as direct laser interference patterning, DLIP). We aimed to attract both academic and industrial researchers in order to collate the current knowledge of nanomaterials and to present new ideas for future applications and new technologies. By 8 August 2021, 22 scientific articles have been published in the Special Issue. KW - Laser-induced periodic surface structures (LIPSS) KW - Direct laser-interference patterning (DLIP) KW - Surface functionalization KW - Laser processing KW - Applications PY - 2021 UR - https://www.mdpi.com/journal/nanomaterials/special_issues/laser-generated_periodic SN - 2079-4991 VL - 10(1)-11(8) SP - 147-1 EP - 2054-7 PB - MDPI CY - Basel AN - OPUS4-53099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Ghasem Zadeh Khorasani, Media A1 - Hodoroaba, Vasile-Dan A1 - Braun, Ulrike A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Versatile role of boehmite particles in epoxy-based nanocomposites N2 - Thermosetting materials are gaining increasing attention in many structural composite applications. However, the incorporation of inorganic nanoparticles (NPs) into polymer matrix is a promising approach to enhance their functional characteristics, and thus, to enable the development of thermosets advanced application. It has been shown that Boehmite Alumina (BA) used as nanofillers can improve different parameters of polymers. This NPs can be easily tailored enabling desirable interactions with a big range of polymers. However, the overall effect of nanofiller depends on many factors, therefore, making it hard to predict the resulted performance of nanocomposites. In the current contribution we would like to discuss the impact of Boehmite NPs on two different epoxy resin nanocomposite systems with the focus on the possible influence mechanisms of this nanofiller. As the first system, UV curable Cycloaliphatic-Epoxy Oligosiloxane (CEOS) resin/Boehmite nanocomposites were investigated by FTIR, TGA, DSC and T-SEM. It was observed that incorporation of BA leads to the reinforcement of glass transition (Tg) and overall thermal stability indicating the attractive interactions between BA and CEOS network. In addition, an increase in epoxy conversion of CEOS was concluded for nanocomposites assuming that particles are involved in UV polymerisation processes. The second epoxy/Boehmite nanocomposite is based on the bisphenol-A-diglycidyl ether (DGEBA) cured with methyl tetrahydrophtalic acid anhydride (MTHPA). Thermomechanical as well as nanomechanical properties of this material were investigated by DMTA and IR spectroscopy and the advanced Intermodulation AFM, respectively. In contrast to the first system, it was found that BA leads to a decrease of Tg and crosslink density of the polymer while the young’s modulus of the composite and local stiffness of polymer matrix increase significantly. As a result, the versatile role of Boehmite was detected depending on the investigated systems. Based on the obtained results, the parameters indicating property-efficient epoxy/Boehmite system are suggested. T2 - HYMA Conference CY - Sitges, Spain DA - 11.03.2019 KW - Epoxy KW - Boehmite KW - Curing KW - Nanocomposite PY - 2019 AN - OPUS4-47640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Mechanical and chemical alteration of polymer matrix induced by nanoparticles in epoxy-boehmite nanocomposites N2 - Inorganic nanoparticles are used to improve the performance of epoxy as the matrix phase in fiber-reinforced composites used for aerospace applications. The effectiveness of nanofillers on property enhancement of thermosetting polymers depends on many factors including the interaction between the functional groups of nanofillers and the polymer reactants. In the current work, we study the effect of boehmite nanoparticles (BNPs) on properties of anhydride-cured bisphenol-A-diglycidyl ether (DGEBA). Dynamic mechanical thermal analysis (DMTA) and a high-resolution force measurement approach called intermodulation atomic force microscopy (ImAFM) were carried out to investigate the thermomechanical and nanomechanical properties of this material, respectively. It was found that BNPs lead to decrease of glass transition temperature (Tg) and crosslink density of the polymer network meanwhile significantly enhancing the Young’s modulus. Besides formation of a soft interphase near the particles, significant changes in local stiffness of polymer matrix far from the interphase was observed with ImAFM. Thus, boehmite induces long-range chemical alteration on the matrix. This effect has a higher impact on overall composite properties compared to the formation of interphase which is only a short-range effect. The local chemical evaluations on the soft interphase using an infrared-AFM method (NanoIR) revealed the accumulation of anhydride hardener near the boehmite interface. Based on these observations the effect of boehmite on the curing of epoxy is hypothesized to be governed by the strong interaction between boehmite and the anhydride. This interaction causes changes the ratio of reactants in the epoxy mixture and hence alteration of curing pathway and the network architecture. In future studies we examine this hypothesis by measuring the thermomechanical properties of cured epoxies in which the epoxy-hardener ratio is systematically altered and further comparing to those properties of nanocomposites shown in the current study. T2 - HYMA 6th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Nanomechanics KW - Polymer nanocomposites KW - Boehmite KW - AFM KW - Epoxy PY - 2019 AN - OPUS4-50692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Braun, Ulrike T1 - Kunststoffe und deren Recycling – Materialwissenschaftliche Erkenntnisse, um mehr Recyclat einzusetzen N2 - Nach einer Übersicht zu den immer schneller aktualisierenden Rahmenbedingungen von Politik und Gesellschaft folgt eine Übersicht zu materialwissenschaftlichen Problemen des Recyclings von Kunststoffen. Lösungsansätze aus der Forschung reichen von einfacher Optimierung bis hin zur radikalen Neukonstruktion der polymeren Werkstoffe. Aus dem bereits möglichen Ansatz "performance-by-design" wird ein neuer Weg des "recycling-by-design" adressiert. Dies inkludiert methodisch eine skalenübergreifende Modellierung und die Depolarisation bis zum Monomer. T2 - Gefahrgut-Technik-Tage CY - Berlin, Germany DA - 07.11.2019 KW - Recycling KW - Kunststoff KW - Additiv KW - Polymer KW - Normung KW - Plastikstrategie KW - Grenzfläche als Material KW - Recycling-by-design PY - 2019 AN - OPUS4-49561 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Anja A1 - Mezera, Marek A1 - Buchberger, G. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Heitz, J. A1 - Schwibbert, Karin T1 - Laser-processing – a tool to direct biofilm formation N2 - Using nanofiber-like cell appendages, secreted proteins and sugars, bacteria can establish initial surface contact followed by irreversible adhesion and the formation of multicellular biofilms, often with enhanced resistance towards antimicrobial treatment and established cleaning procedures. On e.g. medical implants, in water supply networks or food-processing industry, biofilms can be a fertile source of bacterial pathogens and are repeatedly associated with persisting, nosocomial and foodborne infections. Nowadays, the emergence of resistances because of extensive usage of antibiotics and biocides in medicine, agriculture and private households have become one of the most important medical challenges with considerable economic consequences. In addition, aggravated biofilm eradication and prolonged cell-surface interaction can lead to increased biodeterioration and undesired modification of industrial and medical surface materials. Various strategies are currently developed, tested, and improved to realize anti-bacterial surface properties through surface functionalization steps avoiding antibiotics. In this study, contact-less and aseptic large-area short or ultrashort laser processing is employed to generate different surface structures in the nanometer- to micrometer-scale on technical materials such as titanium-alloy and polyethylene terephthalate (PET). The laser processed surfaces were subjected to bacterial colonization studies with Escherichia coli test strains and analyzed with reflected-light and epi-fluorescence microscopy. Depending on the investigated surfaces, different bacterial adhesion patterns were found, ranging from bacterial-repellent to bacterial-attractant effects. The results suggest an influence of size, shape and cell appendages of the bacteria and – above all – the laser-processed nanostructure of the surface itself, emphasizing the potential of laser-processing as a versatile tool to control bacterial surface adhesion. T2 - International Biodeterioration & Biodegradation Symposium 2021 CY - Online meeting DA - 06.09.2021 KW - Bacterial adhesion KW - Biofilm formation KW - Laser-induced periodic surface structueres (LIPPS) KW - Laser processing PY - 2021 UR - https://www.ibbs18.org/programme AN - OPUS4-53223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drobne, D. A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Bohmer, N. A1 - Novak, S. A1 - Kranjc, E. A1 - Kononenko, V. A1 - Reuther, R. T1 - Knowledge, Information, and Data Readiness Levels (KaRLs) for Risk Assessment, Communication, and Governance of Nano-, New, and Other Advanced Materials N2 - The obvious benefits derived from the increasing use of engineered nano-, new, and advanced materials and associated products have to be weighed out by a governance process against their possible risks. Differences in risk perception (beliefs about potential harm) among stakeholders, in particular nonscientists, and low transparency of the underlying decision processes can lead to a lack of support and acceptance of nano-, new, and other advanced material enabled products. To integrate scientific outcomes with stakeholders needs, this work develops a new approach comprising a nine-level, stepwise categorization and guidance system entitled “Knowledge, Information, and Data Readiness Levels” (KaRLs), analogous to the NASA Technology Readiness Levels. The KaRL system assesses the type, extent, and usability of the available data, information, and knowledge and integrates the participation of relevant and interested stakeholders in a cocreation/codesign process to improve current risk assessment, communication, and governance. The novelty of the new system is to communicate and share all available and relevant elements on material related risks in a user/stakeholder-friendly, transparent, flexible, and holistic way and so stimulate reflection, awareness, communication, and a deeper understanding that ultimately enables the discursive process that is needed for the sustainable risk governance of new materials. KW - Risk asessment KW - Advanced materials KW - TRL KW - Governance KW - Data readiness level PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575344 DO - https://doi.org/10.1002/gch2.202200211 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-57534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hunter, R. D. A1 - Hayward, E. C. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Kulak, A. A1 - Guan, S. A1 - Schnepp, Z. T1 - The effect of nitrogen on the synthesis of porous carbons by iron-catalyzed graphitization N2 - This paper reports a systematic study into the effect of nitrogen on iron-catalyzed graphitization of biomass. Chitin, chitosan, N-acetylglucosamine, gelatin and glycine were selected to represent nitrogen-rich saccharides and amino-acid/polypeptide biomass precursors. The materials were pyrolyzed with an iron catalyst to produce carbons with a wide range of chemical and structural features such as mesoporosity and nitrogen-doping. Many authors have reported the synthesis of nitrogen-doped carbons by pyrolysis and these have diverse applications. However, this is the first systematic study of how nitrogen affects pyrolysis of biomass and importantly the catalytic graphitization step. Our data demonstrates that nitrogen inhibits graphitization but that some nitrogen survives the catalytic graphitization process to become incorporated into various chemical environments in the carbon product. KW - Graphitization KW - Nanoparticles KW - Nanocomposite KW - Porous carbon KW - Nitrogen KW - Scattering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575351 DO - https://doi.org/10.1039/d3ma00039g VL - 4 SP - 2070 EP - 2077 PB - Royal Society of Chemistry AN - OPUS4-57535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gawek, Marcel A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Growth kinetics of the adsorbed layer of poly(2-vinylpyridine) - An indirect observation of desorption of polymers from substrates N2 - The growth kinetics of the adsorbed layer of poly(2-vinylpiridine) on silicon oxide is studied using a leaching technique which is based on the Guiselin brushes approach. The adsorbed layer is grown from a 200 nm thick P2VP film for several annealing time periods at different annealing temperatures. Then the film is solvent-leached, and the height of the remaining adsorbed layer is measured by atomic force microscopy. At the lowest annealing temperature only a linear growth regime is observed, followed by a plateau. Here, the molecular mobility of segments is too low to allow for a logarithmic growth. At higher annealing temperatures, both linear and logarithmic growth regimes are observed, followed by a plateau. At even higher annealing temperatures, the growth kinetics of the adsorbed layer changes. A linear growth followed by logarithmic growth kinetics is observed for short annealing time periods. For longer annealing time periods, an upturn of the growth kinetics is observed. At the highest annealing temperature, only a logarithmic growth regime is found. The change in the growth kinetics is discussed by an alteration in the structure of the adsorbed layer. Moreover, the interaction between the polymer segments and the substrate becomes weaker due to both enthalpic and entropic effects. Therefore, at high annealing temperatures the polymer segments might more easily desorb from the substrate. KW - Ultra thin polymer films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575423 DO - https://doi.org/10.1039/d3sm00129f SN - 1744-683X SN - 1744-6848 VL - 19 IS - 21 SP - 3975 EP - 3982 PB - Royal Society of Chemistry (RSC) CY - London AN - OPUS4-57542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Hiid, Gundula A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth kinetics of the adsorbed layer of poly(bisphenol A carbonate) and its effect on the glass transition behavior in thin films N2 - The glass transition behavior of thin films of poly(bisphenol A carbonate) (PBAC) was studied employing ellipsometry. The glass transition temperature increases with the reduction of the film thickness. This result is attributed to the formation of an adsorbed layer with a reduced mobility compared to bulk PBAC. Therefore, for the first time, the growth kinetics of the adsorbed layer of PBAC was investigated, prepared by leaching samples from a 200 nm thin film which were annealed for several times at three different temperatures. The thickness of each prepared adsorbed layer was measured by multiple scans using atomic force microscopy (AFM). Additionally, an unannealed sample was measured. Comparison of the measurements of the unannealed and the annealed samples provides proof of a pre-growth regime for all annealing temperatures which was not observed for other polymers. For the lowest annealing temperature after the pre-growth stage only a growth regime with a linear time dependence is observed. For higher annealing temperatures the growth kinetics changes from a linear to a logarithmic growth regime at a critical time. At the longest annealing times the films showed signs of dewetting where segments of the adsorbed film were removed from the substrate (dewetting by desorption). The dependence of the surface roughness of the PBAC surface on annealing time also confirmed that the films annealed at highest temperatures for the longest times desorbed from the substrate. KW - Ultra thin polymer films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574531 DO - https://doi.org/10.1039/D3RA02020G SN - 2046-2069 VL - 13 IS - 21 SP - 14473 EP - 14483 PB - RSC Publishing CY - London AN - OPUS4-57453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - (Pre)Standardisation and Metrology in Microbeam Analysis – Ongoing Activities and Opportunities N2 - The presentation addresses the current ongoing projects as well as the gaps and opportunities in microbeam analysis within ISO/TC 202 Microbeam Analysis standardisation body and in-liaison Technical Working Areas (TWAs) at the pre-standardization platform of VAMAS (Versailles Project on Advanced Materials and Standards). T2 - EMAS 2023 - 17th European Workshop on Modern Developmennts and Applications in Microbeam Analysis - General Assembly CY - Krakow, Poland DA - 07.05.2023 KW - Microbeam analysis KW - EDS KW - Electron microscopy KW - Inter-laboratory comparison KW - EBSD KW - Standardisation PY - 2023 AN - OPUS4-57483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Terborg, R. A1 - Hodoroaba, Vasile-Dan A1 - Kim, K.J. T1 - Determination of Thin Film Thickness and Composition using Energy Dispersive EPMA N2 - Electron probe microanalysis (EPMA)is a non-destructive technique which assumes a sample of homogenous (bulk) chemical composition and can, therefore, not be used for thin film samples. However, in combination with one of the possible thin film software packages, STRATAGEM, the thickness as well as the composition of such films on a substrate can be determined. This has been demonstrated for FeNi on Si and SiGe on Al2O3 film systems. For both systems five samples with different elemental composition and a reference were produced and characterised by the Korean research institute KRISS using inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM). In 2021, a new and open source thin film evaluation programme called BADGERFILM has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we re-evaluated the data acquired for the FeNi and SiGe systems using the BADGERFILM software package and compared the resulting composition and thickness with the results of the established STRATAGEM software and other reference methods. With the current evaluation, the BADGERFILM software shows good agreement with the composition and thickness calculated by STRATAGEM and provided by the KRISS. These results between two well-known layered material systems analysed with available conventional EMPA approaches (STRATAGEM and direct thickness measurement by TEM) and a new one (BADGERFILM) proves that reliable non-destructive thin film analysis is possible. In this way, we validate the performance of the new software, which is not at all self-explanatory for such complex quantification algorithms lying behind the final quantified results. T2 - EMAS 2023 - 17th European Workshop on Modern Developments and Applications in Microbeam Analysis CY - Krakow, Poland DA - 07.05.2023 KW - Thin films KW - BADGER film KW - Electron probe microanallysis (EPMA) KW - FeNi thin film KW - Al2O3 thin films PY - 2023 UR - https://www.microbeamanalysis.eu/events/event/60-emas-2023-17th-european-workshop-on-modern-developments-and-applications-in-microbeam-analysis AN - OPUS4-57484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - VAMAS interlaboratory comparisons on nanoparticles associated with the outcomes of the EMPIR project nPSize N2 - Following points are presented and discussed: i) nPSize as an EMPIR project on the nanoparticle size and shape distribution of (more) complex particles including sample preparation and machine learning approaches; ii) parallel development of ISO 21363 (PSSD by TEM), ISO 19749 (PSSD by SEM), ISO 22292 (3D TEM), ISO 52408 (NP Prep for AFM and EM), iii) VAMAS and pre-standardisation, TWA 34 „Nanoparticle Populations“ with two nPSize ILC projects P15 & P16 – results to be published and integrated in ISO 21363 (PSSD by TEM); iv) Remaining challenges: platelets, 2D materials (TiO2 and GR2M); v) Reference data sets as part of a complete Characterisation Workflow. T2 - How to identify Nanomaterials more effectively? Good Practices and Ways to Progress CY - Paris, France DA - 11.05.2023 KW - Nanoparticles KW - VAMAS KW - nPSize KW - Particle size distribution KW - Nanoparticle concentration KW - Interlaboratory comparison PY - 2023 UR - https://www.lne.fr/fr/service/formation/journee-technique-nanomateriaux-comment-identifier-efficacement-nanomateriaux?utm_source=Twitter&utm_medium=Tweet&utm_campaign=JT2301 AN - OPUS4-57485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baglo, K. A1 - Sauermoser, M. A1 - Lid, M. A1 - Paschke, T. A1 - Bin Afif, A. A1 - Lunzer, M. A1 - Bock, Robert A1 - Steinert, M. A1 - Flaten, A. A1 - Torgersen, J. T1 - Overcoming the transport limitations of photopolymer-derived architected carbon N2 - Photopolymer derived carbon grows in popularity, yet the range in available feature sizes is limited. Here we focus on expanding the field to low surface to volume ratio (SVR) structures. We describe a high temperature acrylic photopolymerizable precursor with FTIR and DSC and develop a thermal inert-gas treatment for producing architected carbon in the mm scale with SVR of 1.38 x10-3 μm-1. Based on TGA and MS, we distinguish two thermal regimes with activation energies of ~79 and 169 kJ mol-1, which we reason with mechanisms during the polymer’s morphologic conversion between 300 - 500 °C. The temperature range of the major dimensional shrinkage (300-440 °C, 50%) does not match the range of the largest alteration in elemental composition (440-600 °C, O/C 0.25-0.087%). The insights lead to an optimized thermal treatment with an initial ramp (2 °C min-1 to 350 °C), isothermal hold (14h), post hold ramp (0.5 °C min-1 to 440 °C) and final ramp (10 °C min-1 to 1000 °C). The resulting carbon structures are dimensionally stable, non-porous at the μm scale, and comprise an unprecedented variation in feature sizes (from mm to μm scale). The findings shall advance architected carbon to industrially relevant scales. KW - Carbon KW - Photopolymer KW - Transport limitations KW - Porous materials KW - Additive manufacturing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575038 DO - https://doi.org/10.1002/admt.202300092 SN - 2365-709X SP - 2300092 PB - Wiley-VCH GmbH AN - OPUS4-57503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cios, Grzegorz A1 - Hodoroaba, Vasile-Dan A1 - Tokarski, T. A1 - Bala, P. T1 - High throughput nanoparticle analysis using transmission Kikuchi diffraction N2 - In the present paper we show an approach of measuring large numbers of nanoparticles in a single scan TKD. TiO2 anatase nanoparticles (NP) of bipyramidal shape were deposited on standard carbon grid used for TEM. The procedure used promoted formation of NP ‘monolayer’ islands with uniform distribution of NPs on the carbon surface which allowed mapping of large number of nanoparticles in the single island. Collection of whole map covering ~2800 nanoparticles took nearly 20 minutes. Inverse pole figure color coded map indicates that the NPs are either lying on a {101} facet (within 10° range around perfect {101} parallel to the carbon surface orientation) on the carbon film or are lying on a {100} facet (within 10° range around the perfect {100} parallel to the carbon surface orientation). Very unlikely was the NP orientation standing on a {001} face. The NPs size distribution described as equivalent circle diameter (ECD) has been also evaluated and the mean NP ECD was 59 nm with standard deviation of 15 nm, i.e. in good agreement with electron microscopy or AFM results. This study shows high potential of the technique for crystalline NPs analysis with respect to geometrical orientation of the particles on the substrate. With known orientation, the 3D dimensional characterisation of such non-spherical NPs becomes possible from 2D projection electron micrographs. Moreover, the NP size distribution can be easily extracted. Superior accuracies down to 1-2 nm are achievable. The approach is applicable also on thin lamellae extracted from particulate (or mesoporous) layers. T2 - EMAS 2023 - 17th European Workshop on Modern Developmennts and Applications in Microbeam Analysis CY - Krakow, Poland DA - 07.05.2023 KW - Nanoparticles KW - TKD KW - Electron microscopy KW - TiO2 KW - Orientation PY - 2023 UR - https://www.microbeamanalysis.eu/events/event/60-emas-2023-17th-european-workshop-on-modern-developments-and-applications-in-microbeam-analysis AN - OPUS4-57519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. T1 - BP150: Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement by Monte-Carlo based particle scattering Simulations N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined. Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. We apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. T2 - DPG Frühjahrstagung CY - Dresden, Germany DA - 26.03.2023 KW - AuNP KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Penelope model KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Radiotherapy KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - Beta particle KW - Particle scattering KW - Protein KW - Proteins PY - 2023 AN - OPUS4-57253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - VAMAS Regional Workshop in Germany N2 - An overview on the VAMAS technical working areas (TWA) and projects where Germany is active has been given. The role of VAMAS as an international pre-standardisation platform, including its intense collaboration with international bodies ISO, CEN, OECD and CCQM and national organizations like DIN has been highlighted. T2 - VAMAS Regional Workshop 2023 - What can pre-normative research do for industry? CY - Online meeting DA - 24.01.2023 KW - VAMAS KW - Advanced materials KW - Inter-laboratory comparisons KW - Regional workshop PY - 2023 UR - https://www.bam-akademie.de/kursangebot/kurs/vamas-regional-workshop-2023-23.html?lang=en AN - OPUS4-57281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth Kinetics and Molecular Mobility of the adsorbed Layer of Poly(bisphenol-A Carbonate) (PBAC), Polysulfone (PSU), and Poly (2-Vinyl Pyridine) (P2VP) N2 - Interactions between a polymer and a substrate interface play a vital role in understanding the improvement in thin film material properties as well as serving as a model for nanocomposites. For any non-repulsive polymer-substrate interactions, polymer segments form an irreversibly adsorbed layer and show a slowdown in the glassy dynamics and thus an increase in the thermal glass transition temperature compared to the bulk-like values. The growth kinetics of the adsorbed layer obey a two-step mechanism: formation of immobilized layer with flat segmental conformations and a loosely bound layer with stretched chains pinned to the surface. Here the adsorbed layer was studied for: poly (bisphenol-A carbonate) (PBAC) and polysulfone (PSU), two bulky polymers containing a functional group (phenyl ring) in the backbone and compared to poly (2-vinyl pyridine) (P2VP), where the backbone is a vinyl-derivative and the functional group (pyridine) is in the side chain. The growth kinetics for PBAC and PSU were found to deviate from the well-known mechanism, observed for polymers such as P2VP. Atomic force microscopy and ellipsometry were used for this investigation and was additionally supported by broadband dielectric spectroscopy. T2 - Deutschen Physikalische Gesellschaft (DPG) Tagung CY - Dresden, Germany DA - 26.03.2023 KW - Thin films KW - Adsorbed Layer KW - Broadband dielectric spectroscopy KW - Atomic force microscopy KW - Growth Kinetics PY - 2023 AN - OPUS4-57282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - SAXS for the development of reference materials: Silver nanoparticles, a case study N2 - Today there are hundreds of products available containing silver in form of nanoparticles, so-called nanosilver. This situation and the foreseeable future growing market of nanosilver will supposedly cause an increased release of silver into the environment. In this way, silver can be also incorporated into the human body and accumulated in different organs, which can be toxic or at least an unknown risk to human health. For these reasons, it is important to constantly study materials containing silver nanoparticles, their production, application in products and technical processes, dissemination of silver nanoparticles in the environment, and effects on humans and nature. The state-of-the-art nanoparticle size and concentration characterization are illustrated in an extensive interlaboratory comparison. To guarantee the traceability of measurements and to secure the comparison of results of different analytical methods, reference materials (RM) and certified reference materials (CRM) are essential. As a case study, the objective of the presented project was to provide an aqueous suspension of silver nanoparticles as a reference material with a nominal diameter below 10 nm for application in the determination of the size and concentration of nanoparticles in an aqueous surrounding. Measurands are the particles’ diameter D, size distribution width σ, number density N, and concentration c. Target uncertainties, defined as one sigma of the measurand values, are 5% for D, 10% for σ, 20% for N, and 20% for c. The certification was carried out based on ISO 17867 and the relevant ISO-Guides to produce reference material. The process of using SAXS as a reliable method for testing homogeneity and short-term and long-term stability of the material is reported. The particle preparation is described in detail so that the user can carry out the steps of synthesis and characterization in his own laboratory if required. Optionally, one can also contact the author for the provision of the silver nanoparticles. Detailed information can be found elsewhere (BAM Certification Reports, BAM-N008 (2022)). T2 - SAXS excites CY - Graz, Austria DA - 04.04.2023 KW - Nanoparticles KW - SAXS KW - Nanosilver KW - Small-angle x-ray scattering PY - 2023 AN - OPUS4-57283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Stoian, R. A1 - Bonse, Jörn T1 - Ultrafast Laser Nanostructuring — The Pursuit of Extreme Scales N2 - Long seen as “a solution seeking a problem,” laser pulses are nowadays – more than 60 years after their first practical demonstration – paramount in shaping and structuring matter. Harnessing their capabilities to direct intense beams of light, the number of scientific and technological developments and daily-life applications is continuously increasing. Today, the presence of lasers is ubiquitous in all sites of scientific and technological interest, from the most advanced research laboratories to industrial factories and medical hospitals. The directionality of the laser beam determines equally a local character on lightmatter interaction and as such a local modification to a material target. Furthermore, the coherence of laser radiation enables near-field or far-field scattering and interference effects that widen significantly the capabilities of controlling and tracking laser-matter interactions in space and time. Already with the advent of lasers, powerful beams of light have been directed at solid materials for a variety of purposes, making this application as old as the laser itself. The roots of the major applications for laser structuring were developed already in the 1960s, setting the base of both theoretical and experimental studies on laser ablation, with the number of publications expanding explosively during the next decades. Within this dynamic context, laser processing of materials experienced an impressive development over the years. Laser processing means specifically the capability to structure and tailor a material on its surface or even within its volume, rendering new functions and properties that are impacting the mechanical, electrical, or optical characteristics of the material. These properties are scaledependent, generating thus over the years an equally impressive quest for spatial or temporal resolution. Therefore, the developments in laser engineering with major breakthroughs, notably in pulse duration and power, always closely accompanied the efforts in material structuring with two milestones in sight: (1) yield and (2) resolution. Every step in shrinking the laser pulse duration led to a subsequent strong-impact development in process precision – particularly when the ultrashort pulse durations surpassed the fundamental electron-phonon relaxation times. Thus, minimizing heat diffusion, the advent of pulses with duration smaller than molecular or lattice vibration times has managed to confine the spatial resolution to the optical diffraction limit and sometimes even beyond. The nanoscale was already in sight at the turn of the millennium. An important question may be raised now; is there any fundamental limit in the processing resolution, a barrier defined by the intrinsic properties of light and matter? The answer has an inherently multidisciplinary nature, following the conversion of free-propagating electromagnetic radiation into material-confined energy potentially usable to drive or transform matter, and will be the focus of the present book. Relying on the experience and expertise of the leading researchers in the field, the present book intends to explore the current efforts in achieving laser processing resolution beyond the diffraction limit, laying down a perspective towards extreme laser nanostructuring. Following the most recent advances and developments, it puts forward a concept of extreme processing scales enabled by optical pulses that are able to bypass diffraction limits and achieve structuring characteristic scales beyond 100 nm. This objective can be achieved by a comprehensive understanding on how light can change matter and how, in turn, matter can change light, allowing jointly for actively controlling light and material processes. In order to give an extended perspective on the current state-of-the-art in the field of precision laser structuring, the book is divided into three main parts. The first part of the book (Part I: Fundamental Processes) offers a perspective into the fundamentals of laser-matter interaction on extreme spatial scales, with a description of the most advanced modeling efforts in understanding energy deposition in matter, a plethora of material-relaxation pathways, as well as advanced concepts for probing and observing matter in motion. Roadmaps for energy localization will be developed, and the atomistic perspective of laser ablation visualized. Theoretical modelling enables in-depth insights on ultrafast quantum processes at the nanoscale. Laser-driven self-organization at surfaces will be dissected regarding the question of how light drives material periodic patterns down to the nanoscale, explored and transmitted to its ultimate limits of an atomic printer, and immediately complemented by the unprecedented capabilities of ultrafast in-situ observation approaches for tracking the laser-induced material response with extreme spatial and temporal resolution. In the second part of the book (Part II: Concepts of Extreme Nanostructuring), distinct concepts will be developed and explored that allow confinement of light and harnessing of a material response restricted to nano- or mesoscopic scales at surfaces or in the volume of irradiated materials. A special focus will be on optical near-field related approaches for localizing light on scales even below the optical diffraction limit and plasmonic printing. Spatial and temporal beam-shaping and tailored interference techniques are discussed in the context of ultrashort laser pulses, and insights into some extreme states of matter realized by the tight confinement of laser energy are presented. The ultimate limits of writing waveguides in the bulk of dielectrics and for manifesting 3D-nanolithography are elucidated. Plasma-based surface treatments can significantly enhance the vertical precision of surface processing through etching processes. Finally, the third part of the book (Part III: Applications) leads us to a number of resuming applications, unveiling the tremendous capabilities of surface functionalization through laser micro- and nanostructuring, assessing the 3D-writing of waveguides in the bulk of dielectrics or semiconductors for enabling new branches of integrated photonics, and summarizing related applications ranging from nanophotonics to nanofluidics and from optical sensing to biomedical applications, including the latest capabilities of refractive eye surgery. This part will analyze the applications’ compatibility in yield and reproducibility with current industrial requirements, costs, and intellectual property aspects. It expands the involved spatial scales by more than eight orders of magnitude, when extending extremely small structures featuring sizes of few tens of nanometers to larger dimensions in the meter range. Thus, from surfaces to the bulk, from subtractive to additive manufacturing approaches, from advanced theoretical frames to practical technological processes – we invite the readers here to an exciting journey into the varicolored landscape of extreme laser nanostructuring. The idea of this book project was seeded in early 2020. We were delighted about the numerous and extremely positive responses from the laser-processing community, quickly receiving commitments for more than 30 individual book chapters. About 2500 communications later, the book is published. We would like to thank all authors of this book project for their insightful and detailed chapters, reviewing and reporting on this fascinating topic of the pursuit of extreme scales in ultrafast laser nanostructuring. Moreover, we would like to acknowledge the professional help and guidance of the staff of Springer Nature. Finally, we hope you will enjoy reading this book as much as we have enjoyed putting it together. Saint Etienne, France Razvan Stoian Berlin, Germany Jörn Bonse December 2022 KW - Laser nanostructuring KW - Surface engineering KW - Nonlinear lithography KW - Self-organization KW - Laser-induced periodic surface structures, LIPSS PY - 2023 SN - 978-3-031-14751-7 (Hardcover) SN - 978-3-031-14752-4 (eBook) DO - https://doi.org/10.1007/978-3-031-14752-4 SN - 0342-4111 VL - 239 SP - 1 EP - 1245 PB - Springer Nature Switzerland AG CY - Cham ET - 1 AN - OPUS4-57294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Mezera, Marek A1 - Florian, C. A1 - Römer, G.-W. A1 - Krüger, Jörg A1 - Bonse, Jörn ED - Stoian, R. ED - Bonse, Jörn T1 - Creation of Material Functions by Nanostructuring N2 - Surface nanostructures provide the possibility to create and tailor surface functionalities mainly via controlling their topography along with other chemical and physical material properties. One of the most appealing technologies for surface functionalization via micro- and nanostructuring is based on laser processing. This can be done either via direct contour-shaping of the irradiated material using a tightly focused laser beam or in a self-ordered way that allows employing larger laser beam diameters along with areal scanning to create a variety of laser-induced periodic surface structures (LIPSS). For the latter approach, particularly ultrashort pulsed lasers have recently pushed the borders across long-lasting limitations regarding the minimum achievable feature sizes and additionally boosted up the production times. This chapter reviews the plethora of recently investigated applications of LIPSS—for example, via imposing diffractive or plasmonic structural colors, the management of liquids and surface wetting properties, biomedical and bioinspired functionalities, beneficial effects in tribology for reducing friction and wear, the manipulation of optical scattering and absorption in photovoltaics, or the modification of magnetic or superconducting surface properties in other energy applications. The footprint of the LIPSS-based technology is explored in detail regarding the current state of industrialization, including an analysis of the market and associated LIPSS production costs. KW - Laser-induced periodic surface structures, LIPSS KW - Surface functionalization KW - Nanostructures KW - Microstructures KW - Laser processing PY - 2023 SN - 978-3-031-14751-7 SN - 978-3-031-14752-4 DO - https://doi.org/10.1007/978-3-031-14752-4_23 VL - 239 SP - 827 EP - 886 PB - Springer Nature Switzerland AG CY - Cham, Switzerland AN - OPUS4-57295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Sokolowski-Tinten, K. A1 - Bonse, Jörn A1 - Barty, A. A1 - Chapman, H.N. A1 - Bajt, S. A1 - Bogan, M.J. A1 - Boutet, S. A1 - Cavalleri, A. A1 - Düsterer, S. A1 - Frank, M. A1 - Hajdu, J. A1 - Hau-Riege, S. A1 - Marchesini, S. A1 - Stojanonovic, N. A1 - Treusch, R. ED - Stoian, R. ED - Bonse, Jörn T1 - In-Situ Observation of the Formation of Laser-Induced Periodic Surface Structures with Extreme Spatial and Temporal Resolution N2 - Irradiation of solid surfaces with intense ultrashort laser pulses represents a unique way of depositing energy into materials. It allows to realize states of extreme electronic excitation and/or very high temperature and pressure and to drive materials close to and beyond fundamental stability limits. As a consequence, structural changes and phase transitions often occur along unusual pathways and under strongly nonequilibrium conditions. Due to the inherent multiscale nature—both temporally and spatially—of these irreversible processes, their direct experimental observation requires techniques that combine high temporal resolution with the appropriate spatial resolution and the capability to obtain good quality data on a single pulse/event basis. In this respect, fourth-generation light sources, namely, short wavelength and short pulse free electron lasers (FELs), are offering new and fascinating possibilities. As an example, this chapter will discuss the results of scattering experiments carried out at the FLASH free electron laser at DESY (Hamburg, Germany), which allowed us to resolve laser-induced structure formation at surfaces on the nanometer to submicron length scale and in temporal regimes ranging from picoseconds to several nanoseconds with sub-picosecond resolution. KW - Laser-induced periodic surface structures, LIPSS KW - Capillary waves KW - Time-resolved scattering KW - Pump-probe experiments KW - Free electron laser PY - 2023 SN - 978-3-031-14751-7 SN - 978-3-031-14752-4 DO - https://doi.org/10.1007/978-3-031-14752-4_6 VL - 239 SP - 257 EP - 276 PB - Springer Nature Switzerland AG CY - Cham, Switzerland AN - OPUS4-57297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Ponader, Marco A1 - Raab, Christopher A1 - Weider, Prisca S. A1 - Hartfiel, Reni A1 - Kaufmann, Jan Ole A1 - Völzke, Jule L. A1 - Bosc-Bierne, Gaby A1 - Prinz, Carsten A1 - Schwaar, T. A1 - Andrle, Paul A1 - Bäßler, Henriette A1 - Nguyen, Khoa A1 - Zhu, Y. A1 - Mey, A. S. J. S. A1 - Mostafa, A. A1 - Bald, I. A1 - Weller, Michael G. T1 - Efficient Purification of Cowpea Chlorotic Mottle Virus by a Novel Peptide Aptamer N2 - The cowpea chlorotic mottle virus (CCMV) is a plant virus explored as a nanotechnological platform. The robust self-assembly mechanism of its capsid protein allows for drug encapsulation and targeted delivery. Additionally, the capsid nanoparticle can be used as a programmable platform to display different molecular moieties. In view of future applications, efficient production and purification of plant viruses are key steps. In established protocols, the need for ultracentrifugation is a significant limitation due to cost, difficult scalability, and safety issues. In addition, the purity of the final virus isolate often remains unclear. Here, an advanced protocol for the purification of the CCMV from infected plant tissue was developed, focusing on efficiency, economy, and final purity. The protocol involves precipitation with PEG 8000, followed by affinity extraction using a novel peptide aptamer. The efficiency of the protocol was validated using size exclusion chromatography, MALDI-TOF mass spectrometry, reversed-phase HPLC, and sandwich immunoassay. Furthermore, it was demonstrated that the final eluate of the affinity column is of exceptional purity (98.4%) determined by HPLC and detection at 220 nm. The scale-up of our proposed method seems to be straightforward, which opens the way to the large-scale production of such nanomaterials. This highly improved protocol may facilitate the use and implementation of plant viruses as nanotechnological platforms for in vitro and in vivo applications. N2 - Das Cowpea Chlorotic Mottle Virus (CCMV) ist ein Pflanzenvirus, das als nanotechnologische Plattform erforscht wird. Der robuste Selbstorganisationsmechanismus seines Kapsidproteins ermöglicht die Verkapselung und gezielte Abgabe von Medikamenten. Darüber hinaus kann das Kapsid-Nanopartikel als programmierbare Plattform für die Präsentation verschiedener molekularer Komponenten verwendet werden. Im Hinblick auf künftige Anwendungen ist eine effiziente Produktion und Reinigung von Pflanzenviren von entscheidender Bedeutung. In etablierten Protokollen stellt die notwendige Ultrazentrifugation aufgrund von Kosten, schwieriger Skalierbarkeit und Sicherheitsaspekten eine erhebliche Einschränkung dar. Darüber hinaus bleibt die Reinheit des endgültigen Virusisolats oft unklar. Hier wurde ein fortschrittliches Protokoll für die Reinigung von CCMV aus infiziertem Pflanzengewebe entwickelt, wobei der Schwerpunkt auf Effizienz, Wirtschaftlichkeit und Reinheit lag. Das Protokoll beinhaltet eine Fällung mit Polyethylenglycol (PEG 8000), gefolgt von einer Affinitätsextraktion mit einem neuartigen Peptid-Aptamer. Die Effizienz des Protokolls wurde mithilfe von Größenausschluss-Chromatographie (SEC), MALDI-TOF-Massenspektrometrie, Umkehrphasen-HPLC und Sandwich-Immunoassay validiert. Darüber hinaus wurde nachgewiesen, dass das endgültige Eluat der Affinitätssäule eine außergewöhnliche Reinheit (98,4 %) aufweist, die durch HPLC und Detektion bei 220 nm bestimmt wurde. Die Skalierung der von uns vorgeschlagenen Methode scheint einfach zu sein, was den Weg für eine größer angelegte Produktion solcher Nanomaterialien ebnet. Dieses stark verbesserte Protokoll könnte die Verwendung und Umsetzung von Pflanzenviren als nanotechnologische Plattformen für In-vitro- und In-vivo-Anwendungen erleichtern. KW - Affinity chromatography KW - Nanoparticles KW - Nanoscience KW - Carrier protein KW - Encapsulation KW - Combinatorial peptide library KW - Peptide binder KW - Vigna unguiculata KW - Augenbohne KW - Schlangenbohne KW - Pflanzenvirus KW - Plant virus KW - Upscaling KW - Commercialization KW - Reference material KW - Nanocarrier PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572645 DO - https://doi.org/10.3390/v15030697 VL - 15 IS - 3 SP - 1 EP - 24 PB - MDPI CY - Basel, Schweiz AN - OPUS4-57264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Transmission and Scanning Electron Microscopy (SEM/TEM) N2 - Die Bestimmung der Nanopartikelgrößen- und -formverteilung nach OECD TG 125 mit der Transmission and Scanning Electron Microscopy (SEM/TEM) wird punktuell vorgestellt: - Generelles Messprinzip - Beispiele - Korrelative Mikroskopie - Welchen Durchmesser misst die Methode? - Welche Partikel kann diese Methode messen? - Welche Informationen kann diese Methode liefern? - Wo stößt die Methode an ihre Grenzen? - Implementierung und Datenauswertung, - Reporting. Anschließend wurde eine Q&A-Session für die Imaging-Methoden organisiert. T2 - Digital Info-Days „Nano or not Nano“ - Measuring according to OECD Test Guideline No. 125 CY - Online meeting DA - 16.02.2023 KW - Nanoparticles KW - OECD TG 125 KW - Partikelgrößenverteilung KW - Elektronenmikroskopie PY - 2023 UR - https://www.bam-akademie.de/kursangebot/kurs/digitale-info-tage-%E2%80%9Enano-or-not-nano%E2%80%9C-19.html AN - OPUS4-57217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Hodoroaba, Vasile-Dan T1 - Project 15 Measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension N2 - The progress in the VAMAS Project #15" Measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension" within TWA 34 Nanoparticle Populations is presented with highlight of the following points: - Determine and compare particle size and shape distribution by means of: • electron microscopy (SEM, TEM, STEM-in-SEM) • atomic force microscopy (AFM) • small angle X-ray scattering (SAXS) - Determine uncertainty induced by deposition protocol from liquid suspension with comparison to known values from a prior ILC with already deposited nanoparticles on TEM grids. - Provide comparative validation of protocols for the techniques other than TEM. T2 - VAMAS Regional Workshop 2023 CY - Online meeting DA - 24.01.2023 KW - Nanoparticles KW - VAMAS KW - Electron microscopy KW - AFM KW - SAXS KW - TiO2 PY - 2023 UR - https://www.bam.de/Content/EN/Events/2023/2023-01-24-vamas-regional-workshop.html AN - OPUS4-57220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Hodoroaba, Vasile-Dan T1 - Project 16 Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension N2 - The progress of the VAMAS Project 16 "Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension" in TWA 34 Nanoparticle Populations is presented. Follwowing points are discusssed: - Validate the performance of imaging methods to measure the relative number concentration • electron microscopy (SEM, TEM) and atomic force microscopy (AFM) • two modes of bimodal (30 and 60 nm) silica nanoparticles - Validate the performance of small angle X-ray scattering (SAXS) for the traceable measurement of the number concentration of the two modes. T2 - VAMAS Regional Workshop 2023 - What can pre-normative research do for industry? CY - Online meeting DA - 24.01.2023 KW - Nanoparticles KW - VAMAS KW - Inter-laboratory comparison KW - SiO2 KW - Electron microscopy KW - AFM PY - 2023 UR - https://www.bam.de/Content/EN/Events/2023/2023-01-24-vamas-regional-workshop.html AN - OPUS4-57221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Scoppola, E. A1 - Wolf, S.E. A1 - Kochovski, Z. A1 - Matzdorff, D. A1 - Van Driessche, A. E. S. A1 - Hövelmann, J. A1 - Emmerling, Franziska A1 - Stawski, Tomasz M. T1 - Evidence for liquid-liquid phase separation during the early stages of Mg-struvite formation N2 - The precipitation of struvite, a magnesium ammonium phosphate hexahydrate (MgNH₄PO₄ · 6H₂O) mineral, from wastewater is a promising method for recovering phosphorous. While this process is commonly used in engineered environments, our understanding of the underlying mechanisms responsible for the formation of struvite crystals remains limited. Specifically, indirect evidence suggests the involvement of an amorphous precursor and the occurrence of multi-step processes in struvite formation, which would indicate non-classical paths of nucleation and crystallization. In this study, we use synchrotron-based in situ x-ray scattering complemented by cryogenic transmission electron microscopy to obtain new insights from the earliest stages of struvite formation. The holistic scattering data captured the structure of an entire assembly in a time-resolved manner. The structural features comprise the aqueous medium, the growing struvite crystals, and any potential heterogeneities or complex entities. By analysing the scattering data, we found that the onset of crystallization causes a perturbation in the structure of the surrounding aqueous medium. This perturbation is characterized by the occurrence and evolution of Ornstein-Zernike fluctuations on a scale of about 1 nm, suggesting a non-classical nature of the system. We interpret this phenomenon as a liquid-liquid phase separation, which gives rise to the formation of the amorphous precursor phase preceding actual crystal growth of struvite. Our microscopy results confirm that the formation of Mg-struvite includes a short-lived amorphous phase, lasting >10 s. KW - Physical and theoretical chemistry KW - Non-classical crystallization KW - Struvite KW - Liquid-liquid-phase-separation KW - Nucleation KW - Crystallization KW - In-situ scattering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584766 DO - https://doi.org/10.1063/5.0166278 SN - 1089-7690 VL - 159 IS - 13 SP - 1 EP - 12 PB - AIP Publishing CY - Woodbury, NY AN - OPUS4-58476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - Particle size determination of a commercially available CeO2 nano powder - SOPs and reference data N2 - Compilation of detailed SOPs for characterization of a commercially available CeO2 nano powder including - suspension preparation (indirect and direct sonication), - particle size determination (Dynamic Light Scattering DLS and Centrifugal Liquid Sedimentation CLS) with reference data, respectively. For sample preparation and analysis by Scanning Electron Microscopy (SEM) of this powder see related works (submitted, coming soon). KW - Wet dispersion KW - Nano powder KW - Particle size KW - CeO2 KW - Ceria KW - DLS KW - CLS PY - 2023 DO - https://doi.org/10.5281/zenodo.10061079 PB - Zenodo CY - Geneva AN - OPUS4-58785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska T1 - SOP and reference data for determination of the Volume-specific Surface Area (VSSA) of a commercially available CeO2 nano powder N2 - Detailed SOP and reference data for the determination of the VSSA of a commercially available CeO2 nano powder: specific (BET-) Surface Area by gas adsorption (Ar and N2) skeletal (true solid state) density by gas pycnometry. Estimation of the particle size by VSSA screening method. KW - Nano powder KW - VSSA KW - Volume specific surface area KW - Screening method KW - Ceria KW - CeO2 PY - 2023 DO - https://doi.org/10.5281/zenodo.10061235 PB - Zenodo CY - Geneva AN - OPUS4-58786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shanmugam, Sankaran A1 - Peterlechner, Martin A1 - Iskandar, Mohamad Riza A1 - Saikia, Ujjal A1 - Kulitckii, Vladislav A1 - Lipińska-Chwałek, Marta A1 - Mayer, Joachim A1 - Rösner, Harald A1 - Hickel, Tilmann A1 - Divinski, Sergiy V. A1 - Wilde, Gerhard T1 - Coherent twin-oriented Al3Sc-based precipitates in Al matrix N2 - Al3(Sc,Zr,Ti) nanoparticles with an ideal twin-type orientation relationship to Al host matrix were found in cold-rolled and subsequently annealed Al-based alloy. Atomic-scale investigations using high-resolution scanning transmission electron microscopy identified particles that form prominent coherent (111) twin-type interfaces along their longer facets and semi-coherent twin interfaces on their shorter facets. Ab-initio calculations showed that a coherent Al/Al3Sc twin-like phase boundary corresponds to a local energy minimum. A model is proposed explaining the formation of the twin orientation relationship of an Al3Sc nanoparticle with the Al host matrix. KW - Al-based alloy KW - Precipitation KW - Twin orientation relationship KW - Ab initio calculations KW - Transition electron microscopy PY - 2023 DO - https://doi.org/10.1016/j.scriptamat.2023.115351 SN - 1359-6462 VL - 229 SP - 1 EP - 6 PB - Elsevier BV AN - OPUS4-58789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nourinejhad Zarghani, Shaheen A1 - Monavari, Mehran A1 - Ehlers, Jens A1 - Hamacher, Joachim A1 - Büttner, Carmen A1 - Bandte, Martina T1 - Comparison of Models for Quantification of Tomato Brown Rugose Fruit Virus Based on a Bioassay Using a Local Lesion Host N2 - Considering the availability of serological and molecular biological methods, the bioassay has been paled into insignificance, although it is the only experimental method that can be used to demonstrate the infectivity of a virus. We compared goodness-of-fit and predictability power of five models for the quantification of tomato brown rugose fruit virus (ToBRFV) based on local lesion assays: the Kleczkowski model, Furumoto and Mickey models I and II, the Gokhale and Bald model (growth curve model), and the modified Poisson model. For this purpose, mechanical inoculations onto Nicotiana tabacum L. cv. Xanthi nc and N. glutionosa L. with defined virus concentrations were first performed with half-leaf randomization in a Latin square design. Subsequently, models were implemented using Python software and fitted to the number of local lesions. All models could fit to the data for quantifying ToBRFV based on local lesions, among which the modified Poisson model had the best prediction of virus concentration in spike samples based on local lesions, although data of individual indicator plants showed variations. More accurate modeling was obtained from the test plant N. glutinosa than from N. tabacum cv. Xanthi nc. The position of the half-leaves on the test plants had no significant effect on the number of local lesions. KW - Plant Science KW - Ecology KW - Evolution KW - Behavior and Systematics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585506 DO - https://doi.org/10.3390/plants11243443 VL - 11 IS - 24 SP - 1 EP - 16 PB - MDPI AN - OPUS4-58550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill T1 - Reaction of high-entropy alloys with hydrogen under extreme conditions N2 - In the current study, we investigate an interaction under high-pressure high-temperature of single phase fcc-, hcp- and bcc-structured high-entropy alloys with hydrogen, carbon and nitrogen to obtain high-entropy hydrides, carbides and nitrides. Structural changes in high-entropy alloys upon compression and heating in the presence of these light elements are in the focus of our investigation. An easy route to high-entropy hydrides, carbides and nitrides will open new synthetic horizons in compositionally complex materials. Our study suggests that high-entropy alloys form high- entropy hydrides mainly with a composition close to M:H 1:1 ratio. Hydrides can be obtained under compression with hydrogen as a pressure compression medium or using hydrogen fluid as reactive agent. T2 - Intermetallics 2023 CY - Bad Staffelstein, Germany DA - 03.10.2023 KW - HEA PY - 2023 AN - OPUS4-58555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Eckert, J. G. A1 - Graf, Rebecca T. A1 - Kunst, A. A1 - Wegner, Karl David A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Correlating semiconductor nanoparticle architecture and applicability for the controlled encoding of luminescent polymer microparticles N2 - Luminophore stained micro- and nanobeads made from organic polymers like polystyrene (PS) are broadly used in the life and material sciences as luminescent reporters, for bead-based assays, sensor arrays, printable barcodes, security inks, and the calibration of fluorescence microscopes and flow cytometers. Initially mostly prepared with organic dyes, meanwhile luminescent core/shell nanoparticles (NPs) like spherical semiconductor quantum dots (QDs) are increasingly employed for bead encoding. This is related to their narrower emission spectra, tuneability of emission color, broad wavelength excitability, and better photostability. However, correlations between particle architecture, morphology, and photoluminescence (PL) of the luminescent nanocrystals used for encoding and the optical properties of the NP-stained beads have been rarely explored. This encouraged us to perform a screening study on the incorporation of different types of luminescent core/shell semiconductor nanocrystals into polymer microparticles (PMPs) by a radical-induced polymerization reaction. Nanocrystals explored include CdSe/CdS QDs of varying CdS shell thickness, a CdSe/ZnS core/shell QD, CdSe/CdS quantum rods (QRs), and CdSe/CdS nanoplatelets (NPLs). Thereby, we focused on the applicability of these NPs for the polymerization synthesis approach used and quantified the preservation of the initial NP luminescence. The spectroscopic characterization of the resulting PMPs revealed the successful staining of the PMPs with luminescent CdSe/CdS QDs and CdSe/CdS NPLs. In contrast, usage of CdSe/CdS QRs and CdSe QDs with a ZnS shell did not yield luminescent PMPs. The results of this study provide new insights into structure–property relationships between NP stained PMPs and the initial luminescent NPs applied for staining and underline the importance of such studies for the performance optimization of NP-stained beads. KW - Quantitative spectroscopy KW - Energy transfer KW - Synthesis KW - Surface chemistry KW - Semiconductor quantum dot KW - Luminescence KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Polymer particle KW - Quantum rod KW - Nanoplatelet PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602206 DO - https://doi.org/10.1038/s41598-024-62591-1 SN - 2045-2322 VL - 14 SP - 1 EP - 16 AN - OPUS4-60220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reiber, T. A1 - Hübner, Oskar A1 - Dose, C. A1 - Yushchenko, D. A. A1 - Resch-Genger, Ute T1 - Fluorophore multimerization on a PEG backbone as a concept for signal amplification and lifetime modulation N2 - Fluorescent labels have strongly contributed to many advancements in bioanalysis, molecular biology, molecular imaging, and medical diagnostics. Despite a large toolbox of molecular and nanoscale fluorophores to choose from, there is still a need for brighter labels, e.g., for flow cytometry and fluorescence microscopy, that are preferably of molecular nature. This requires versatile concepts for fluorophore multimerization, which involves the shielding of dyes from other chromophores and possible quenchers in their neighborhood. In addition, to increase the number of readout parameters for fluorescence microscopy and eventually also flow cytometry, control and tuning of the labels’ fluorescence lifetimes is desired. Searching for bright multi-chromophoric or multimeric labels, we developed PEGylated dyes bearing functional groups for their bioconjugation and explored their spectroscopic properties and photostability in comparison to those of the respective monomeric dyes for two exemplarily chosen fluorophores excitable at 488 nm. Subsequently, these dyes were conjugated with anti-CD4 and anti-CD8 immunoglobulins to obtain fluorescent conjugates suitable for the labeling of cells and beads. Finally, the suitability of these novel labels for fluorescence lifetime imaging and target discrimination based upon lifetime measurements was assessed. Based upon the results of our spectroscopic studies including measurements of fluorescence quantum yields (QY) and fluorescence decay kinetics we could demonstrate the absence of significant dye-dye interactions and self-quenching in these multimeric labels. Moreover, in a first fluorescence lifetime imaging (FLIM) study, we could show the future potential of this multimerization concept for lifetime discrimination and multiplexing. KW - Imaging KW - Quantum yield KW - Quality assurance KW - Antibody KW - Conjugate KW - Cell KW - FLIM KW - PEG KW - Flow cytometry KW - Lifetime KW - Energy transfer KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Fluorescence KW - Dye KW - Amplification KW - Microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602197 DO - https://doi.org/10.1038/s41598-024-62548-4 SN - 2045-2322 VL - 14 IS - 1 SP - 1 EP - 11 AN - OPUS4-60219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohammad, W. A1 - Wegner, Karl David A1 - Comby-Zerbino, C. A1 - Trouillet, V. A1 - Ogayer, M. P. A1 - Coll, J.-L. A1 - Marin, R. A1 - Jaque Garcia, D. A1 - Resch-Genger, Ute A1 - Antoine, R. A1 - Le Guevel, X. T1 - Enhanced brightness of ultra-small gold nanoparticles in the second biological window through thiol ligand shell control N2 - Gold-based nanoparticles below 2 nm in size are promising as luminescent probes for in vivo bioimaging, owing to their brightness and rapid renal clearance. However, their use as contrast agents in the near-infrared II (NIR-II, 1000–1700 nm) range remains challenging due to their low photoluminescence (PL) quantum yield. To address this, PL enhancement can be achieved by either rigidifying the ligand-shell structure or increasing the size of the ligand shell. In this study, we synthesized ultra-small gold nanoparticles stabilized by co-ligands, namely monothiol and short dithiol molecules. By precisely controlling the amount of reducing agent used during particle preparation, we successfully modulated the physicochemical properties of the co-ligand shell, including its size, composition, and structure. Consequently, we achieved a remarkable 60-fold increase in the absorption cross-section at 990 nm while maintaining the small size of the 1.5-nm metal core. The analytical and optical characterization of our thiol-capped gold nanoparticles indicates that the ligand shell size is governed by the quantity of the reducing agent, which, in turn, impacts the balance between radiative and non-radiative processes, thereby influencing the PL quantum yield. KW - Gold nanocluster KW - NIR-II fluorescence KW - SWIR KW - Nanomaterial design KW - Calibrated fluorescence measurements PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588117 DO - https://doi.org/10.1039/D3TC03021K SN - 2050-7526 VL - 11 IS - 42 SP - 14714 EP - 14724 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoell, A. A1 - Heimann, M. A1 - Wegner, Karl David A1 - Haas, S. A1 - Emmerling, Franziska A1 - Schorr, S. T1 - On the usage of anomalous SAXS to analyzethe structure and composition of bimetallic nanoparticles and quantum dots N2 - Tailor-made nanoparticles are of increasing interest in e.g. catalysis, as sensor materials, analytical assays, or can have superior photophysical properties. A major issue concerning the preparation of high-quality and functional nanoparticles is a good control of particle size, shape, polydispersity, and composition. Small Angle X-ray Scattering (SAXS) is a non-destructive method for the analysis of nanostructures in a wide variety of materials. This method allows determining averaged structural parameters on a length scale from just above atomic sizes up to several 100 nanometers such as sizes, size distributions, volume fractions, and inner surface sizes. Moreover, anomalous Small Angle X-ray Scattering (ASAXS) exploits the anomalous dispersion of the scattering amplitudes near the X-ray absorption edges of the elements contained in the sample. These element sensitive contrast variations can be used to analyse average composition fluctuations on the nm scale. Two kinds of nanoparticles are chosen here to elaborate the advantages of ASAXS in the analysis of complex materials. A facile and efficient methodology is developed for the thermal synthesis of size-tunable, stable, and uniform bimetallic NiCu core–shell nanoparticles (NPs) for various application in catalysis. Their diameter can be tuned in a range from 6 nm to 30 nm and the Ni:Cu ratio is adjustable in a wide range from 1:1 to 30:1. The NPs are structurally characterized by a method combination of transmission electron microscopy, anomalous small-angle X-ray scattering (ASAXS), X-ray absorption fine structure, and X-ray photoelectron spectroscopy. Here, we focus on the ASAXS method and its ability to analyses nanostructure parts and their compositions at once. As a result, a NiCu alloyed core surrounded by a Ni enriched shell and an outer NiO shell was found. Semiconductor nanocrystals (quantum dots, QDs) are well known for their superior photophysical properties and enabled advancements in several key technologies of the 21st century and numerous technological applications like in photovoltaics, LED displays, photocatalysis, and biosensing. To achieve high photoluminescence quantum yields (PLQY) and enhanced photostability the QD core needs to be passivated by a second semiconductor, which possess a larger band gap to confine the charges within the QD core. An important parameter is thereby the lattice mismatch between the core and shell. To avoid strong lattice strain, which would alter the photophysical properties, an intermediary shell can be used as a lattice adapter between the core and the outer shell leading to core/shell/shell systems. These systems have shown to possess high PLQYs combined with a strong long-term stability and can be found in modern QLED displays. ASAXS was used here to better understand the core/shell/shell structure of InP/ZnSe/ZnS QDs to enable a correlation between their structural and photophysical properties. T2 - IUCr - International Union of Crystallography CY - Melbourne, Australia DA - 22.08.2023 KW - ASAXS KW - Quantum dot KW - Core/shell materials KW - Safer by design PY - 2023 AN - OPUS4-58812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Chemello, Giovanni A1 - Radnik, Jörg T1 - Measurement of Lateral Size of Graphene Oxide Flakes by SEM - An Update of the VAMAS TWA 41 Project P13 N2 - The progress of the VAMAS interlaboratory comparison Project P13 "Lateral size of graphene oxide flakes by SEM" within the Technical Working Area 41 "Graphene and Related 2D Materials" is presented. The challenges at sample preparation on substrates for accurate measurement and image analysis as well as two different analysis approaches, containing exact guidance how to measure the main descriptors for the lateral size measurement of the imaged graphene oxide flakes with Scanning Electron Microscopy are highlighted. The implementation of the results into the corresponding ISO technical specification AWI/TS 23879 is also discussed and planned, in relation with the AFM part. T2 - The 32nd ISO/TC 229 IEC/TC 113 JWG2 General Meeting CY - Berlin, Germany DA - 06.11.2023 KW - VAMAS KW - ISO/TC 229 Nanotechnologies KW - Interlaboratory comparison KW - Graphene oxide flakes KW - SEM PY - 2023 AN - OPUS4-58813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rühle, Bastian A1 - Bresch, Harald T1 - Competence Center nano@BAM Welcomes ISO/TC 229 Meeting in Berlin N2 - The Competence Center nano@BAM is presented. Examples directly related to the activities of the ISO Technical Committee TC 229 Nanotechnologies as well as BAM projects on nano reference measurement procedures, nano reference materials and nano reference data sets are showed. T2 - The 32nd ISO/TC 229 IEC/TC 113 JWG2 General Meeting CY - Berlin, Germany DA - 06.11.2023 KW - ISO/TC 229 Nanotechnologies KW - Nanoparticles KW - Nano@BAM KW - Reference materials KW - Reference data KW - Reference procedures PY - 2023 AN - OPUS4-58814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Annadurai, V. A1 - Balazs, D. M. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Del Giudice, A. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Garcia, P. R. A. F. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, M. A1 - Hollamby, M. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Rochels, L. A1 - Rosalie, Julian M. A1 - Saloga, Patrick E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Spiering, G. A. A1 - Stawski, Tomasz M. A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor - Results of a small-angle scattering data analysis round robin N2 - A round-robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5% and half of the population width entries within 40%. Due to the added complexity of the structure factor, far fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 and 86%, respectively. This round-robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round Robin KW - Data analysis KW - Small-angle scattering KW - Nanomaterials KW - Interlaboratory comparability KW - Nanostructure quantification KW - Methodology KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587091 DO - https://doi.org/10.1107/S1600576723008324 SN - 1600-5767 VL - 56 IS - 6 SP - 1618 EP - 1629 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-58709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Measurement of the morphology of graphene related 2D materials as flakes N2 - The presentation shows the results of the mini-interlaboratory comparison focused on the measurement of the morphology of graphene oxide flakes using scanning electron microscopy. In this work, a route for the sample preparation, SEM measurement and image analysis is proposed. The results of the image analysis, performed on 200+ flakes per sample, are presented by comparing the distributions of the size and shape descriptors calculated according to two different approaches. The influences of a different SEM measurement operator, analysis approach and analysis operator on the final size and shape distributions are highlighted. T2 - EMRS Fall 2023 CY - Warsaw, Poland DA - 18.09.2023 KW - Graphene oxide KW - SEM KW - 2D flakes KW - Image analysis PY - 2023 AN - OPUS4-58752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Rybak, Tina A1 - Thünemann, Andreas T1 - Microwave-Assisted Synthesis of ZnO Nanoparticles: Phase Transfer to Water N2 - Herein, a simple one-pot procedure is reported to obtain aqueous zinc oxide (ZnO) nanoparticle dispersions from ZnO nanoparticles dispersed in cyclohexane. In the process, polyoxyethylene (20) sorbitan monooleate (polysorbate 80, Tween 80) functions as a phase transfer agent and colloidal stabilizer. The particles grow in a defined manner during the transfer, presumably via coalescence. The final particle radii are tuneable in the range from 2.3 ± 0.1 nm to 5.7 ± 0.1 nm depending on the incubation time of the dispersion at 90 °C. Small-angle X-ray scattering is employed to determine the particle radius distributions before and after phase transfer. The larger ZnO particle radii are associated with a redshift of the optical bandgap and luminescence emission, as expected for semiconductor nanoparticles. The particles presented here exhibit a relative size distribution width of 20%, rendering them attractive for applications in, e.g., biology or catalysis. The latter application is demonstrated at the photocatalytic degradation of methylene blue dye. KW - SAXS KW - Small-angle X-ray scattering KW - nanoparticle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551502 DO - https://doi.org/10.1002/adem.202101276 VL - 24 IS - 6 SP - 1 EP - 7 PB - Wiley AN - OPUS4-55150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hesse, R. A1 - Denecke, R. A1 - Radnik, Jörg T1 - Testing and validating the improved estimation of the spectrometer-transmission function with UNIFIT 2022 N2 - Recent developments of X-ray photoelectron spectroscopy using excitation energies different from the usual lab-sources Mg Kα and Al Kα, thus covering larger and different kinetic energy ranges, require more flexible approaches for determining the transmission function than the well-established ones using reference spectra. Therefore, the approach using quantified peak areas (QPA) was refined allowing a more precise estimation of the transmission function. This refinement was tested by comparing the results obtained with the new version with former calculations. Furthermore, the obtained transmission function was validated by comparing the results with a transmission function using the reference spectrum of polyethylene. Additionally, an ionic liquid was used as reference for estimating the transmission function at the energy resolved HE-SGM beamline at BESSY II. Comparison between the measured and stoichiometric composition shows that a transmission function was determined, which allows a reasonable quantification. KW - XPS KW - Quantification KW - Software UNIFIT 2022 KW - Synchrotron radiation KW - Transmission function IERF PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551671 DO - https://doi.org/10.1002/sia.7131 SN - 0142-2421 SP - 1 EP - 7 PB - Wiley-VCH AN - OPUS4-55167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zutta Villate, J. M. A1 - Viviana Rojas, J. A1 - Hahn, Marc Benjamin A1 - Anselmo Puerta, J. T1 - Synthesis of 198Au nanoparticles sub 10 nm due optimization on local dose by Monte Carlo simulations for cancer treatment N2 - To enhance the biological effects of radiation damage in cancerous cells, we present an alternative approach to the use of gold nanoparticles (AuNP), focusing on the synthesis and characterization of highly monodisperse, spherical radioactive gold nanoparticles 198AuNP. The size of the AuNP size was optimized with the help of Geant4/TOPAS particle scattering simulations, and energy deposition per nm3 per decay for varying radii (2–10 nm) was evaluated. This work is the foundation for ongoing experimental work to evaluate cell death induced by 198AuNP which aims for the use of radioactive gold nanoparticles in cancer treatment. KW - AuNP KW - Beta decay KW - Beta particle KW - Brachytherapy KW - Cancer treatment KW - Nanoparticles KW - Nanoparticle KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Gamma ray KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - Synthesis KW - TEM KW - OH radicals KW - Particle scattering KW - Radiation damage KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio PY - 2022 DO - https://doi.org/10.1007/s10967-022-08355-5 SN - 1588-2780 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-55132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Grauel, Bettina A1 - Pons, Monika A1 - Frenzel, Florian A1 - Rissiek, P. A1 - Rücker, Kerstin A1 - Haase, Markus A1 - Resch-Genger, Ute T1 - Yb- and Er concentration dependence of the upconversion luminescence of highly doped NaYF4:Yb,Er/NaYF4:Lu core/shell nanocrystals prepared by a water-free synthesis N2 - High sensitizer and activator concentrations have been increasingly examined to improve the performance of multi-color emissive upconversion (UC) nanocrystals (UCNC) like NaYF4:Yb,Er and first strategies were reported to reduce concentration quenching in highly doped UCNC. UC luminescence (UCL) is, however, controlled not only by dopant concentration, yet by an interplay of different parameters including size, crystal and shell quality, and excitation power density (P). Thus, identifying optimum dopant concentrations requires systematic studies of UCNC designed to minimize additional quenching pathways and quantitative spectroscopy. Here, we quantify the dopant concentration dependence of the UCL quantum yield (ΦUC) of solid NaYF4:Yb,Er/NaYF4:Lu upconversion core/shell nanocrystals of varying Yb3+ and Er3+ concentrations (Yb3+ series: 20%‒98% Yb3+; 2% Er3+; Er3+ series: 60% Yb3+; 2%‒40% Er3+). To circumvent other luminescence quenching processes, an elaborate synthesis yielding OH-free UCNC with record ΦUC of ~9% and ~25 nm core particles with a thick surface shell were used. High Yb3+ concentrations barely reduce ΦUC from ~9% (20% Yb3+) to ~7% (98% Yb3+) for an Er3+ concentration of 2%, thereby allowing to strongly increase the particle absorption cross section and UCNC brightness. Although an increased Er3+ concentration reduces ΦUC from ~7% (2% Er3+) to 1% (40%) for 60% Yb3+. Nevertheless, at very high P (> 1 MW/cm2) used for microscopic studies, highly Er3+-doped UCNC display a high brightness because of reduced saturation. These findings underline the importance of synthesis control and will pave the road to many fundamental studies of UC materials. KW - Upconverion KW - Nanoparticle KW - Lanthanides KW - Quantum yield PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551346 DO - https://doi.org/10.1007/s12274-022-4570-5 SP - 1 EP - 8 PB - Springer AN - OPUS4-55134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bertorelle, F. A1 - Wegner, Karl David A1 - Berkulic, M. P. A1 - Fakhouri, H. A1 - Comby-Zerbino, C. A1 - Sagar, A. A1 - Bernadó, P. A1 - Resch-Genger, Ute A1 - Bonacic-Koutecký, V. A1 - Le Guével, X. A1 - Antoine, R. T1 - Tailoring the NIR-II Photoluminescence of Single Thiolated Au25 Nanoclusters by Selective Binding to Proteins N2 - Atomically precise gold nanoclusters are a fascinating class of nanomaterials that exhibit molecule-like properties and have outstanding photoluminescence (PL). Their ultrasmall size, molecular chemistry, and biocompatibility make them extremely appealing for selective biomolecule labeling in investigations of biological mechanisms at the cellular and anatomical levels. In this work, we report a simple route to incorporate a preformed Au25 nanocluster into a model bovine serum albumin (BSA) protein. A new approach combining small-angle X-ray scattering and molecular modeling provides a clear localization of a single Au25 within the protein to a cysteine residue on the gold nanocluster surface. Attaching Au25 to BSA strikingly modifies the PL properties with enhancement and a redshift in the second near-infrared (NIR-II) window. This study paves the way to conrol the design of selective sensitive probes in biomolecules through a ligand-based strategy to enable the optical detection of biomolecules in a cellular environment by live imaging. KW - Fluorescence KW - Aggregation KW - Signal enhancement KW - Cluster KW - Nano KW - Metal KW - NIRII KW - SWIR KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Synthesis KW - Protein KW - Imaging KW - Bioimaging KW - Ligand KW - Gold PY - 2022 DO - https://doi.org/10.1002/chem.202200570 SN - 1521-3765 VL - 28 IS - 39 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Kraehnert, R. A1 - Hertwig, Andreas T1 - Multilevel effective material approximation for modeling ellipsometric measurements on complex porous thin films N2 - Catalysts are important components in chemical processes because they lower the activation energy and thus determine the rate, efficiency and selectivity of a chemical reaction. This property plays an important role in many of today’s processes, including the electrochemical splitting of water. Due to the continuous development of catalyst materials, they are becoming more complex, which makes a reliable evaluation of physicochemical properties challenging even for modern analytical measurement techniques and industrial manufacturing. We present a fast, vacuum-free and non-destructive analytical approach using multi-sample spectroscopic ellipsometry to determine relevant material parameters such as film thickness, porosity and composition of mesoporous IrOx–TiOy films. Mesoporous IrOx–TiOy films were deposited on Si wafers by sol–gel synthesis, varying the composition of the mixed oxide films between 0 and 100 wt%Ir. The ellipsometric modeling is based on an anisotropic Bruggeman effective medium approximation (a-BEMA) to determine the film thickness and volume fraction of the material and pores. The volume fraction of the material was again modeled using a Bruggeman EMA to determine the chemical composition of the materials. The ellipsometric fitting results were compared with complementary methods, such as scanning electron microscopy (SEM), electron probe microanalysis (EPMA) as well as environmental ellipsometric porosimetry (EEP). KW - Electrochemical catalysts KW - Mixed metal oxide KW - Multi-sample analysis KW - Spectroscopic ellipsometry KW - Thin mesoporous films PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551026 DO - https://doi.org/10.1515/aot-2022-0007 SN - 2192-8584 SN - 2192-8576 VL - 11 IS - 3-4 (Topical issue: Ellipsometry) SP - 137 EP - 147 PB - De Gruyter CY - Berlin AN - OPUS4-55102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - Krenzer, J. A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Müller, Th. J. J. T1 - Asymmetrically bridged aroyl-S,N-ketene acetalbased multichromophores with aggregationinduced tunable emission N2 - Asymmetrically bridged aroyl-S,N-ketene acetals and aroyl-S,N-ketene acetal multichromophores can be readily synthesized in consecutive three-, four-, or five-component syntheses in good to excellent yields by several successive Suzuki-couplings of aroyl-S,N-ketene acetals and bis(boronic)acid esters. Different aroyl-S,N-ketene acetals as well as linker molecules yield a library of 23 multichromophores with substitution and linker pattern-tunable emission properties. This allows control of different communication pathways between the chromophores and of aggregation-induced emission (AIE) and energy transfer (ET) properties, providing elaborate aggregation-based fluorescence switches. KW - Dye KW - Aggregation KW - Aggregation induced emission KW - Signal enhancement KW - Energy transfer KW - Switch KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Sythesis KW - Nanaoparticle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550719 DO - https://doi.org/10.1039/d2sc00415a VL - 13 SP - 5374 EP - 5381 PB - Royal Society of Chemistry AN - OPUS4-55071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550720 DO - https://doi.org/10.1007/s00216-022-04082-8 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, M. B. A1 - Fahrenson, C. A1 - Givelet, L. A1 - Herrmann, T. A1 - Loescher, K. A1 - Böhmert, L. A1 - Thünemann, Andreas A1 - Braeuning, A. A1 - Sieg, H. T1 - Beyond microplastics ‑ investigation on health impacts of submicron and nanoplastic particles after oral uptake in vitro N2 - The continuously increasing use of plastics is supposed to result in a rising exposure of MNPs to humans. Available data on human health risks of microplastics after oral uptake increased immensely in the past years and indicates very likely only low risks after oral consumption. Concerning nanoplastics, uptake, transport and potential adverse effects after oral uptake are less well understood. This study aims to investigate differences between microplastic particles and particles in the submicron- and nanoscaled size derived from food-relevant polymers with a particle size range consistent with higher potential for cellular uptake, fate, and effects when applied to human intestinal and liver cells. This work includes the development of cellular and subcellular detection methods for synthetic polymeric particles in the micro- and nanometer-range, using Scanning Electron Microscopy, Small-Angle X-ray and Dynamic Light Scattering methods, Asymmetric Flow Field Flow Fractionation, octanol-water fractionation, fluorescence microscopy and flow cytometry. Polylactic acid (250 nm and 2 μm (polydisperse)), melamine formaldehyde (366 nm) and polymethylmethacrylate (25 nm) were thoroughly characterized. The submicro- and nanoplastic test particles showed an increased uptake and transport quantity through intestinal cells. Both types of particles resulted in observed differences of uptake behavior, most likely influenced by different lipophilicity, which varied between the polymeric test materials. Toxic effects were detected after 24 h only in overload situations for the particles in the submicrometer range. This study provides further evidence for gastrointestinal uptake of submicro- and nanoplastics and points towards differences regarding bioavailability between microplastics and smaller plastic particles that may result following the ingestion of contaminated food and beverages. Furthermore, the results reinforce the importance for studying nanoplastics of different materials of varying size, surface properties, polymer composition and hydrophobicity. KW - Small-angle X-ray scattering KW - SAXS KW - nanoparticle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550741 DO - https://doi.org/10.1186/s43591-022-00036-0 VL - 2 SP - 1 EP - 19 PB - Springer Nature AN - OPUS4-55074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromer, Ch. A1 - Schwibbert, K. A1 - Gadicherla, A. K. A1 - Thiele, D. A1 - Nirmalananthan-Budau, Nithiya A1 - Laux, P. A1 - Resch-Genger, Ute A1 - Luch, A. A1 - Tschiche, H. R. T1 - Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor N2 - Biofilms are ubiquitous in nature and in the man-made environment. Given their harmful effects on human health, an in-depth understanding of biofilms and the monitoring of their formation and growth are important. Particularly relevant for many metabolic processes and survival strategies of biofilms is their extracellular pH. However, most conventional techniques are not suited for minimally invasive pH measurements of living biofilms. Here, a fluorescent nanosensor is presented for ratiometric measurements of pH in biofilms in the range of pH 4.5–9.5 using confocal laser scanning microscopy. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with pH-inert dye Nile Red and is surface functionalized with a pH-responsive fluorescein dye. Its performance was validated by fluorometrically monitoring the time-dependent changes in pH in E. coli biofilms after glucose inoculation at 37 °C and 4 °C. This revealed a temperature-dependent decrease in pH over a 4-h period caused by the acidifying glucose metabolism of E. coli. These studies demonstrate the applicability of this nanosensor to characterize the chemical microenvironment in biofilms with fluorescence methods. KW - Dye KW - Fluorescence KW - Signal enhancement KW - Sensor KW - Quantum yield KW - Synthesis KW - Nanoparticle KW - Nano KW - Polymer KW - Ph KW - Biofilm KW - MIC KW - Corrosion KW - Microorganism KW - Bacteria PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550751 DO - https://doi.org/10.1038/s41598-022-13518-1 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group CY - London AN - OPUS4-55075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrandt, Jana A1 - Thünemann, Andreas T1 - Aqueous Dispersions of Polypropylene: Toward Reference Materials for Characterizing Nanoplastics N2 - Microplastics and nanoplastics pollute the natural environment all over the world, but the full extent of the hazards posed by this waste is unclear. While research on microplastics is well advanced, little work has been done on nanoplastics. This discrepancy is mainly due to the lacking ability to detect nanoplastics in biologically and environmentally relevant matrices. Nanoplastics reference materials can help the development of suitable methods for identifying and quantifying nanoplastics in nature. The aim is to synthesize nanoplastics made from one of the most commonly used plastics, namely polypropylene. An easy way to produce long-term stable aqueous dispersions of polypropylene nanoparticles (nano polypropylene) is reported. The nanoplastic particles, prepared by mechanical breakdown, show a mean hydrodynamic diameter of D h = 180.5 ± 5.8 nm and a polydispersity index of PDI = 0.084 ± 0.02. No surfactant is needed to obtain dispersion which is stable for more than 6 months. The colloidal stability of the surfactant-free nano polypropylene dispersions is explained by their low zeta potential of 𝜻 = −43 ± 2 mV. KW - Nanoparticles KW - Reference Material KW - Nanoplastics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571799 DO - https://doi.org/10.1002/marc.202200874 SN - 1022-1336 VL - 44 IS - 6 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Foroutan, F. A1 - Kyffin, B. A. A1 - Nikolaou, A. A1 - Merino-Gutierrez, J. A1 - Abrahams, I. A1 - Kanwal, N. A1 - Knowles, J. C. A1 - Smith, A. J. A1 - Smales, Glen Jacob A1 - Carta, D. T1 - Highly porous phosphate-based glasses for controlled delivery of antibacterial Cu ions prepared via sol–gel chemistry N2 - Mesoporous glasses are a promising class of bioresorbable biomaterials characterized by high surface area and extended porosity in the range of 2 to 50 nm. These peculiar properties make them ideal materials for the controlled release of therapeutic ions and molecules. Whilst mesoporous silicate-based glasses (MSG) have been widely investigated, much less work has been done on mesoporous phosphate-based glasses (MPG). In the present study, MPG in the P2O5–CaO–Na2O system, undoped and doped with 1, 3, and 5 mol% of Cu ions were synthesized via a combination of the sol–gel method and supramolecular templating. The non-ionic triblock copolymer Pluronic P123 was used as a templating agent. The porous structure was studied via a combination of Scanning Electron Microscopy (SEM), Small-Angle X-ray Scattering (SAXS), and N2 adsorption–desorption analysis at 77 K. The structure of the phosphate network was investigated via solid state 31P Magic Angle Spinning Nuclear Magnetic Resonance (31P MAS-NMR) and Fourier Transform Infrared (FTIR) spectroscopy. Degradation studies, performed in water via Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), showed that phosphates, Ca2+, Na+ and Cu ions are released in a controlled manner over a 7 days period. The controlled release of Cu, proportional to the copper loading, imbues antibacterial properties to MPG. A significant statistical reduction of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial viability was observed over a 3 days period. E. coli appeared to be more resistant than S. aureus to the antibacterial effect of copper. This study shows that copper doped MPG have great potential as bioresorbable materials for controlled delivery of antibacterial ions. KW - Bioresorbable Biomaterials KW - Mesoporous phosphate-based glasses KW - Synthesis KW - Degradation studies KW - X-ray scattering KW - MOUSE KW - Antibacterial properties KW - Aantimicrobial PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578101 DO - https://doi.org/10.1039/D3RA02958A VL - 13 IS - 29 SP - 19662 EP - 19673 PB - Royal Society of Chemistry AN - OPUS4-57810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Chemello, Giovanni A1 - Radnik, Jörg T1 - Accurate Measurement of Size of Graphene Oxide Flakes by Scanning Electron Microscopy (SEM) N2 - Accurate characterisation of the morphology (size) and chemistry of graphene-related 2D materials (GR2M) is key in understanding their extraordinary functionalities. Hence, not only the tailoring of these functionalities aiming at applications of increased-performance becomes possible, but also the correlation of the physico-chemical properties with the understanding of the potential toxicity eventually enables a safe and sustainable development of the GR2M for new applications. Whilst AFM and Raman Spectroscopy are recommended to measure the thickness of GO flakes, Scanning Electron Microscopy (SEM) is the most suited method to assess their lateral size, which varies between tens of µm down to below 100 nm. In this paper, procedures for the accurate determination of lateral size of graphene oxide (GO) flakes by SEM are presented. The prerequisite for accurate flake size analysis is the proper sample preparation, i.e. deposition of ideally isolated flakes on a substrate, with the flakes being unfolded, non-overlapped, parallel with the substrate, and having a high coverage density. Examples of optimum image caption conditions and image analysis procedures will be presented. The size descriptors and their measurement are described in the context of the corresponding analysis approach: i) length and width of the flakes with a quick and rough, but robust procedure, and ii) exact contouring of the flakes as part of a highly accurate, but more time-consuming measurement approach. The possibility of application of automated image analysis is discussed as the alternative to the manual flakes analysis. T2 - Graphene 2023 CY - Manchester, UK DA - 27.07.2023 KW - Graphene oxide KW - SEM KW - Size KW - Standardisation PY - 2023 UR - https://www.grapheneconf.com/2023/index.php AN - OPUS4-57910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kohlbrecher, J. A1 - Breßler, Ingo T1 - SASfit 0.94.12 N2 - Small-angle scattering is an increasingly common method for characterizing particle ensembles in a wide variety of sample types and for diverse areas of application. SASfit has been one of the most comprehensive and flexible curve-fitting programs for decades, with many specialized tools for various fields. KW - Small-angle scattering KW - SAXS KW - SANS KW - Scattering pattern analysis PY - 2023 UR - https://doi.org/10.5281/zenodo.7530357 DO - https://doi.org/10.5281/zenodo.7530356 PB - Zenodo CY - Geneva AN - OPUS4-57913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chemello, Giovanni A1 - Knigge, Xenia A1 - Ciornii, Dmitri A1 - Reed, B.P. A1 - Pollard, A.J. A1 - Clifford, C.A. A1 - Howe, T. A1 - Vyas, N. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Influence of the Morphology on the Functionalization of Graphene Nanoplatelets Analyzed by Comparative Photoelectron Spectroscopy with Soft and Hard X-Rays N2 - Since its isolation, graphene has received growing attention from academia and industry due to its unique properties. However, the “what is my material” barrier hinders further commercialization. X-ray photoelectron spectroscopy (XPS) is considered as a method of choice for the determination of the elemental and chemical composition. In this work the influence of the morphology of graphene particles on the XPS results is studied and investigated as a function of X-ray energy, using conventional XPS with Al K𝜶 radiation and hard X-ray photoemission spectroscopy (HAXPES) using Cr K𝜶 radiation. Thereby, the information depth is varied between 10 and 30 nm. For this purpose, two commercial powders containing graphene nanoplatelets with lateral dimensions of either ≈100 nm or in the micrometer range are compared. These larger ones exist as stack of graphene layers which is inspected with scanning electron microscopy. Both kinds of particles are then functionalized with either oxygen or fluorine. The size of the graphene particles is found to influence the degree of functionalization. Only the combination of XPS and HAXPES allows to detect the functionalization at the outermost surface of the particles or even of the stacks and to provide new insights into the functionalization process. KW - Functionalized graphene KW - Hard-energy X-ray photoelectron spectroscopy KW - X-ray photoelectron spectroscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578860 DO - https://doi.org/10.1002/admi.202300116 SN - 2196-7350 SP - 1 EP - 8 PB - Wiley VCH AN - OPUS4-57886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Howe, T. A1 - Vyas, N. A1 - Reed, B.P. A1 - Pollard, A.J. A1 - Clifford, C.A. T1 - Reliable chemical characterization of industrial graphene related materials N2 - International standards describing reliable protocols will facilitate the commercialization of graphene and related 2D materials. One physico-chemical key property next to flake size and thickness is the chemical composition of the material. Therefore, an ISO standard is under development with X-ray photoelectron spectroscopy having a prominent role. With its information depth of around 10 nm which is the similar length scale as the thickness as of particles of 2D materials consisting of a few monolayer XPS seems to be highly suitable for this purpose. Different sample preparation methods like pressing the powders onto adhesive tapes, into recesses, or into solid pellets result in inconsistencies in the quantification. For the validation of the quantification with XPS an interlaboratory comparison was initiated under the auspice of the “Versailles Project on Advanced Materials and Standards” (VAMAS). First results confirm that the sample preparation method (pellet vs. powder) influences the quantification results clearly. Considering this effect, a good agreement of the results from the different participants were observed. Similar results were observed for raw, N- and F-functionalized graphene. T2 - Graphene CY - Manchester, England, UK DA - 27.06.2023 KW - X-ray photoelectron spectroscopy KW - Functionalized graphene KW - Interlaboratory comparison KW - VAMAS PY - 2023 AN - OPUS4-57895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - How to measure the chemical composition of industrial graphene - New insights from an interlaboratory comparison N2 - International standards describing reliable protocols will facilitate the commercialization of graphene and related 2D materials. One physico-chemical key property next to flake size and thickness is the chemical composition of the material. Therefore, an ISO standard is under development with X-ray photoelectron spectroscopy having a prominent role. With its information depth of around 10 nm which is the similar length scale as the thickness as of particles of 2D materials consisting of a few monolayer XPS seems to be highly suitable for this purpose. Different sample preparation methods like pressing the powders onto adhesive tapes, into recesses, or into solid pellets result in inconsistencies in the quantification. For the validation of the quantification with XPS an interlaboratory comparison was initiated under the auspice of the “Versailles Project on Advanced Materials and Standards” (VAMAS). First results confirm that the sample preparation method (pellet vs. powder) influences the quantification results clearly. T2 - Characterization of Nanomaterials Colloquium CY - Berlin, Germany DA - 04.07.2023 KW - X-ray photoelectron spectroscopy KW - Functionalized graphene KW - Interlaboratory comparison PY - 2023 AN - OPUS4-57897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Knigge, Xenia A1 - Al-Sabbgh, Dominik A1 - Hodoroaba, Vasile-Dan T1 - XPS, HAXPES, XRD and SEM datasets of functionalized graphene nanoplateletes N2 - The datasets from (Hard Energy) X-ray photoelectron spectroscopy, X-ray diffraction and Scanning Electron Microsopy are related to the publication G. Chemello, X. Knigge, D. Ciornii, B.P. Reed, A.J. Pollard, C.A. Clifford, T. Howe, N. Vyas, V.-D. Hodoroaba, J. Radnik "Influence of the morphology on the functionalization of graphene nanoplatelets analyzed by comparative photoelectron spectroscopy with soft and hard X-rays" Advanced Materials Interfaces (2023), DOI: 10.1002/admi.202300116. KW - Graphene related 2D materials KW - X-ray photoelectron spectroscopy KW - Hard-energy X-ray photoelectron spectroscopy KW - Scanning electron microscopy KW - Powder X-ray diffraction PY - 2023 DO - https://doi.org/10.5281/zenodo.7956497 PB - Zenodo CY - Geneva AN - OPUS4-57898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed A. A1 - Juranyi, Fanni A1 - Böhning, Martin A1 - Zorn, Reiner A1 - Schönhals, Andreas T1 - Low-Frequency Vibrational Density of State of Janus-Polynorbornenes: The Dependence of the Boson Peak on the Nanophase-Separated Structure N2 - Inelastic incoherent neutron time-of-flight scattering was employed to investigate the low-frequency vibrational density of states (VDOSs) for a series of glassy Janus-poly(tricyclononenes), which consist of a rigid main chain and flexible alkyl side chains. Here, the length of the flexible side chains was systematically varied from propyl to octyl. Such materials have potential applications as active separation layers in gas separation membranes as a green future technology, especially for the separation of higher hydrocarbons. From the morphological point of view, the Janus polynorbornenes undergo a nanophase separation into alkyl side chain-rich nanodomains surrounded by a rigid polynorbornene matrix. Here, the influence of the nanophase-separated structure on the low-frequency VDOS is investigated from a fundamental point of view. The low-frequency VDOSs of these Janus polynorbornene show excess contributions to the Debye type VDOS known as the Boson peak (BP) for all side chain lengths. Due to the high incoherent scattering cross-section of hydrogen, most of the scattering comes from the alkyl side chain-rich domains. Compared to conventional glass-forming materials, in the considered Janus polynorbornenes, the BP has a much lower intensity and its frequency position is shifted to higher values. These experimental results are discussed in terms of the nanophase-separated structure where the alkyl chain-rich domains were constrained by the surrounding matrix dominated by the rigid backbone. With increasing alkyl chain length, the size of the alkyl chain-rich domains increases. The frequency position of the BP shifts linearly to lower frequencies with the size of these nanodomains estimated from X-ray measurements. The obtained results support the sound wave interpretation to the BP KW - Inelastic neutron scattering PY - 2023 DO - https://doi.org/10.1021/acs.macromol.3c00913 SN - 0024-9297 SP - 1 EP - 10 PB - ACS AN - OPUS4-57972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Fischer, Daniel A1 - Freiberg, K. A1 - Duwe, M. A1 - Sahre, Mario A1 - Schneider, S. A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Rettenmayr, M. A1 - Beck, Uwe A1 - Undisz, A. T1 - Single Femtosecond Laser Pulse induced Amorphization, Re-crystallization and Native Oxide Removal at Silicon Wafer Surfaces N2 - Single femtosecond laser pulse induced amorphization, re-crystallization and native oxide layer removal at silicon wafer surfaces of different crystal orientation is studied via spectroscopic imaging ellipsometry, atomic force microscopy, and high-resolution transmission electron microscopy. T2 - 2023 Conference on Lasers and Electro-Optics/Europe – European Quantum Electronics Conferences CY - Munich, Germany DA - 26.06.2023 KW - Femtosecond laser KW - Laser-induced amorphization KW - Spectroscopic imaging ellipsometry KW - Transmission electron microscopy KW - Native oxide layer PY - 2023 AN - OPUS4-57829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Chambers, Aaron A1 - Breßler, Ingo T1 - Synthesizing a library of 1000+ reproducible MOFs N2 - While the synthesis of Metal-Organic Framework (MOF) particles can be as easy as adding two solutions together, reproducibly obtaining the same particles, time and time again, is a lot harder. As laboratory-independent reproducibility is a cornerstone of the scientific method, we must put effort into finding and controlling all necessary parameters to achieve this. An open-source Python/EPICS-controlled robotic platform (see picture) was adapted to systematically explore this for a 20 ml MOF synthesis of the Zeolitic Imidazole Framework-8 (ZIF-8) chemistry in methanol. Parameters that were explored included: 1) addition sequence, 2) addition speeds, 3) reaction times, 4) source chemicals, 5) stirring speeds, 6) stirring bar choice, 7) starting concentrations, and 8) workup methodologies. It was found that, by controlling these parameters, highly reproducible syntheses are obtained. Secondly, the variation of these parameters alone led to a dramatic difference in volume-weighted particle size means, which exceeds an order of magnitude as investigated by our in-house X-ray scattering instrument [1]. The syntheses are thoroughly documented in an automated fashion, and the synthesis libraries as well as analyses libraries will become available in batches soon. With this library, it will be possible to extract previously unknown correlations, and other laboratories can produce specific particles by following the exact procedures of the particles of their choice. T2 - 787. WE-Heraeus-Seminar: Accelerated Discovery of New Materials CY - Bad Honnef, Germany DA - 15.05.2023 KW - Metal organic frameworks KW - Automation KW - Lab automation KW - Robotic-supported synthesis KW - Reproducibility KW - Synthesis library KW - X-ray scattering KW - Particle size distribution PY - 2023 AN - OPUS4-57596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aliyah, K. A1 - Prehal, C. A1 - Diercks, J. S. A1 - Diklić, N. A1 - Xu, L. A1 - Ünsal, S. A1 - Appel, C. A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Guizar-Sicairos, M. A1 - Herranz, J. A1 - Gubler, L. A1 - Büchi, F. N. A1 - Eller, J. T1 - Quantification of PEFC Catalyst Layer Saturation via In Silico, Ex Situ, and In Situ Small-Angle X-ray Scattering N2 - The complex nature of liquid water saturation of polymer electrolyte fuel cell (PEFC) catalyst layers (CLs) greatly affects the device performance. To investigate this problem, we present a method to quantify the presence of liquid water in a PEFC CL using small-angle X-ray scattering (SAXS). This method leverages the differences in electron densities between the solid catalyst matrix and the liquid water filled pores of the CL under both dry and wet conditions. This approach is validated using ex situ wetting experiments, which aid the study of the transient saturation of a CL in a flow cell configuration in situ. The azimuthally integrated scattering data are fitted using 3D morphology models of the CL under dry conditions. Different wetting scenarios are realized in silico, and the corresponding SAXS data are numerically simulated by a direct 3D Fourier transformation. The simulated SAXS profiles of the different wetting scenarios are used to interpret the measured SAXS data which allows the derivation of the most probable wetting mechanism within a flow cell electrode. KW - Polymer electrolyte fuel cell KW - Water management KW - Catalyst layer KW - Representative morphology modeling KW - Small-angle X-ray scattering KW - MOUSE KW - SAXS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575973 DO - https://doi.org/10.1021/acsami.3c00420 SN - 1944-8244 VL - 15 IS - 22 SP - 26538 EP - 26553 PB - ACS Publications AN - OPUS4-57597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Battig, Alexander A1 - Böhning, Martin A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Strommer, Bettina A1 - Tabaka, Weronika A1 - Wachtendorf, Volker T1 - Small but Great – Multifunctional Graphene in Rubber Nanocomposites N2 - A few layer/multilayer graphene (MLG) with a specific surface area of BET ≥ 250 m2/g is proposed as an efficient multifunctional nanofiller for rubbers. The preparation method, i.e., ultrasonically-assisted solution or latex premixing of master batches followed by conventional two-roll milling, strongly influences the dispersion in the elastomeric matrix and is fundamental for the final properties. When homogenously dispersed, single stacks of only approximately 10 graphene sheets, with an aspect ratio of ca. 35, work at low loadings, enabling the replacement of large amounts of carbon black (CB), an increase in efficiency, and a reduction in filler load. The appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing, gas barrier properties, electrical and thermal conductivity, as well as mechanical properties of different rubbers, as shown for chlorine-Isobutylene-Isoprene rubber (CIIR), nitrile-butadiene rubber (NBR), natural rubber (NR), and styrene-butadiene rubber (SBR).[1-5] 3 phr of MLG tripled the Young’s modulus of CIIR, an effect equivalent to 20 phr of CB. The stronger interactions between MLG and NR or SBR also resulted in a reduction in the elongation at break by 20% and 50%, respectively, while the same parameter was hardly changed for CIIR/MLG and NBR/MLG. CIIR/MLG and NBR/MLG were stiffer but just as defomable than CIIR and NBR. The strong reinforcing effect of 3 phr MLG was confirmed by the increase of greater than 10 Shore A in hardness. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards flammability. We investigated MLG also as a synergist for reducing the aluminium trihydrate loading in flame retardant hydrogenated acrylonitrile-butadiene (HNBR), polybutadiene chloroprene (BR/CR), and chlorosulfonated polyethylene rubber(CSM).[6-8] The higher the nanofiller concentration is, the greater the improvement in the properties. For instance, the permeability decreased by 30% at 3 phr of MLG, 50% at 5 phr and 60% at 10 phr, respectively. Moreover, the MLG nanocomposites improve stability of mechanical properties against the effects of weathering. In key experiments an increase in UV-absorption and a pronounced radical scavenging were proved as stabilizing mechanisms. In a nutshell, MLG is an efficient multifunctional nanofiller ready to be used for innovative rubber development. T2 - 34th PDDG Conference CY - Dubrovnik, Croatia DA - 11.06.2023 KW - Graphene KW - Nanocomposites KW - Reinforcement KW - Antioxydant KW - Flame retardant KW - Durability PY - 2023 AN - OPUS4-57693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reed, B.P. A1 - Marchesini, S. A1 - Chemello, Giovanni A1 - Morgan, D.J. A1 - Vyas, N. A1 - Howe, T. A1 - Radnik, Jörg A1 - Clifford, C,A. A1 - Pollard, A.J. T1 - The influence of sample preparation on XPS quantification of oxygen-functionalised graphene nanoplatelets N2 - X-ray photoelectron spectroscopy (XPS) is widely used for characterising the chemistry of graphene-related two-dimensional materials (GR2M), however the careful preparation of the sample for analysis is important in obtaining representative quantifications. We report an investigation by three laboratories showing that the preparation method for oxygen-functionalised graphene nanoplatelet (GNP) powders has a significant effect on the homogeneous-equivalent elemental composition measured in XPS. We show that pressing GNP powders onto adhesive tapes, into recesses, or into solid pellets results in inconsistencies in the XPS quantification. The measured oxygen-to-carbon atomic ratio from GNP pellets depends upon the die pressure used to form them and the morphology of the GNPs themselves. We recommend that powder samples of GR2Ms are pelletised prior to XPS analysis to improve repeatability and reproducibility of measurements. KW - X-ray photoelectron spectroscopy KW - Graphene related two-dimensional materials (GR2M) KW - Pelletization KW - Powder PY - 2023 DO - https://doi.org/10.1016/j.carbon.2023.118054 SN - 0008-6223 VL - 211 SP - 1 EP - 6 PB - Elsevier Ltd. AN - OPUS4-57694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, W. A1 - Schweins, R. A1 - Nöcker, B. A1 - Kohlbrecher, J. A1 - Smales, Glen Jacob A1 - Huber, K. T1 - Comparative study of the co-assembly behaviour of 3-chloro-4-hydroxy-phenylazo dyes with DTAB N2 - The co-assembly of three one-fold negatively charged 3-chloro-4-hydroxy-phenylazo dyes (Yellow, Blue and Red) with the cationic surfactant dodecyltrimethylammoniumbromide (DTAB) was studied to probe dye–DTAB binding stoichiometry and assembly morphology. For each dye, phase separation was observed above a given dye : DTAB ratio with the ratio depending on the dye. While Yellow and DTAB showed liquid/liquid phase separation above Yellow : DTAB = 1 : 1.67, crystalline dye–DTAB complexes were observed for Blue–DTAB and Red–DTAB above Blue : DTAB = 1 : 2.56 and Red : DTAB = 1 : 2.94 respecively. In homogeneous solution, UV/vis spectroscopic investigations suggest stochiometries of Yellow : DTAB = 1 : 2, Blue : DTAB = 1 : 3 and Red : DTAB = 1 : 4. It was concluded, that Yellow exhibits the highest dye : DTAB binding stoichiometry in both, dye–surfactant complexes in the 2-phase region and in solution, whereas the lowest dye : DTAB binding stoichiometry was observed for Red–DTAB in both cases. The observed stoichiometries are inversely correlated to the impact dye addition has on the morphology of DTAB micelles. Generally, addition of dye to DTAB micelles leads to a reduction in spontaneous curvature of these micelles and to the formation of triaxial ellipsoidal or cylindrical micelles from oblate ellipsoidal DTAB micelles. At a DTAB concentration of 30 mM and a dye concentration of 5 mM, this effect was most pronounced for Red and least pronounced for Yellow, whilst Blue showed an intermediate effect. KW - Dye KW - DTAB KW - SAXS KW - Small-angle X-ray scattering KW - X-ray scattering KW - Data analysis KW - Micelle PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576978 DO - https://doi.org/10.1039/D3SM00501A SN - 1744-683X VL - 19 IS - 24 SP - 4588 EP - 4598 PB - Royal Society of Chemistry AN - OPUS4-57697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Breßler, Ingo A1 - Hahn, Marc Benjamin T1 - McSAS3: live demo of a Monte Carlo data analyis package for scattering studies N2 - McSAS3 is a refactored software package for fitting large batches of (X-ray or Neutron) scattering data. It uses a Monte-Carlo acceptance-rejection algorithm to optimize model parameters - ideal for analysis of size-disperse scatterers. The refactored code can exploit multiprocessing, traceably stores (multiple) results in the output file, and allows for re-histogramming of previous optimizations. Besides analysis of large batches, it can also be integrated in automated data processing pipelines. The live demonstration will show how to use the software, what its limitations are, and what outcomes can look like for batches of results. T2 - SAS Analysis Course 2023 CY - Didcot, UK DA - 05.06.2023 KW - Scattering KW - Software KW - Analysis KW - Demonstration KW - McSAS3 KW - MOUSE KW - Monte Carlo KW - Automated analysis PY - 2023 AN - OPUS4-57630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terborg, R. A1 - Kim, K. J. A1 - Hodoroaba, Vasile-Dan T1 - Elemental composition and thickness determination of thin films by electron probe microanalysis N2 - Electron probe microanalysis (EPMA) applies to solid samples of homogenous (bulk) chemical composition and can usually not be applied to structures which are inhomogeneous in the micrometer range such as thin film systems down to a few nm. However, in combination with the established thin film software Stratagem, the thickness as well as the elemental composition of thin films on a substrate can be determined. This has been recently successfully demonstrated for Fe-Ni on Si and Si-Ge on Al2O3 thin film systems. For both systems five samples of different elemental composition and a reference were produced and characterised by inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM) as reference values. Last year, a new and open-source thin film evaluation programme called BadgerFilm has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we reevaluated the data acquired for the Fe-Ni and Si-Ge systems using the BadgerFilm software package and compared the obtained elemental compositions and thickness values with the results of the Stratagem software and the reference methods. The conclusion is that the BadgerFilm software shows good agreement with the elemental composition and thickness calculated by Stratagem (mostly <2% for both composition and thickness) and with the reference values for two representative thin film systems (<1%–2% for composition and <10%–20% for thickness). KW - Elemental composition KW - EPMA KW - Film thickness KW - Thin films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576368 DO - https://doi.org/10.1002/sia.7183 SN - 0142-2421 VL - 55 SP - 496 EP - 500 PB - Wiley AN - OPUS4-57636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - Physico-chemical characterization of sterile Fe3O4 nanoparticles by XPS / HAXPES / SEM N2 - Here a dataset of XPS, HAXPES and SEM measurements for the physico-chemical characterization of sterile Fe3O4 nanoparticles is presented. The measurements are part of the H2020 project “NanoSolveIT”. KW - HAXPES KW - XPS KW - SEM KW - Fe3O4 KW - Nanoparticles PY - 2023 DO - https://doi.org/10.5281/zenodo.7990301 PB - Zenodo CY - Geneva AN - OPUS4-57764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - What’s that beyond the grasslands? Expanding your world view via wide-range X-ray scattering N2 - This talk introduces the expanded view that comes from wide-range X-ray scattering investigations. Compared to X-ray diffraction studies alone, the additional angular range of this technique provides information on the larger structural dimensions present in your samples. This allows for the extraction of information on the size and size distribution of nanostructural components, such as nanoparticles, nanovoids, and any other structure exhibiting an electron density contrast. The talk introduces the technique, the MOUSE instrument used for these investigations, and provides several real-world examples of its uses. The audience is invited to choose which examples captures their interest from a range of options, in the latter segment of the talk. T2 - ECS8: European Crystallography School 2023 CY - Berlin, Germany DA - 18.06.2023 KW - X-ray scattering KW - Introduction KW - Fourier transforms KW - Nanostructure investigation KW - Instrument automation KW - MOUSE PY - 2023 AN - OPUS4-57769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Voss, Heike A1 - Knigge, Xenia A1 - Knapic, D. A1 - Weise, Matthias A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Müller, Kai A1 - Wasmuth, Karsten A1 - Baumgartner, W. A1 - Krüger, Jörg A1 - Heitz, J. A1 - Hassel, A. W. A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Picosecond laser processing of hierarchical micro-nanostructures on Ti-alloy upon pre- and post-anodization N2 - Recent publications indicate that the order of electrochemical anodization (before or after the laser-processing step) plays an important role for the response of boneforming osteoblasts – an effect that can be utilized for improving permanent dental- or removable bone-implants. For exploring these different surface functionalities, multi-method chemical and structural characterizations were performed for two different characteristic micro-spikes covered by nanometric laserinduced periodic surface structures (LIPSS) on Ti-6Al-4V upon irradiation with nearinfrared ps-laser pulses (1030 nm wavelength, ~1 ps pulse duration, 66 & 80 kHz pulse repetition rate) at two distinct sets of laser fluence and beam scanning parameters. This involves morphological and topographical investigations by scanning electron microscopy (SEM) and white light interference microscopy (WLIM), near-surface chemical analysis by X-ray photoelectron spectroscopy (XPS) and hard X-ray photoelectron spectroscopy (HAXPES), as well as structural material examination via X-ray diffraction (XRD) measurements. The results allow to qualify the laser ablation depth, assess the spike geometry and surface roughness parameters, and provide detailed insights into the near-surface oxidation that may cause the different cell growth behavior for pre- or post-anodized medical implants. T2 - E-MRS Spring Meeting 2023 CY - Strasbourg, France DA - 29.05.2023 KW - Hard X-ray photoelectron spectroscopy (HAXPES) KW - Laser-induced periodic surface structures (LIPSS) KW - Ti6Al4V alloy KW - Hierarchical micro-nanostructures KW - Ultrashort laser processing PY - 2023 AN - OPUS4-60344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Forschung in einer Bundesoberbehörde wie der BAM N2 - Die Bundesanstalt für Materialforschung und -prüfung (BAM) ist eine forschende Bundesoberbehörde und Einrichtung der Ressortforschung der Bundesrepublik Deutschland. Unter ihrer Leitlinie „Sicherheit in Technik und Chemie“ ist sie zuständig für die öffentliche technische Sicherheit und für metrologische Aufgaben in der Chemie. Das Aufgabenspektrum der BAM, das sich an aktuellen Fragestellungen aus Wissenschaft, Wirtschaft, Politik und Normung orientiert, bietet sehr viele interessante Tätigkeitsfelder für Naturwissenschaftler*Innen und Ingenieur*Innen. T2 - WIFO Leipzig 2023 CY - Leipzig, Germany DA - 05.09.2023 KW - Quality assurance KW - Optical spectroscopy KW - Certification KW - Reference product KW - Integrating sphere spectroscopy KW - Fluorescence KW - Quantum yield KW - Reference material KW - Reference data KW - Traceability KW - Nano KW - Particle KW - Analytical chemistry KW - Sensor KW - Safety PY - 2023 AN - OPUS4-58397 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - OECD Prüfrichtlinie 125 N2 - Diese Präsentation ist eine Einführung in die OECD TG 125 zur Bestimmung der Partikelgrößen von Nanomaterialien. Es wird auf die verchiedenen Probleme der Partikelgrößenbestimmung eingegangen wie z.B. verschiedene Oberflächenschichten, Äquivalenzdurchmesser und Verteilungsfunktionen. Gleichzeitig werden die neuen Begrifflichkeiten eingeführt, die in der TG 125 definiert neu werden. T2 - BAM Akademie Digitaler Info-Tag "Nano or not Nano" CY - Online meeting DA - 16.02.2023 KW - Nano KW - Partikel KW - Größe KW - Partikeldurchmesser KW - Äquivalenzdurchmesser PY - 2023 AN - OPUS4-58449 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Differentielles Mobilitäts Analyse System (DMAS) N2 - Die Bestimmung der Nanopartikelgrößen- und -formverteilung nach OECD TG 125 mit einem Differentiellen Mobilitäts Analyse System (DMAS), auch bekannt als SMPS, wird vorgestellt: - Generelles Messprinzip - Welchen Durchmesser misst die Methode? - Welche Partikel kann diese Methode messen? - Welche Informationen kann diese Methode liefern? - Wo stößt die Methode an ihre Grenzen? - Implementierung und Datenauswertung, - Reporting. Anschließend wurde eine Q&A-Session für DMAS/SMPS organisiert. T2 - BAM Akademie Digitaler Info-Tag "Nano or not Nano" CY - Online meeting DA - 16.02.2023 KW - Partikel KW - Nanopartikel KW - SMPS KW - Größenbestimmung KW - DMAS PY - 2023 AN - OPUS4-58450 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Fischer, Daniel A1 - Freiberg, K. A1 - Duwe, M. A1 - Sahre, Mario A1 - Schneider, S. A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Rettenmayr, M. A1 - Beck, Uwe A1 - Undisz, A. A1 - Bonse, Jörn T1 - Silicon surface amorphization and re-crystallization via single femtosecond laser pulses N2 - Silicon is the material responsible for most of the technological developments during the past century, making it one of the most studied materials along different disciplines. However, there are still unturned stones regarding its superficial re-solidification after femtosecond laser-induced local melting. In this presentation, we report irradiation experiments with single femtosecond pulses (790 nm, 30 fs) with a spatially Gaussian distribution on two different types of silicon with orientations <111> and <100>. The surface modifications were studied in detail via different techniques, including optical microscopy, atomic force microscopy, spectroscopic imaging ellipsometry, energy dispersive X-ray spectroscopy and high-resolution transmission electron microscopy. We quantitatively estimate the resulting radial amorphous layer depth profiles with maximum thicknesses around some tenths of nanometers for fluences in between the melting and ablation thresholds. In particular, spectroscopic imaging ellipsometry (SIE) allowed fast data acquisition using multiple wavelengths to provide experimental measurements for calculating the nanometric radial amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. SIE proved to be capable of detecting and measuring nanometric structural and chemical modifications (oxidation) on the studied laser spots. The accuracy of the SIE-based calculations is verified experimentally by characterizing an in-depth material lamella via high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). For completeness, we present a mathematical modelling for the melt layer thickness considering different optical absorption processes including one photon absorption, two photon absorption and free-carrier absorption, highlighting the relevance of the latter one in the femtosecond laser-induced melting of silicon. T2 - 28th International Conference on Advanced Laser Technologies (ALT'21) CY - Online meeting DA - 06.09.2021 KW - Silicon KW - Femtosecond laser KW - Phase transitions KW - Spectroscopic imaging ellipsometry KW - Transmission electron microscopy PY - 2021 AN - OPUS4-53235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Ghasem Zadeh Khorasani, Media A1 - Braun, Ulrike A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - New Focus On Boehmite-Reinforced Nanocomposites Molecular Approach With Advanced FTIR-Techniques N2 - By FTIR-study it was possible to proof a chemical reaction between boehmite and the hardener of anhydride cured epoxy resins. Future studies can assume that the chemical environment of the resin system is changed in the surrounding of boehmite nanoparticles. This highly affects especially localized properties. T2 - 6th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Nanocomposite KW - Boehmite KW - FTIR KW - DRIFTS KW - Epoxy PY - 2019 AN - OPUS4-47785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dudziak, Mateusz A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Thermal properties of polymer nanocomposites based on polycarbonate (PC) and boehmite N2 - Nanocomposites are extremely versatile due to their physicochemical properties, which differ significantly from bulk homopolymers. One of the inorganic nanomaterials which are increasingly used as a filler in polymer matrices is boehmite, typically used as an inexpensive flame retardant. Here, it is used as a nanofiller in polycarbonate and polyamide, expecting to improve their mechanical properties. For industrial use boehmite is obtained by the solvothermal method, resulting in a layered nanomaterial, whereas naturally it occurs as single crystals with the size of <100µm. In this work we are obtaining and isolating boehmite crystals by a bottom-up method, in which a reaction between aluminum nitride and sodium hydroxide. Obtaining boehmite as microcrystals is necessary for its analysis and characterization, as well as to investigate its interaction with polymer matrices at the polymer/particle interface. Here, the obtained particles in polymer matrices are characterized with differential scanning calorimetry and thermogravimetry analysis. T2 - 6th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Boehmite KW - Polycarbonate PY - 2019 AN - OPUS4-47769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feltin, N. A1 - Crouzier, L. A1 - Delvallée, A. A1 - Pellegrino, F A1 - Maurino, V. A1 - Bartczak, D. A1 - Goenaga-Infante, H. A1 - Taché, O. A1 - Marguet, S. A1 - Testard, F. A1 - Artous, S. A1 - Saint-Antonin, F. A1 - Salzmann, Christoph A1 - Deumer, J. A1 - Gollwitzer, C. A1 - Koops, R. A1 - Sebaïhi, N. A1 - Fontanges, R. A1 - Neuwirth, M. A1 - Bergmann, D. A1 - Hüser, D. A1 - Klein, T. A1 - Hodoroaba, Vasile-Dan T1 - Metrological Protocols for Reaching Reliable and SI-Traceable Size Results for Multi-Modal and Complexly Shaped Reference Nanoparticles N2 - The study described in this paper was conducted in the framework of the European nPSize project (EMPIR program) with the main objective of proposing new reference certified nanomaterials for the market in order to improve the reliability and traceability of nanoparticle size measurements. For this purpose, bimodal populations as well as complexly shaped nanoparticles (bipyramids, cubes, and rods) were synthesized. An inter-laboratory comparison was organized for comparing the size measurements of the selected nanoparticle samples performed with electron microscopy (TEM, SEM, and TSEM), scanning probe microscopy (AFM), or small-angle X-ray scattering (SAXS). The results demonstrate good consistency of the measured size by the different techniques in cases where special care was taken for sample preparation, instrument calibration, and the clear definition of the measurand. For each characterization method, the calibration process is described and a semi-quantitative table grouping the main error sources is proposed for estimating the uncertainties associated with the measurements. Regarding microscopy-based techniques applied to complexly shaped nanoparticles, data dispersion can be observed when the size measurements are affected by the orientation of the nanoparticles on the substrate. For the most complex materials, hybrid approaches combining several complementary techniques were tested, with the outcome being that the reliability of the size results was improved. KW - Certified reference nanomaterials KW - Traceable nanoparticle size measurements; KW - Hybrid metrology KW - Scanning probe microscopy KW - Small-angle X-ray scattering KW - Electron microscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571902 DO - https://doi.org/10.3390/nano13060993 SN - 2079-4991 VL - 13 IS - 6 - Special Issue "Identification and Quantification of Nanomaterials" SP - 1 EP - 25 PB - MDPI CY - Basel, CH AN - OPUS4-57190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Probing Nanoscale Relaxation Behavior in Thin Polymer Films N2 - The investigations into the complicated effects of film thickness on bulk properties of thin polymer films has yielded conflicting results. The reduction in molecular mobility, and with it an increase in the glass transition temperature, for thin films of poly (bisphenol A carbonate) (PBAC) was assigned to the formation of an adsorbed layer. The adsorbed layer was obtained by washing away the loosely bounded chains using a good solvent. Next, using atomic force microscopy (AFM), the thickness of each sample was measured after annealing for various times at three different annealing temperatures. The growth of this adsorbed layer was shown to deviate from the previously reported 2-step mechanism seen for other polymers. For PBAC, after very long annealing times at high temperatures the thin films were dewetted, where segments of the adsorbed layer were removed from the substrate. T2 - Royal Society of Chemistry (RSC) Poster CY - Online meeting DA - 28.02.2023 KW - Thin films KW - Adsorbed Layer KW - Broadband dielectric spectroscopy KW - Atomic force microscopy KW - Growth Kinetics PY - 2023 AN - OPUS4-57196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Pauw, Brian Richard A1 - Laskina, Sofya A1 - Naik, Aakash Ashok A1 - Smales, Glen Jacob A1 - George, Janine A1 - Breßler, Ingo A1 - Benner, Philipp T1 - "Ultima Ratio": Simulating wide-range X-ray scattering and diffraction N2 - We demonstrate a strategy for simulating wide-range X-ray scattering patterns, which spans the small- and wide scattering angles as well as the scattering angles typically used for Pair Distribution Function (PDF) analysis. Such simulated patterns can be used to test holistic analysis models, and, since the diffraction intensity is on the same scale as the scattering intensity, may offer a novel pathway for determining the degree of crystallinity. The "Ultima Ratio" strategy is demonstrated on a 64-nm Metal Organic Framework (MOF) particle, calculated from Q < 0.01 1/nm up to Q < 150 1/nm, with a resolution of 0.16 Angstrom. The computations exploit a modified 3D Fast Fourier Transform (3D-FFT), whose modifications enable the transformations of matrices at least up to 8000^3 voxels in size. Multiple of these modified 3D-FFTs are combined to improve the low-Q behaviour. The resulting curve is compared to a wide-range scattering pattern measured on a polydisperse MOF powder. While computationally intensive, the approach is expected to be useful for simulating scattering from a wide range of realistic, complex structures, from (poly-)crystalline particles to hierarchical, multicomponent structures such as viruses and catalysts. KW - X-ray KW - Simulation KW - 3D Fourier Transform KW - High resolution KW - XRD KW - SAXS KW - PDF KW - Total scattering KW - X-ray scattering KW - Metal organic framework KW - Electron density map KW - FFT PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572067 DO - https://doi.org/10.48550/arXiv.2303.13435 VL - Cornell University SP - 1 EP - 12 PB - Ithaca, NY AN - OPUS4-57206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Laskina, Sofya A1 - Naik, Aakash Ashok A1 - Smales, Glen Jacob A1 - George, Janine A1 - Breßler, Ingo A1 - Benner, Philipp T1 - Jupyter notebook and VASP calculation details accompanying the manuscript: "Ultima Ratio: Simulating wide-range X-ray scattering and diffraction" N2 - ## Summary: This notebook and associated datasets (including VASP details) accompany a manuscript available on the ArXiv (https://doi.org/10.48550/arXiv.2303.13435) and hopefully soon in a journal as short communication as well. Most of the details needed to understand this notebook are explained in that paper with the same title as above. For convenience, the abstract is repeated here: ## Paper abstract: We demonstrate a strategy for simulating wide-range X-ray scattering patterns, which spans the small- and wide scattering angles as well as the scattering angles typically used for Pair Distribution Function (PDF) analysis. Such simulated patterns can be used to test holistic analysis models, and, since the diffraction intensity is presented coupled to the scattering intensity, may offer a novel pathway for determining the degree of crystallinity. The ``Ultima Ratio'' strategy is demonstrated on a 64-nm Metal Organic Framework (MOF) particle, calculated from $Q<0.01$\,$\mathrm{nm}^{-1}$ up to $Q\approx150$\,$\mathrm{nm}^{-1}$, with a resolution of 0.16\,\AA. The computations exploit a modified 3D Fast Fourier Transform (3D-FFT), whose modifications enable the transformations of matrices at least up to $8000^3$ voxels in size. Multiple of these modified 3D-FFTs are combined to improve the low-$Q$ behaviour. The resulting curve is compared to a wide-range scattering pattern measured on a polydisperse MOF powder. While computationally intensive, the approach is expected to be useful for simulating scattering from a wide range of realistic, complex structures, from (poly-)crystalline particles to hierarchical, multicomponent structures such as viruses and catalysts. KW - X-ray KW - Simulation KW - Scattering KW - MOUSE KW - Nanomaterials KW - XRD KW - SAXS KW - PDF KW - total scattering KW - 3D Fourier Transform KW - High Resolution KW - FFT PY - 2023 UR - https://doi.org/10.48550/arXiv.2303.13435 DO - https://doi.org/10.5281/zenodo.7764044 PB - Zenodo CY - Geneva AN - OPUS4-57207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - VIDEO A1 - Pauw, Brian Richard T1 - "Ultima Ratio": Multi-scale, high-resolution 3D-FFT scattering pattern simulations N2 - This talk highlights a proof-of-concept that demonstrates the ability to calculate high-resolution Fourier transforms. These can be combined with multi-scale modeling to simulate scattering over a wide range, from small-angle scattering to XRD and PDF. The preprint documenting this is available on the ArXiv here: https://doi.org/10.48550/arXiv.2303.13435 The Jupyter notebook, VASP calculation details and MOUSE measured scattering patterns are available from this Zenodo repository: https://dx.doi.org/10.5281/zenodo.7764045 KW - Video KW - Simulation KW - High-resolution KW - Fourier Transform KW - 3D FFT KW - Nanomaterial KW - Metal organic framework KW - MOF KW - SAXS KW - XRD KW - PDF KW - X-ray diffraction KW - Pair distribution function KW - Small-angle X-ray scattering PY - 2023 UR - https://www.youtube.com/watch?v=lEApkOqR5e8 PB - YouTube, LLC CY - San Bruno, CA, USA AN - OPUS4-57212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hachenberger, Y. U. A1 - Rosenkranz, Daniel A1 - Kromer, C. A1 - Krause, B. C. A1 - Dreiack, N. A1 - Kriegel, F. L. A1 - Kozmenko, E. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Bierkandt, F. S. A1 - Laux, P. A1 - Panne, Ulrich A1 - Luch, A. T1 - Nanomaterial Characterization in Complex Media - Guidance and Application N2 - A broad range of inorganic nanoparticles (NPs) and their dissolved ions possess a possible toxicological risk for human health and the environment. Reliable and robust measurements of dissolution effects may be influenced by the sample matrix, which challenges the analytical method of choice. In this study, CuO NPs were investigated in several dissolution experiments. Two analytical techniques (dynamic light scattering (DLS) and inductively-coupled plasma mass spectrometry (ICP-MS)) were used to characterize NPs (size distribution curves) time-dependently in different complex matrices (e.g., artificial lung lining fluids and cell culture media). The advantages and challenges of each analytical approach are evaluated and discussed. Additionally, a direct-injection single particle (DI sp)ICP-MS technique for assessing the size distribution curve of the dissolved particles was developed and evaluated. The DI technique provides a sensitive response even at low concentrations without any dilution of the complex sample matrix. These experiments were further enhanced with an automated data evaluation procedure to objectively distinguish between ionic and NP events. With this approach, a fast and reproducible determination of inorganic NPs and ionic backgrounds can be achieved. This study can serve as guidance when choosing the optimal analytical method for NP characterization and for the determination of the origin of an adverse effect in NP toxicity. KW - Nanon KW - Characterization KW - SpICP-MS KW - Matrix KW - Dissolution PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572138 DO - https://doi.org/10.3390/nano13050922 VL - 13 IS - 5 SP - 1 EP - 19 AN - OPUS4-57213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - François, P. A1 - Hoffmann, J. A1 - Kaja, K. A1 - Fabricius, N. A1 - Ermilova, Elena A1 - Sachse, René A1 - Gautier, B. T1 - ELENA Project: Creating a simplified uncertainty calculation for industrial applications N2 - In this workpackage of the ELENA project, we develop a way to express the measurement uncertainty of nanoscale determination of electrical propserties. The method developed aims to be usable for industrial contexts and described in technical documents and standards drafts. Standards and reference samples are used to make traceable measurements available for the end user. T2 - Congrès International de Metrologie CY - Lyon, France DA - 06.03.2023 KW - Nanoscale measurements KW - Electrical properties KW - Optical measurements KW - Surfaces KW - Scanning probe measurements PY - 2023 AN - OPUS4-57155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knigge, Xenia A1 - Radnik, Jörg T1 - 1,3-Dimethyl-imidazolium dimethyl phosphate ([MMIM]+[DMP]−) analyzed by XPS and HAXPES N2 - The ionic liquid 1,3-dimethyl-imidazolium-dimethylphosphate ([MMIM]+[DMP]−) was analyzed using (hard) x-ray photoelectron spectroscopy. Here, XPS and HAXPES spectra are shown in comparison. For the acquisition of the XPS spectra, monochromatic Al Kα radiation at 1486.6 eV was used, while for the acquisition of the HAXPES spectra, monochromatic Cr Kα radiation at 5414.8 eV was applied. Here, survey scans and high-resolution spectra of P 2p, P 2s, C 1s, O 1s, and N 1s for both methods and P 1s, P KL2,3L2,3, and P KL1L2,3 for HAXPES are shown. KW - C7H15N2O4P KW - [MMIM]+[DMP]− KW - Lonic liquid KW - Hard x-ray photoelectron spectroscopy KW - HAXPES KW - XPS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571604 DO - https://doi.org/10.1116/6.0002297 VL - 30 IS - 1 SP - 1 EP - 20 PB - AIP Publishing AN - OPUS4-57160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Spaltmann, Dirk A1 - Gee, M. T1 - Editorial: Tribology and Atomic Force Microscopy - Towards Single Asperity Contact N2 - The concept behind this Research Topic (RT) was to collect works, in which Atomic Force Microscopy (AFM) techniques are employed to study tribological phenomena and to push the resolution of measurements towards single asperity contact. Thanks to the direct determination of sample height with sub-nanometer resolution and the possibility of measuring local friction, AFM can be employed after a tribotest to detect topography and friction changes at the nanometer scale. Recently, efforts are being expended to use AFM cantilevers as tribometers, i.e., as probes altering the volume of suitable samples, thereby measuring tip and/or sample wear and friction at the nano/microscale. Thus, single asperity contact, friction, and wear can be investigated. Since friction and wear at the macroscale are the result of asperities interactions, such experiments are of great importance for better understanding of tribological processes. KW - Nanotribology KW - Friction KW - Wear KW - Single asperity KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571037 DO - https://doi.org/10.3389/fmech.2022.853934 SN - 2297-3079 VL - 8 SP - 1 EP - 2 PB - Frontiers Media CY - Lausanne AN - OPUS4-57103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Li, Z. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, Jun T1 - Preparation of NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles and application of their fluorescence temperature sensing properties N2 - The NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles were successfully prepared by the solvothermal method, and the samples were pure hexagonal phase with good crystallinity and homogeneous size, asevidenced by XRD and TEM analysis. The FT-IR analysis shows that β-CD is successfully encapsulated on the surface of NaYF4: Yb3+/Tm3+@NaYF4 nanoparticles. The fluorescence intensity 3and lifetime were significantly increased after coating the inert layer on the surface of core nanoparticles. After further surface modification of β-CD, the fluorescence intensity and fluorescence lifetime were reduced, but the overall fluorescence was stronger. Temperature measurements using the fluorescence intensity ratio technique were found to have relatively low reliability and absolute sensitivity for temperature measurements using thermally coupled energy levels. However, the reliability of temperature measurements using non-thermally coupled energy levels is significantly higher and the absolute sensitivity is much higher than for measurements at thermally coupled levels. Since the maximum absolute sensitivity, maximum relative sensitivity and minimum temperature resolution are determined to be 0.1179 K-1, 2.19 %K􀀀 1 and 0.00019 K, respectively, NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles are expected to be widely used in the biomedical field due to their feasibility, reliability, non-toxicity and harmlessness. KW - Upconversion KW - Surface modification KW - Fluorescence intensity ratio KW - Thermally coupled levels KW - Non-thermally coupled levels PY - 2023 DO - https://doi.org/10.1016/j.optmat.2022.113389 SN - 0925-3467 VL - 136 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-57105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cheng, Z. A1 - Meng, M. A1 - Qiao, X. A1 - Liu, Y. A1 - Resch-Genger, Ute A1 - Ou, J. T1 - The synthesis of Er3+/Yb3+/K+ triple-doped NaYF4 phosphors and its high sensitivity optical thermometers at low power N2 - Optical Thermometry is popular among researchers because of its non-contact, high sensitivity, and fast measurement properties. In the present experiment, Er3+/Yb3+/K+ co-doped NaYF4 nanoparticles with different K+ concentrations were synthesized by solvothermal method, and the samples showed bright upconversion green emission under the excitation of a 980 nm laser. The powder X-ray diffractometer and transmission electron microscope were used to characterize the crystal structure and its surface morphology, respectively. The spectral characteristics of nanoparticles with K+ doping concentration from 10% to 30% (Molar ratio) were investigated by fluorescence spectroscopy, and it was observed that the fluorescence intensity reached the maximum at the K+ concentration of 20%, after which the intensity weakened when the K+ content continued to increase. According to the dependence between the luminescence intensity of the sample and the laser power density and fluorescence lifetime, the intrinsic mechanism was carefully investigated. Temperature-dependent spectra of the samples were recorded in the temperature range of 315–495 K, and the maximum values of absolute sensitivity (Sa) and relative sensitivity (Sr) were measured at 0.0041 K−1 (455 K) and 0.9220%K−1 (315 K). The experimental results show that K+/Er3+/Yb3+ triple-doped NaYF4 green fluorescent nanoparticles (GFNs) have good prospects for applications in display devices, temperature sensing, and other fields. KW - K+ doped KW - Upconversion luminescence KW - Optical temperature sensing KW - Thermal coupling energy level PY - 2023 DO - https://doi.org/10.1016/j.jallcom.2022.168299 VL - 937 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-57106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brüngel, R. A1 - Rückert, J. A1 - Müller, P. A1 - Babick, F. A1 - Friedrich, C. M. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Mech, A. A1 - Weigel, S. A1 - Wohlleben, W. A1 - Rauscher, H. T1 - NanoDefiner Framework and e-Tool Revisited According to the European Commission’s Nanomaterial Definition 2022/C 229/01 N2 - The new recommended definition of a nanomaterial, 2022/C 229/01, adopted by the European Commission in 2022, will have a considerable impact on European Union legislation addressing chemicals, and therefore tools to implement this new definition are urgently needed. The updated NanoDefiner framework and its e-tool implementation presented here are such instruments, which help stakeholders to find out in a straightforward way whether a material is a nanomaterial or not. They are two major outcomes of the NanoDefine project, which is explicitly referred to in the new definition. This work revisits the framework and e-tool, and elaborates necessary adjustments to make these outcomes applicable for the updated recommendation. A broad set of case studies on representative materials confirms the validity of these adjustments. To further foster the sustainability and applicability of the framework and e-tool, measures for the FAIRification of expert knowledge within the e-tool’s knowledge base are elaborated as well. The updated framework and e-tool are now ready to be used in line with the updated recommendation. The presented approach may serve as an example for reviewing existing guidance and tools developed for the previous definition 2011/696/EU, particularly those adopting NanoDefine project outcomes. KW - Nanomaterial definition KW - Nanomaterial categorisation KW - Nanomaterial regulation KW - Nanomaterial legislation KW - Decision support KW - FAIRification PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571618 DO - https://doi.org/10.3390/nano13060990 SN - 2079-4991 VL - 13 IS - 6 - Special Issue "Identification and Quantification of Nanomaterials" SP - 1 EP - 16 PB - MDPI CY - Basel, CH AN - OPUS4-57161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fritzsche, Sven A1 - Weimann, Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz T1 - 2PP-TestArtifact N2 - This repository contains a test artifact (TA), also called test structure, designed for two-photon polymerization (also known as Direct Laser Writing (DLW) or Two/Multi-photon lithography (2PA/MPA)). Test artifacts can be used to compare structures, to check options used by the slicer, check the state of the 2PP machine itself or to get a construction guidelines for a certain combination of power, velocity and settings. The associated paper can be found here: https://dx.doi.org/10.1088/1361-6501/acc47a General ideas behind the test artifact: 1. optimized for 2PP-DLW 2. should be fast and easy to analyse with optical microscopy or 3. scanning electron microscopy without tilt. 3. short time to fabricate 4. include a reasonable amount of different features 5. bulk and small structures on the substrate KW - Reference structure KW - Calibration structure KW - Test structure KW - Laser writing KW - Two-photon polymerization KW - 3D printing KW - Additive manufacturing KW - Microprinting KW - Multi-photon light structuring PY - 2023 DO - https://doi.org/10.6084/m9.figshare.22285204.v2 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-57165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Exkurs Partikelgrößenverteilungen N2 - Einführung in die Darstellung der Ergebnisse von Partikelgrößenbestimmungen: Was ist ein Kugeläquivalenzdurchmesser; welche Bedeutung hat die gemessene Mengenart; welche Parameter werden ausgewiesen. Bezug zu Regularien hinsichtlich der Bewertung "Nano- oder nicht Nano-Material. T2 - BAM Akademie: Info-Tage "NANO OR NOT NANO" CY - Online meeting DA - 16.02.2023 KW - Nano material KW - Particle size KW - Size distribution PY - 2023 AN - OPUS4-57127 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Dynamische Lichtstreuung DLS nach ISO 22412:2017 N2 - Einführung in die Partikelgrößenbestimmung von Nano-Materialien mittels Dynamischer Lichtstreuung. Normative Grundlagen (ISO 22412 und OECD TG 125); Messprinzip, Auswertealgorithmen, Informationsgehalt der Daten, Metadaten, Reporting. T2 - BAM Akademie: Info-Tage "NANO OR NOT NANO" CY - Online meeting DA - 16.02.2023 KW - DLS KW - Particle size KW - Nano PY - 2023 AN - OPUS4-57128 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -