TY - JOUR A1 - Fritzsche, Sven A1 - Topolniak, Ievgeniia A1 - Weise, Matthias A1 - Sturm, Heinz T1 - Shape deviations of DLW microstructures in dependency of fabrication parameters N2 - Deep understanding of the effects associated with fabrication parameters and their influence on the resulting structures shape is essential for the further development of direct laser writing (DLW). In particular, it is critical for development of reference materials, where structure parameters are precisely fabricated and should be reproduced with use of DLW technology. In this study we investigated the effect of various fabrication and preparation parameters on the structural precision of interest for reference materials. A well-studied photo-curable system, SZ2080 negative photo-resist with 1 wt.% Michler's ketone (Bis) photo-initiator, was investigated in this work. The correlation between applied laser power, laser velocity, fabrication direction on the deviations in the structure shape were observed by means of white light interferometry microscopy. Moreover, influence of slicing and hatching distances as well as prebake time were studied as function of sample shape. Deviations in the structure form between the theoretically expected and the one detected after DLW fabrication were observed in the range up to 15%. The observed shape discrepancies show the essential importance of fine-tuning the fabrication parameter for reference structure production. KW - Direct laser writing KW - Fabrication parameters KW - Structural precision KW - SZ2080 negative photo-resist KW - White light interferometry microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535906 DO - https://doi.org/10.1088/1361-6439/ac2a14 VL - 31 IS - 12 SP - 1 EP - 8 PB - IOP Science AN - OPUS4-53590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - Ellipsometry as a tool for electrical metrology - Referencing electrical properties of thin layers with TCO materials N2 - Ellipsometry is a highly valuable technology for bridging different measurement methods. As a fast, highly sensitive, and non-destructive optical technique with low environmental requirements, it is ideal for transporting measurement accuracy and for up-scaling measurements in the production environment. It can be used for highly precise determination of properties, material identity and correctness confirmation, as well as defect detection. Comparable, traceable, and accurate electrical measurements, especially at small scales are one of the biggest challenges in the development of the electrical and electronic devices of the future. In this project, we develop structured thin layer systems of the transparent conductive material indium tin oxide (ITO) to prove the concept of using these systems as standards for conductivity and permittivity. The layers are produced in a reactive magnetron sputtering process from raw ITO targets with additional oxidation achieved by oxygen injection. We present results of a study correlating the coating process conditions with the properties of the final layer material. We found that especially the temperature development during coating is of key importance and determines the layer properties to a large extent. We will discuss questions of homogeneity and reproducibility of the coating processes used. The finished layers undergo lithographic structuring and etching to produce patterns to serve as reference structures for scanning probe electrical measurements. TCOs have a large variety of applications. In this work we also study the usability of ITO for other purposes and investigate the stability of this material under application conditions. T2 - 12th Workshop Ellipsometry 2023 CY - Prague, Czech Republic DA - 18.09.2023 KW - Thin Films KW - Transparent Conductive Oxides KW - Ellipsometry KW - Electrical Properties KW - Nanoelectronics PY - 2023 AN - OPUS4-58410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Advances in ultrafast laser manufacturing: nanostructures, thin films, and scaling perspectives N2 - Advanced ultrafast laser technology is a rapidly growing field that currently enables many new industrial and scientific applications. During the last decades, this has been significantly driven by the availability of high-repetition-rate laser sources and novel beam delivery concepts. At the laser side, Moore’s law equally manifests for ultrafast laser technologies, since the average output power of such lasers doubles approximately every two years. This development is mainly driven by the increase of the pulse repetition rates of energetic laser pulses, currently enforcing the development of smart beam control and novel scanning strategies for preventing heat-accumulation and plasma-shielding effects during laser-based materials processing. This keynote presentation addresses the advantages, recent developments, and perspectives of laser processing with ultrashort laser pulses. A special focus is laid on the tailored structuring of thin films as well as the manufacturing and probing of sub-diffraction surface nanostructures – an ongoing race to extreme scales. Current limitations are identified and an outlook to future scaling perspectives will be provided. T2 - SPIE Photonics Europe 2024 Conference, Symposium "Lasers and Photonics for Advanced Manufacturing" CY - Strasbourg, France DA - 07.04.2024 KW - Ultrafast laser processing KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Laser technology KW - Time-resolved analysis PY - 2024 UR - https://spie.org/photonics-europe/presentation/Advances-in-ultrafast-laser-manufacturing--nanostructures-thin-films-and/13005-36#_=_ AN - OPUS4-59852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark Side of Science (2024 edition) N2 - This presentation highlights ongoing scientific misconduct as found in academic literature. This includes data- and image manipulation, and paper mills. Starting with an expose of examples, it delves deeper into the causes and metrics driving this phenomenon. Finally a range of possible tools is presented, that the young researcher can use to prevent themselves from sliding into the dark scientific methods. T2 - Winter School on Metrology and Nanomaterials for Clean Energy CY - Claviere, Italy DA - 28.01.2024 KW - Scientific misconduct KW - Data manipulation KW - Image manipulation KW - Paper mills KW - Causes leading to scientific misconduct KW - Tools to combat scientific misconduct KW - Metrics PY - 2024 AN - OPUS4-59622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Glimpses of the future: Systematic investigations of 1200 mofs using a highly automated, full-stack materials research laboratory N2 - By automatically recording as much information as possible in automated laboratory setups, reproducibility and traceability of experiments are vastly improved. This presentation shows what such an approach means for the quality of experiments in an X-ray scattering laboratory and an automated synthesis set-up. T2 - Winter School on Metrology and Nanomaterials for Clean Energy CY - Claviere, Italy DA - 28.01.2024 KW - Digitalization KW - Automation KW - Digital laboratory KW - Scattering KW - Synthesis KW - Nanomaterials KW - Holistic science PY - 2024 AN - OPUS4-59621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating Polymer Networks with Tuned Thermal and Mechanical Properties by Multiphoton Lithography N2 - Multiphoton lithography (MPL) has recently attracted significant research interest as a versatile tool capable of fabricating 2D and 3D micro- and nanoscopic features with high spatial resolution. The integrity of MPL microstructures, or their ability to respond to external stimuli, is of critical importance. Often, the mechanically flexible micro-objects are expected to be capable of shape morphing, bending, or other motion to ensure their functionality. However, achieving the desired properties of MPL-manufactured micro components for a specific application still remains challenging. In this work, we present new MPL materials based on epoxy-acrylate interpenetrating networks (IPNs). We aim at fabrication 3D microstructures, whose properties can be easily tuned by varying the ratio of the IPN components and fabrication parameters. The studied mixtures consist of polyethylene glycol diacrylate (PEGDA) and cycloaliphatic epoxide functional groups. Consequently, tryarylsylfonium salt and cyclopentanone photoinitiator tailored for MPL were used to ensure cationic and radical polymerization, respectively. The resulting library of 3D microstructures was investigated for their thermal and mechanical properties using highly sensitive space-resolved methods. For the first time, we were able to evaluate the glass transition behavior of 3D MPL microstructures using fast scanning calorimetry. The influence of both IPN composition and fabrication parameters on glass transition temperature and material fragility was demonstrated. AFM force-distance curve and intermodulation methods were used to characterize the micromechanical properties with lateral resolution of the techniques in the range of 1 micron and 4 nm, respectively. The elastic-plastic behavior of the microarchitectures was evaluated and explained in terms of IPN morphology and thermal properties. The fabricated 3D IPN microstructures exhibit higher structural strength and integrity compared to PEGDA. In addition, IPNs exhibit high to full elastic recovery (up to 100%) with bulk modulus in the range of 4 to 6 MPa. This makes IPNs a good base material for modeling microstructures with intricate 3D designs for biomimetics and scaffold engineering. The effects of composition and MPL microfabrication parameters on the resulting IPN properties give us a better understanding of the underlying mechanisms and microfabrication-structure-property relationships. Moreover, our funding supports the further development of IPN systems as versatile and easily tunable MPL materials. T2 - Material Research Society Meeting CY - Boston, Massachusetts, USA DA - 26.11.2023 KW - Multiphoton Lithography KW - Two-photon polymerisatio KW - Interpenetrating polymer network PY - 2023 SP - 1 AN - OPUS4-59382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN ED - Simon, P. ED - Ihlemann, J. ED - Bonse, Jörn T1 - Laser-generated periodic nanostructures N2 - This book is a reprint collection of articles from the Special Issue published online in the open access journal Nanomaterials. KW - Laser-induced periodic surface structures (LIPSS) KW - Direct laser-interference patterning (DLIP) KW - Applications KW - Numerical simulations PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535146 UR - https://www.mdpi.com/books/pdfview/book/4426 SN - 978-3-0365-2027-8 SN - 978-3-0365-2028-5 DO - https://doi.org/10.3390/books978-3-0365-2028-5 SP - 1 EP - 328 PB - MDPI CY - Basel AN - OPUS4-53514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Funktionalisierung durch laser-induzierte periodische Oberflächenstrukturen N2 - Der Vortrag gibt einen Überblick über die vielfältigen Möglichkeiten der Oberflächenfunktionalisierung mittels Mikro- und Nanostrukturierung durch Ultrakurzpuls-Lasermaterialbeabeitung. Dies schließt eine Diskussion des Phänomens der Laser-induzierten periodischen Oberflächenstrukturen (LIPSS, engl.: Laser-induced Periodic Surface Structures, Ripples), sowie deren Klassifikation und Bildungsmechanismen mit ein. Ein Schwerpunkt der Präsentation liegt auf der Diskussion verschiedener Anwendungsmöglichkeiten der LIPSS in Bereichen der Optik, Fluidik, Tribologie und Medizin, sowie auf einem Ausblick auf die industrielle Skalierbarkeit der LIPSS-Technologie. T2 - 1. Netzwerktreffen 2024 des UKPL-Innovationsnetzwerks CY - Rostock, Germany DA - 11.03.2024 KW - Laser-induced Periodic Surface Structures (LIPSS) KW - Oberflächenfunktionalisierung KW - Mikrostrukturen KW - Nanostrukturen KW - Ultrakurzpuls-Laserbearbeitung PY - 2024 AN - OPUS4-59657 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lüdicke, M. G. A1 - Hildebrandt, Jana A1 - Schindler, C. A1 - Sperling, R. A. A1 - Maskos, M. T1 - Automated QuantumDots Purification via Solid Phase Extraction N2 - The separation of colloidal nanocrystals from their original synthesis medium is an essential process step towards their application, however, the costs on a preparative scale are still a constraint. A new combination of approaches for the purification of hydrophobic Quantum Dots is presented, resulting in an efficient scalable process in regard to time and solvent consumption, using common laboratory equipment and low-cost materials. The procedure is based on a combination of solvent-induced adhesion and solid phase extraction. The platform allows the transition from manual handling towards automation, yielding an overall purification performance similar to one conventional batch precipitation/centrifugation step, which was investigated by thermogravimetry and gas chromatography. The distinct miscibility gaps between surfactants used as nanoparticle capping agents, original and extraction medium are clarified by their phase diagrams, which confirmed the outcome of the flow chemistry process. Furthermore, the solubility behavior of the Quantum Dots is put into context with the Hansen solubility parameters framework to reasonably decide upon appropriate solvent types. KW - Quantum Dots KW - Purification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559590 DO - https://doi.org/10.3390/nano12121983 SN - 2079-4991 VL - 12 IS - 12 PB - MDPI CY - Basel AN - OPUS4-55959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill T1 - Reaction of high-entropy alloys with hydrogen under extreme conditions N2 - In the current study, we investigate an interaction under high-pressure high-temperature of single phase fcc-, hcp- and bcc-structured high-entropy alloys with hydrogen, carbon and nitrogen to obtain high-entropy hydrides, carbides and nitrides. Structural changes in high-entropy alloys upon compression and heating in the presence of these light elements are in the focus of our investigation. An easy route to high-entropy hydrides, carbides and nitrides will open new synthetic horizons in compositionally complex materials. Our study suggests that high-entropy alloys form high- entropy hydrides mainly with a composition close to M:H 1:1 ratio. Hydrides can be obtained under compression with hydrogen as a pressure compression medium or using hydrogen fluid as reactive agent. T2 - Intermetallics 2023 CY - Bad Staffelstein, Germany DA - 03.10.2023 KW - HEA PY - 2023 AN - OPUS4-58555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lifka, S. A1 - Harsányi, K. A1 - Baumgartner, E. A1 - Pichler, L. A1 - Baiko, D. A1 - Wasmuth, Karsten A1 - Heitz, J. A1 - Meyer, M. A1 - Joel, A.-C. A1 - Bonse, Jörn A1 - Baumgartner, W. ED - Mail, M. T1 - Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders N2 - Nanofibers are drawing the attention of engineers and scientists because their large surface-to-volume ratio is favorable for applications in medicine, filter technology, textile industry, lithium-air batteries, and optical sensors. However, when transferring nanofibers to a technical product in the form of a random network of fibers, referred to as nonwoven fabric, the stickiness of the freshly produced and thus fragile nanofiber nonwoven remains a problem. This is mainly because nanofibers strongly adhere to any surface because of van der Waals forces. In nature, there are animals that are actually able to efficiently produce, process, and handle nanofibers, namely cribellate spiders. For that, the spiders use the calamistrum, a comb-like structure of modified setae on the metatarsus of the hindmost (fourth) legs, to which the 10–30 nm thick silk nanofibers do not stick due to a special fingerprint-like surface nanostructure. In this work, we present a theoretical model of the interaction of linear nanofibers with a sinusoidally corrugated surface. This model allows for a prediction of the adhesive interaction and, thus, the design of a suitable surface structure to prevent sticking of an artificially nonwoven of nanofibers. According to the theoretical prediction, a technical analogon of the nanoripples was produced by ultrashort pulse laser processing on different technically relevant metal surfaces in the form of so-called laser-induced periodic surface structures (LIPSS). Subsequently, by means of a newly established peel-off test, the adhesion of an electrospun polyamide fiber-based nonwoven was quantified on such LIPSS-covered aluminium alloy, steel, and titanium alloy samples, as well as on polished (flat) control samples as reference and, additionally, on samples with randomly rough surfaces. The latter revealed that the adhesion of electrospun nanofiber nonwoven is significantly lowered on the nanostructured surfaces compared with the polished surfaces. KW - Laser-induced periodic surface structures (LIPSS) KW - Cribellate spiders KW - Calamistrum KW - Electrospinning KW - Nanofibers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561799 DO - https://doi.org/10.3762/bjnano.13.105 SN - 2190-4286 VL - 13 SP - 1268 EP - 1283 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-56179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Jaenisch, Gerd-Rüdiger A1 - Pavasaryte, Lina A1 - Funk, Alexander T1 - XCT and DLW: Synergies of Two Techniques at Sub-Micrometer Resolution N2 - Direct Laser Writing (DLW) and X-ray computed tomography (XCT) both offer unique possibilities in their respective fields. DLW produces full three-dimensional (3D) polymer structures on the microscale with resolutions below 100 nm. The fabricated structures can be analysed by XCT or X-ray microscopy (XRM), which incorporates additional X-ray lenses, in three dimensions down to a minimal basic spatial resolution of about 500 nm or 50 nm, respectively. In this work, two different DLW structures are analysed via XCT. Internal defects are detected and analysed for the purpose of quality control. Defects and structures with sizes down to 1.5 µm are successfully analysed. A 3D reconstruction and internal, hidden features of the fabricated structures are shown and discussed. In a first-of-its-kind study, we demonstrate the detectability of a single-voxel line inside a fabricated structure that would not be detectable with SEM or light microscopy. Furthermore, the direct fabrication on a PET substrate is shown to overcome the high X-ray absorbance of commonly used glass substrates. Attenuation spectra of SZ2080 and glass substrates are compared to a fabrication route direct on a 170 µm PET foil. The practical aspects of XCT measurements for DLW structures on different substrates will be discussed. KW - Non-destructive testing KW - Two-photon polymerization KW - X-ray microscopy KW - XCT KW - 2PP KW - Direct laser writing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560525 DO - https://doi.org/10.3390/app122010488 VL - 12 IS - 20 SP - 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-56052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - First of its kind: A test artifact for direct laser writing N2 - With Direct Laser Writing (DLW) maturing in all aspects as a manufacturing technology a toolset for quality assurance must be developed. In this work we want to introduce a first of its kind test artifact. Test artifacts are standardized 3D models with specific geometric feature to evaluate the performance of writing parameters. Test artifacts are already common in other 3D additive manufacturing technologies e.g. Selective Laser Melting. The test artifact introduced in this work was developed in particular to accommodate 1) the high geometrical resolution of DLW structures and 2) the limited possibilities to examine the resulting structure. Geometric accuracy, surface adhesion as well as confocal raman spectroscopy results were considered when evaluating the design of the test artifact. We will explain the individual features and design considerations of our DLW test artifact. The difference between two slicers, Cura and 3DPoli, and the implications on measured feature sizes and the general shape is quantified. The measured geometries are used to derive a general design guide for a specific combination of photoresist, laser power and scanning speed and to analyse the geometric accuracy of a structure produced using these guidelines. KW - Multi photon lithography KW - Test artifact KW - Two photon polymerization KW - Direct Laser Writing KW - Quality infrastructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560530 DO - https://doi.org/10.20944/preprints202210.0259.v1 SP - 1 EP - 29 PB - MDPI CY - Basel AN - OPUS4-56053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Structuring of thin films by ultrashort laser pulses N2 - Modern life and global communication would not be possible without technologically tailored thin films; they are omnipresent in daily life applications. In most cases, the films are deposited entirely at the carrying substrates in a specific processing step of the device or sample. In some cases, however, removal or modification must be performed locally, i.e., site-controlled and material selective through an additional laser processing step. For that ultrashort laser pulses with durations in the femtosecond and picosecond range can provide unique advantages and capabilities in industrially scalable schemes. This article reviews the current state of the research and corresponding industrial transfer related to the structuring of thin films by ultrashort pulsed lasers. It focuses on the pertinent historic developments, reveals the relevant physical and chemical effects, explores the ultimate limits, and discusses selected industrial and scientific applications. KW - Thin films KW - Laser processing KW - Ultrashort lasers KW - Laser damage KW - Femtosecond laser ablation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565732 DO - https://doi.org/10.1007/s00339-022-06229-x SN - 0947-8396 SN - 1432-0630 VL - 129 IS - 1 SP - 1 EP - 38 PB - Springer CY - Berlin AN - OPUS4-56573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - OECD Prüfrichtlinie 125 N2 - Diese Präsentation ist eine Einführung in die OECD TG 125 zur Bestimmung der Partikelgrößen von Nanomaterialien. Es wird auf die verchiedenen Probleme der Partikelgrößenbestimmung eingegangen wie z.B. verschiedene Oberflächenschichten, Äquivalenzdurchmesser und Verteilungsfunktionen. Gleichzeitig werden die neuen Begrifflichkeiten eingeführt, die in der TG 125 definiert neu werden. T2 - BAM Akademie Digitaler Info-Tag "Nano or not Nano" CY - Online meeting DA - 16.02.2023 KW - Nano KW - Partikel KW - Größe KW - Partikeldurchmesser KW - Äquivalenzdurchmesser PY - 2023 AN - OPUS4-58449 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Differentielles Mobilitäts Analyse System (DMAS) N2 - Die Bestimmung der Nanopartikelgrößen- und -formverteilung nach OECD TG 125 mit einem Differentiellen Mobilitäts Analyse System (DMAS), auch bekannt als SMPS, wird vorgestellt: - Generelles Messprinzip - Welchen Durchmesser misst die Methode? - Welche Partikel kann diese Methode messen? - Welche Informationen kann diese Methode liefern? - Wo stößt die Methode an ihre Grenzen? - Implementierung und Datenauswertung, - Reporting. Anschließend wurde eine Q&A-Session für DMAS/SMPS organisiert. T2 - BAM Akademie Digitaler Info-Tag "Nano or not Nano" CY - Online meeting DA - 16.02.2023 KW - Partikel KW - Nanopartikel KW - SMPS KW - Größenbestimmung KW - DMAS PY - 2023 AN - OPUS4-58450 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costache, F. A1 - Valette, S. A1 - Bonse, Jörn T1 - Editorial: Special Issue “Dynamics and Processes at Laser-Irradiated Surfaces—A Themed Issue in Honor of the 70th Birthday of Professor Jürgen Reif” N2 - The Special Issue “Dynamics and Processes at Laser-irradiated Surfaces” is dedicated to the 70th birthday of Jürgen Reif, retired full professor, former Chair of Experimental Physics II of the Faculty of Physics of the Brandenburg University of Technology Cottbus—Senftenberg in Germany. KW - Laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Femtosecond laser PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569482 DO - https://doi.org/10.3390/nano13030611 SN - 2079-4991 VL - 13 IS - 3 SP - 1 EP - 3 PB - MDPI CY - Basel AN - OPUS4-56948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Spaltmann, Dirk A1 - Gee, M. T1 - Editorial: Tribology and Atomic Force Microscopy - Towards Single Asperity Contact N2 - The concept behind this Research Topic (RT) was to collect works, in which Atomic Force Microscopy (AFM) techniques are employed to study tribological phenomena and to push the resolution of measurements towards single asperity contact. Thanks to the direct determination of sample height with sub-nanometer resolution and the possibility of measuring local friction, AFM can be employed after a tribotest to detect topography and friction changes at the nanometer scale. Recently, efforts are being expended to use AFM cantilevers as tribometers, i.e., as probes altering the volume of suitable samples, thereby measuring tip and/or sample wear and friction at the nano/microscale. Thus, single asperity contact, friction, and wear can be investigated. Since friction and wear at the macroscale are the result of asperities interactions, such experiments are of great importance for better understanding of tribological processes. KW - Nanotribology KW - Friction KW - Wear KW - Single asperity KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571037 DO - https://doi.org/10.3389/fmech.2022.853934 SN - 2297-3079 VL - 8 SP - 1 EP - 2 PB - Frontiers Media CY - Lausanne AN - OPUS4-57103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - On the use of spectroscopic imaging ellipsometry for quantification and characterisation of defects in thin films for power electronics N2 - Compound semiconductors (CS) are promising materials for the development of high-power electrical applications. They have low losses, can withstand high temperatures and can operate at very high voltages and currents. This makes them a key technology for the electrification of many high energy applications, especially electromobility and HVDC power lines. The challenge with CS technology is that most of the process technology has to be developed anew to the high standards required by electronic applications. Today, compound semiconductors can be produced in thin layers on top of substrates fabricated from classical crystal growth processes that are already well established. A promising method for this is metal organic vapour phase epitaxy (MOVPE). With this method, many different compounds with semiconducting properties can be synthesized. Additionally, this process technology is a direct thin layer deposition method. Therefore, complex multilayer systems can be generated directly by the deposition process and without the need of doping after growing. There are a number of critical defects that can originate from the deposition process of these thin film devices. Within this project, we intend to develop new correlative imaging and analysis techniques to determine defect types, to quantify defect size and number density, as well as to characterise defects for process optimisation. We report here on the use of spectroscopic ellipsometry and imaging ellipsometry to investigate defects in several different compound semiconductor materials used in high-power electronic devices. The materials we investigated are β-Ga2O3, SiC, GaN, AlN, and AlGaN materials as well as oxidised SiC surfaces. All of these materials have their typical defects and require optimised measurement and analysis schemes for reliable detection and analysis. Spectroscopic ellipsometry is a highly sensitive method for determining the thicknesses and dielectric function of thin layers, yielding potentially a high number of microscopic properties. The combined method between ellipsometry and optical microscopy is called imaging ellipsometry and is especially powerful for the large amount of data it produces. We have analysed defects in SiC- and AlN-based thin film semiconductors as well as characterised the properties of different types of SiO2 layers created on top of SiC monocrystals. We developed ellipsometric models for the data analysis of the different semiconductor materials. If the defects have geometric features, it is useful to combine the ellipsometric analysis with topometry method like interference microscopy and scanning probe microscopy. We have successfully characterised function-critical defects in MOVPE SiC layers and correlated the findings with topography from WLIM measurements. We have developed an imaging ellipsometric measurement methodology that allows to estimate the relative defect area on a surface by a statistical raw data analysis. T2 - EMRS Spring Meeting 2024 - ALTECH 2024 CY - Strasbourg, France DA - 27.05.2024 KW - compound semiconductors KW - Ellipsometry KW - Layer Materials KW - Defect Analysis PY - 2024 AN - OPUS4-61005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kimiaei, E. A1 - Farooq, M. A1 - Szymoniak, Paulina A1 - Ahmadi, Shayan A1 - Babaeipour, S. A1 - Schönhals, Andreas A1 - Österberg, M. T1 - The role of lignin as interfacial compatibilizer in designing lignocellulosic-polyester composite films N2 - Advancing nanocomposites requires a deep understanding and careful design of nanoscale interfaces, as interfacial interactions and adhesion significantly influence the physical and mechanical properties of these materials. This study demonstrates the effectiveness of lignin nanoparticles (LNPs) as interfacial compatibilizer between hydrophilic cellulose nanofibrils (CNF) and a hydrophobic polyester, polycaprolactone (PCL). In this context, we conducted a detailed analysis of surface-to-bulk interactions in both wet and dry conditions using advanced techniques such as quartz crystal microbalance with dissipation (QCM-D), atomic force microscopy (AFM), water contact angle (WCA) measurements, broadband dielectric spectroscopy (BDS), and inverse gas chromatography (IGC). QCM-D was employed to quantify the adsorption behavior of LNPs on CNF and PCL surfaces, demonstrating LNPs’ capability to interact with both hydrophilic and hydrophobic phases, thereby enhancing composite material properties. LNPs showed extensive adsorption on a CNF model film (1186 ± 178 ng.cm−2) and a lower but still significant adsorption on a PCL model film (270 ± 64 ng.cm−2). In contrast, CNF adsorption on a PCL model film was the lowest, with a sensed mass of only 136 ± 35 ng.cm−2. These findings were further supported by comparing the morphology and wettability of the films before and after adsorption, using AFM and WCA analyses. Then, to gain insights into the molecular-level interactions and molecular mobility within the composite in dry state, BDS was employed. The BDS results showed that LNPs improved the dispersion of PCL within the CNF network. To further investigate the impact of LNPs on the composites’ interfacial properties, IGC was employed. This analysis showed that the composite films containing LNPs exhibited lower surface energy compared to those composed of only CNF and PCL. The presence of LNPs likely reduced the availability of surface hydroxyl groups, thus modifying the physicochemical properties of the interface. These changes were particularly evident in the heterogeneity of the surface energy profile, indicating that LNPs significantly altered the interfacial characteristics of the composite materials. Overall, these findings emphasize the necessity to control the interfaces between components for next-generation nanocomposite materials across diverse applications. KW - Lignin KW - Nanocomposites PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-615098 DO - https://doi.org/10.1016/j.jcis.2024.10.083 SN - 0021-9797 VL - 679 SP - 263 EP - 275 PB - Elsevier Inc. AN - OPUS4-61509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Kalady, Mohammed Fayis A1 - Schultz, Johannes A1 - Weinel, Kristina A1 - Wolf, Daniel A1 - Lubk, Axel T1 - Localization of Hybridized Surface Plasmon Modes on Random Gold Nanoparticle Assemblies N2 - Assemblies of plasmonic nanoparticles (NPs) support hybridized modes of localized surface plasmons (LSPs), which delocalize in geometrically well-ordered arrangements. Here, the hybridization behavior of LSPs in geometrically completely disordered arrangements of Au NPs fabricated by an e-beam synthesis method is studied. Employing electron energy loss spectroscopy in a scanning transmission electron microscope in combination with numerical simulations, the disorder-driven spatial and spectral localization of the coupled LSP modes that depend on the NP thickness is revealed. Below 0.4nm sample thickness (flat NPs), localization increases towards higher hybridized LSP mode energies. In comparison, above 10nm thickness, a decrease of localization (an increase of delocalization) with higher mode energies is observed. In the intermediate thickness regime, a transition of the energy dependence of the localization between the two limiting cases, exhibiting a transition mode energy with minimal localization, is observed. This behavior is mainly driven by the energy and thickness dependence of the polarizability of the individual NPs. KW - Plasmonics KW - Electron-Energy Loss Spectroscopy KW - Discrete Dipole Approximation KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618323 DO - https://doi.org/10.48550/arXiv.2410.10514 SP - 1 EP - 8 PB - Cornell University CY - Ithaca, NY AN - OPUS4-61832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm T1 - Anforderungen an den Einsatz von Metallen im Trinkwasser N2 - Die Trinkwasserverordnung gibt regulatorische Vorgaben zum Werkstoffeinsatz. Daneben existieren normative Hinweise zur Beständigkeit der Werkstoffe. Das Zusammenspiel der unterschiedlichen Vorgaben wird dargestellt und diskutiert T2 - Korrosionsverhalten bleifreier Kupfer-Zink-Legierungen im Kontakt mit Trinkwasser CY - Dresden, Germany DA - 11.10.2022 KW - Korrosion KW - Trinkwasser KW - Hygiene KW - Werkstoffe PY - 2022 AN - OPUS4-55982 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, Q. A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed A. A1 - Yang, Z. A1 - Wang, S. A1 - Gao, Y. A1 - Shang, J. A1 - Hunger, J. A1 - Aldiyarov, A. A1 - Schönhals, Andreas A1 - Ge, Y. A1 - Qi, Z. T1 - Molecular engineering of supramolecular polymer adhesive with confined water and a single crown ether N2 - Here, we report a water-induced supramolecular polymer built from confined structural water and an intrinsic amphiphilic macrocyclic self-assembly in a nanophase separated structure. The newly designed crown ether macrocycle, featuring strong hydrophilic hydrogen bonding receptor selenoxide and a synergistical hydrophobic selenium-substituted crown core, confines the structural water in a segregated, interdigitated architecture. Although water molecules typically freeze around 0 °C, the confined structural water in this supramolecular polymer remains in a liquid-like state down to 80 °C. Previous studies suggest that multiple crown ether units are needed to generate structural water. However, here, one unit is sufficient to control the formation and disappearance of structural water and consequent supramolecular polymerization. Typically, the DC conductivity of water shows Arrhenius temperature dependency (lnσDC ∝ 1/T). In contrast, this new crown unit maintains water in confined states, which exhibit a Vogel/Fulcher/Tammann behavior (lnσDC ∝ 1/(T-T0)) at temperatures above the glass transition temperature. Moreover, this water-induced supramolecular polymer exhibits remarkable adhesion properties to hydrophilic surfaces and maintains tough adhesion at low temperatures. These findings show how a single small macrocycle can govern the complex structure and functionality of water in supramolecular systems. KW - Supramolecular polymerization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623631 DO - https://doi.org/10.1039/D4SC06771A SN - 2041-6539 VL - 16 SP - 1 EP - 9 PB - RSC AN - OPUS4-62363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Scoppola, E. A1 - Wolf, S.E. A1 - Kochovski, Z. A1 - Matzdorff, D. A1 - Van Driessche, A. E. S. A1 - Hövelmann, J. A1 - Emmerling, Franziska A1 - Stawski, Tomasz M. T1 - Evidence for liquid-liquid phase separation during the early stages of Mg-struvite formation N2 - The precipitation of struvite, a magnesium ammonium phosphate hexahydrate (MgNH₄PO₄ · 6H₂O) mineral, from wastewater is a promising method for recovering phosphorous. While this process is commonly used in engineered environments, our understanding of the underlying mechanisms responsible for the formation of struvite crystals remains limited. Specifically, indirect evidence suggests the involvement of an amorphous precursor and the occurrence of multi-step processes in struvite formation, which would indicate non-classical paths of nucleation and crystallization. In this study, we use synchrotron-based in situ x-ray scattering complemented by cryogenic transmission electron microscopy to obtain new insights from the earliest stages of struvite formation. The holistic scattering data captured the structure of an entire assembly in a time-resolved manner. The structural features comprise the aqueous medium, the growing struvite crystals, and any potential heterogeneities or complex entities. By analysing the scattering data, we found that the onset of crystallization causes a perturbation in the structure of the surrounding aqueous medium. This perturbation is characterized by the occurrence and evolution of Ornstein-Zernike fluctuations on a scale of about 1 nm, suggesting a non-classical nature of the system. We interpret this phenomenon as a liquid-liquid phase separation, which gives rise to the formation of the amorphous precursor phase preceding actual crystal growth of struvite. Our microscopy results confirm that the formation of Mg-struvite includes a short-lived amorphous phase, lasting >10 s. KW - Physical and theoretical chemistry KW - Non-classical crystallization KW - Struvite KW - Liquid-liquid-phase-separation KW - Nucleation KW - Crystallization KW - In-situ scattering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584766 DO - https://doi.org/10.1063/5.0166278 SN - 1089-7690 VL - 159 IS - 13 SP - 1 EP - 12 PB - AIP Publishing CY - Woodbury, NY AN - OPUS4-58476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolff, M. A1 - Wonneberger, R. A1 - Freiberg, K.E. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Giebeler, L. A1 - Koitzsch, A. A1 - Kunz, C. A1 - Weber, H. A1 - Hufenbach, J.K. A1 - Müller, F.A. A1 - Gräf, S. T1 - Formation of laser-induced periodic surface structures on Zr-based bulk metallic glasses with different chemical composition N2 - Bulk metallic glasses (BMG) are amorphous metal alloys known for their unique physical and mechanical properties. In the present study, the formation of femtosecond (fs) laser-induced periodic surface structures (LIPSS) on the Zr-based BMGs Zr46Cu46Al8, Zr61Cu25Al12Ti2, Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit105) and Zr57Cu15.4Al10Ni12.6Nb5 (Vit106) was investigated as a function of their different chemical composition. For this purpose, LIPSS were generated on the sample surfaces in an air environment by fs-laser irradiation (λ = 1025 nm, τ = 300 fs, frep = 100 kHz). The surface topography was characterized by scanning electron microscopy and atomic force microscopy. Moreover, the impact of LIPSS formation on the structure and chemical surface composition was analyzed before and after fs-laser irradiation by X-ray diffraction and X-ray photoelectron spectroscopy as well as by transmission electron microscopy in combination with energy dispersive X-ray spectroscopy. Despite the different chemical composition of the investigated BMGs, the fs-laser irradiation resulted in almost similar properties of the generated LIPSS patterns. In the case of Zr61Cu25Al12Ti2, Vit105 and Vit106, the surface analysis revealed the preservation of the amorphous state of the materials during fs-laser irradiation. The study demonstrated the presence of a native oxide layer on all pristine BMGs. In addition, fs-laser irradiation results in the formation of laser-induced oxide layers of larger thickness consisting of an amorphous ZrAlCu-oxide. The precise laser-structuring of BMG surfaces on the nanoscale provides a versatile alternative to thermoplastic forming of BMG surfaces and is of particular interest for the engineering of functional material surfaces. KW - Bulk metallic glasses KW - Femtosecond laser KW - Laser-induced periodic surface structures (LIPSS) KW - Chemical analysis KW - Oxidation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581799 DO - https://doi.org/10.1016/j.surfin.2023.103305 SN - 2468-0230 VL - 42 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-58179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Porta-Velilla, L. A1 - Martínez, E. A1 - Frechilla, A. A1 - Castro, M. A1 - de la Fuente, G. F. A1 - Bonse, Jörn A1 - Angurel, L. A. T1 - Grain orientation, angle of incidence, and beam polarization effects on ultraviolet 300 ps-laser-induced nanostructures on 316L stainless steel N2 - Laser-induced periodic surface structures (LIPSS) represent a unique route for functionalizing materials through the fabrication of surface nanostructures. Commercial AISI 316L stainless steel (SS316L) surfaces are laser treated by ultraviolet 300 ps laser pulses in a laser line scanning (LLS) approach. Processing parameters are optimized (pulse energy of 2.08 µJ, pulse repetition frequency of 300 kHz, and suitable laser scan and sample displacement rates) for the generation of low spatial frequency LIPSS over a large 25 × 25 mm2 area. Different angles of incidence of the laser radiation (0°, 30°, and 45°) and different linear laser beam polarizations (s and p) produce a plethora of rippled surface morphologies at distinct grains. Scanning electron microscopy and 2D Fourier transforms, together with calculations of the optical energy deposited at the treated surfaces using Sipe's first-principles electromagnetic scattering theory, are used to study and analyze in detail these surface morphologies. Combined with electron backscattering diffraction, analyses allow associating site-selectively various laser-induced-surface morphologies with the underlying crystalline grain orientation. Resulting grain orientation maps reveal a strong impact of the grain crystallographic orientation on LIPSS formation and point toward possible strategies, like multi-step processes, for improving the manufacturing of LIPSS and their areal coverage of polycrystalline technical materials. KW - Laser-induced periodic surface structures (LIPSS) KW - Steel KW - Grain orientation KW - Electron backscattering diffraction (EBSD) KW - Laser processing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588929 DO - https://doi.org/10.1002/lpor.202300589 SN - 1863-8899 SP - 1 EP - 21 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omar, Hassan T1 - Growth Kinetics and Molecular Mobility of the adsorbed Layer of Poly(bisphenol-A Carbonate) (PBAC), Polysulfone (PSU), and Poly (2-Vinyl Pyridine) (P2VP) N2 - Interactions between a polymer and a substrate interface play a vital role in understanding the improvement in thin film material properties as well as serving as a model for nanocomposites. For any non-repulsive polymer-substrate interactions, polymer segments form an irreversibly adsorbed layer and show a slowdown in the glassy dynamics and thus an increase in the thermal glass transition temperature compared to the bulk-like values. The growth kinetics of the adsorbed layer obey a two-step mechanism: formation of immobilized layer with flat segmental conformations and a loosely bound layer with stretched chains pinned to the surface. Here the adsorbed layer was studied for: poly (bisphenol-A carbonate) (PBAC) and polysulfone (PSU), two bulky polymers containing a functional group (phenyl ring) in the backbone and compared to poly (2-vinyl pyridine) (P2VP), where the backbone is a vinyl-derivative and the functional group (pyridine) is in the side chain. The growth kinetics for PBAC and PSU were found to deviate from the well-known mechanism, observed for polymers such as P2VP. Atomic force microscopy and ellipsometry were used for this investigation and was additionally supported by broadband dielectric spectroscopy. T2 - Deutschen Physikalische Gesellschaft (DPG) Tagung CY - Dresden, Germany DA - 26.03.2023 KW - Thin films KW - Adsorbed Layer KW - Broadband dielectric spectroscopy KW - Atomic force microscopy KW - Growth Kinetics PY - 2023 AN - OPUS4-57282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - X-ray generation N2 - This talk was recorded during the 2020 Better with Scattering workshop held at BAM in Berlin. This educational talk explains the various ways in which X-rays can be generated in the lab as well as at the synchrotron, with benefits and drawbacks for all. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - X-ray instrumentation KW - X-ray generation PY - 2020 UR - https://www.youtube.com/watch?v=Hze3PvcK7es AN - OPUS4-51016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - A brief history of scattering N2 - Recorded on the first day of the Better with Scattering workshop. In this video, I explore some of the highlights of the development of small-angle X-ray scattering over its long history. I discuss developments on the technical side, analytical methods, detectors, data quality and data management. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - History PY - 2020 UR - https://www.youtube.com/watch?v=mFH6P4tZbyM AN - OPUS4-51015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz T1 - Scattering is a powerful tool to follow nucleation and growth of minerals from solutions N2 - In recent years, we have come to appreciate the astounding intricacy of the processes leading to the formation of minerals from ions in aqueous solutions. The original, and rather naive, ‘textbook’ image of these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species. These include solute clusters (e.g. prenucleation clusters, PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc.. Does it, however, mean that all the minerals grow through intermediate phases, following a non-classical pathway? In general, the precursor or intermediate species constitute different, often short-lived, points along the pathway from dissolved ions to the final solids (typically crystals in this context). In this regard synchrotron-based scattering (SAXS/WAXS/total scattering) appears to be the perfect tool to follow in situ and in a time-resolved manner the crystallization pathway because of the temporal and spatial length scales that can be directly accessed with these techniques. In this presentation we show how we used scattering to probe the crystallisation mechanisms of calcium sulfate, This system contains minerals that are widespread in diverse natural environments, but they are also important in various industrial settings. Our data demonstrate that calcium sulfate precipitation involves formation and aggregation of sub-3 nm anisotropic primary species. The actual crystallisation and formation of imperfect single crystals of calcium sulfate phases, takes place from the inside of the in itial aggregates. Hence, calcium sulfate follows a non-classical pathway. T2 - X-ray Powder Diffraction at DESY - new opportunities for research and industry CY - Online meeting DA - 22.06.2020 KW - Nucleation KW - Calcium sulfate KW - Diffraction KW - Scattering KW - Synchrotron KW - SAXS/WAXS PY - 2020 AN - OPUS4-50943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Simulaciónes de Montecarlo II: El scoring en las superficies N2 - En esta presentación desarrollaremos un ejemplo de aplicación para la dispersión de partículas utilizando el método de simulación de Monte- Carlo. Se discutirá el caso de las nanopartículas de oro radiactivo y como obtener informacions sobre diferente tipos de particulas pasando las superfices. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Colombia DA - 16.03.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Particle scattering simulation KW - Particle scattering simulations KW - Radioactive decay KW - Radioactive nanoparticle KW - Desintegracion radioactiva KW - Geant4 KW - Monte-Carlo simulations KW - Método de Montecarlo KW - Topas KW - nanoparticula PY - 2020 AN - OPUS4-50564 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Setup of a Particle Scattering Simulation environment N2 - A step by step introduction to the setup of a particle scattering simulation is given. Followed by an installation session. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Columbia DA - 12.02.2020 KW - Geant4 KW - Geant4-DNA KW - MCS KW - Monte-Carlo simulations KW - Particle scattering simulations KW - Scattering KW - Simulations KW - Debian KW - Linux KW - Topas KW - C++ KW - Topas-nbio KW - Git KW - Cmake PY - 2020 AN - OPUS4-50366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Basics and applications of good SAXS: Quantifying the fine structure of lots of materials N2 - In contrast to the crisp, clear images you can get from electron microscopy, small-angle X-ray scattering (SAXS) patterns are rather featureless. These patterns, however, contain averaged structural information of all of the finest material structures that were illuminated by the X-ray beam. With careful and precise investigation, and supplementary information from complementary techniques, this bulk material structure can be quantified to reveal structural information spanning four or even five decades in size. Additionally, while the data correction and analysis is complex, sample preparation is very straightforward, also allowing for in-situ and operando measurements to be performed without breaking a sweat. In the right hands, then, this technique can be the most powerful tool in your analytical arsenal. T2 - OpTecBB webinar within the scope of the focus area Optical Analytics CY - Online meeting DA - 27.05.2020 KW - Small-angle scattering KW - Introduction KW - Application KW - Saxs KW - Nanomaterials KW - Nanostructure PY - 2020 UR - https://www.youtube.com/watch?v=mXkYL3dSsTY UR - https://optecbb.de/veranstaltungen/veranstaltung/webinar-basics-and-applications-of-good-saxs-1238/ AN - OPUS4-50879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Ejemplos de simulaciónes de Montecarlo La desintegración radioactiva N2 - A walkthrough how to setup radioactive sources in monte-carlo particle scattering simulations and perform different types of scorings. N2 - En esta presentación desarrollaremos un ejemplo de aplicación para la dispersión de partículas utilizando el método de simulación de Monte- Carlo. Se discutirá el caso de las nanopartículas de oro radiactivo y los diferentes tipos del scoring. T2 - Seminar of the bioanalysis group CY - Universidad Nacional de Colombia, Medellin, Columbia DA - 27.02.2020 KW - MCS KW - Geant4-DNA KW - Geant4 KW - Radioactive nanoparticle KW - Radioactive decay KW - Particle scattering simulations KW - Particle scattering simulation KW - Topas KW - Monte-Carlo simulations KW - Desintegracion radioactiva KW - Método de Montecarlo KW - Geant4 KW - nanoparticula PY - 2020 AN - OPUS4-50472 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Resolving the mystery of the molecular dynamics of epoxy-based materials using broadband dielectric spectroscopy and hypheneated calorimetry N2 - A detailed calorimetric and dielectric study on two epoxy-based nanocomposite system was performed employing bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) and methyl tetrahydrophtalic acid anhydride (MTHPA) aas the polymer matrix and taurine-modified MgAL layered double hydroxide (T-LDH) and boehmite as nanofiller. The molecular dynamics investigation revealed an intrinsic structural heterogeneity of the epoxy materials. Moreover the polymer/particle interphase was qualitatively and quantitavely investigated. T2 - Online International Dielectric Society 2020 Workshop CY - Online meeting DA - 28.09.2020 KW - Interfaces KW - Nanocomposites KW - Rigid amorphous fraction KW - BDS KW - TMDSC PY - 2020 AN - OPUS4-51492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Standard Operating Procedures in the digital context N2 - The intention of the presentation is to inspire a discussion on the needs and challenges for the digitalisation of SOPs. SOPs are available for the disciplines of physical-chemical characterisation, for toxicology, for environmental applications and for exposure applications. Furthermore the SOPs need to be integrated in the regulatory framework and need to be detailed enough for the digital processing. This is highlighted in this presentation. T2 - Nanosafety 2020 CY - Online meeting DA - 07.10.2020 KW - Nano KW - SOP KW - NFDI KW - Digitalisation KW - Operating Procedure PY - 2020 AN - OPUS4-51491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Everything and the kitchen sink: correcting X-ray data for everything N2 - Recorded at the Better with Scattering workshop 2020, this talk highlights the complete set of data correction steps that we do for the MAUS, and how they can be used elsewhere too. This links well with the talk in this series by Dr. Tim Snow, and also highlights the details of the background subtraction that needs to be done. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - Data corrections PY - 2020 UR - https://www.youtube.com/watch?v=Hp4qziOxZFk AN - OPUS4-51018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Probing laser-driven structure formation at extreme scales in space and time N2 - Irradiation of solid surfaces with intense ultrashort laser pulses represents a unique way of depositing energy into materials. It allows to realize states of extreme electronic excitation and/or very high temperature and pressure and to drive materials close to and beyond fundamental stability limits. As a consequence, structural changes and phase transitions often occur along unusual pathways and under strongly nonequilibrium conditions. Due to the inherent multiscale nature — both temporally and spatially—of these irreversible processes, their direct experimental observation requires techniques that combine high temporal resolution with the appropriate spatial resolution and the capability to obtain good quality data on a single pulse/event basis. In this respect, fourth-generation light sources, namely, short wavelength and short pulse free electron lasers (FELs), are offering new and fascinating possibilities. As an example, this talk will discuss the results of scattering experiments carried out at the FLASH free electron laser at DESY (Hamburg, Germany), which allowed us to resolve laser-induced structure formation at surfaces on the nanometer to submicron length scale and in temporal regimes ranging from picoseconds to several nanoseconds with sub-picosecond resolution. The current status and future perspectives in this field via exploiting the unique possibilities of these 4th-generation light sources will be discussed. T2 - Seminar, Instituto de Óptica, CSIC CY - Madrid, Spain DA - 05.10.2023 KW - Laser-induced periodic surface structures (LIPSS) KW - Free electron laser (FEL) KW - Time-resolved scattering KW - Capillary waves PY - 2023 AN - OPUS4-58517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spaltmann, Dirk T1 - Improvement of the tribological performance of titanium alloy using FS-laser-induced periodic surface structures in combination with ZDDP and ionic liquid lubricant additives N2 - The performance of titanium alloy (Ti6Al4V) surfaces was investigated in lubricated reciprocating sliding tribological tests (RSTT). Special emphasis was laid on the effect of surface nanostructures in area of contact on the respective friction and wear behaviour. These so-called laser-induced periodic surface structures (LIPSS, ripples) were produced on the titanium alloy surface upon scan processing in air by an ultrashort pulsed femtosecond (fs) laser. As lubricant served two types of base oils, a pure polyalcylene-glycol, and an SAE 0W30 oil containing only antioxidants and temperature stabilizers. Tribological tests were carried out on polished as well as LIPSS covered areas using both types of base oil. A test metrics was established, combining the additive 2-ethylhexyl-zincdithiophosphate (ZDDP) or the ionic liquid [P6,6,6,14] [DEHP] (98% purity) with the respective base oils. The test metrics also considered the orientation of motion with respect to the orientation of the structures formed on the surface. Results are presented which show that the interplay between LIPSS and the local chemistry formed by the respective additives is beneficial for the tribological behaviour of the titanium alloy. Certain combinations of base oil, additive and LIPSS reduced friction and wear significantly in the tribological contact. T2 - 64. Tribologie-Fachtagung CY - Göttingen, Germany DA - 25.09.2023 KW - TiAl64V KW - 100Cr6 KW - Friction KW - Wear KW - LIPSS KW - Lubrication KW - PAG KW - Ionic liquid PY - 2023 AN - OPUS4-58641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hering, Marcus A1 - Sievers, Jürgen A1 - Curbach, Manfred A1 - Beckmann, Birgit T1 - An Approach to Predicting the Ballistic Limit of Thin Textile-Reinforced Concrete Plates Based on Experimental Results N2 - In this article, a partial selection of experiments on enhancing the impact resistance of structural components with non-metallic, textile-reinforced concrete is discussed. The focus is on the experimental investigations in which the impact resistance of thin, textile-reinforced concrete plates is characterized. The article discusses the materials, fabrics and test setup used. For the experimental work, a drop tower from the Otto Mohr Laboratory, which belongs to the Technische Universtät Dresden, was used. Furthermore, the experimental results are presented and evaluated using different methods. Based on the collected data, a suitable approach to determining the perforation velocity of an impactor through the investigated thin, textile-reinforced concrete plates is shown. KW - Building and Construction KW - Civil and Structural Engineering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586692 DO - https://doi.org/10.3390/buildings13092234 VL - 13 IS - 9 SP - 1 EP - 14 PB - MDPI AN - OPUS4-58669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Minenkov, Alexey A1 - Hollweger, Sophia A1 - Duchoslav, Jiri A1 - Erdene-Ochir, Otgonbayar A1 - Weise, Matthias A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Schiek, Manuela T1 - Monitoring the Electrochemical Failure of Indium Tin Oxide Electrodes via Operando Ellipsometry Complemented by Electron Microscopy and Spectroscopy N2 - Transparent conductive oxides such as indium tin oxide (ITO) are standards for thin film electrodes, providing a synergy of high optical transparency and electrical conductivity. In an electrolytic environment, the determination of an inert electrochemical potential window is crucial to maintain a stable material performance during device operation. We introduce operando ellipsometry, combining cyclic voltammetry (CV) with spectroscopic ellipsometry, as a versatile tool to monitor the evolution of both complete optical (i.e., complex refractive index) and electrical properties under wet electrochemical operational conditions. In particular, we trace the degradation of ITO electrodes caused by electrochemical reduction in a pH-neutral, water-based electrolyte environment during electrochemical cycling. With the onset of hydrogen evolution at negative bias voltages, indium and tin are irreversibly reduced to the metallic state, causing an advancing darkening, i.e., a gradual loss of transparency, with every CV cycle, while the conductivity is mostly conserved over multiple CV cycles. Post-operando analysis reveals the reductive (loss of oxygen) formation of metallic nanodroplets on the surface. The reductive disruption of the ITO electrode happens at the solid–liquid interface and proceeds gradually from the surface to the bottom of the layer, which is evidenced by cross-sectional transmission electron microscopy imaging and complemented by energy-dispersive X-ray spectroscopy mapping. As long as a continuous part of the ITO layer remains at the bottom, the conductivity is largely retained, allowing repeated CV cycling. We consider operando ellipsometry a sensitive and nondestructive tool to monitor early stage material and property changes, either by tracing failure points, controlling intentional processes, or for sensing purposes, making it suitable for various research fields involving solid–liquid interfaces and electrochemical activity. KW - General Materials Science PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597625 DO - https://doi.org/10.1021/acsami.3c17923 SN - 1944-8252 VL - 16 IS - 7 SP - 9517 EP - 9531 PB - American Chemical Society (ACS) AN - OPUS4-59762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knapic, D. A1 - Mardare, A. I. A1 - Voss, Heike A1 - Bonse, Jörn A1 - Hassel, A. W. T1 - Corrosion study of picosecond-laser structured and anodized Ti6Al4V for bone screws N2 - A corrosion study is performed on six variations of titanium grade 5 (Ti6Al4V) samples. Samples are prepared in different conditions by variation of preanodization, postanodization, and picosecond-laser (ps-laser) surface treatment, while polished and anodized samples serve as reference. Microcones and nanosized periodic surface features are successfully produced on Ti6Al4V samples. The morphology and topography of the structures are visualized by scanning electron microscopy and white light interference microscopy. Furthermore, the relative electrochemically active surface area (ECSA) is determined for the ps-laser-treated samples. It is determined that the preanodized and laser-treated sample has 3.5 times larger ECSA than a polished sample, and that the laser-treated sample has 4.1 times larger area. Moreover, Tafel analysis is performed to determine the corrosion properties of the samples. It is shown that the corrosion resistance improves for both laser-structured samples after the anodization. To further study the surface of the samples, electrochemical impedance spectroscopy measurements are conducted. The study indicates that the ps-laser-treated and anodized Ti6Al4V is suitable to be used for the fabrication of bone screws and plates due to its improved corrosion resistance as compared to nonanodized samples. KW - Laser-induced periodic surface structures (LIPSS) KW - Anodization KW - Bone screws KW - Implant material KW - Titanium alloys PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597890 DO - https://doi.org/10.1002/pssa.202300609 SN - 1862-6319 VL - 221 SP - 1 EP - 8 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-59789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - François, P. T1 - ELENA Project: Creating a simplified uncertainty calculation for industrial applications N2 - In this workpackage of the ELENA project, we develop a way to express the measurement uncertainty of nanoscale determination of electrical propserties. The method developed aims to be usable for industrial contexts and described in technical documents and standards drafts. Standards and reference samples are used to make traceable measurements available for the end user. T2 - Congrès International de Metrologie CY - Lyon, France DA - 06.03.2023 KW - Nanoscale measurements KW - Electrical properties KW - Optical measurements KW - Surfaces KW - Scanning probe measurements PY - 2023 AN - OPUS4-57155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Z. A1 - Raab, A. A1 - Kolmangadi, Mohamed Aejaz A1 - Busch, M. A1 - Grunwald, M. A1 - Demel, F. A1 - Bertram, F. A1 - Kityk, A. V. A1 - Schönhals, Andreas A1 - Laschat, S. A1 - Huber, P. T1 - Self-Assembly of Ionic Superdiscs in Nanopores N2 - Discotic ionic liquid crystals (DILCs) consist of self-assembled superdiscs of cations and anions that spontaneously stack in linear columns with high one-dimensional ionic and electronic charge mobility, making them prominent model systems for functional soft matter. Compared to classical nonionic discotic liquid crystals, many liquid crystalline structures with a combination of electronic and ionic conductivity have been reported, which are of interest for separation membranes, artificial ion/proton conducting membranes, and optoelectronics. Unfortunately, a homogeneous alignment of the DILCs on the macroscale is often not achievable, which significantly limits the applicability of DILCs. Infiltration into nanoporous solid scaffolds can, in principle, overcome this drawback. However, due to the experimental challenges to scrutinize liquid crystalline order in extreme spatial confinement, little is known about the structures of DILCs in nanopores. Here, we present temperaturedependent high-resolution optical birefringence measurement and 3D reciprocal space mapping based on synchrotron X-ray scattering to investigate the thermotropic phase behavior of dopamine-based ionic liquid crystals confined in cylindrical channels of 180 nm diameter in macroscopic anodic aluminum oxide membranes. As a function of the membranes’ hydrophilicity and thus the molecular anchoring to the pore walls (edge-on or face-on) and the variation of the hydrophilic−hydrophobic balance between the aromatic cores and the alkyl side chain motifs of the superdiscs by tailored chemical synthesis, we find a particularly rich phase behavior, which is not present in the bulk state. It is governed by a complex interplay of liquid crystalline elastic energies (bending and splay deformations), polar interactions, and pure geometric confinement and includes textural transitions between radial and axial alignment of the columns with respect to the long nanochannel axis. Furthermore, confinement-induced continuous order formation is observed in contrast to discontinuous first-order phase transitions, which can be quantitatively described by Landau-de Gennes free energy models for liquid crystalline order transitions in confinement. Our observations suggest that the infiltration of DILCs into nanoporous solids allows tailoring their nanoscale texture and ion channel formation and thus their electrical and optical functionalities over an even wider range than in the bulk state in a homogeneous manner on the centimeter scale as controlled by the monolithic nanoporous scaffolds. KW - Ionic Liquid Crystals KW - Nanopropous materials KW - Landau de-Gennes analysis KW - X-ray scattering KW - Optical birefringence PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600797 DO - https://doi.org/10.1021/acsnano.4c01062 SN - 1936-0851 VL - 18 IS - 22 SP - 14414 EP - 14426 PB - ACS AN - OPUS4-60079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Multiphoton lithography of interpenetrating polymer networks for tailored microstructure thermal and micromechanical properties N2 - Multiphoton lithography (MPL), an emerging truly 3D microfabrication technique, exhibits substantial potential in biomedical applications, including drug delivery and tissue engineering. Fabricated micro-objects are often expected to undergo shape morphing or bending of the entire structure or its parts. Furthermore, ensuring precise property tuning is detrimental to the realization of the functionality of MPL microstructures. Herein, novel MPL materials based on interpenetrating polymer networks (IPNs) are presented that effectively combine the advantages of acrylate and epoxy systems. IPNs with varying component ratios are investigated for their microfabrication performance and structural integrity with respect to thermal and micromechanical properties. A variety of high-resolution techniques is applied to comprehensively evaluate IPN properties at the bulk, micron, and segmental levels. This study shows that the MPL laser scanning velocity and power, photoinitiator content, and multi-step exposure can be used to tune the morphology and properties of the IPN. As a result, a library of 3D MPL IPN microstructures with high 3D structural stability and tailored thermal and micromechanical properties is achieved. New IPN microstructures with Young’s moduli of 3–4 MPa demonstrate high-to-fully elastic responses to deformations, making them promising for applications in morphable microsystems, soft micro-robotics, and cell engineering. KW - Interpenetrating polymer network KW - Multiphoton lithography KW - Atomic force microscopy KW - Intermodulation AFM KW - Fast scanning calorimetry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600593 DO - https://doi.org/10.1002/smll.202310580 SN - 1613-6810 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-60059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Dynamische Lichtstreuung DLS nach ISO 22412:2017 N2 - Einführung in die Partikelgrößenbestimmung von Nano-Materialien mittels Dynamischer Lichtstreuung. Normative Grundlagen (ISO 22412 und OECD TG 125); Messprinzip, Auswertealgorithmen, Informationsgehalt der Daten, Metadaten, Reporting. T2 - BAM Akademie: Info-Tage "NANO OR NOT NANO" CY - Online meeting DA - 16.02.2023 KW - DLS KW - Particle size KW - Nano PY - 2023 AN - OPUS4-57128 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Exkurs Partikelgrößenverteilungen N2 - Einführung in die Darstellung der Ergebnisse von Partikelgrößenbestimmungen: Was ist ein Kugeläquivalenzdurchmesser; welche Bedeutung hat die gemessene Mengenart; welche Parameter werden ausgewiesen. Bezug zu Regularien hinsichtlich der Bewertung "Nano- oder nicht Nano-Material. T2 - BAM Akademie: Info-Tage "NANO OR NOT NANO" CY - Online meeting DA - 16.02.2023 KW - Nano material KW - Particle size KW - Size distribution PY - 2023 AN - OPUS4-57127 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Zentrifugen Sedimentationsverfahren CLS nach ISO 13318 2:2007 N2 - Einführung in die Bestimmung der Partikelgröße von Nano-Materialien mittels Zentrifugen Sedimentationsverfahren CLS nach ISO 13318 2:2007. Normative Grundlagen (einschließlich OECD TG 125), Messprinzip, Auswertung, Vor- und Nachteile der Methode, Metadaten, Reporting. T2 - BAM Akademie: Info-Tage "NANO OR NOT NANO" CY - Online meeting DA - 16.02.2023 KW - CLS KW - Particle size KW - Nano PY - 2023 AN - OPUS4-57129 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grundmann, Jana A1 - Bodermann, Bernd A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Hertwig, Andreas A1 - Klapetek, Petr A1 - Rafighdoost, Jila A1 - Pereira, Silvania F. T1 - Optical and tactile measurements on SiC sample defects N2 - Abstract. In power electronics, compound semiconductors with large bandgaps, like silicon carbide (SiC), are increasingly being used as material instead of silicon. They have a lot of advantages over silicon but are also intolerant of nanoscale material defects, so that a defect inspection with high accuracy is needed. The different defect types on SiC samples are measured with various measurement methods, including optical and tactile methods. The defect types investigated include carrots, particles, polytype inclusions and threading dislocations, and they are analysed with imaging ellipsometry, coherent Fourier scatterometry (CFS), white light interference microscopy (WLIM) and atomic force microscopy (AFM). These different measurement methods are used to investigate which method is most sensitive for which type of defect to be able to use the measurement methods more effectively. It is important to be able to identify the defects to classify them as critical or non-critical for the functionality of the end product. Once these investigations have been completed, the measurement systems can be optimally distributed to the relevant defects in further work to realize a hybrid analysis of the defects. In addition to the identification and classification of defects, such a future hybrid analysis could also include characterizations, e.g. further evaluation of ellipsometric data by using numerical simulations. KW - Compound semiconductors KW - Hybrid metrology KW - Material defects KW - Spectroscopic ellipsometry KW - Scanning probe microscopy KW - White-light interference microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601220 DO - https://doi.org/10.5194/jsss-13-109-2024 SN - 2194-878X VL - 13 IS - 1 SP - 109 EP - 121 PB - Copernicus Publ. CY - Göttingen AN - OPUS4-60122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - da Costa, P. F. G. M. A1 - Merízio, L. G. A1 - Wolff, N. A1 - Terraschke, H. A1 - de Camargo, Andrea Simone Stucchi T1 - Real-time monitoring of CdTe quantum dots growth in aqueous solution N2 - Quantum dots (QDs) are remarkable semiconductor nanoparticles, whose optical properties are strongly size-dependent. Therefore, the real-time monitoring of crystal growth pathway during synthesis gives an excellent opportunity to a smart design of the QDs luminescence. In this work, we present a new approach for monitoring the formation of QDs in aqueous solution up to 90 °C, through in situ luminescence analysis, using CdTe as a model system. This technique allows a detailed examination of the evolution of their light emission. In contrast to in situ absorbance analysis, the in situ luminescence measurements in reflection geometry are particularly advantageous once they are not hindered by the concentration increase of the colloidal suspension. The synthesized particles were additionally characterized using X-ray diffraction analysis, transition electron microscopy, UV-Vis absorption and infrared spectroscopy. The infrared spectra showed that 3-mercaptopropionic acid (MPA)-based thiols are covalently bound on the surface of QDs and microscopy revealed the formation of CdS. Setting a total of 3 h of reaction time, for instance, the QDs synthesized at 70, 80 and 90 °C exhibit emission maxima centered at 550, 600 and 655 nm. The in situ monitoring approach opens doors for a more precise achievement of the desired emission wavelength of QDs. KW - CdTe quantum dots KW - In situ synthesis KW - Real time growth control PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603596 DO - https://doi.org/10.1038/s41598-024-57810-8 SN - 2045-2322 VL - 14 IS - 1 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-60359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Fengchan A1 - Oiticica, Pedro Ramon Almeida A1 - Abad-Arredondo, Jaime A1 - Arai, Marylyn Setsuko A1 - Oliveira, Osvaldo N. A1 - Jaque, Daniel A1 - Fernandez Dominguez, Antonio I. A1 - de Camargo, Andrea Simone Stucchi A1 - Haro-González, Patricia T1 - Brownian Motion Governs the Plasmonic Enhancement of Colloidal Upconverting Nanoparticles N2 - Upconverting nanoparticles are essential in modern photonics due to their ability to convert infrared light to visible light. Despite their significance, they exhibit limited brightness, a key drawback that can be addressed by combining them with plasmonic nanoparticles. Plasmon-enhanced upconversion has been widely demonstrated in dry environments, where upconverting nanoparticles are immobilized, but constitutes a challenge in liquid media where Brownian motion competes against immobilization. This study employs optical tweezers for the three-dimensional manipulation of an individual upconverting nanoparticle, enabling the exploration of plasmon-enhanced upconversion luminescence in water. Contrary to expectation, experiments reveal a long-range (micrometer scale) and moderate (20%) enhancement in upconversion luminescence due to the plasmonic resonances of gold nanostructures. Comparison between experiments and numerical simulations evidences the key role of Brownian motion. It is demonstrated how the three-dimensional Brownian fluctuations of the upconverting nanoparticle lead to an “average effect” that explains the magnitude and spatial extension of luminescence enhancement. KW - Upconversion KW - Plasmon enhancement KW - Optical tweezers KW - Brownian motion KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603551 DO - https://doi.org/10.1021/acs.nanolett.4c00379 VL - 24 IS - 12 SP - 3785 EP - 3792 PB - American Chemical Society (ACS) AN - OPUS4-60355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weinel, Kristina T1 - Plasmonic Behavior in Assemblies of Disordered Gold Nanoparticles N2 - Plasmons are collective oscillations of the free electron density in metals which can be described by an electromagnetic field. Surface plasmons are longitudinal waves propagating at the surface of the metallic material coupled to an external field. Localized surface plasmons on a nanoparticle reveal the behavior of standing waves with discrete resonance frequencies whose dominating mode is called dipole mode. Coupling of nanoparticles leads eventually to a hybridization of those dipole modes and therefore to spectral and spatial delocalization which was already investigated in ordered systems. In disordered systems, there are a lot of open questions regarding the propagation behavior which changes from delocalization to localization for instance due to the disorder. This phenomenon is then called Anderson localization. To investigate the propagation behavior of plasmonic waves in an assembly of disordered gold NPs, we combine experimental results of electron energy loss spectroscopy in a scanning transmission microscope with simulation results of the self-consistent dipole modelling. We indeed find experimentally localization of plasmon modes and with the simulation we could exclude other localization mechanism such as life-time damping or retardation. In conclusion, we could found Anderson localization of surface plasmons in assemblies of disordered gold nanoparticles which will enhance the understanding of this kind of vector waves to the Anderson localization as a general wave behavior in disordered systems. T2 - PhD seminar Leipniz Institut for solid state and material research (IFW Dresden) CY - Dresden, Germany DA - 19.06.2024 KW - Plasmonic KW - EELS in STEM KW - Self-consistent dipole model KW - Assemblies of gold nanoparticles PY - 2024 AN - OPUS4-60945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fornacon-Wood, Christoph A1 - Stühler, Merlin R. A1 - Millanvois, Alexandre A1 - Steiner, Luca A1 - Weimann, Christiane A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Paulus, Beate A1 - Plajer, Alex J. T1 - Fluoride recovery in degradable fluorinated polyesters N2 - We report a new class of degradable fluorinated polymers through the copolymerization of tetrafluorophthalic anhydride and propylene oxide or trifluoropropylene oxide which show up to 20 times quicker degradation than the non-fluorinated equivalents and allow for fluoride recovery. KW - Fluoropolymers KW - Recycling KW - PFAS KW - AFM force distance curves KW - AFM plastic deformation KW - AFM friction analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606768 DO - https://doi.org/10.1039/d4cc02513j VL - 60 SP - 7479 EP - 7482 PB - Royal Society of Chemistry AN - OPUS4-60676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waniek, Tassilo A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - The influence of water released from particles in epoxy‐based nanocomposites N2 - AbstractRecent studies have hypothesized that the reinforcing effects of boehmite nanoparticles (BNPs) in polymer nanocomposites (PNCs) are partly related to the particles themselves and partly to the water released from the BNP during curing. In this work, PNCs made from dried BNP (dBNP) with concentrations up to 15 wt% are investigated to differentiate particle and water related effects. The observed trend of the storage modulus in dynamic mechanical thermal analysis measurements was found to be independent of the drying procedure. Stiffness maps from intermodulation atomic force microscopy showed that dBNP leads to a stiffening of the interphase surrounding the particles compared with the unaffected epoxy matrix, while a softer interphase was reported for PNCs with as received BNP. A slight decrease in the glass transition temperature was observed by broadband dielectric spectroscopy related to a lowered crosslink density due to the particles. A significantly higher decrease was reported for PNCs with BNP, attributed to water influencing the curing process. In conclusion, the stiffening of PNC with BNP is related to the particles themselves, while the release of water causes the formation of a soft interphase in the vicinity of the particles and a significant decrease in crosslink density. KW - AFM stiffness of interface KW - Aluminium oxide hydroxide KW - Boehmit nanoparticle KW - Glass transition temperature KW - Broadband dielectric spectroscopy KW - Crosslink density control KW - Structure–property relationship KW - Nanocomposites KW - Thermoset PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606772 DO - https://doi.org/10.1002/app.55937 SN - 0021-8995 SP - 1 EP - 16 PB - Wiley AN - OPUS4-60677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - Characterisation of thin layers of Polydopamine used as functional coatings in X-Ray optics N2 - Polydopamine (PDA) is a biological / biomimetic polymer which has spiked considerable interest in recent years. Its monomer is an important neurotransmitter and it is one of the strongest glues produced by biological organisms. Polydopamine is a candidate for several applications, mainly in the field of biology and medicine, but also - recently - for layer coatings with optical, electrical, and mechanical function. In this work, we investigate PDA layers intended as reflectivity enhancers for mirror surfaces in X-ray astronomical observatories. It has previously been shown, that such X-ray telescopes can be improved by a coating of PDA in the thickness range of several nm. Accurate thickness determination is required to monitor and optimise the coating process. We use spectroscopic ellipsometry to determine first the dielectric function of the polydopamine layers using model coatings of sufficient thickness. This data is then used to accurately determine the layer thickness of much thinner PDA layers. This study resulted in data on the thickness and dielectric function of PDA layers that could lead to a better understanding of the correlation of layer thickness and layer properties depending on the process parameters. T2 - Deutsche Physikalische Gesellschaft - Frühjahrstagung CY - Berlin, Germany DA - 17.03.2024 KW - Polydopamine KW - Thin Solid Layers KW - X-ray optics KW - Spectroscopic Ellipsometry PY - 2024 AN - OPUS4-60955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Ahamadi, Shayan A1 - Hülagü, Deniz A1 - Hidde, Gundula A1 - Hertwig, Andreas A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Investigations of the adsorbed layer of polysulfone: Influence of the thickness of the adsorbed layer on the glass transition of thin films N2 - This work studies the influence of the adsorbed layer on the glass transition of thin films of polysulfone. Therefore, the growth kinetics of the irreversibly adsorbed layer of polysulfone on silicon substrates was first investigated using the solvent leaching approach, and the thickness of the remaining layer was measured with atomic force microscopy. Annealing conditions before leaching were varied in temperature and time (0–336 h). The growth kinetics showed three distinct regions: a pre-growth step where it was assumed that phenyl rings align parallel to the substrate at the shortest annealing times, a linear growth region, and a crossover from linear to logarithmic growth observed at higher temperatures for the longest annealing times. No signs of desorption were observed, pointing to the formation of a strongly adsorbed layer. Second, the glass transition of thin polysulfone films was studied in dependence on the film thickness using spectroscopic ellipsometry. Three annealing conditions were compared: two with only a tightly bound layer formed in the linear growth regime and one with both tightly bound and loosely adsorbed layers formed in the logarithmic growth regime. The onset thickness and increase in the glass transition temperature increases with annealing time and temperature. These differences were attributed to the distinct conformations of the formed adsorbed layers. KW - Glass transition KW - Adsorbed Layer PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607701 DO - https://doi.org/10.1063/5.0223415 SN - 0021-9606 VL - 161 IS - 5 SP - 1 EP - 12 PB - AIP Publishing AN - OPUS4-60770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Acosta-Zepeda, C. A1 - Saavedra, S. A1 - Bonse, Jörn A1 - Haro-Poniatowski, E. T1 - Modelling of single UV nanosecond pulsed laser surface modifications of silicon N2 - Irradiation with a single spatially Gaussian-shaped nanosecond laser pulse in the melting regime can result in a characteristic annular change in the surface morphology of crystalline silicon. This has been verified experimentally in a variety of situations, where dimple-shaped surface topographies are produced. In a recent work we have investigated the induced changes in the surface topography upon exposure to wavelengths in the visible and near infrared spectral region. Irradiation in the UV requires a more detailed analysis due to the enhanced absorption of the material. In the present analysis, we determine under which conditions our previous model can be used and the corresponding results are presented. KW - Laser KW - Silicon KW - Surface modification PY - 2020 DO - https://doi.org/10.1088/1555-6611/ab9b2c SN - 1555-6611 SN - 1054-660X VL - 30 IS - 8 SP - 086003-1 EP - 086003-4 PB - IOP Publishing / Astro Ltd CY - Bristol, United Kingdom AN - OPUS4-51022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Pfeffer, M. ED - Bonse, Jörn ED - Lasagni, A. F. T1 - Topical issue: Laser micro- and nano-material processing - Part 1 N2 - This special issue of Advanced Optical Technologies (AOT) is dedicated to the field of laser-based micro- and nanostructuring methods. KW - Laser processing KW - Microstructures KW - Nanostructures KW - Applications PY - 2020 UR - https://www.degruyter.com/view/journals/aot/9/1-2/aot.9.issue-1-2.xml SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 1-2 SP - 7 EP - 110 PB - De Gruyter CY - Berlin AN - OPUS4-50798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mezera, Marek T1 - Bacterial adhesion on femtosecond laser-induced periodic surface structures N2 - Biofilm formation in industrial or medical settings is usually unwanted and leads to serious health problems and high costs. Inhibition of initial bacterial adhesion prevents biofilm formation and is, therefore, a major mechanism of antimicrobial action of surfaces. Surface topography largely influences the interaction between bacteria and surfaces which makes topography an ideal base for antifouling strategies and eco-friendly alternatives to chemical surface modifications. Femtosecond laser-processing was used to fabricate sub-micrometric surface structures on silicon and stainless steel for the development of antifouling topographies on technical materials. T2 - Future Tech Week 2020 CY - Online meeting DA - 21.09.2020 KW - Laser-induced periodic surface structures (LIPSS) KW - Bacterial adhesion KW - Biofilm growth KW - Structural color KW - Femtosecond laser processing PY - 2020 UR - http://futuretechweek.fetfx.eu/wp-content/uploads/gravity_forms/2-5432af7ecff9e0243d7383ab3f931ed3/2020/09/BioCombs4Nanofibers_Poster-for-Future_Tech_Week_2020_08-09-2020_with_Reprint-permission_for_upload.pdf AN - OPUS4-51233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shahsanaei, Majid A1 - Farahbakhsh, Nastaran A1 - Pour-Ali, Sadegh A1 - Schardt, Annika A1 - Orangpour, Setareh A1 - Engelhard, Carsten A1 - Mohajernia, Shiva A1 - Killian, Manuela S. A1 - Hejazi, Sina T1 - Synergistic enhancement of photocatalytic hydrogen production in TiO2 nanosheets through light-induced defect formation and Pt single atoms N2 - In this investigation, we present a direct method employing UV-light radiation to induce point defects, specifically Ti3+ and VO, onto the surface of TiO2 nanosheets (TiO2-NSs) and efficiently decorate them with Pt particles. The addition of the Pt precursor is carried out during rest periods following UV-light cessation (light-induced samples, LI) and during UV-light exposure (photo-deposited samples, PD). The size and distribution of Pt particles on both LI and PD TiO2-NSs are systematically correlated with varying resting times, enabling precise control over Pt loading. The characterization of various TiO2-NSs is extensively conducted using microscopy techniques (FESEM, TEM, and HAADF-STEM) and spectroscopy (XPS). Gas chromatography is also employed for the evaluation of the H2 photocatalytic performance of various samples. Our findings reveal that Pt particles deposit on the TiO2-NSs surfaces as nanoparticles under illumination. After a 5 minutes resting time, a combination of Pt single atoms (SAs) and clusters, with a maximum loading of 0.37 at%, is formed. Extending the resting time to 60 minutes results in a gradual reduction in Pt SAs and clusters, leading to the deposition of Pt nanoparticles with lower loadings. Notably, Pt SAs and clusters exhibit superior performance in hydrogen evolution, showcasing a remarkable 4000-fold increase over pristine TiO2-NSs. Additionally, sustained UV radiation during Pt addition in the photo-deposited samples results in the formation of Pt nanoparticles with lower loading compared to LI samples, consequently diminishing photocatalytic hydrogen production. This study not only provides insights into the controlled manipulation of Pt SAs on TiO2-NSs but also highlights their exceptional efficacy in hydrogen evolution, offering valuable contributions to the design of efficient photocatalytic systems for sustainable hydrogen generation. KW - Chemistry KW - Nanosheets KW - Hydrogen PY - 2024 DO - https://doi.org/10.1039/D4TA01809E VL - 12 IS - 29 SP - 18554 EP - 18562 PB - Royal Society of Chemistry (RSC) AN - OPUS4-61271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wojciak, K. A1 - Tokarski, T. A1 - Cios, G. A1 - Nolze, Gert T1 - Precision and accuracy during standard-less mapping of local lattice distortions using ebsd and calm technique N2 - Electron Back Scatter Diffraction (EBSD) is a very versatile analytical technique allowing for the characterization of material structure. Historically, diffraction images (Kikuchi patterns) registered during EBSD analysis were solved using Hough/Radon transformation. The last decade brought several novel techniques of experimental pattern analysis, focusing entirely on image analysis routines such as pattern matching, or various variants of High-Resolution EBSD. However, all the above-mentioned techniques require prior knowledge of the material structure to perform orientation analysis. The recently presented algorithm employed in Crystallographic Analysis of Lattice Metric (CALM) software, effectively removes this limitation enabling a standard-less analytical approach in EBSD systems. At its core, the CALM technique couples accurate detection of the Kikuchi bands position, with a rigid construction of reciprocal lattice resulting from translational crystal symmetry. A unique characteristic of the methodology also gives an opportunity for application in the analysis of continuous lattice changes, for example tetragonality mapping. During mapping, however, the geometry of the gnomonic projection (represented by the projection center) is continuously altered decreasing overall algorithm efficiency. The work presents an analysis of the projection center in terms of precision and accuracy. T2 - Oxford User Meeting 2024 CY - Krakow, Poland DA - 14.05.2024 KW - EBSD KW - Kikuchi KW - Lattice parameters KW - Ratio refinement PY - 2024 AN - OPUS4-60087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tokarski, T. A1 - Nolze, Gert T1 - Exploring Unconventional Uses of Kikuchi Pattern Analysis N2 - The characterization of really unknown phases typically uses 70 to 150 reflectors for lattice metric calculation. The determination of the lattice parameters follows with 4% accuracy. Including a Z correction up to 1% can be reached. The precision of the lattice parameters ratios (a:b:c) is, however, better than 0.1%. T2 - Oxford Users Meeting 2024 CY - Krakow, Poland DA - 14.05.2024 KW - EBSD KW - Kikuchi KW - Lattice parameters KW - Ratio refinement PY - 2024 AN - OPUS4-60086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Szymoniak, Paulina A1 - Qu, Xintong A1 - Schönhals, Andreas A1 - Sturm, Heinz ED - Sinapius, M. ED - Ziegmann, G. T1 - Characterization of Polymer Nanocomposites N2 - The complex effect of nanoparticles on an epoxy-based and anhydride cured DGEBA/Boehmite nanocomposite with different particle concentrations is considered in this chapter. A combination of X-ray scattering, calorimetry (fast scanning and temperature modulated calorimetry) and dielectric spectroscopy was employed to characterize the structure, vitrification kinetics and the molecular dynamics of the nanocomposites. Firstly, the unfilled polymer was found to be intrinsically heterogeneous, showing regions with different crosslinking density, indicated by two separate dynamic glass transitions. Moreover, the glass transition temperature decreases with increasing nanoparticle concentration, as a result of changes in the crosslinking density. In addition, it was shown that the incorporation of nanoparticles can result in simultaneous increase in the number of mobile segments for low nanoparticle concentrations and on the other hand, for higher loading degrees the number of mobile segments decreases, due to the formation of an immobilized interphase. KW - Rigid amorphous fraction KW - Epoxy nanocomposites KW - X-ray scattering KW - Differential scanning calorimetry KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2021 DO - https://doi.org/10.1007/978-3-030-68523-2_4 SP - 55 EP - 77 PB - Springer Nature AN - OPUS4-52698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Anja T1 - Bacterial adhesion on ultrashort laser processed surfaces N2 - Bacterial biofilms are multicellular communities adhering to surfaces and embedded in a self-produced extracellular matrix. Due to physiological adaptations and the protective biofilm matrix itself, biofilm cells show enhanced resistance towards antimicrobial treatment. In medical and industrial settings, biofilms on e.g. for implants or for surfaces in food-processing industry can be a fertile source of bacterial pathogens and are repeatedly associated with persisting, nosocomial and foodborne infections. As extensive usage of antibiotics and biocides can lead to the emergence of resistances, various strategies are currently developed, tested and improved to realize anti-bacterial surface properties through surface functionalization steps avoiding antibiotics. In this study, contact-less and aseptic large-area ultrashort laser scan processing is employed to generate different surface structures in the nanometer- to micrometer-scale on technical materials, i.e. titanium-alloy, steel, and polymer. The processed surfaces were characterized by optical and scanning electron microscopy and subjected to bacterial colonization studies with Escherichia coli test strains. For each material, biofilm results of the fs-laser treated surfaces are compared to that obtained on polished (non-irradiated) surfaces as a reference. Depending on the investigated surfaces, different bacterial adhesion patterns were found, suggesting an influence of geometrical size, shape and cell appendages of the bacteria and – above all – the laser-processed nanostructure of the surface itself. T2 - European Materials Research Society Spring Meeting 2021 CY - Online Meeting DA - 31.05.2021 KW - Bacterial adhesion KW - Biofilm formation KW - Ultrashort laser processing KW - Laser-induced periodic surface structures (LIPSS) PY - 2021 UR - https://www.european-mrs.com/laser-material-processing-fundamental-interactions-innovative-applications-emrs AN - OPUS4-52765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Krüger, Jörg ED - Sugioka, K. T1 - Laser-Induced Periodic Surface Structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon and can be generated on almost any material by irradiation with linearly polarized radiation. This chapter reviews the current state in the field of LIPSS, which are formed in a “self-ordered” way and are often accompanying materials processing applications. LIPSS can be produced in a single-stage process and enable surface nanostructuring and, in turn, adaption of optical, mechanical, and chemical surface properties. Typically, they feature a structural size ranging from several micrometers down to less than 100 nm and show a clear correlation with the polarization direction of the light used for their generation. Various types of LIPSS are classified, relevant control parameters are identified, and their material-specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Laser ablation KW - Microstructures KW - Nanostrcutures PY - 2021 SN - 978-3-030-63646-3 (Print) SN - 978-3-030-63647-0 (Online) DO - https://doi.org/10.1007/978-3-030-63647-0_17 SP - 879 EP - 936 PB - Springer-Nature Switzerland AG CY - Cham ET - 1 AN - OPUS4-53728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Krüger, Jörg ED - Sugioka, K. T1 - Laser-induced periodic surface structures (LIPSS) N2 - Laser-induced periodic surface structures (LIPSS) are a universal phenomenon and can be generated on almost any material by irradiation with linearly polarized radiation. This chapter reviews the current state in the field of LIPSS, which are formed in a “self-ordered” way and are often accompanying materials processing applications. LIPSS can be produced in a single-stage process and enable surface nanostructuring and, in turn, adaption of optical, mechanical, and chemical surface properties. Typically, they feature a structural size ranging from several micrometers down to less than 100 nm and show a clear correlation with the polarization direction of the light used for their generation. Various types of LIPSS are classified, relevant control parameters are identified, and their material-specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Laser-induced periodic surface structures (LIPSS) KW - Laser ablation KW - Femtosecond laser KW - Nanostructures KW - Microstructures PY - 2020 SN - 978-3-319-69537-2 DO - https://doi.org/10.1007/978-3-319-69537-2_17-1 SP - 1 EP - 59 PB - Springer Nature CY - Cham, Switzerland ET - 1 AN - OPUS4-51332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Lasagni, A. F. T1 - Editorial: Laser micro- and nano-material processing – Part 1 N2 - This special issue of Advanced Optical Technologies (AOT) is dedicated to the field of laser-based micro- and nanostructuring methods. KW - Laser processing KW - Microstructures KW - Nanostructures KW - Applications PY - 2020 DO - https://doi.org/10.1515/aot-2020-0009 SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 1-2 SP - 7 EP - 9 PB - De Gruyter CY - Berlin AN - OPUS4-50797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lasagni, A. F. A1 - Bonse, Jörn T1 - Editorial: Laser micro- and nano-material processing – Part 2 N2 - This special issue of Advanced Optical Technologies (AOT) is dedicated to the field of laser-based micro- and nanostructuring methods. KW - Applications KW - Laser processing KW - Microstructures KW - Nanostructures PY - 2020 DO - https://doi.org/10.1515/aot-2020-0025 SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 3 SP - 111 EP - 112 PB - De Gruyter CY - Berlin AN - OPUS4-50995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Pfeffer, M. ED - Bonse, Jörn ED - Lasagni, A. F. T1 - Topical issue: Laser micro- and nano-material processing - Part 2 N2 - This special issue of Advanced Optical Technologies (AOT) is dedicated to the field of laser-based micro- and nanostructuring methods. KW - Applications KW - Laser processing KW - Microstructures KW - Nanostructures PY - 2020 UR - https://www.degruyter.com/view/journals/aot/9/3/aot.9.issue-3.xml SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 3 SP - 111 EP - 153 PB - De Gruyter CY - Berlin AN - OPUS4-50997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Critical needs and stakeholder networks for engineered particles in air N2 - In the frame of CCQM a new Task Group for particle characterization is being formed. This presentation is a gap analysis and stakeholder mapping for particles in air, from engineered to natural materials. The analysis was requested for the following points: (1) critical literature on stakeholder needs and relevant metrology (2) existing reference materials and relevant interlaboratory comparisons (3) relevant metrology projects (4) critical stakeholders and stakeholder networks and stakeholder surveys T2 - CCQM IAWG/SAWG TG Particle Metrology CY - Online meeting DA - 09.07.2024 KW - CCQM KW - Particle KW - Nano KW - Characterization KW - Aerosol PY - 2024 AN - OPUS4-62067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunz, C. A1 - Bonse, Jörn A1 - Spaltmann, Dirk A1 - Neumann, C. A1 - Turchanin, A. A1 - Bartolomé, J. F. A1 - Müller, F. A. A1 - Gräf, S. T1 - Tribological performance of metal-reinforced ceramic composites selectively structured with femtosecond laser-induced periodic surface structures N2 - The impact of femtosecond (fs) laser-induced periodic surface structures (LIPSS) on tribological properties was investigated for metal-reinforced ceramic composites (Al2O3-ZrO2-Nb). For this purpose, the metallic niobium (Nb) phase was selectively structured with LIPSS in an air environment with different values of the fs-laser peak fluence by near-infrared fs-laser radiation (λ = 1025 nm, τ = 300 fs, frep = 1 kHz), taking advantage of the different light absorption behavior of ceramic and metal. The tribological performance was evaluated by reciprocating sliding tests in a ball-on-disc configuration using Ringer's solution as lubricant. The surfaces were characterized before and after laser irradiation by optical microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and by measuring the contact angle with Ringer's solution. The LIPSS formation resulted in an increased wetting of the surface with the lubricant. Moreover, the selectively structured composite surfaces revealed a coefficient of friction significantly reduced by a factor of ~3 when compared to the non-irradiated surface. Furthermore, the formation of a laser-induced oxidation layer was detected with NbO as the most prominent oxidation state. Selectively structured composites with outstanding mechanical properties and enhanced tribological performance are of particular interest for biomedical applications. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Ceramic matrix composites KW - Tribology PY - 2020 DO - https://doi.org/10.1016/j.apsusc.2019.143917 SN - 0169-4332 SN - 1873-5584 VL - 499 IS - 1 SP - 143917 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-49255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Simon, P. ED - Ihlemann, J. ED - Bonse, Jörn T1 - Special issue "Laser-generated periodic nanostructures" N2 - The study of laser-fabricated periodic nanostructures is one of the leading topics of today’s photonics research. Such structures on the surface of metals, semiconductors, dielectrics, or polymers can generate new material properties with special functionalities. Depending on the specific material parameters and the morphology of the structures, new devices such as microlasers, optical nanoswitches, optical storage devices, sensors or antifraud features can be realized. Furthermore, laser-generated surface textures can be used to improve the tribological properties of surfaces in contact and in relative motion—to reduce friction losses or wear, to modify the wettability or the cell and biofilm growth properties of surfaces through bioinspired laser engineering, for emerging medical applications, or as decoration elements for the refinement of precious goods. This Special Issue “Laser-Generated Periodic Nanostructures” focuses on the latest experimental and theoretical developments and practical applications of laser-generated periodic structures that can be generated in a “self-organized” way (laser-induced periodic surface structures, LIPSS, ripples) or via laser interference-based direct ablation (often referred to as direct laser interference patterning, DLIP). We aimed to attract both academic and industrial researchers in order to collate the current knowledge of nanomaterials and to present new ideas for future applications and new technologies. By 8 August 2021, 22 scientific articles have been published in the Special Issue. KW - Laser-induced periodic surface structures (LIPSS) KW - Direct laser-interference patterning (DLIP) KW - Surface functionalization KW - Laser processing KW - Applications PY - 2021 UR - https://www.mdpi.com/journal/nanomaterials/special_issues/laser-generated_periodic SN - 2079-4991 VL - 10(1)-11(8) SP - 147-1 EP - 2054-7 PB - MDPI CY - Basel AN - OPUS4-53099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Szymoniak, Paulina A1 - Schönhals, Andreas ED - Schönhals, Andreas ED - Szymoniak, Paulina T1 - Epoxy-Based Nanocomposites—What Can Be Learned from Dielectric and Calorimetric Investigations? N2 - Epoxy-based nanocomposites are promisingmaterials for industrial applications (i.e., aerospace, marine, and automotive industries) due to their extraordinary mechanical and thermal properties. Regardless of the broad field of applications, there is still a considerable need to identify their structure–property relationships. Here, a detailed dielectric and calorimetric (DSC and fast scanning calorimetry) study on different epoxy-based nanocomposites was performed. Bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) was employed as the polymeric matrix, which was reinforced with three diverse nanofillers that exhibit different interaction strengths with the epoxy matrix (halloysite nanotubes, surface modified halloysite nanotubes, and taurine-modified layered double hydroxide). The structure, molecular mobility, and vitrification behavior are discussed in detail, focusing on the intrinsic structural and dynamic heterogeneity, as well as interfacial properties. KW - Nanocomposites KW - Epoxi nanocomposites KW - Dynamics KW - Interphase KW - Ridis amorphous fraction KW - Dielectric spectroscopy KW - Flash DSC KW - Temparatur modulated Flash DSC KW - Temperature modulated DSC PY - 2022 DO - https://doi.org/10.1007/978-3-030-89723-9_11 SP - 335 EP - 367 PB - Springer CY - Cham, Switzerland AN - OPUS4-54566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Zarinwall, A. A1 - Waniek, Tassilo A1 - Finke, B. A1 - Sadaat, R. A1 - Sturm, Heinz A1 - Garnweitner, G. ED - Sinapius, M. ED - Ziegmann, G. T1 - Particle Surface Modification N2 - Whilst a decisive role of the particle-matrix interphase on the mechanical properties of nanoparticle-filled polymers has been demonstrated in the last years, the arbitrary design of this interphase remains a very challenging goal. In principle, this could be realized via an appropriate surfacemodification of the nanofiller prior to its incorporation in the polymer. For most systems, such as for boehmite nanofillers, however, the interaction of organic modifiers with the particle surface has not been studied in detail, and only single studies are known rather than systematic investiga- tions on the effects of different chemical functions anchored on the particle surface. In this chapter, we present an extensive study on the binding of APTES, a common silane surface modifier, with boehmite, and show that thermogravimetric analysis (TGA) coupled with mass spectrometry (MS) is a convenient and highly suitable method to elucidate the ligand binding in detail. Furthermore, a two-step coupling strategy is presented, demonstrating that based on APTES anchored to the parti- cle surface, the condensation of various carboxylic acids can be utilized to enable highly diverse chemical properties of the nanofillers, which leads to very different particle-matrix interactions in the nanocomposites. KW - APTES KW - Boehmite KW - Nanoparticle KW - TGA-MS PY - 2021 SN - 978-3-030-68522-5 SN - 978-3-030-68523-2 DO - https://doi.org/10.1007/978-3-030-68523-2 SN - 2194-8240 SN - 2194-8259 SP - 119 EP - 142 PB - Springer Nature Switzerland AG CY - Cham AN - OPUS4-53727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Busch, R. A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Patzig, C. A1 - Krause, M. A1 - Höche, T. T1 - Sample preparation for analytical scanning electron microscopy using initial notch sectioning N2 - A novel method for broad ion beam based sample sectioning using the concept of initial notches is presented. An adapted sample geometry is utilized in order to create terraces with a well-define d step in erosion depth from the surface. The method consists of milling a notch into the surface, followed by glancing-angle ion beam erosion, which leads to preferential erosion at the notch due to increased local surface elevation. The process of terrace formation can be utilized in sample preparation for analytical scanning electron microscopy in order to get efficient access to the depth-dependent microstructure of a material. It is demonstrated that the method can be applied to both conducting and non-conducting specimens. Furthermore, experimental parameters influencing the preparation success are determined. Finally, as a proof-of-concept, an electron backscatter diffraction study on a surface crystallized diopside glass ceramic is performed, where the method is used to analyze orientation dependent crystal growth phenomena occurring during growth of surface crystals into the bulk. KW - 3D etching KW - Ion beam erosion Sectioning KW - EBSD KW - Sample preparation KW - Analytical scanning electron microscopy KW - SEM KW - Glass Ceramic KW - Glass KW - Diopsid PY - 2021 DO - https://doi.org/10.1016/j.micron.2021.103090 SN - 0968-4328 VL - 150 PB - Elsevier B.V. AN - OPUS4-53075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hertwig, Andreas A1 - Ermilova, Elena T1 - Optical constants of a single AlN layer on Si N2 - Spectroscopic ellipsometry was used to determine the thickness and dielectric function of a Aluminium Nitride (AlN) layer on a Si wafer. The layer was determined to be 170 nm thick. The layer was provided by AIXTRON and manufactured by means of MOVPE. The data was created using a M2000DI spectroscopic ellipsometer from Woollam Co. Inc. Analysis was done using the CompleteEASE software. The model used is a multi-peak oscillator model for the AlN layer. The data resembles common database values for the material AlN. KW - Aluminium nitride KW - Thin solid layers KW - Spectroscopic ellipsometry KW - Compund semiconductors KW - MOVPE PY - 2024 UR - https://zenodo.org/records/12743500 DO - https://doi.org/10.5281/zenodo.12743499 PB - Zenodo CY - Geneva AN - OPUS4-60661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Smales, G. J. T1 - DACHS-MOFs Database for Automation, Characterisation, and Holistic Synthesis N2 - The DACHS (Database for Automation, Characterization and Holistic Synthesis) project aims to create completely traceable experimental data, covering syntheses, measurements, analyses, and interpretations. DACHS MOFs focuses on the synthesis and characterisation of metal-organic frameworks (MOFs), across multiple, automation-assisted experimental series (AutoMOFs), with the overall goal of producing reproducible MOF syntheses. So far > 1200 MOF samples have been synthesised, with SAXS/WAXS data currently being collected on all samples. All results, including those from “failed” syntheses, are included in the database, as results are results and should be considered agnostic to any positive ornegative interpretations. DACHS MOFs represents the initial trial of the DACHS project, serving as a comprehensive resource for researchers aiming to optimize the synthesis and characterization of MOFs. T2 - XIX International Small Angle Scattering Conference CY - Taipei, Taiwan DA - 04.11.2024 KW - Lab automation KW - Synthesis KW - Metal organic frameworks KW - Zif-8 KW - Databases KW - Synthesis data PY - 2024 AN - OPUS4-61626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating networks with tuned thermal and mechanical properties N2 - Multiphoton lithography (MPL), an emerging microfabrication technique, shows great potential in a variety of applications ranging from tissue engineering to soft micro-robotics. Fabricated micro-objects often are expected to undergo shape morphing or bending. Furthermore, ensuring precise property tuning becomes detrimental for the functionality of MPL microstructures. Herein, we present novel MPL materials based on interpenetrating networks (IPNs), which effectively combine the advantages of acrylate and epoxy thermoset systems. A library of 3D MPL IPN microstructures with high 3D structural stability and tailored thermal and micromechanical properties is achieved. MPL laser velocity and fabrication power can be used to tune the morphology and therefore properties of IPN. New IPN microstructures with materials Young's moduli of 4 to 6 MPa demonstrate susceptibility to deformation with high to fully elastic response. Such soft elastic materials hold immense promise within morphable microsystems, soft micro-robotics and cell engineering applications. T2 - RSC Poster conference CY - Online meeting DA - 05.03.2024 KW - Multiphoton lithography KW - Interpenetrating polymer networks KW - AFM PY - 2024 AN - OPUS4-60060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Moreno Torres, Benjami A1 - Firdous, R. A1 - Zia, G. J. A. A1 - Stephan, D. T1 - Accelerating the search for alkali-activated cements with sequential learning N2 - With 8% of man-made CO2 emissions, cement production is an important driver of the climate crisis. By using alkali-activated binders, part of the energy-intensive clinker production process can be dispensed. However, as numerous raw materials are involved in the manufacturing process here, the complexity of the materials increases by orders of magnitude. Finding a properly balanced binder formulation is like looking for a needle in a haystack. We have shown for the first time that artificial intelligence (AI)-based optimization of alkali-activated binder formulations can significantly accelerate research. The "Sequential Learning App for Materials Discovery" (SLAMD) aims to accelerate practice transfer. With SLAMD, materials scientists have low-threshold access to AI through interactive and intuitive user interfaces. The value added by AI can be determined directly. For example, the CO2 emissions saved per ton of cement can be determined for each development cycle: the more efficient the AI optimization, the greater the savings. Our material database already includes more than 120,000 data points of alternative binders and is constantly being expanded with new parameters. We are currently driving the enrichment of the data with a life cycle analysis of the building materials. Based on a case study we show how intuitive access to AI can drive the adoption of techniques that make a real contribution to the development of resource-efficient and sustainable building materials of the future and make it easy to identify when classical experiments are more efficient. T2 - fib International Congress CY - Oslo, Norway DA - 12.06.2022 KW - Concrete KW - Materials Design KW - Sequential Learning KW - Machine Learning PY - 2022 SP - 1 EP - 9 AN - OPUS4-56634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duarte Bernardino, Carolina A1 - Lee, Mihyun A1 - Ren, Qun A1 - Ruehle, Bastian T1 - Facile Spray-Coating of Antimicrobial Silica Nanoparticles for High-Touch Surface Protection N2 - The rising threat from infectious pathogens poses an ever-growing challenge. Metal-based nanomaterials have gained a great deal of attention as active components in antimicrobial coatings. Here, we report on the development of readily deployable, sprayable antimicrobial surface coatings for high-touch stainless steel surfaces that are ubiquitous in many healthcare facilities to combat the spread of pathogens. We synthesized mesoporous silica nanoparticles (MSNs) with different surface functional groups, namely, amine (MSN-NH2), carboxy (MSN-COOH), and thiol groups (MSN-SH). These were chosen specifically due to their high affinity to copper and silver ions, which were used as antimicrobial payloads and could be incorporated into the mesoporous structure through favorable host−guest interactions, allowing us to find the most favorable combinations to achieve antimicrobial efficacy against various microbes on dry or semidry high-touch surfaces. The antimicrobial MSNs were firmly immobilized on stainless steel through a simple two-step spray-coating process. First, the stainless steel surfaces are primed with sprayable polyelectrolyte solutions acting as adhesion layers, and then, the loaded nanoparticle dispersions are spray-coated on top. The employed polyelectrolytes were selected and functionalized specifically to adhere well to stainless steel substrates while at the same time being complementary to the MSN surface groups to enhance the adhesion, wettability, homogeneity, and stability of the coatings. The antimicrobial properties of the nanoparticle suspension and the coatings were tested against three commonly found pathogenic bacteria, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, as well as a fungal pathogen, Candida albicans. Especially MSN-SH loaded with silver ions showed excellent antimicrobial efficacy against all tested pathogens under application-relevant, (semi)dry conditions. The findings obtained here facilitate our understanding of the correlation between the surface properties, payloads, and antimicrobial activity and show a new pathway toward simple and easily deployable solutions to combat the spread of pathogens with the help of sprayable antimicrobial surface coatings. KW - Mesoporous silica nanoparticles KW - Thin films KW - Antimicrobial coatings KW - Spray-coating KW - Infectious diseases KW - Pathogen transmission KW - High-touch surfaces PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626269 DO - https://doi.org/10.1021/acsami.4c18916 SN - 1944-8252 SP - 1 EP - 13 PB - ACS Publications CY - Washington, DC AN - OPUS4-62626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seilert, J. T1 - (Re)engineering functional fat phases – bridging industry and ivory tower N2 - The crystallization kinetics of commercial structuring fats are determined by the interplay of polymorphic transitions and the formation of mixed crystals involving three primary melting groups: H3, H2M, and H2U. Here, H represents long-chain saturated fatty acids, M denotes medium-chain saturated fatty acids, and U signifies unsaturated fatty acids. Assigning the molecular makeup of structuring fats to the kinetic pathways proves to be a challenging task when dealing with complex mixtures. For example, incorporating H2M triglycerides alters the crystallization pathways substantially by impacting the formation of mixed crystals with and between H3 and H2U triglycerides (TAGs). However, determining the impact of specifics in molecular composition, e.g., fatty acid content and TAG asymmetry, remains a complex challenge when dealing with intricate mixtures. This might be overcome by targeting distinct melting groups and comparing their behavior in complex mixtures to academic replicates. This study examined four commercial blends with different fatty acids (palmitic versus stearic acid) and varying H3 contents (8% versus 4%), C8-P, C8-S, C4-P, and C4-S. The H2M content and sum of structuring melting groups was kept constant at 9 % and 25 %, respectively. Further, the commercial blends were replicated using synthetic triglycerides representing the main melting groups: PPP and SSS for H3, PLaP and SLaS for H2M and POP and SOS for H2U – resulting in academic blends A8-P, A8-S, A4-P, and A4-S. The crystallization under quiescent conditions at a cooling rate of 3.5 K/min of all eight blends was studied via DSC and time-resolved SAXS/WAXS. While the P-based commercial blends (C8-P and C4-P) followed typical crystallization routes including an α-β’ transition and clear dependency on H3 content, the S-based counterparts, C8-S and C4-S, showed an α-phase of prolonged stability and evidence of two distinct β’ phases. Differences between commercial and academic blends are discussed. T2 - 2nd Berlin Symposium on Structured Lipid Phases CY - Berlin, Germany DA - 30.09.2024 KW - Lipid phases KW - Thermal structuring KW - Crystallography KW - X-ray scattering PY - 2024 AN - OPUS4-61334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Senbill, Haytham A1 - Gangan, Amr A1 - Saeed, Ahmed M. A1 - Gad, Mohammed E. A1 - Zeb, Jehan A1 - Fahmy, Alaa T1 - Effects of copper/graphene oxide core-shell nanoparticles on Rhipicephalus ticks and their detoxification enzymes N2 - Nanopesticides have been recently introduced as novel pesticides to overcome the drawbacks of using traditional synthetic pesticides. The present study evaluated the acaricidal activity of Copper/Graphene oxide core-shell nanoparticles against two tick species, Rhipicephalus rutilus and Rhipicephalus turanicus. The Copper/Graphene oxide core-shell nanoparticles were synthetized through the solution plasma (SP) method under different conditions. The nanoparticles synthesized at 180 W and 45 min were highly toxic to Rh. rutilus and Rh. turanicus, with 50% lethal concentration (LC50) values of 248.1 and 195.7 mg ml−1, respectively, followed by those which were synthesized at 120 W/30 mins (LC50 = 581.5 and 526.5 mg ml−1), 120 W/15 mins (LC50 = 606.9 and 686.7 mg ml−1), and 100/45 mins (LC50 = 792.9 and 710.7 mg ml−1), after 24 h of application. The enzyme assays revealed that 180 W/45 min treatment significantly inhibited the activity of acetylcholinesterase (115 ± 0.81 and 123 ± 0.33 U/ mg protein/min) and superoxide dismutase (290 ± 0.18 and 310 ± 0.92 U/ mg protein/min) in Rh. rutilus and Rh. turanicus, respectively, as compared with the negative control. The results also revealed a significantly increased catalase activity (895 ± 0.37 and 870 ± 0.31 U/ mg protein/min) in Rh. rutilus and Rh. turanicus, respectively. The above results indicated that Copper/Graphene oxide core-shell nanoparticles could be a promising alternatives for the management of ticks. KW - Copper/graphene oxide KW - Nanopesticides KW - Rhipicephalus rutilus KW - Rhipicephalus turanicus KW - Acetylcholinesterase KW - Antioxidants PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-629359 DO - https://doi.org/10.1038/s41598-025-86560-4 SN - 2045-2322 VL - 15 SP - 1 EP - 12 PB - Springer Nature CY - London AN - OPUS4-62935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - Exchange interaction KW - Ferromagnetism KW - LLG KW - Landau Lifshitz equation KW - Magnetic moment KW - Magnetic nanoparticles KW - Micromagnetism KW - OOMMF KW - Object oriented micromagnetic framework KW - Stochastic Landau Lifshitz Gilbert equation KW - Temperature scaling PY - 2023 AN - OPUS4-57062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tang, Chi-Long T1 - Sub-4 nm particles from FFF-3D printing measured with the TSI 1 nm CPC and the Airmodus A11 nCNC N2 - Concerns have been raised as Fused Filament Fabrication (FFF) desktop 3D printer emits harmful ultrafine particles (dP < 100 nm) during operation in indoor spaces. However, the vast majority of previous emission studies have neglected the possible occurrence of sub-4 nm particles by using conventional condensation particle counter (CPC) for detection. Thus, the total particle emission could be systematically underestimated. This study has compared two diethylene glycol (DEG) based instruments to evaluate their suitability for measuring organic FFF particles in the sub-4 nm size range either as particle counter or as a particle size spectrometer. T2 - European Aerosol Conference 2024 CY - Tampere, Finland DA - 25.08.2024 KW - Air pollution KW - Emission testing KW - FFF-3D printing KW - Sub-4nm particles KW - Ultrafine particles PY - 2024 AN - OPUS4-60930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif A. A1 - Gawek, Marcel A1 - Penner, P. A1 - Paneff, F. A1 - Zhang, X. A1 - Gölzhäuser, A. A1 - Schönhals, Andreas T1 - Can Polymers be Irreversibly Adsorbed on Carbon Nanomembranes? A Combined XPS, AFM, and Broadband Dielectric Spectroscopy Study N2 - Carbon nanomembranes are synthetic two-dimensional sheets with nanometer thickness, macroscopic lateral dimensions, and high structural homogeneity. They have great application potential in various branches of nanotechnology. Because of their full carbon structure, it is not clear whether macromolecules like poly(methyl methacrylate) (PMMA) can be irreversibly adsorbed on their surface. Here, irreversible adsorption means that the polymer chains cannot be removed by a leaching process, which is assumed in technological transfer processes. However, if polar defects are present on the carbon nanomembranes (CNMs), it may occur that polymers can be irreversibly adsorbed. To address this question, PMMA was spin-coated on top of CNMs, annealed for a specific time at different temperatures, and then tried to be removed by a acetone treatment in a leaching approach. The samples were investigated in detail by atomic force microscopy, X-ray photoelectron spectroscopy, and broadband dielectric spectroscopy, where the latter method has been applied to CNMs for the first time. Unambiguously, it was shown that PMMA can be adsorbed on the surface of CNMs after annealing the sample above the glasstransition temperature of PMMA. The general occurrence of polar defects on the surface of CNMs and the adsorption of polymers open opportunities for advanced innovative hybrid materials combining the properties of the CNM with those of the polymer. KW - Carbon Nanomembranes KW - Irreversible adsorption KW - Broadband dielectric spectroscopy KW - XPS spctroscopy KW - Atomic force microscopy PY - 2022 DO - https://doi.org/10.1021/acsapm.2c01320 SN - 2637-6105 VL - 4 IS - 11 SP - 8377 EP - 8385 PB - ACS AN - OPUS4-56067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Campbell, C. G. A1 - Jordon Astorga, D. A1 - Dümichen, Erik A1 - Celina, M. T1 - Thermoset materials characterization by thermal desorption or pyrolysis based gas chromatography-mass spectrometry methods N2 - Thermoset materials characterization is often limited to solid state analytical techniques such as IR, NMR, DSC, TGA and mechanical testing. Alternatively, their off-gassing behavior can also be evaluated using GC based techniques such as TD-GC-MS, allowing this method to be applied to thermoset materials analyses such as identification, aging characterization, and formulation optimization. As an overview, common thermoset materials were evaluated by analyzing their gaseous degradation products via TGA-based pyrolysis and subsequent TD-GC-MS for the identification of representative volatile signatures. It is thereby possible to distinguish different classes of phenolic materials or cured epoxy resins, as well as their amine or anhydride curatives. Additionally, this method enabled quantification of a volatile fragment (bisphenol A, BPA) which is associated with oxidation of epoxy/amine thermoset materials. The amount of evolved BPA increased linearly with aging time and this trend exhibits linear Arrhenius behavior over the temperature range (80–125 °C) studied, in agreement with oxidation sensitivies based on oxygen consumption data. Further, TD-GC-MS was used to explore how off-gassing of residual anhydride curative from an epoxy/anhydride material depends on formulation stoichiometry. Even in formulations that theoretically contained enough epoxy to consume all anhydride (1:1 stoichiometry), an imperfect final cure state resulted in residual anhydride which could evolve from the material. For such materials, a slightly epoxy-rich formulation is required to ensure that the material contains no residual unreacted anhydride. Analysis of volatiles generated by thermal exposure is an attractive characterization approach enabling compositional analysis as well as complementary diagnostics for materials degradation. KW - Polymer analysis/characterization KW - Thermal desorption mass spectrometry KW - Thermoset composition KW - Volatiles from thermosets KW - Degradation signatures PY - 2020 DO - https://doi.org/10.1016/j.polymdegradstab.2019.109032 VL - 174 SP - 109032 PB - Elsevier Ltd. AN - OPUS4-50435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Review: Nanopatterned and Nanoparticle‐Modified Electrodes N2 - Since nanoscience has a tremendous impact on the development of electrochemistry, Wiley‐VCH paid attention to that by publishing thisbook as volume 17 within the series “Advances in Electrochemical Science and Engineering”. This collection of “nanoaspects”on electrodes provides a helpful overview on principles and current findings to readers interested in such applications. It fulfills its intention of being “a valuable resource for researchers working in such fields as electrochemistry, materials science, spectroscopy, analytical and medicinal chemistry”. KW - Electrochemistry KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1002/maco.202070014 SN - 1521-4176 SN - 0947-5117 VL - 71 IS - 1 SP - 179 EP - 180 PB - WILEY‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheffler, F. A1 - Tielemann, Christopher T1 - Crystallization of glasses studied with PEEM N2 - A heat treated glass that formed crystals under controlled conditions can be a glass ceramic. A proper understanding of crystallization in glassy melts is needed yet still lacking. Involved processes include the mobility of Elements within the glass during heat treatment and the reorganization of atomic bonds during crystallization. This change in coordination number of certain elements is easily observable in bulk glass samples during heat treatment with XAS. Our plan was to monitor these reorganization processes in situ at the immediate surface during heat treatment with PEEM to get time and spatial resolved data. T2 - Joint Meeting of the Polish Synchrotron Radiation Society and SOLARIS Users CY - Online meeting DA - 09.09.2020 KW - Glass KW - Surface KW - Peem KW - Synchrotron PY - 2020 AN - OPUS4-51336 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuchenbecker, Petra T1 - Granulometry of Nano Powders - a Challenge Especially for the Dispersion Process N2 - The use of increasingly finer starting powders up to nanopowders can also be observed in the field of ceramics. Their advantages consist, for example, in their lower activation energy, an increase in strength or unique optical properties. However, handling and characterization of the powders are much more difficult. The main reason for this is the very high adhesive forces between the particles and between particles and other surfaces, too. Therefore, submicron and even more so nanoparticles tend to agglomerate and their separation into primary particles during sample preparation prior to particle sizing is of particular challenge. A representative measurement sample is only obtained when it no longer contains agglomerates. The evaluation of the dispersion process and a decision on whether it was successful thus increases in importance for the reliability of the measurement results of particle sizing. The presentation uses examples to show possible approaches and provides information on possible sources of error. It is shown that successful granulometric characterisation of fine powders requires both an improved dispersion technique and very often an effective combination of two or more measurement methods. KW - Agglomerates KW - Nano-powder KW - Dispersion process PY - 2021 SN - 0173-9913 VL - 98 IS - 2 SP - 47 EP - 54 PB - Göller Verlag GmbH CY - Baden-Baden AN - OPUS4-52504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bahri, Marwa T1 - Ortsspezifische Biokonjugation von humanen Antikörpern mit IgG-bindenden Peptiden N2 - Es wurde im Rahmen dieser Arbeit eine neue Methode der Biokonjugation entwickelt, die es ermöglicht humane Antikörper ortspezifisch mit IgG-bindenden Peptiden zu konjugieren. Als Basis fungierte ein Peptid, welches für den Einsatz gezielt modifiziert wurde. So sollte am C-Terminus ein Biotin eingefügt werden, dass für die spätere Detektion der Biokonjugation genutzt werden kann, während am N-Terminus ein Cross-Linker für die kovalente Bindung zum Antikörper eingefügt wurde. Das Biotin wurde mittels Biotin-Lysin eingebaut. Dies hat den Vorteil, dass die modifizierte Aminosäure direkt in der SPPS genutzt werden kann. Auch der Cross-Linker soll schon während der SPPS in das Peptid integriert werden. Als Cross Linker wurden die zwei heterobifunktionellen Succinimidyl(3-bromoacetamid)propionate und Succinimidyl(4-iodacetyl)aminobenzoat untersucht. Die Aktivierung des Peptides mit dem SBAP-Cross-Linker erfolgte am besten im pH-Bereich zwischen 7,0 und 9,0. Die Modifizierung des Peptides mit dem Iodid-Cross-Linker SIAB unter den gleichen Bedingungen zeigte allerdings keine zufriedenstellenden Ergebnisse. Da das erste Peptid allerdings in den Folgeexperimenten sehr gute Ergebnisse zeigte, musste kein weiterer Linker getestet werden. Zusätzlich zu der Cross-Linker-Wahl sollte der Abstand zwischen dem Cross-Linker und dem Grundgerüst des Peptides auf den Einfluss der Bindung untersucht werden. Dazu wurden drei Kontrollpeptide synthetisiert, die entweder um zwei Aminosäuren zwischen dem ursprünglichen N-Terminus des Peptides und dem SBAP-Linker verlängert wurden, keinen SBAP-Linker beinhalten oder die Verlängerung ohne SBAP-Linker besaßen. Die erfolgreiche Synthese aller vier Peptide wurde mittels MALDI-TOF-MS bestätigt. KW - Peptide KW - Bioconjugation KW - Crosslinker PY - 2020 SP - 1 EP - 82 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54659 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Svetlov, I. L. A1 - Nolze, Gert T1 - Model for Forecasting Temperature Dependence of γ/γ' Misfit in Heat-Resistant Nickel Alloys N2 - An analytical model for forecasting the temperature dependence of γ/γ' misfit in heat-resistant nickel alloys is proposed. The model accounts for the concentration dependences of the periods of crystalline lattices of the γ and γ' phases (Vegard law), thermal expansion of the γ and γ' lattices, and dissolution of the γ' phase at high temperatures. Adequacy of calculations of misfit is confirmed by comparison with the results of measurements using methods of X-ray and neutron diffraction. The model is applied for development of a nickel alloy with positive misfit. KW - Heat-resistant nickel alloys KW - Dimensional mismatch of crystalline lattice periods (misfit) KW - Microstructure evolution PY - 2022 DO - https://doi.org/10.1134/S2075113322010105 SN - 2075-1133 VL - 13 IS - 1 SP - 7 EP - 16 PB - Springer AN - OPUS4-54379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt-Grund, R. A1 - Sturm, C. A1 - Hertwig, Andreas T1 - Ellipsometry and polarimetry - Classical measurement techniques with always new developments, concepts, and applications N2 - Ellipsometry is a matured experimental method, whose roots reach back into the early phase of modern optics itself. It is often attributed to be invented by Paul Drude in the last decade of the 19th century, but similar techniques had already been applied for years before Drude started his work. With this Special Issue about ellipsometry and related techniques, we hope to bring more attention to this method and advance and propagate it to be used by a broader community. We have collected a good mixture of articles: some texts are more in the line of users’ tutorial and best practice guides; others are intended to show recent developments of the method. With this collection, we also hope to show the generally rapidly expanding possibilities of ellipsometry and polarimetry to draw attention of new users and previously unrelated communities to this valuable tool. KW - Ellipsometry KW - Polarimetry KW - Surfaces KW - Thin films KW - Optical analysis PY - 2022 DO - https://doi.org/10.1515/aot-2022-0025 SN - 2192-8584 SN - 2192-8576 VL - 11 IS - 3-4 (Topical issue: Ellipsometry) SP - 57 EP - 58 PB - De Gruyter CY - Berlin AN - OPUS4-55467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement by Monte-Carlo based particle scattering Simulations N2 - Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined.[1] Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. [2] These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for ongoing experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au. T2 - NALS 2022 CY - Santander, Spain DA - 27.04.2022 KW - AuNP KW - Beta decay KW - beta particle KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - LEE KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - particle scattering KW - Penelope model KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Simulation KW - TOPAS KW - TOPAS-nbio PY - 2022 AN - OPUS4-54775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Schmidt-Grund, R. ED - Sturm, C. ED - Hertwig, Andreas T1 - Topical issue: Ellipsometry N2 - Ellipsometry is a matured experimental method, whose roots reach back into the early phase of modern optics itself. It is often attributed to be invented by Paul Drude in the last decade of the 19th century, but similar techniques had already been applied for years before Drude started his work. With this Special Issue about ellipsometry and related techniques, we hope to bring more attention to this method and advance and propagate it to be used by a broader community. KW - Spectroscopy KW - Ellipsometry KW - Surfaces KW - Thin films KW - Advanced optics KW - Optical measurement technology PY - 2022 UR - https://www.degruyter.com/journal/key/aot/11/3-4/html#contents SN - 2192-8584 SN - 2192-8576 VL - 11 IS - 3-4 SP - 47 EP - 147 PB - De Gruyter CY - Berlin AN - OPUS4-55468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Luminescent multifunctional nanostructures for sensing and theranostics applications N2 - An overview of the work carried out at LEMAF - Laboratory of Spectroscopy of Functional Materials at IFSC/USP was given. The work presented focus on the design, production and functional characterization of multifunctional nanoparticles. T2 - NANOANDES - Latin American School on Nanomaterials and Appllications CY - Araraquara, SP, Brazil DA - 10.10.2023 KW - Multifunctional nanoparticles KW - Upconversion nanoparticles KW - Quantum dots KW - Noble metal nanoparticles PY - 2023 AN - OPUS4-60363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Camargo, Andrea Simone Stucchi T1 - Luminescent multifunctional nanostructures for sensing and theranostics applications N2 - The research carried out at the Laboratory of Spectroscopy of Functional Materials at IFSC/USP, in Brazil, is focused on the synthesis and structural-property correlation of luminescent materials including rare-earth (RE) doped glasses, ceramics and hybrid host-guest materials. For the past five years, we have been particularly interested in the development of single- and multifunctional nanosystems based on core-shell upconversion nanoparticles (UCNP) associated with dyes, organometallic complexes and other organic molecules, for biophotonic and sensing applications. In these systems, we take advantage of energy transfer between the UCNPs and the molecules to either supress or enhance luminescent response. Examples include the possibility of bioimaging and photodynamic therapy of bacteria and cancer cells, simultaneous magnetothermia and thermometry, localized O2 sensing, fast detection and quantification of biological markers (e.g. kidney disease) and microorganisms. On what concerns the development of luminescent sensors - a recently started project, our aim is to develop paper-based platforms for point-of-care devices. In this presentation, an overview of our contributions for the past years and our future aims will be presented with several examples. T2 - ICL2023 - 20th International Conference on Luminescence CY - Paris, France DA - 27.08.2023 KW - Upconversion KW - Sensing KW - Theranostics KW - Nanoparticles KW - Photodynamic therapy PY - 2023 AN - OPUS4-60362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena T1 - Ellipsometry as optical metrology method for analysis of reference materials for nanoelectronics N2 - Electrical properties of materials at the nanoscale can be characterized using scanning microwave microscopes (SMM) and conductive atomic force microscopes (C AFM). However, the measurement results are difficult to compare since different setups and different reference standards are used. The development of new “out-of-lab” reference standards can contribute to the traceability and reliability of these scanning probe microscopy methods (SPM) and facilitate their broader industrial application. In this study, we discuss the capability of optical methods such as ellipsometry for the characterization of existing and the development of new reference calibration samples for scanning microwave microscopy. Ellipsometry is a fast and non-destructive method, which enables very accurate determination of the layer thickness and the dielectric functions of the materials. Imaging ellipsometry is suitable for spatially resolved measurements when analyzing thin layers in microstructured samples. We show how the electrical resistivity of indium tin oxide (ITO) layers in newly designed resistive calibration samples can be obtained from spectroscopic ellipsometric measurements. The extension of the measurement range into the mid-infrared region was necessary when analyzing ITO layers with low conductivity. This parameter was obtained by fitting a Drude function describing the absorption of the free carriers. The impact of the coating process conditions on the layer properties is discussed. Imaging ellipsometry was applied for the characterisation of thin ITO and SiO2 layers in microstructured resistive and capacitance calibration kits. The uncertainties of determined layer thicknesses were specified according to standardized practice guides used in ellipsometry. We show how statistical fingerprint analysis of the measured ellipsometric transfer quantities can be used to validate the quality of potential reference materials for nano-electronics and to monitor the processing of structured samples. T2 - L. ALTECH 2024 - Analytical techniques for accurate nanoscale characterization of advanced materials CY - Strasbourg, France DA - 27.05.2024 KW - Ellipsometry KW - Reference materials KW - Transparent conductive Oxides KW - Scannig probe microscope KW - Metrology KW - Nanoelectronics PY - 2024 AN - OPUS4-60268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - Determining Material Properties with Spectroscopic Ellipsometry N2 - In this lecture, an introduction will be given on Spectroscopic Ellipsometry, what quantities can be obtained with it, and how we use it in ELENA and other projects to determine functional parameters of thin layers at the nanoscale. T2 - Summer school ELENAM : metrology at the nanoscale CY - Fréjus, France DA - 02.06.2024 KW - Thin Layers KW - Ellipsometry KW - Nanotechnology KW - Electrical Paramters PY - 2024 AN - OPUS4-60247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Würth, Christian T1 - Time resolved spectroscopy of upconverting lanthanide based upconversion nanocrystals N2 - This presentation gives an overview of time correlated population and depopulation processes of the electronic states of lanthanide doped nanoparticles. The fundamental principles of sensitized photon upconversion are explained. Theoretical principles and the correlation to experimental results are shown. Examples are given for particle growth, dissolution as well as influences of size, doping concentration and microenvironment. T2 - Principles and Applications of Time-resolved Fluorescence Spectroscopy CY - Berlin, Germany DA - 12.11.2024 KW - Upconversion KW - Time domain PY - 2024 AN - OPUS4-61652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - On the use of spectroscopic imaging ellipsometry for quantification and characterisation of defects in thin films for power electronics N2 - Compound semiconductors (CS) are promising materials for the development of high-power electrical applications. They have low losses, can withstand high temperatures and can operate at very high voltages and currents. This makes them a key technology for the electrification of many high energy applications, especially electromobility and HVDC power lines. The challenge with CS technology is that most of the process technology has to be developed anew to the high standards required by electronic applications. Today, compound semiconductors can be produced in thin layers on top of substrates fabricated from classical crystal growth processes that are already well established. A promising method for this is metal organic vapour phase epitaxy (MOVPE). With this method, many different compounds with semiconducting properties can be synthesized. Additionally, this process technology is a direct thin layer deposition method. Therefore, complex multilayer systems can be generated directly by the deposition process and without the need of doping after growing. There are a number of critical defects that can originate from the deposition process of these thin film devices. Within this project, we intend to develop new correlative imaging and analysis techniques to determine defect types, to quantify defect size and number density, as well as to characterise defects for process optimisation. We report here on the use of spectroscopic ellipsometry and imaging ellipsometry to investigate defects in several different compound semiconductor materials used in high-power electronic devices. The materials we investigated are β-Ga2O3, SiC, GaN, AlN, and AlGaN materials as well as oxidised SiC surfaces. All of these materials have their typical defects and require optimised measurement and analysis schemes for reliable detection and analysis. Spectroscopic ellipsometry is a highly sensitive method for determining the thicknesses and dielectric function of thin layers, yielding potentially a high number of microscopic properties. The combined method between ellipsometry and optical microscopy is called imaging ellipsometry and is especially powerful for the large amount of data it produces. We have analysed defects in SiC- and AlN-based thin film semiconductors as well as characterised the properties of different types of SiO2 layers created on top of SiC monocrystals. We developed ellipsometric models for the data analysis of the different semiconductor materials. If the defects have geometric features, it is useful to combine the ellipsometric analysis with topometry method like interference microscopy and scanning probe microscopy. We have successfully characterised function-critical defects in MOVPE SiC layers and correlated the findings with topography from WLIM measurements. We have developed an imaging ellipsometric measurement methodology that allows to estimate the relative defect area on a surface by a statistical raw data analysis. Compound semiconductors (CS) are promising materials for the development of high-power electrical applications. They have low losses, can withstand high temperatures and can operate at very high voltages and currents. This makes them a key technology for the electrification of many high energy applications, especially electromobility and HVDC power lines. The challenge is that most of the process technology has to be developed specifically and tailored to the high standards required by electronic applications. Today, many different CS materials can be produced in thin layers on top of substrates fabricated from classical crystal growth processes that are already well established. A promising method for this is metal organic vapour phase epitaxy (MOVPE). This technology is a direct thin layer deposition method capable of producing complex multilayer systems directly from one deposition process without the need of doping after growing. There are a number of critical defects that can originate from the deposition process when targeting electronic thin film devices. Within this project, we intend to develop new correlative imaging and analysis techniques to determine defect types, to quantify defect size and density, as well as to characterise defects for further process optimisation. We report here on the use of spectroscopic and multispectral imaging ellipsometry to investigate defects in several different compound semiconductor materials used in high-power electronic devices. The materials we investigated are β-Ga2O3, SiC, GaN, AlN, and AlGaN as well as oxidised SiC. All of these materials have their typical defects and require optimised measurement and analysis schemes for reliable detection and analysis. Spectroscopic ellipsometry is a highly sensitive method for determining the thicknesses and dielectric function of thin layers, yielding potentially a high number of microscopic properties. The combined method between ellipsometry and optical microscopy is known as imaging ellipsometry and is especially powerful for the large amount of data it produces. We have analysed defects in SiC- and AlN-based thin film semiconductors as well as characterised the properties of different types of SiO2 layers created on top of SiC monocrystals. We developed ellipsometric models for the data analysis of the different semiconductor materials. If the defects have geometric features, it is useful to combine the ellipsometric analysis with topometry methods like interference microscopy and scanning probe microscopy. We have successfully characterised function-critical defects in MOVPE SiC layers and correlated the findings with topography from WLIM measurements. We have developed an imaging ellipsometric measurement methodology that allows to estimate the relative defect area on a surface by a statistical raw data analysis. T2 - EMRS Spring Meeting 2024 - ALTECH 2024 CY - Strasbourg, France DA - 27.05.2024 KW - Ellipsometry KW - Power Electronics KW - Layer Materials KW - Defect Analysis PY - 2024 AN - OPUS4-60266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -